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Biologically relevant large-scale computational models currently represent one of the
main methods in neuroscience for studying information processing primitives of brain
areas. However, biologically realistic neuron models tend to be computationally heavy
and thus prevent these models from being part of brain-area models including thousands
or even millions of neurons. The cerebellar input layer represents a canonical example
of large scale networks. In particular, the cerebellar granule cells, the most numerous
cells in the whole mammalian brain, have been proposed as playing a pivotal role in
the creation of somato-sensorial information representations. Enhanced burst frequency
(spiking resonance) in the granule cells has been proposed as facilitating the input signal
transmission at the theta-frequency band (4–12 Hz), but the functional role of this cell
feature in the operation of the granular layer remains largely unclear. This study aims to
develop a methodological pipeline for creating neuron models that maintain biological
realism and computational efficiency whilst capturing essential aspects of single-neuron
processing. Therefore, we selected a light computational neuron model template (the
adaptive-exponential integrate-and-fire model), whose parameters were progressively
refined using an automatic parameter tuning with evolutionary algorithms (EAs). The
resulting point-neuron models are suitable for reproducing the main firing properties
of a realistic granule cell from electrophysiological measurements, including the spiking
resonance at the theta-frequency band, repetitive firing according to a specified intensity-
frequency (I-F) curve and delayed firing under current-pulse stimulation. Interestingly,
the proposed model also reproduced some other emergent properties (namely, silent at
rest, rheobase and negligible adaptation under depolarizing currents) even though these
properties were not set in the EA as a target in the fitness function (FF), proving that
these features are compatible even in computationally simple models. The proposed

Abbreviations: AdEx, Adaptive exponential integrate-and-fire; AP, Action potential; EA, Evolutionary algorithm; FF, Fitness
function; GrC, Granule cell; GrL, Granular layer; HH, Hodgkin-and-Huxley; I-F, Intensity-frequency; I-V, Intensity-voltage.

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 161

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.00161
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.00161&domain=pdf&date_stamp=2020-07-14
https://creativecommons.org/licenses/by/4.0/
mailto:mmarin@ugr.es
mailto:jesusgarrido@ugr.es
https://doi.org/10.3389/fncel.2020.00161
https://www.frontiersin.org/articles/10.3389/fncel.2020.00161/full
https://loop.frontiersin.org/people/391571/overview
https://loop.frontiersin.org/people/984382/overview
https://loop.frontiersin.org/people/88752/overview
https://loop.frontiersin.org/people/44012/overview
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Marín et al. Efficient Neuron Model Optimization

methodology represents a valuable tool for adjusting AdEx models according to a
FF defined in the spiking regime and based on biological data. These models are
appropriate for future research of the functional implication of bursting resonance at
the theta band in large-scale granular layer network models.

Keywords: neuron model, granule cell, cerebellum, model simplification, spiking resonance, point neuron,
adaptive exponential integrate-and-fire

INTRODUCTION

Neuronal populations in the brain reflect complex synchronized
temporal patterns typically modulated by coherent oscillations
(Buzsáki, 2006). This oscillatory behavior is usually evidenced
by the study of resonance as the preferred frequency in
response to oscillatory inputs (Hutcheon and Yarom, 2000).
In particular, one of the brain centers where resonance has
received more attention is the cerebellum (Dugué et al.,
2009; D’Angelo et al., 2009, 2011; Gandolfi et al., 2013). The
cerebellum is thought to generate low-frequency (5–30 Hz) and
higher-frequency activity rhythms, depending on the circuit
sections or the neurons involved (D’Angelo et al., 2009;
Dugué et al., 2009). Previous findings suggest that theta-
frequency activity (around 4–10 Hz in rodents) contributes to
signal integration in the cerebellum (Gandolfi et al., 2013),
but its function for overall cerebellar information processing
remains elusive.

The cerebellar granular layer (GrL) represents one of the
main inputs to the cerebellar cortex and low-frequency rhythms
at this layer is fundamental for motor control, learning, and
sleep (Buzsáki, 2006; D’Angelo et al., 2009; Wang et al., 2019).
Most studies have focused on subthreshold (membrane potential
oscillations) resonance. In particular, in vivo studies of cerebellar
GrL evidenced theta-frequency resonance at 7 Hz in rats
(Hartmann and Bower, 1998) and 7–25 Hz in monkeys (Pellerin
and Lamarre, 1997; Courtemanche et al., 2009). However,
much less attention has been paid to the suprathreshold
(spiking) resonance (Rotstein, 2017). The spiking resonance has
been proposed to strengthen input signal processing and data
transmission at the theta-frequency band in the GrL (D’Angelo
et al., 2001, 2009). In most cases, this feature depends on the
spiking mechanisms and the intrinsic properties of single cells
(Rotstein, 2017).

Single-neuron responses in the GrL have long been
investigated in search of theta-frequency activity patterns
(Ros et al., 2009; Gandolfi et al., 2013). Spiking resonance has
been claimed to be an intrinsic property of the cerebellar granule
cells (GrCs), the most abundant cells not only in the cerebellum
but also in the whole mammalian brain (Herculano-Houzel,
2010). Although many experimental studies have registered the
electrophysiological activity of single GrCs from rat cerebellar
recordings, both from slices in vitro (Brickley et al., 2001;
Diwakar et al., 2009; Osorio et al., 2010; Delvendahl et al., 2015;
Masoli et al., 2017) and in vivo (Chadderton et al., 2004; Jörntell
and Ekerot, 2006), they have traditionally neglected the presence
of spiking resonance. However, only in vitro recordings have

reported spiking resonance (as enhanced bursting activity) at
theta-frequency band of single cerebellar GrCs in response to
low-frequency sinusoidal stimulation (D’Angelo et al., 2001;
Gandolfi et al., 2013). According to these studies, the spiking
resonance could emerge from an intrinsic property of the
neurons that selectively enhance low-frequency stimulation
responses due to a combination of passive and active membrane
properties (Hutcheon and Yarom, 2000; Magistretti et al., 2006;
Das and Narayanan, 2017). However, the functional role of
resonance at the theta band in the processing of the cerebellar
GrCs remains largely unclear.

Computational modeling has demonstrated to be an effective
strategy in exploring the origin of resonant behavior in the
GrCs. Detailed models (i.e., integrating a high degree of
biological plausibility) allowed fine-grained studies about the
intrinsic mechanisms involved at isolated GrCs (D’Angelo et al.,
2001). Additionally, a conductance-based Hodgkin-and-Huxley
(HH) mono-compartmental GrC model evidenced that the
subthreshold voltage-dependent potassium current (IKSlow) is at
the core of the intrinsic resonance during sinusoidal stimulation
(Nieus et al., 2006; Solinas et al., 2010; Gandolfi et al., 2013;
Rössert et al., 2014; Masoli et al., 2017). However, the high
computational cost associated to the simulation of this type of
detailedmodelmakes them only suitable for small scalemodels of
the GrL network or short simulations (Nieus et al., 2006; Diwakar
et al., 2009; Solinas et al., 2010; Gandolfi et al., 2013).

Thus, simplified models appear to be an exceptional
alternative for exploring the functional role of resonant
activity in information processing. Simplified models combine
computational efficiency and realistic neuronal dynamics.
Considering this, the adaptive exponential integrate-and-fire
(AdEx) model (Brette and Gerstner, 2005) only includes two
coupled differential equations that capture adaptation and
resonance properties (Naud et al., 2008), while enabling large
scale implementations of neuronal circuits. Although the AdEx
model can be seen as a two-dimensional reduction of the
spike initiation in HH models, the specific parameter values
of the model configuration to match with electrophysiological
measurements (Jolivet et al., 2008; Hanuschkin et al., 2010;
Barranca et al., 2013; Venkadesh et al., 2018) cannot be
experimentally determined as they require an automatic
parameter tuning algorithm.

