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In the past years, several theories have been advanced to explain the pathogenesis
of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability
in general population. Several theories have been proposed to define the MDD
pathophysiology such as the classic “monoamine-theory” or the “glutamate hypothesis.”
All these theories have been recently integrated by evidence highlighting inflammation
as a pivotal player in developing depressive symptoms. Proinflammatory cytokines
have been indeed claimed to contribute to stress-induced mood disturbances and to
major depression, indicating a widespread role of classical mediators of inflammation
in emotional control. Moreover, during systemic inflammatory diseases, peripherally
released cytokines circulate in the blood, reach the brain and cause anxiety, anhedonia,
social withdrawal, fatigue, and sleep disturbances. Accordingly, chronic inflammatory
disorders, such as the inflammatory autoimmune disease multiple sclerosis (MS),
have been associated to higher risk of MDD, in comparison with overall population.
Importantly, in both MS patients and in its experimental mouse model, Experimental
Autoimmune Encephalomyelitis (EAE), the notion that depressive symptoms are reactive
epiphenomenon to the MS pathology has been recently challenged by the evidence
of their early manifestation, even before the onset of the disease. Furthermore, in
association to such mood disturbance, inflammatory-dependent synaptic dysfunctions
in several areas of MS/EAE brain have been observed independently of brain lesions and
demyelination. This evidence suggests that a fine interplay between the immune and
nervous systems can have a huge impact on several neurological functions, including
depressive symptoms, in different pathological conditions. The aim of the present review
is to shed light on common traits between MDD and MS, by looking at inflammatory-
dependent synaptic alterations associated with depression in both diseases.

Keywords: multiple sclerosis, major depressive disorder, excitotoxicity, antidepressant drugs, cytokines,
synaptopathy, neuroinflammation, monoamine
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INTRODUCTION

Depression is one of the most diagnosed mental disorders in
adult patients as well as in children and adolescents. It is a
heterogeneous disorder caused by a complex interaction between
genetic and environmental factors (Wang et al., 2015; Fakhoury,
2016; Otte et al., 2016; Shadrina et al., 2018). Stress is a major
risk factor for depression, in particular early life stress, and
enduring stress exerted on susceptible individuals may ultimately
lead to Major Depressive Disorder (MDD) and eventually suicide
behavior (Bielau et al., 2005; Otte et al., 2016; Tauil et al.,
2018). Pathophysiological hallmarks of depressive symptoms
include monoamine depletion, glucocorticoid receptor (GR)
resistance, corticotrophin- releasing hormone and cortisol levels
as well as excess of glutamate (Boku et al., 2018; Seki et al.,
2018). Several theories, such as the classic ‘monoamine-theory’
as well as the ‘glutamate hypothesis’ have been proposed
to define the molecular and cellular mechanisms underlying
this pathological condition (Paul-Savoie et al., 2011; Albert
et al., 2012). Over the last years, all these theories have been
challenged by evidence highlighting inflammation as a pivotal
player in developing depressive symptoms (Alesci et al., 2005).
In particular, proinflammatory cytokines have been claimed
to play a role also in stress-induced mood disturbances and
in major depression, indicating a widespread role of classical
mediators of inflammation in emotional control (Khandaker
et al., 2018). Moreover, during systemic inflammatory diseases,
peripherally released cytokines circulate in the blood, reach the
brain and cause anxiety, anhedonia, social withdrawal, fatigue,
and sleep disturbances (Raison et al., 2006; Dantzer et al., 2008;
Miller et al., 2009). Accordingly, chronic inflammatory diseases,
as cardiovascular disease, type 2 diabetes, cancer, psoriasis,
rheumatoid arthritis and the inflammatory autoimmune disease
multiple sclerosis (MS), have been associated to high incidence
of depressive symptoms and higher risk of MDD (Poole and
Steptoe, 2018) in comparison with overall population (Raison
et al., 2006; Finnell and Wood, 2016; Poole and Steptoe, 2018).

How inflammation contributes to depressive symptoms either
in chronic inflammatory disease or in the context of MDD
has been highly debated (Haroon et al., 2012) and is still
under intense investigation considering the potential impact
on therapy decision making and improvement of patients
quality of life (Otte et al., 2016). Notably, in the inflammatory
autoimmune disease MS and in its mouse model, namely
experimental autoimmune encephalitis (EAE), it is emerging that
proinflammatory cytokines may directly alter neuronal activity
and cause mood alterations independently of their destructive
effects on myelinated axons and of the associated disability.
An early and diffuse inflammation-dependent enhancement
of glutamatergic transmission as well as synaptic plasticity
perturbation characterize the EAE/MS brains, resembling some
of the MDD pathological hallmarks.