In this article, we present a methodology for the development
of simplified neuron models based on the AdEx generic
model template that consider both biological relevance and
computational efficiency. Evolutionary algorithms (EAs) have
been used to find suitable sets of parameters to capture specific
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firing dynamics. The application to the use case of cerebellar GrC
models allows the replication of the most essential properties
of the biological cell that are key for the frequency and timing
of firing patterns in the neural code. We particularly focus on
the spiking resonance of bursts in the theta-frequency band that
has been experimentally evidenced in previous studies in the
literature. We also address how the inclusion of different spiking
properties in the fitness function (FF) affects the behavior of the
optimized neuron configuration.

MATERIALS AND METHODS

Neuron Model
The proposed mathematical model of the cerebellar GrC aims
to maintain biological realism (to capture important aspects of
single-neuron processing) as well as a low computational cost.
We have selected the AdEx neuron model (Brette and Gerstner,
2005) as the generic template model. Since GrCs have a compact
and simple morphology (D’Angelo et al., 1995, 2001; Delvendahl
et al., 2015), a mono-compartment model, such as an AdEx
point neuron model, represents a reasonable approach. Previous
studies have addressed how this model can be tuned to capture
biological realism and compared to more detailed models (Brette
and Gerstner, 2005; Nair et al., 2015) as well as recordings in
pyramidal neurons, in which this model has been demonstrated
to fit, at least qualitatively, a rich set of observed firing patterns
(Brette and Gerstner, 2005; Jolivet et al., 2008; Naud et al., 2008).

The AdEx model accounts for only two coupled differential
equations and a reset condition regulating two state variables,
the membrane potential (V) and the adaptation current (w),
according to the following equations:

Cm
dV
dt
= −gL(V − EL)+ gL1T exp

(
V − VT

1T

)
+ I(t)− w

(1)

τw
dw
dt
= a(V − EL)− w (2)

Equation (1) describes the evolution of the membrane potential
(V) during the injection of the current [I(t)]. When the
membrane potential is driven beyond the threshold potential
(VT), then the exponential term of the slope factor (∆T) models
the action potential (AP). This depolarization ends when the
membrane potential reaches the reset threshold potential (Vpeak).
Then, the membrane potential (V) is instantaneously reset to Vr
and the adaptation current (w) is increased a fixed amount (b).

The first term in equation (1) models the passive membrane
mechanisms dependent on the total leak conductance (gL), the
leak reversal potential (EL), and the membrane capacitance (Cm),
all regulating the integrative properties of the neuron. The second
(exponential) term represents the activation of the sodium
channel in a Hodgkin-Huxley type neuron model (Naud et al.,
2008), whose dynamics are determined by the parameters∆T and
VT. Equation (2) describes the evolution of the recovery variable
(w). It depends on the adaptation time constant parameter (τw)
and the subthreshold adaptation (a), while (b) defines the spike-
triggered adaptation. In our simulations, the refractory period

(τref) was set to 1 ms. The membrane potential was initially set
to the same value as the leak reversal potential (Vinit = EL).

To sum up, 10 parameters define the dynamics of the AdEx
neuron model that need to be tuned to reproduce the firing
properties of the cerebellar GrCs.

Model Optimization With Evolutionary
Algorithms
Our optimization method is based on an EA that allows multiple
parameter exploration to fit the experimentally recorded firing
behavior (Jolivet et al., 2008; Hanuschkin et al., 2010; Barranca
et al., 2013; Venkadesh et al., 2018). After the execution of the
EA, it provides sets of parameters that minimize the FF, i.e., the
function which associates each parameter set with a single value
quantifying the goodness of such a neuron configuration. Our
FF (score) includes a weighted sum of specific features related to
spike firing that we consider biologically relevant, according to
equation (3).

score =
n∑

i = 1

[abs(feati − expi) · wi] (3)

The score is defined as the sum of every firing pattern
feature (i) in response to the corresponding experimental
stimulation protocols. The score of each feature is calculated
as the absolute value (abs) of the difference between the
feature value extracted from the simulated neuron trace with
the parameter configuration of the individual (feati) and the
feature value extracted from the experimental recordings (expi).
This is multiplied by the weight associated with each feature
(wi; see ‘‘Simulations’’ section below). The EA will perform
progressive parameter optimization to select the individual (set
of parameters) that minimizes the fitness value (score). Thus,
each individual represents a set of GrC model parameters and
the FF quantifies the similarity between the firing pattern in the
simulated neuron model and the experimental recording of the
neuron in response to the same stimulation protocols.

We also explore an alternative method which aims to evaluate
the variability of the burst frequency over successive oscillatory
cycles. The score of the burst frequency has been complemented
with an additional multiplicative term related to the standard
deviation of the burst frequency over consecutive oscillatory
cycles, according to equation (4). By using this method as the FF
of the burst frequency feature, the EA will prefer neuron model
configurations whose burst frequency not only keep close to the
target (experimentally recorded) value but are also stable over
oscillatory cycles.

scoreBF =
N∑

j = 1

[abs(BFsimj − BFexpj) · wBF · (std(BFsimj)+ 1)]

(4)
According to this formula, the score of the burst frequency
feature (scoreBF) is defined as the sum of each score for all the
sinusoidal stimulation frequencies (N; 14 sinusoidal frequencies,
see Table 3). The individual score for each stimulation frequency
is calculated as the absolute difference (abs) between the burst
frequency (averaged over 10 oscillatory cycles) of the simulated
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TABLE 1 | Parameters boundaries used for the neuron optimization procedures.

Parameter name (unit) Fixed boundaries Parameter name (unit) Fixed boundaries

Cm (pF) [0.1, 5.0] VT (mV) [−60, −20]
∆T (mV) [1, 1000] a (nS) [−1, 1]
EL (mV) [−80, −40] b (nA) [−1, 1]
Vr (mV) [−80, −40] gL (nS) [0.001, 10.0]
Vpeak (ms) [−20, 20] τw (ms) [1, 1000]

The minimum and maximum values of the parameters are indicated in square brackets.

neuron (BFsimj ) and the experimental value at that stimulation
frequency (BFexpj ). This term is multiplied by the weight of the
burst frequency feature (wBF) and the standard deviation of the
simulated neuron burst frequency [std(BFsimj)] plus one.

For every execution, the EA runs for 50 generations and
1,000 individuals in the population. The initial generation is set
with 1,000 simulated neurons with parameters created according
to a uniform distribution ranging between the boundaries
indicated in Table 1. During each generation of the EA,
each model configuration (individual) is simulated and ranked
according to the FF (equation 3). The next generation is
created using basic genetic operators, such as crossover and
mutation. The one-point crossover operator was used with a
60% probability and the uniform mutation operator was used
with a 10% probability. In those individuals randomly selected to
mutate, each parameter was mutated with a probability of 15%.
To select those individuals to be included in the population in the
next generation, the selection was carried out by three-individual
tournaments. Therefore, the new population is composed of
the winners (minimum score) resulting from 1,000 tournaments
with randomly-chosen individuals. Finally, the individual with
the minimum score obtained during each complete EA execution
is selected as the best neuron model (the most suitable parameter
configuration to the target behavior).

Fitness Functions and Feature
Quantification
Biological Data Used as Reference
The experimental data used as a reference for EA optimization
are taken from two different sources (D’Angelo et al., 2001;
Masoli et al., 2017). In particular, the burst frequency in
response to sinusoidal current stimulation is obtained from
D’Angelo et al. (2001). The authors recorded cerebellar GrCs in
acute cerebellar slices obtained from 20± 2-day-old rats. The
slice preparation and whole-cell patch-clamp were performed
as reported previously (see their references). The presence
of bicuculline prevented GrC rhythmic inhibition by Golgi
cells and that spontaneous EPSPs were too rare to affect
spike generation. Injection of sinusoidal currents at various
frequencies (0.5–40 Hz) revealed resonance in burst spike
frequency in correspondence with the positive phase of the
stimulus. Spike frequency within bursts increased and then
decreased according to the injected current frequency showing
spiking resonance. The preferred frequency was 6 Hz with
sinusoidal currents of 6-pA amplitude, and 8 Hz with 8-pA
amplitude (reference dots in Figures 1B, 2B, 4A, 6). It is
important to highlight that in these in vitro recordings, the burst

frequencies with stimulation frequencies beyond 10.19 Hz in
6-pA amplitude and 14.23 Hz in 8-pA amplitude fell to zero as
one or no spikes were obtained.

On the other hand, the average firing rate and first-spike
latency in response to current pulses were obtained from
Masoli et al. (2017). In this case, the authors performed
in vitro patch-clamp recordings under step current injections.
They recorded cerebellar GrCs in acute cerebellar slices from
21-day-old rats.

EA Fitness Functions (FFs)
The FF described in equation (3) weights the similarity of
different quantified features with the experimental recordings
(i.e., the value of the feature extracted from the traces).
Since our models aim to reproduce the spiking resonance of
bursting, it is required to estimate this resonance as a set
of values. Thus, the burst frequency under sinusoidal current
injection was calculated as the inverse of the average inter-
stimulus interval (ISI) of the output neuron (the cerebellar
GrC) during each stimulation cycle. Then, the average burst
frequency was measured throughout 10 consecutive cycles of
sinusoidal stimulation. The total simulation timewas set to 22.5 s.
Sinusoidal amplitude values of 6 pA and 8 pA (in addition to
12-pA offset) were used according to the available experimental
data (specified in the subsection above), generating spike bursts
in correspondence with the positive phase of the stimulus
(sinusoidal phase of 270◦). To reproduce the differential effect
of the oscillatory stimulation frequency, the burst frequency in
response to its stimulation frequency was included in the EA
as an individual feature (all of them equally weighted). As it
occurred in the in vitro recordings [see ‘‘Biological Data Used as
Reference’’ section above], we have set the burst frequency to zero
when the same firing pattern (one or no spike per cycle) has been
obtained in the simulated neurons.

Although the firing dynamics of cerebellar GrCs are
complex, these cells implement a mechanism of linear frequency
encoding through repetitive firing discharge under current
stimulation which might help to sustain the spiking resonance
of burst frequency at the theta-frequency band (D’Angelo
et al., 2001, 2009). Recent literature has characterized the
fast repetitive discharge in the GrCs based on the mean
frequency (the number of spikes divided by the stimulation
time) and the latency to first spike (time of the first
spike firing) in response to three different step-current
injections (10 pA, 16 pA, and 22 pA) of 1-s stimulation
(Masoli et al., 2017).

The optimizations were carried out with FFs that considered
different combinations of the minimal number of features that
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FIGURE 1 | Burst frequency analysis. (A) Membrane potential (V; top, black line, left axis), burst frequencies (top, red line, right axis), stimulation current (middle)
and adaptation current (w; bottom) of a neuron model instance stimulated with the sinusoidal current of 8-pA amplitude, 12-pA offset current and 14.23-Hz
frequency. Two strategies for measuring the average burst frequency are shown: (i) during the initial 10 cycles (yellow shadow); and (ii) 10 cycles after 2 s of initial
stabilization (red shadow). (B) Burst frequency in response to sinusoidal stimulation with different stimulation frequencies (in steps of 0.5 Hz) up to 30 Hz, 12-pA
offset current and 6-pA (green), or 8-pA (purple) amplitude measured during the initial cycles (top) and after 2-s stabilization period (bottom). The solid lines represent
the average burst frequency from the simulated neuron model configuration and the shaded area shows the standard deviation. The arrows indicate the average
burst frequency corresponding to the stimulation frequency shown in (A) during the initial cycles (yellow arrow, 49.74 ± 25.81 Hz) and after 2 s of stabilization (red
arrow, 55.04 ± 0.38 Hz). The dots correspond to the burst frequency data obtained from in vitro recordings of cerebellar GrCs in D’Angelo et al. (2001) with the
same stimulation protocols (Table 2). The black star indicates the point further explored in plot C. (C) Simulated membrane potential (V; black line, left axis) during
10 oscillatory cycles selected after 2-s initial stabilization in response to 12-Hz sinusoidal stimulation. The red line (right axis) represents the stimulation current signal
(8-pA amplitude and 12-pA offset).

characterize the typical firing of cerebellar GrCs: (1) burst
frequency in response to different sinusoidal current stimulations
(stimulation at different frequencies of the sinusoidal current);
(2) burst frequency feature (as in point 1) in addition to the
average mean frequency in response to step-currents; (3) the
burst frequency (as in point 1) and the latency to the first spike
under step-current stimulations; and (4) all the previous features
(burst frequency under sinusoidal stimulation, mean frequency
and latency to the first spike under current stimulations; Table 3).
Later on, we will refer to these combinations of features as FFs
from 1 to 4.

Simulations
The score of each individual approaches zero as the measured
firing features approximate target values. We ran each
optimization protocol (EA algorithm) with five different
seeds and selected the individual with a minimal score from
those executions. The weight of the burst frequency and the
mean frequency features were set to 1 (as they both were
measured in Hz and present values in comparable scales). The

latency to the first spike feature was weighted to 1,000 as it
was measured in seconds. Thus, our algorithm equally weights
1 Hz-error in the average mean frequency feature and 1 ms-lag
in the latency to the first spike feature.

The EA algorithm was implemented using the DEAP library
(Fortin et al., 2012) for Python (version 2.7.12). The GrC model
was simulated using NEST (version 2.14.0; Peyser et al., 2017).
The model uses the embedded 4th order Runge-Kutta-Fehlberg
solver with adaptive step-size to integrate the differential
equations. The simulations were run in parallel with SCOOP
on a 6-cores 3.30 GHz CPU (32 GB RAM) PC allowing each
optimization protocol to run (five simulations with different
seeds) in around 7 h.

RESULTS

Bursting Frequency Optimization
We conducted preliminary experimentation to determine the
best strategy to measure the burst frequency in response
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TABLE 2 | Feature and scores obtained with simulated neurons after EA optimization with different fitness functions.

Burst frequency 6 pA (Hz) Burst frequency 8 pA (Hz)

Simulation Simulation

Sinusoidal Stim. Freq. (Hz) Experimental FF1 FF2 FF3 FF4 Experimental FF1 FF2 FF3 FF4

0.58 41.43 36.77 37.66 35.73 35.19 45.00 45.62 42.63 45.78 42.68
2.12 49.29 47.36 46.29 47.52 46.15 55.71 55.42 55.75 56.70 53.97
4.04 54.00 51.78 52.82 51.81 50.74 60.00 59.03 61.01 59.84 60.39
5.96 59.29 55.22 54.32 52.36 53.28 65.71 63.16 65.57 63.83 63.07
8.08 55.00 55.04 53.93 55.25 54.74 66.43 64.43 66.23 64.94 64.52
10.19 45.71 50.51 57.97 50.48 55.25 64.29 69.44 68.94 69.93 67.57
12.31 - - - - - 58.57 66.23 58.62 66.94 66.01
14.23 - - - - - 50.00 49.30 71.43 50.02 51.74
Score 20.71 26.26 21.61 28.45 19.94 29.90 19.33 21.45

Mean frequency (Hz) First spike latency (ms)

Simulation Simulation

Step-current amp. (pA) Experimental FF1 FF2 FF3 FF4 Experimental FF1 FF2 FF3 FF4

10 30 (1) 30 (2) 19 31.90 (45.8) (9.9) 36.10 14.90
16 45 (35) 49 (35) 45 19.00 (12.8) (6.4) 12.40 9.00
22 60 (72) 67 (73) 66 14.65 (8.5) (5.0) 8.40 6.70
Score (51) 11 (51) 17 (26.25) (44.25) 17.05 34.95

The score corresponding to different features (burst frequency, IF curve, and latency to the first spike) of the best-performing individuals are shown against the target experimental
values. Mean frequency and latency to the first spike experimental values were extracted from Masoli et al. (2017), and experimental recordings of burst frequency from D’Angelo et al.
(2001). Note that, although the standard deviation of the burst frequency is considered by the EAs, they are not included in the burst frequency scores to obtain an overall view of
the distance between the simulated and experimental values of every feature. The values in brackets correspond to the features not included in the FFs (and are just evaluated for
comparison). In bold are the closest values and minimal scores.