Although analogies between a neuropsychiatric disorder such
as MDD and the inflammatory autoimmune MS disease are
difficult to sustain, neuroinflammation is potentially recognized

as a common disease factor. In this regard, it is worth considering
the huge effect that small physiologic differences of inflammatory
components can have over time if they are consistently skewed
in one direction. The aim of the present review is to provide an
overview of the several theories advanced to explain depressive
symptoms in MDD and in MS (Figures 1, 2), with a particular
emphasis on the role of inflammation and on its impact on
synaptic alterations in mood disturbances (Figure 3). Ultimately,
insights on clinical implications will be provided in the context of
the cytokine and glutamate theories.

PATHOPHYSIOLOGY OF MDD

Major depressive disorder is one of the most common
psychiatric disorder in the world recognized by the World
Health Organization (WHO) and affects general population
across a broad spectrum of ages and social environmental factors
(Malhi and Mann, 2018).

The one-year prevalence of MDD is 6% representing about
twofold greater incidence in women than man (Malhi and Mann,
2018). The lifetime risk of developing MDD for a person is
15–18% and almost 40% of MDD population experiences the
first episode before 20 years (Belmaker and Agam, 2008). MDD
is mainly characterized by depressed mood and anhedonia as
fundamental symptoms but it may be associated to several
other clinical features including anorexia, weight loss, insomnia,
hypersomnia, and suicidal thoughts. Moreover, other affections,
including cognition, memory and motor dysfunctions have been
associated to MDD (Malhi and Mann, 2018).

Clinical features coincide with the evidence of morphological
and functional alterations of gray and white matter in the
brain of MDD patients. In the recent years, magnetic resonance
imaging (MRI) studies revealed cortical thinning in several
brain regions of MDD patients including frontal lobe, temporal
lobe, hippocampus, pre-frontal cortex (PFC), anterior cingulate
cortex (ACC), orbito-frontal cortex, thalamus, and striatum (Suh
et al., 2019). Worthy of note, alterations in the hippocampus, a
brain area associated to cognition and memory, are hallmarks
of MDD. This has also been supported by a large scale
meta-analysis of structural neuroimaging studies showing that
hippocampal abnormalities were more frequently discovered in
MDD patients when compared to other psychiatric disorders
(e.g., schizophrenia and bipolar disorder) and to healthy controls
(Goodkind et al., 2015). Among neuroimaging investigations,
functional MRI (fMRI) studies explore functional activity and
connectivity between specific brain regions of interest measuring
the extent of synchronization in the spontaneous fluctuations
of blood oxygenation level dependent (BOLD) signal. In MDD
patients, altered connectivity is frequently reported in several
brain regions, including amygdala, frontal cortex, ACC and
ventral striatum by BOLD-fMRI studies (Otte et al., 2016).
Those studies suggest that MDD pathophysiology is not only
associated to macroscopic alterations of specific brain areas
but is also due to their dysfunctional activity (Figure 1). In
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the next chapters we will discuss the neurobiological bases of
these phenomena.

MDD PATHOPHYSIOLOGY HYPOTHESIS:
THE MONOAMINE THEORY AND THE
NEUROENDOCRINE HYPOTHESIS

Various hypotheses have been proposed to explain the
pathophysiology of MDD (Boku et al., 2018) (Figure 1).
The most common is the monoamine hypothesis, based on

the evidence that the concentrations of monoamines, such
as serotonin, noradrenaline and dopamine, in synaptic gaps
are decreased in the depressive state (Boku et al., 2018).
The neurotransmitter 5-hydroxytryptamine (5-HT), namely
serotonin, is implicated in the regulation of mood and pain.
This monoamine is diffusely located in the whole body especially
in the enterochromaffin cells of the gastrointestinal tract, in
the platelets and in the central nervous system (CNS). It is
synthetized from the essential amino acid L-tryptophan by
the enzyme tryptophan hydroxylase in neurons located in
the brainstem raphe nuclei (Mohammad-Zadeh et al., 2008).