TABLE 3 | Parameter values of the best-performing neuron models.

Parameter name (unit) FF1 FF2 FF3 FF4

Cm (pF) 3.10 4.21 3.36 2.80
∆T (mV) 5.42 1.09 7.01 22.07
EL (mV) −64.06 −51.42 −59.92 −58.00
Vpeak (mV) −13.49 6.80 −12.24 −17.56
Vr (mV) −70.28 −73.66 −64.86 −71.31
VT (mV) −40.59 −38.00 −40.31 −24.01
a (nS) 0.26 0.36 0.36 0.23
b (nA) 0.19 0.65 0.15 0.37
gL (nS) 0.49 0.17 0.67 0.25
τw (ms) 327.25 338.75 365.41 619.07

Parameter values of the individuals resulting from the optimization process with different FFs. Membrane capacitance (Cm), slope factor (∆T), leak reversal potential (EL), reset value
for membrane potential after a spike (Vr, map to resting potential Vinit), spike detection threshold (Vpeak), spike initiation threshold (VT), subthreshold adaptation (a), spike-triggered
adaptation (b), leak conductance (gL) and adaptation time constant (τw).

to sinusoidal stimulation. As a first approach, we calculated
the average burst frequency during the 10 initial cycles of
the simulation (as explained in the Methods section). The
EA was set to minimize only the error of the average
burst frequency in response to all the available data. The
resulting neuron model configuration (individual) showed high
instability (i.e., highly variable burst frequency) during the
initial cycles (Figure 1A, yellow shaded area in the top plot).
The same optimization was carried out with five different
random seeds and all the individual winners showed similar
behavior. Particularly, it can be observed that in response
to high stimulation frequencies (namely, 10–14 Hz), the
burst frequency remained unsteady for eight oscillatory cycles
(Figure 1A, red dots in the top plot). This observation can
be explained based on: (i) the model configuration emerging
from the EA combines high membrane capacity (Cm ranging

between 2.63 and 4.87 pF), low leakage conductance (gL
ranging between 0.49 and 4.31 nS) and low initial membrane
voltage (Vinit equal to EL as specified in the ‘‘Materials
and Methods’’ section; both ranging between −58.18 and
−49.88 mV), so that the membrane potential required between
cycles 1 and 4 until stable values were reached for several
consecutive cycles (Figure 1A, yellow shaded area in the
top plot); and (ii) the neuron configuration included long
adaptation time constants (τw) so that the adaptation current
(w) required six cycles to reach steady-state (Figure 1A,
yellow shaded area in the bottom plot). Although the average
burst frequency stays close to the experimental measures for
every stimulation frequency, the standard deviation of the
burst frequency over the measuring cycles is higher than
desired, especially for high stimulation frequencies (Figure 1B,
top plot).
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FIGURE 2 | Neuron model optimization with different strategies. (A) Average burst frequencies in response to low (0.58 Hz), medium (5.96 Hz), or high (10.19 Hz)
sinusoidal stimulation frequencies. The mean value over 10 oscillatory cycles and the standard deviation from the best performing individual are represented for each
considered fitness function (FF). Corresponding in vitro values from D’Angelo et al. (2001) for each stimulation frequency and amplitude (6 pA, green and 8 pA,
purple) are shown as dashed-dotted lines. (B) Spiking resonance curves in response to 6 pA and 8 pA of sinusoidal stimulation. The stimulation frequency of the
individuals ranges from 0.5 Hz to 30 Hz with 0.5-Hz steps. Standard deviation is shown shaded in yellow for individuals optimized with initial cycles FF, and in red for
individuals optimized with the stabilization FF. Those individuals optimized including the standard deviation in their score (namely, initial cycles + SD and stabilization +
SD) obtained near-zero standard deviation (this is indeed represented in the green and dark red shaded areas but are hardly visible). The available in vitro data
extracted from D’Angelo et al. (2001) and specified in Table 3 are shown with colored dots.

Aiming to overcome the instability produced during the
initial period of simulation, we tested whether averaging over
10 bursts (oscillatory cycles) after 2 s of initial stabilization
produced different results. This period was chosen as it
corresponds to twice the maximum allowed adaptation time
constant (τw; see Table 1). In this way, the neuron membrane
potential reached steady state (Figure 1A, red shaded area at
top plot) before measuring and averaging the burst frequency.
Not unexpectedly, the EA set with this second estimation
method resulted in neuron configurations whose average
burst frequencies closely matched the experimental measures
(Figure 1B, green and purple lines in the bottom plot). However,
the standard deviation of the burst frequencies remained higher
than desired (although remarkably lower than using the first
estimation method) in response to high stimulation frequencies
(Figure 1B, green, and purple shaded areas in the bottom plot).
E.g., when stimulated with 14.23 Hz (Figure 1B, red arrow in the
bottom plot) the average burst frequency is stable with almost

no standard deviation (55.04 ± 0.38 Hz; Figure 1A). On the
contrary, when stimulated with 12 Hz (Figure 1B, a black star at
bottom plot) the simulated neuron showed an increased standard
deviation of the average burst frequency (74.96 ± 5.99 Hz). It
occurred because the neuron did not fully recover from one
oscillatory cycle to the next one (Figure 1C). This situation
produces enhanced variability in the burst frequency values
for some neuron configurations. To prevent this issue, we set
the EA with a third method for calculating the score of each
individual based on the 2-s-stabilization method (described in
the ‘‘Materials and Methods’’ section).

Four implementations of FFs were considered once defined
the period considered for burst frequency calculation and
the inclusion of penalization for instability: (1) average burst
frequency calculation over initial cycles (shortly, initial cycles);
(2) average burst frequency calculation over initial cycles with
the penalization of the standard deviation (shortly, initial
cycles + SD); (3) average burst frequency calculation after
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FIGURE 3 | Score evolution during Evolutionary algorithm (EA) optimization. Evolution of the minimal score from the individuals considered at each generation
during the optimization processes of EAs configured with different fitness functions (FFs; as described in Methods section): (A) FF1 (Resonance), (B) FF2 (Resonance
+ I-F curves), (C) FF3 (Resonance + Latency to the first spike), (D) FF4 (Resonance + I-F curves + Latency to the first spike). The score was calculated as the
weighted sum of the individual feature scores considered for each FF (equations 3 and 4).

2-s simulation (shortly, stabilization); and (4) average burst
frequency calculation after 2-s stabilization period with the
penalization of the standard deviation (shortly, stabilization +
SD). The score was calculated according to equation (3) in the
cases of initial cycles and stabilization (cases 1 and 3), and
according to equation (4) in the cases of initial cycles + SD and
stabilization + SD (cases 2 and 4).

The EA was executed five times for each case considering
different random seeds to obtain the neuron model
configurations that best matched the experimental values of
average burst frequencies (Table 3). The individuals with the
lowest score were selected. Not unexpectedly, all the individuals
presented similar values to the experimental data (Figure 2A),
validating the operation of the EA. In response to low (0.58 Hz)
stimulation frequency, negligible standard deviations were
obtained with all the considered FFs (left plot in Figure 2A).
However, higher stimulation frequencies (i.e., 5.96 Hz and
10.19 Hz) resulted in increased standard deviations for those
functions which did not include SD penalization (namely,
initial cycles and stabilization; Figure 2A, middle and right
plots, respectively).

We then compared the spiking resonance curves of the
individuals obtained using each FF (Figure 2B). When the
penalization of standard deviation is not included in the FF
(namely, initial cycles and stabilization), the average burst
frequencies (Figure 2B, yellow and orange lines) are near
the experimental values (the sum of the distances between
simulated and experimental burst frequency features are
19.44 Hz and 43.15 Hz in initial cycles and stabilization,

respectively; Figure 2B, colored dots), but with large
standard deviation (the sum of the SDs of burst frequency
features are 104.62 Hz and 43.44 Hz in initial cycles and
stabilization, respectively; Figure 2B, yellow and orange
shadow). Additionally, resonance curves fall to zero (indicating
one or zero spikes per oscillatory cycle) with remarkably
higher stimulation frequencies (beyond 25 Hz), especially
with the stabilization function. Thus, the model configuration
resulting from the usage of the initial cycles FF appropriately
reproduced spiking resonance at theta-frequency band but
with considerable variability. Differently, the stabilization
FF drove to the neuron models whose resonance peaks
were beyond the theta-frequency band (around 20 Hz).
This situation makes these two neuron models unsuitable
for our aim.

When the penalization of standard deviation is included in the
FF (namely, initial cycles + SD and stabilization + SD), average
burst frequencies are also close to the experimental data (the
sum of the distances between simulated and experimental burst
frequency features are 50.79Hz and 41.50Hz in initial cycles + SD
and stabilization + SD, respectively; Figure 2B, green and dark
red lines) and they are stable, with almost negligible standard
deviations (the sum of the SDs of burst frequency features are
0.69 Hz and 1.05 Hz in initial cycles + SD and stabilization +
SD, respectively; Figure 2B, green and dark red shadow areas
representing the standard deviations that are almost negligible
and hardly visible in the plots). Interestingly, the neuron models
resulting from these individuals show resonance curves falling to
zero just above the last stimulation frequency points (10.19 Hz

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 July 2020 | Volume 14 | Article 161

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Marín et al. Efficient Neuron Model Optimization

FIGURE 4 | Spiking dynamics of the individuals resulting from different EA implementations. Simulated features of the selected (best fitted) neuron models obtained
from the EAs configured with different FFs: only burst frequency (yellow), burst frequency and intensity-frequency (I-F) curve (green), burst frequency and first-spike
latency (blue), and burst frequency, I-F curve and first-spike latency (purple). The target in vitro data from D’Angelo et al. (2001) and Masoli et al. (2017); specified in
Table 3) are represented as black dots. (A) Burst frequency in response to 6-pA (left) or 8-pA (right) sinusoidal stimulation with varying frequencies (in steps of
0.5 Hz). The lines represent the simulated average burst frequency over 10 cycles after 2 s of initial stabilization, and the standard deviations are shown as shaded
areas. (B) I-F curves of the neuron models obtained from the EAs configured with different FFs. The Y-axis represents the average firing frequency in response to
1 s-step-currents. (C) Latency to the first spike in response to 1-s-step-currents.

at 6-pA and 14.23 Hz at 8-pA sinusoidal stimulations) as was
experimentally tested in real GrCs, generating one or no spikes
per cycle at higher frequency sinusoidal stimulations (Figure 2B,
green and dark red lines; D’Angelo et al., 2001). Thus, these
model configurations are considered to better reproduce the
spiking resonance at the theta-frequency band.

According to these preliminary results, it is preferable to
calculate the burst frequency after the 2-s-stabilization period
and including the standard deviation as part of the FF
(stabilization + SD; named FF1 in the next subsection). This FF
drives our EA to penalize unstable configurations, resulting in
neuron model configurations that match the spiking resonance
at the theta-frequency band of biological cerebellar GrCs and
maintain stable neuronal behavior during the oscillatory cycles.

Parameter Fitting With Other
Suprathreshold Dynamics
Once, we had explored the most convenient definition of
FF for burst frequency feature optimization, we aimed to

demonstrate whether additional electrophysiological properties
could also be optimized and reproduced by the neuron
model. Thus, we considered other representative firing
properties of GrCs that are seemingly relevant in neural
transmissions such as the intensity-frequency (I-F) curve
and the latency to the first spike in response to different
stimulation currents. We carried out additional optimization
experiments with different combinations of features in the
FF: burst frequency under sinusoidal stimulation (namely,
FF1), burst frequency under sinusoidal stimulation and
mean frequency (I-F) under step current injection (namely,
FF2), burst frequency under sinusoidal stimulation and
latency to the first spike in response to step current injection
(namely, FF3), and all the three mentioned features together
(namely, FF4).

The evolution of the minimum score of the individuals in the
explored population from these EAs showed fast convergence
during the optimization processes among generations (Figure 3).
We aim to determine whether the usage of different FFs
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FIGURE 5 | Intrinsic properties predicted by the cerebellar granule cell (GrC) model. (A) Neuron model simulation in response to sinusoidal current injection of
10-pA offset and 6-pA amplitude. Bursts are shown after 2 s of stimulation (stabilization). (B) Resonance curve (showing burst frequency) in response to the same
stimulation protocol. (C) Membrane potential evolution in response to 1-s step-current injections with variable amplitude. (D) Step pulse hyperpolarizing and
depolarizing currents in the subthreshold regimen (from −8 pA to 3 pA in steps of 1 pA from 100 ms to 1500 ms) cause the membrane potential to reach an early
peak followed by a decayed (sag response) at a stable level. Current-voltage relationship plots (I–V plots) from the voltage peak (sag; green colored) and from the
steady-state (considered at 1,000 ms; orange-colored) demonstrate the absence of inward rectification in the model during the polarization with both hyperpolarizing
and depolarizing currents.

affect the capability of the resulting neuron models to resonate
in the theta-frequency band as well as determining whether
the proposed AdEx model can reproduce all these different
firing features in a single parameter configuration. The scores
obtained from the evaluation of all the features (included or
not in its EA implementation) simulated by the individuals
are shown in Table 2, and the corresponding parameters of
the best performing individuals with each EA configuration are
in Table 3.

Spiking Resonance in the Theta-Frequency Band
Cerebellar GrCs have been demonstrated to resonate in a rather
broad theta-frequency band. The spiking resonance peak has
been described around 6–12 Hz (D’Angelo et al., 2001) in
experimental measurements, and around 4–10 Hz in previous
detailed GrC models (D’Angelo et al., 2001, 2009; Magistretti
et al., 2006; Gandolfi et al., 2013; Masoli et al., 2017). The
proposed EAs selected neuron models matching the burst
frequency of the experimental curves when the configured FFs
included only the burst frequency (FF1; preferred resonance
frequency within 7–11 Hz), the burst frequency and the latency
to the first spike (FF3; preferred resonance frequency within
7–11 Hz) and all the three features considered in this work

(FF4; preferred resonance frequency within 8–12 Hz; Figure 4A).
The simulation of the selected individuals closely fitted the
experimental data with stable burst frequencies (between
0.5–1.5 Hz SD) and burst frequency falling to zero (one or zero
spikes per cycle) with stimulation frequencies beyond 10.19 Hz
(6-pA amplitude) and 14.23 Hz (8-pA amplitude), respectively.

The best-fitted individuals for the experimental spiking
resonance were the neuron model resulting from the EA
with FF1 (the sum of the distances between simulated and
experimental burst frequency features is 40.65 Hz) and the
neuron model from the EA with FF3 (the sum of the distances
between simulated and experimental burst frequency features
is 40.94 Hz), closely followed by the neuron model from the
EA with FF4 (the sum of the distances between simulated and
experimental burst frequency features is 49.90 Hz) and, finally,
the neuronmodel from the EAwith FF2 (the sum of the distances
between simulated and experimental burst frequency features is
56.16 Hz). Not unexpectedly, the EAs with FFs which included
only burst frequency features resulted in neuron models with
the best fitting of the resonance to the experimental data. On
the contrary, the individuals resulting from EAs with the FF that
included all the features (FF4) showed a shifted resonance curve
only with 6-pA-amplitude sinusoidal stimulation (Table 2 and
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FIGURE 6 | Spiking and subthreshold resonance properties obtained with the models resulting from different EA implementations. Simulated resonance properties
under suprathreshold and subthreshold regimes of the selected (best fitted) neuron models obtained from the EAs configured with different FFs: (A) only burst
frequency, (B) burst frequency and I-F curve, (C) burst frequency and first-spike latency, and (D) burst frequency, I-F curve, and first-spike latency. Burst frequencies
are shown in response to 6-pA (green) or 8-pA (pink) sinusoidal stimulation with varying frequencies (in steps of 0.5 Hz). The pink and green lines represent the
simulated average burst frequency over 10 cycles after 2 s of initial stabilization (left axis). The target in vitro data, from D’Angelo et al. (2001), of the burst
frequencies, are represented as dots. Subthreshold resonance properties are represented as the module of the impedances that were calculated with the FFT
algorithm in response to 2-pA (blue lines) sinusoidal current stimulation with varying frequencies (in steps of 0.5 Hz; right axis). The cut-off frequency of the high-pass
filter is represented as a vertical dashed line in the form of 1/(2πτw ), while the cut-off frequency corresponding to the low-pass filter is represented as a vertical
dashed line in the form of 1/(2πτm).