FIGURE 1 | Pathophysiological theories in MDD. The numebr of green arrows is proportional to the impact of each theory on the pathophysiology of the disease.
Pathophysiological theories to explain the onset of depressive symptoms in MDD. The so-called monoamine hypothesis explains depression as a result of selective
monoamine depletion (serotonin, dopamine, and noradrenaline) in several areas of the CNS. The neuroendocrine and neuroinflammatory theories could equally well
explain depressive symptoms in MDD. The first hypothesis implies the hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA), with an increase in the
production of cortisol and a consequent reduction in hippocampal neurogenesis and plasticity in cortex. The second hypothesis emphasizes microglial activation
mechanisms and the resulting neuroinflammatory response, that causes, in turn, hyperactivation of eloquent areas of the limbic system (amygdala, hippocampus,
and cingulate gyrus). In addition, the glutamatergic theory postulates that also this neurotransmitter is relevant for the formation of depressive symptoms and
cognitive impairment, through the overstimulation of glutamate NMDA receptors, the alteration of AMPA phosphorylation, impaired glutamate reuptake, and ECS
dysfunction. The long-lasting effects will be excitotoxic damage, and synaptic plasticity impairment. The neuroinflammatory and glutamate theories are strictly
interconnected with the inflammatory-synaptopathy hypothesis, as suggested in MS studies.
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Conversely, the dopamine (DA) and noradrenaline (NA)
neurotransmitters belong to the group of catecholamines and
are derived from the amino acid L-tyrosine. Dopaminergic
neurons originate from both the substantia nigra pars compacta
and ventral tegmental area (VTA) and project to the dorsal and
ventral striatum, respectively. Dopaminergic system is implicated
in the motivation, addiction and motor function (Klein et al.,
2019). Finally, NA released by noradrenergic neurons located in
the locus coeruleus (LC) is implicated in modulation of arousal
state and represents an important part of the stress response
(Schwarz and Luo, 2015).

The modulation of monoamine synaptic transmission
is still the main target of pharmacological treatment in
MDD (Fakhoury, 2016). As historically demonstrated in the
1960s, depressive symptoms can be controlled by inhibiting
several molecules involved into monoamine distribution and
metabolism in the synaptic compartment. Indeed, the main target
of antidepressants includes the serotonin and noradrenaline
transporters (SERT and NET) involved in the re-uptake of
monoamines, commonly blocked by tricyclic antidepressant
(TCA) and more specifically by selective serotonin reuptake
inhibitors (SSRI), or the metabolizing enzyme of monoamine,
namely mono-amine oxidase (MAO), blocked by the MAO
inhibitors (iMAO). The main neurotransmitter involved
into MDD pathophysiology is serotonin, as demonstrated
by clinical studies showing reduced serotonin metabolites in
biological fluids and genetic variants associated with SERT in
MDD patients (Dean and Keshavan, 2017). The role of NA
in MDD is still controversial, while increasing NA levels by
transporter inhibition with NA-reuptake inhibitors (NARI)
ameliorates depressive symptoms, conversely, elevated NA
levels in the CNS have been associated to stress and depressive
symptoms (Seki et al., 2018). In the last years, the validity
of the monoaminergic theory has been largely debated. Of
note, it has been observed that antidepressants are rapidly
effective on monoamine synaptic concentration, but the onset
of therapeutic effect generally takes 2–4 weeks (Boku et al.,
2018). Moreover, experimental depletion of NA and serotonin
did not induce depressive symptoms in healthy individuals but
only in previously depressed patients treated successfully with
antidepressant drugs (Ruhé et al., 2007). Furthermore, 30% of
MDD patients are resistant to antidepressant treatments (Boku
et al., 2018). These findings strongly suggest that monoamine
impairment is partially responsible of MDD development, and
that additional neurobiological factors (i.e., second messengers
and their cascade systems activation), environmental factors (i.e.,
socioeconomic status, early life stress, and violence exposure),
chronic stress and genetic susceptibility (influencing early onset,
recurrence, and severity of the disease) are required to fully
trigger the pathological status (Wang et al., 2015; Fakhoury,
2016; Otte et al., 2016; Shadrina et al., 2018). Among these,
chronic stress is the most important causal agent for MDD.
Pre-clinical studies conducted on murine model also confirmed
this causality. A chronic stress, such as exposure to a long-term
inescapable stimulation or a chronic social defeat, is indeed able
to induce depressive symptoms in rodents as revealed by specific
behavioral tests such as forced swimming test, tail suspension test

and sucrose preference test (Hao et al., 2019). Although modeling
human depression in animals is challenging and present several
limitations, rodent models have been useful in describing specific
aspects of mood disturbances in well-designed experimental
settings (Hao et al., 2019).