Figure 4A, purple line). The individuals resulting from the EAs
with the FF including burst frequency and I-F curve (but not
first spike latency; FF2) showed resonance beyond the theta range
(Figure 4A, green-shaded lines) with unstable behavior (large
standard deviations).

I-F Curve
We also evaluated themembrane voltage response while injecting
step currents of increasing amplitude. Beyond specific thresholds
of injected current fast repetitive firing was reproduced
(Figure 4B). The individual resulting with FF1 and FF3 showed
rheobases (understood as theminimum current injected required

to fire a single AP) at 10 pA, the individual resulting with FF2 at
3 pA, and the individual resulting with FF4 at 4 pA. This is in
agreement with the experimental rheobases obtained for GrCs
(ranging between 2 pA and 10 pA; D’Angelo et al., 2001; Bezzi
et al., 2004; Gandolfi et al., 2013; Masoli et al., 2017). The best
fitting to the experimental frequency values were obtained, as
expected, by the neuron models resulted from those FFs that
included the I-F curve in their features to optimize (FF2 and FF4;
Table 2 and in Figure 4B, green and purple lines).

Linear coding of stimulus intensity (I-F curve) is usually
used as a measure of the intrinsic excitability of GrCs. I-F plots
were constructed (using 1-s current stimulation with amplitude
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ranging between the rheobase and 25 pA; Figure 4B) and fitted to
a linear function (r > 0.9). The slope of such a linear function is
usually representative of the intrinsic excitability of the neurons.
The output frequency values of the neuron model with the
FF containing all the features (FF4) were slightly further away
from the experimental values (slightly higher score; see mean
frequency in Table 2) than those resulting from the EA with
the FF including burst frequency and mean frequency (FF2).
However, their I-F slopes were very similar (3.83 Hz/pA and
3.39 Hz/pA, respectively) and near the slope of the experimental
points used in the EAs (2.5 Hz/pA, which was calculated from the
experimental frequency values in Table 2). The neuron models
that were not optimized for this frequency (using FF1 and FF3)
resulted in higher scores (their firing frequencies fell far from
the experimental points) and higher I-F slopes (6.27 Hz/pA
and 6.36 Hz/pA, respectively; Figure 4B, yellow and blue lines).
Despite this, their I-F slopes were coherent to those slopes
reported in previous GrC models (7 Hz/pA in D’Angelo et al.,
2001; Bezzi et al., 2004; Masoli et al., 2017). Both the I-F slope
ranges obtained (around 3.5 Hz/pA and around 6.3 Hz/pA)
are then considered biologically plausible since they fall within
the experimentally recorded values (6.5 ± 3.2 Hz/pA in
D’Angelo et al., 1995).

Latency to the First Spike
Another central behavior of biological GrCs is that the latency
to the first spike decreases and spike frequency increases when
the injected current intensity is increased (D’Angelo et al., 2001).
Similar behavior is observed in the neuronmodels resulting when
using all the proposed FFs (Figure 4C). Experimental in vitro
recordings evidenced that the latency to the first spike decreased
from 31.9 ± 16.2 ms with 10-pA step current to 14.65 ± 9.4 ms
with 22-pA current (Masoli et al., 2017). The closest latencies to
these data were obtained by the neuron model resulted from the
EA with the FF that included first-spike latency in its definition
(FF3; Figure 4C, blue line). The neuron model resulting from the
EA with FF1 (Table 2 and Figure 4C, yellow line) obtained fitted
results too. Differently, those individuals from the EA with FFs
that included the step-current firing rate (FF2 and FF4) generated
higher latencies than those reported, mainly with low stimulation
currents (Figure 4C, green and purple lines). The individual from
the EAwith FF2 reproduced the closest fitting to the I-F curve but
the least suitable to fit either the theta-frequency band or latency
to the first spike. However, according to other in vitro recordings
(D’Angelo et al., 1995, 1998; Brickley et al., 1996; Cathala et al.,
2003) and computational GrC models (D’Angelo et al., 2001;
Diwakar et al., 2009;Masoli et al., 2017), latencies to the first spike
decreased from around 100 ms at the rheobase to around 1 ms,
similar to that from the individual resulting from the EA with the
FF4 (see first spike latency in Table 2).

Selecting a Biologically Plausible
GrC Model
Overall, the most accurate neuron model according to all
the features (with the lowest sum of the distances between
experimental and simulated features of burst frequency, mean
frequency and first spike latency) corresponded to the individual

obtained including all the features in the EA (the sum of the
distances is 101.85 using FF4), followed by the neuron model
obtained from the inclusion of the average burst frequency and
latency to the first spike (the sum of the distances is 108.99 using
FF3). The individual resulting from the FF only defined by
the average burst frequency had, unexpectedly, a higher total
score (the sum of the distances is 117.9 using FF1) than the
individual from the FF of average burst frequency and I-F
curve (the sum of the distances is 111.41 using FF2). Therefore,
the simplified model configuration with the best fitting to the
spiking dynamics of a real GrC is the individual resulted from
the EA implementation that contains all the spiking properties
(namely, FF4).

The behavior of this model is presented in Figure 5. When
stimulated by just-threshold sinusoidal stimulation, the model
generated spikes clustered in doublets-triplets or longer bursts
(as in D’Angelo et al., 1998, 2001; Gandolfi et al., 2013;
Figure 5A) with specific tuning in the theta frequency band
(7–10 Hz; Figure 5B). In response to step-current stimulations,
the model resulted in regular spike discharge (Figure 5C) with
latency compatible with the experimental data in real cells.
Additionally, the model exhibited other emergent properties
(i.e., not selected during the EA optimization). First, the neuron
is silent at rest (Figure 5C). When stimulated by depolarizing
step-current injections, the neuron model elicited a single spike
with 4 pA as in D’Angelo et al. (2001). The firing rate showed
no adaptation with 0, 4, and 6 pA and little adaptation with
16 pA which is similar to the experimental recordings (Masoli
et al., 2017; Figure 5C). However, we evaluated some other
emergent properties from the subthreshold regime typical of a
cerebellar GrC, such as the inward rectification (D’Angelo et al.,
1995). The model did not reproduce the inward rectification
during the application of current steps in the hyperpolarizing
direction neither its I-V relationships (Figure 5D). Simulations
using detailed neuron models based on in vitro recordings
suggested that some well-demonstrated features of the intrinsic
excitability of cerebellar GrCs—namely fast repetitive firing,
oscillations, bursting and resonance in theta-range—had in
common the dependence upon the same mechanism (a slow
K+ current component; D’Angelo et al., 2001; Gandolfi et al.,
2013). However, the inward rectification of a cerebellar GrC was
fully explained by another type of current (a fast K-dependent
inward rectifier; D’Angelo et al., 2001). Despite there is evidence
that an exponential integrate and fire model can fit and
reproduce deflective I-V curves in the near-threshold range
(Badel et al., 2008), it seems complicated to obtain an AdEx
model configuration able to fully reproduce all these different
behaviors in different regimes (suprathreshold and subthreshold,
respectively) with a single set of parameters configuration (and
especially considering that the optimization algorithm only fitted
the spiking dynamics).

Bursting Resonance vs. Subthreshold
Resonance in AdEx Neuron Models
The formal analysis of the resonance in integrate-and-fire
neuron models represents a well-studied field. However, how
this resonance extends to the suprathreshold regime is still under
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exploration. The subthreshold intrinsic resonance in a biological
neuron is shaped by the dynamics of voltage-gated ionic currents,
which can be expressed in variable levels but may have a stable
resonant frequency (Fox et al., 2017). The resonant frequencies
result from a combination of low-pass and high-pass filter
mechanisms produced by the interplay of the passive membrane
properties and one or more ionic currents and their interaction
with the oscillatory inputs (Hutcheon and Yarom, 2000; Fox
et al., 2017). The slow resonant currents (or currents having
resonant gating variables) oppose voltage changes and act as
high-pass filters. Finally, fast amplifying currents (or currents
having amplifying gating variables) favor voltage changes and
can make resonance more pronounced (Hutcheon and Yarom,
2000; Fox et al., 2017).

One of the main advantages of the AdEx model is the
low computational requirements derived from accounting only
two differential equations (and state variables; equations 1 and
2). The AdEx model describes a capacitive current (CdV/dt)
balanced by membrane currents compressed in three terms:
(1) the leak current describes the passive membrane properties
and determines an equivalent low-pass filter according to
the membrane time constant (Hutcheon and Yarom, 2000);
(2) the exponential term describes the activation-dependent on
the Na+ voltage; and (3) the adaptation current, which has
proven effective in reproducing more complex subthreshold
dynamics such as resonance (Richardson et al., 2003; Brette
and Gerstner, 2005; Badel et al., 2008; Naud et al., 2008).
The adaptation current could implement a high-pass filter
(representative of slow voltage-gated current). This high-pass
filter needs to have slow activation according to the adaptation
time constant (τw), which drives it to turn on or off with a relative
delay with respect to the passive membrane charge.

Many types of neurons show membrane potential resonance
through a peak in the impedance in contrast with the frequency
curve (Z-profile; Fox et al., 2017). The resonance frequency peak
can be estimated depending on the adaptation time constant
from the high-pass filter [cut-off frequency defined as 1/(2πτw)]
and the membrane time constant from the low-pass filter [cut-off
frequency defined as 1/(2πτm), where τm = Cm/gL].

To better understand the oscillatory behavior of our resulting
AdExmodels, we have explored how resonance frequencies relate
in both the subthreshold and suprathreshold regimes. To analyze
the subthreshold resonance, we used the impedance profile
measured as the amplitude of the membrane voltage response
to sinusoidal current stimulation with different frequencies
(applying the Fast Fourier Transform algorithm). We have
compared both (subthreshold and suprathreshold) resonant
peaks and evaluate if both falls within the cut-off frequencies
range of the high-pass and low-pass filters that control
subthreshold resonance.

In all the models under study, the resonance peaks
resulting from the subthreshold regime fall remarkably far
from the preferred frequency in the suprathreshold regime.
In the case of individuals optimized using FF1 and FF3
(Figures 6A,C), spiking resonance peaks around theta-band
(10 Hz) while subthreshold resonance peaks are under 3 Hz.
Both types of resonance fall into the wide window between their

low-pass and high-pass filters. Even further, the neuron models
obtained from the optimizations using FF2 and FF4 showed
subthreshold resonance profiles notably sharper. However,
the neuron model FF2 showed a spiking resonance peak
markedly shifted to higher frequencies (as it was highlighted in
Figure 4A and addressed in the ‘‘Discussion’’ section), which
falls out of the band between low-pass and high-pass cut-off
frequencies (Figure 6B). On the other hand, the neuron model
FF4 showed spiking resonance peak around theta-band that
falls into the interval between the low-pass and high-filter
cut-off frequencies.

DISCUSSION

Computational models represent an essential strategy in
neuroscience for researching the function of certain neuronal
properties which remain insufficiently explored, as is the
case of cerebellar resonance in the theta frequency band
(4–12 Hz; Buzsáki, 2006). The convenience of having
single-compartment GrC models (point neuron models)
reconstructing this behavior with both biological realism and
computational efficiency represents an initial step towards
understanding these firing dynamics and their involvement in
the cerebellar synchronization and learning. This study develops
a methodological workflow and explores the best alternatives (in
terms of FFs and biological features defined in them) for creating
simplified models through optimization of their parameters
using EAs. As a result, a set of efficient cerebellar GrC models
that closely reflect realistic spiking dynamics are proposed.

The suggested methodology has shown to be successful in
generating efficient neuron models capturing the fundamental
properties of firing in real cells (e.g., cerebellar GrCs).
Interestingly, just the inclusion of the burst frequency as an
optimization criterion resulted in neuron models essentially
reproducing the main properties of a biological GrC neuron.
This seems to suggest that this property is dependent on the
main parameters of the cell model and can thus be considered
a pivotal property that integrates the main features of the
GrC. In addition to this, the optimized neuron models proved
suitable against a set of properties that could be relevant in
neural information transmission and can be used as features
for neuron model optimization. They include linear frequency
coding (implemented as repetitive firing under step-current
stimulation; D’Angelo et al., 2001, 2009) and the latency to the
first spike upon current injection (D’Angelo et al., 1995, 2001;
Masoli et al., 2017).

The resulting simplified model evidenced electrical properties
characteristic in a biological GrC that were not explicitly
integrated into the FF. These are rare spontaneous activity
(Chadderton et al., 2004; Jörntell and Ekerot, 2006; Rössert
et al., 2014) with high attainable spike frequency (low current
needed for the spike generation; D’Angelo et al., 1995, 2001)
and non-adapting spike discharge with high firing frequencies
(D’Angelo et al., 1995, 1998; Brickley et al., 1996; Chadderton
et al., 2004). The proposed model also reproduced properties
not so closely related to the firing pattern, such as a
strong inward rectification [as in the detailed models of
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D’Angelo et al., 2001; Masoli et al., 2017, in vivo (Chadderton
et al., 2004) and in vitro (D’Angelo et al., 1995) experiments].
These emergent properties were predicted uniquely from the
suitability of the whole set of AdEx parameter values. This
reinforces the biophysical plausibility (in terms of realistic firing
dynamics) of the model with very low computational costs.
These results make this neuron model of cerebellar GrC a good
candidate for large-scale simulations of realistic networks and
analysis of these spiking properties.

According to our results, a single set of parameters (specific
configuration) of the AdEx model can reproduce a variety of
spiking features (wrapped in the FF), but also some emergent
behaviors (not explicitly integrated into the FF) since they are
governed by compatible suprathreshold dynamics. However,
the resulting model failed to reproduce other subthreshold
properties like inward rectification (as observed in the I-V
relationships). The oscillatory behavior of the cerebellar GrCs
is governed by a slow K+ current component (D’Angelo et al.,
2001; Gandolfi et al., 2013), while the inward rectification of the
subthreshold regime strongly depends on a fast K+-dependent
component (D’Angelo et al., 2001). Thus, since the AdEx neuron
model only includes an additional current component (the
adaptation current), we do not have to expect a single set of AdEx
parameters fitted to certain spiking properties to also describe
both regimes appropriately. Given the computational efficiency
but complex adjustment (following a formal analysis) of bursting
behaviors of the AdEx model (Brette and Gerstner, 2005),
the proposed methodology is presented as a valuable tool to
generate a single combination of these few but highly-interrelated
parameters for the spiking resonance. The application of this
methodology further extending the FF with additional properties
from the subthreshold regime would be of interest in helping us
to understand how intrinsic properties could affect at the neuron-
and also network- level.