Early life stress is known to have an impact on neuroendocrine
regulation and neurodevelopment; a neuroendocrine theory has
been indeed proposed to explain depressive symptoms in MDD
patients. Stress activates the hypothalamic-pituitary-adrenal
axis (HPA) inducing hypothalamic release of corticotrophin
releasing hormone (CRH). CRH stimulates anterior pituitary
gland to release adrenocorticotropic hormone (ACTH) leading
to glucocorticoid secretion by adrenal glands. This HPA
hyperactivity has been associated with increased levels of
glucocorticoids both in the plasma and in the cerebrospinal
fluid (CSF). The hippocampus plays a key role in the
feed-back regulation of HPA and increased CNS level of
glucocorticoids overstimulates hippocampal neurons leading to
volume decrement. Two main hypotheses have been proposed
to explain hippocampal alterations: the neurogenesis hypothesis,
in which glucocorticoids decrease the neurogenesis in the
dentate gyrus (DG) of the hippocampus, and the neuroplasticity
hypothesis, in which glucocorticoids induce the atrophy of
mature neurons reducing the total dendritic spine density and
length. These structural and functional alterations seem to be
associated to lower levels of brain-derived neurotrophic factor
(BDNF) in the hippocampus and have been proposed as the
neural basis of cognitive alterations in chronic stress and MDD
(Boku et al., 2018).

THE NEUROINFLAMMATORY THEORY
IN MDD

Accumulating evidence has associated chronic inflammation to
MDD and to chronic stress pathophysiology, but it is still a matter
of debate how inflammation may contribute to the pathogenesis
of these diseases (Kim and Won, 2017). As reported in the
following paragraphs, alterations of immune cells, including
lymphocytes, monocytes/macrophages and microglia, as well as
soluble inflammatory mediators have been associated to several
depressive states (Petralia et al., 2020) (Figures 1, 3).

The Cytokine Theory of MDD
The involvement of cytokines in psychiatric diseases was first
postulated through the observation that patients treated with the
pro-inflammatory cytokine IFN-α developed several depressive
symptoms that disappeared when treatment was interrupted
(Smith, 1991; Maes, 1995).

In 1991, Smith proposed the so-called cytokine theory of
MDD, supported by clinical and pre-clinical studies (Dey and
Giblin, 2018). According to this theory, MDD patients exhibit
a chronic inflammatory status characterized by elevated serum
levels of pro-inflammatory cytokines (Figures 1, 3), including
tumor necrosis factor α (TNF-α), interleukin (IL-) 1β, IL-2, IL-
6, IL-12, IL-13 interferon gamma (IFN-γ), and decreased level of
anti-inflammatory cytokines, such as IL-10 and soluble receptor
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for IL-2 and IL-6, IL-1β receptor antagonist (IL-1ra), in respect to
healthy controls (Petralia et al., 2020).

Clinical studies have also suggested that serum levels of
cytokines may provide several information both on the risk to
develop the disease and on clinical outcome. For example, a
retrospective study demonstrated that children with higher levels
of IL-6 have 10% greater risk of developing MDD (Khandaker
et al., 2014). Moreover, elevated levels of TNF-α and IL-6 are
predictive of a higher risk of suicide and more severe course
of the disease (Janelidze et al., 2011; Haapakoski et al., 2015).
Similarly, MDD patients with elevated plasmatic levels of IL-6,
IL-8, IFN-γ, and TNF-α manifest slight responsiveness to sleep
deprivation, a commonly approved approach to treat depressive
symptoms in MDD (Petralia et al., 2020). Of note, all these
studies have been limited to few cytokines such as TNF-α, IL-1β,
IL-6, and IFN-γ. Furthermore, several genetic polymorphisms of
cytokines genes have been involved in MDD pathophysiology. It
has been demonstrated that the single nucleotide polymorphism
(SNP) rs1800629 of the TNF-α gene is associated to a higher
risk of developing MDD especially in Alzheimer disease and post
stroke patients (Zhou et al., 2018). An higher risk to develop
MDD has been associated to the IL-6 receptor polymorphisms
Asp358Ala and rs2228145 (Khandaker et al., 2014) and to the
SNPs rs187238 and rs1946518 on the IL-18 promoter gene in
patients that are exposed to stressful events (Haastrup et al., 2012;
Petralia et al., 2020).