The proposed model parameters selected by the EAs
(Table 3) are consistent with those equivalent values of
biological cerebellar GrCs reported both through the literature
and the electrophysiological database (Tripathy et al., 2015;
NeuroElectro database, 2019). The resting membrane potential
(EL) in our models are within the experimental range from the
electrophysiological database (−73.91 ± 9.46 mV from Storm
et al., 1998; Brickley et al., 2001; Cathala et al., 2003; Gall et al.,
2003; Goldfarb et al., 2007; Prestori et al., 2008; Osorio et al.,
2010; Usowicz and Garden, 2012; NeuroElectro database, 2019)
and further bibliography (from −60 to −85 mV in D’Angelo
et al., 1995, 2001; Brickley et al., 1996; Armano et al., 2000),
and they are closer to the mono-compartmental detailed model’s
values (−65 mV in D’Angelo et al., 2001; Masoli et al., 2017).
The spike emission (VT) values are triggered close to the mean
value from the database [at around −41.50 ± 6.43 mV (Brickley
et al., 2001; Cathala et al., 2003; Goldfarb et al., 2007; Prestori
et al., 2008; Usowicz and Garden, 2012; NeuroElectro database,
2019)] and the computational model of D’Angelo et al. (2001),
with a spike peak (Vpeak) near the experimental evidence [around
20.23 ± 7.04 mV (NeuroElectro database, 2019) from D’Angelo
et al., 1998; Osorio et al., 2010; Usowicz and Garden, 2012]. The
membrane capacitance (Cm) values appear low as it is notably

characterized in a typical GrC (D’Angelo et al., 1995, 2001;
Gandolfi et al., 2013) within the range of experimental evidence
[3.46 ± 0.82pF (NeuroElectro database, 2019) from D’Angelo
et al., 2001; Cathala et al., 2003; Gall et al., 2003; Goldfarb et al.,
2007; Prestori et al., 2008; Osorio et al., 2010; Usowicz and
Garden, 2012; Gandolfi et al., 2013; Masoli et al., 2017].

It should be noted that the proposed models resulting from
EAs with the I-F curve featured in their FFs (FF2 and FF4) show
resonance curves in response to sinusoidal current shifted out of
the theta band (higher preferred frequencies). Also, the latencies
to the first spike remain longer than those experimentally
reported, mainly with low stimulation currents. These differences
are more severe to the case of the individual from the FF2. This
fact may indicate an incompatibility of both firing properties
(mean frequency under step-current pulses vs. burst frequency
resonance under sinusoidal currents) within the simplified AdEx
model. Thus, the GrC behavior complexity being beyond the
capabilities of these AdEx models with a single parameter
configuration (GrCs have different functioning modes).

Based on the analysis of resonance in subthreshold and
suprathreshold (spiking) resonance, it seems clear that the
preferred frequencies in these two regimes fall in notably
different ranges (while spiking resonance tends to fall between
8 and 10 Hz, as driven through the FF in the EA processes,
subthreshold preferred frequency peaks about 2 Hz because
this regime was not explicitly selected in the FF that drove the
parameter tuning). These results may reassert the possibility that
the complexity of the spiking resonance in the AdEx model
cannot be directly addressed through the analytical adjustment
of the parameters. It has to be noted that the subthreshold
resonance analysis considers the neuron as the composite of a
capacitive current, a passive current, and an adaptive current,
neglecting in this way the influence of exponential current of
spike firing and the effect of the dynamics of the refractory
period. For this reason, the proposed optimization methodology
represents a valuable tool to obtain neuron models fitted to
complex features. The EA allowed us to tune the two differential
equations of the AdEx model according to a complex set of
spiking patterns (spiking resonance, regular firing, and delayed
firing) under different stimulation protocols (sinusoidal and step
current injections).

Realistic modeling based on recent experimental data
has provided novel insights on how intrinsic and extrinsic
mechanisms interact in other neural systems as the inferior
olive (Negrello et al., 2019). According to these results, strong
synaptic activity in the awake brain of mice could vanish the
functional impact of subthreshold oscillations. Our methodology
provides an initial but fundamental tool for the construction of
computationally tractable but realistic computational models for
future large-scale studies of the functional impact of neuronal
resonance in information processing in the GrL. In the particular
case of the cerebellar input layer, it remains unclear how
spiking resonance (demonstrated in vitro in the granule cells
and the Golgi cells) interacts in a recurrent inhibitory loop
with feed-forward excitation of the Golgi cell. In this sense,
theoretical models have addressed information processing in the
GrL (Solinas et al., 2010; Garrido et al., 2013), but these models
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either have not considered neuronal intrinsic resonance or they
have neglected the role of the long-term plasticity in the GrC
inputs. In addition to this, theoretical models have demonstrated
that external oscillatory activity strongly facilitates learning in
excitatory synapses (Masquelier et al., 2009) and inhibitory
recurrent networks (Garrido et al., 2016). In any case, further
experimental data will be required to fit future computational
models to address the functional impact of oscillations in
GrL operation.

Based on our results, the AdEx model has shown to be a
computationally light approach for the close reproduction of the
firing patterns reported from cerebellar GrCs. Recent articles
in the literature have proposed modified GLIF point-neuron
equations (the so-called Extended Generalized Leaky Integrate-
and-Fire model) for the reproduction of experimental traces
recorded in different cerebellar cells (Geminiani et al., 2018;
Casali et al., 2019). That model allowed the direct application
of some experimentally testable parameters together with other
optimized ones. We, however, propose a methodology based on
automatic parameter tuning through an EA-based exploration
(all the behavioral target is integrated through FF definition).
It has shown to be effective in fitting the model parameters to
diverse spiking responses. Therefore, the optimization process
is fast, versatile, and able to capture relevant firing features.
Contrary to themethodology proposed in Geminiani et al. (2018)
where the optimization algorithm fitted the recorded voltage
traces, our approach aims to reproduce the firing characteristics
(namely, the burst frequency, the firing rate, and the first-spike
latency) of the biological neuron.

To sum up, in this study we present an automatic
optimization strategy for the development of computationally
efficient neuron models that reproduce realistic firing properties
under different stimulation protocols. This methodology was
applied to the case of the cerebellar GrC. As a result, a simplified
GrC model is proposed, suitable for predicting the main
suprathreshold dynamics, such as the spiking resonance at the
theta range and the linear frequency coding. This contribution
serves as an initial step towards a better understanding of the

functional implication of the theta-frequency-band resonance
for information processing at the cerebellar cortex. This model
provides both efficiency and biological plausibility which will
facilitate further computational work in the reconstruction of
large-scale models of microcircuits to better understand the
computational role of the suprathreshold dynamics of the cell on
a large scale.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

MM, JG, and ER: study design. MM and MS-L: literature and
database search. JG and MM: EAs methodology. MM, JG, and
ER: analysis and interpretation of results. MM and JG: writing
of the article. All the authors have read and approved the final
manuscript. All the results included in this article are part of
MM’s Ph.D. thesis.

FUNDING

JG was supported by FEDER/Junta de Andalucía-Consejería de
Economía y Conocimiento under the EmbBrain (A-TIC-276-
UGR18) project and by the University of Granada under the
Young Researchers Fellowship. This work was also supported
by funds from Ministerio de Economía y Competitividad
(MINECO)-FEDER (TIN2016-81041-R), the European Human
Brain Project SGA2 (H2020-RIA 785907), and SGA3 (European
Commission; H2020-RIA 945539), and CEREBIO (J. A. P18-FR-
2378) to ER. The aforementioned bodies funded the research
work described through scientific grants covering general and
personnel costs. They did not play any direct role in the design
of the study, collection, analysis or the interpretation of data in
the manuscript.

REFERENCES

Armano, S., Rossi, P., Taglietti, V., and D’Angelo, E. (2000). Long-term
potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of
rat cerebellum. J. Neurosci. 20, 5208–5216. doi: 10.1523/JNEUROSCI.20-14-
05208.2000

Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., and
Richardson, M. J. E. (2008). Dynamic I-V curves are reliable predictors of
naturalistic pyramidal-neuron voltage traces. J. Neurophysiol. 99, 656–666.
doi: 10.1152/jn.01107.2007

Barranca, V. J., Johnson, D. C., Moyher, J. L., Sauppe, J. P., Shkarayev, M. S.,
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