The association between mood disturbances and cytokine
levels has been explored also in several mouse models. For
example, a preclinical study on knock out (KO) mice for
TNF-α receptor 1 or 2 (TNFR1-2 KO) showed amelioration of
conditional fear response and depressive behavior in comparison
to control mice (Ma et al., 2016) as well as intracerebral infusion
of TNF-α in healthy mice induces mood disturbances (Haji et al.,
2012). Moreover, intraperitoneal injection of lipopolysaccharide
(LPS), a proinflammatory agent obtained from Gram-negative
bacteria, induces in rodents a transient flu-like syndrome in
association with the activation of the immune system and
consequent release of inflammatory cytokines (including TNF-
α, IL-1β, IL-6, and IFNγ) (Dantzer and Kelley, 2007; Brydon
et al., 2008; Musaelyan et al., 2018). The induction of sickness
behavior has been useful to investigate some MDD symptoms,
such as fatigue, anorexia, anxiety, pain and sleep disorders,
despite the limitation of being mainly an acute and transitory
inflammatory response to an external agent. Accordingly, a state
of chronic inflammation is detectable in murine models of
depression induced by chronic stress exposure. Mice exposed to
chronic social stress present increased levels of plasmatic IL-6
and increased brain levels of TNF-α, IL-1β, and IL-6 (Ménard
et al., 2016; McKim et al., 2018; Deng et al., 2019). Furthermore,
increased plasmatic levels of IL-6 can predict susceptibility to
chronic social stress in adult mice (Ménard et al., 2016).

The Role of Lymphocytes in MDD
It has been demonstrated that the main T helper phenotypes
involved in the productions of pro-inflammatory cytokines in
MDD are Th1, Th17, Th22 while reduced activity of Th2, Th3,
Th9 has been reported (Petralia et al., 2020). These observations

led some authors to propose an imbalance between Th1/Th17
and Th2/Th9 response at the basis of the MDD pathophysiology,
reflecting an imbalance between pro-inflammatory and anti-
inflammatory T lymphocyte phenotypes (Furtado and Katzman,
2015; Petralia et al., 2020). Unfortunately, this model is an
oversimplification of a more complex mechanism. Recent studies
suggest that differentiated T cells may turn into other T cell
subsets, for example Th1 in specific conditions can release IL-
10, while regulatory T cells can release IL-17 when expressing
Foxp3 and RORγT, two genes commonly associated to Th17
(Petralia et al., 2020).

The Role of Microglia in MDD
Microglia cells, resident immune cells of CNS, are potent
and far-reaching regulators of the extended neuron-glia
network by secreting soluble mediators and by establishing
direct contacts with the synaptic compartment (Kettenmann
et al., 2013; Bar and Barak, 2019). In neuroinflammatory
conditions, monocytes/macrophages and activated microglial
cells can have detrimental effects on synaptic structure and
function and neuronal survival. In accordance to the MDD
neuroinflammatory theory, these immune cells are largely
involved in the pathophysiology of the disease and deeply
influence its course (Dey and Giblin, 2018) (Figures 1, 3). Of
note, a positron emission tomography (PET) study demonstrated
increased distribution volume of the translocator protein
(TSPO), suggesting a glial activation throughout several
brain areas (cingulate gyrus, amygdala, prefrontal cortex,
and hippocampus) deeply involved in MDD pathophysiology
(Setiawan et al., 2015; Meyer, 2017). Accordingly, post-mortem
studies found activated microglia in several brain areas including
dorsolateral prefrontal cortex (DLPFC), hippocampus, ACC
and amygdala. Moreover, in both studies microglial activity
was associated to frequency of acute episodes, disease course,
and suicide risk (Bielau et al., 2005; Khairova et al., 2009; Oh
et al., 2012; Schnieder et al., 2014; Torres-Platas et al., 2014;
Rubinow et al., 2016).

Many preclinical studies have demonstrated that activated
microglia lead to an up-regulation of pro-inflammatory
cytokines, such as IL-1β, TNF-α, and IL-6, prostaglandins,
nitric oxide and glutamate causing functional and structural
abnormalities of the synaptic compartment (Chen et al., 2018;
Dey and Giblin, 2018). It has been demonstrated that, activated
microglia may also indirectly contribute to cytokine release
in brain tissue recruiting IL-1β releasing monocytes in mice
exposed to chronic stress (McKim et al., 2018).

Interestingly, stress-induced activation of LC has been
associated to increased NA levels in several projecting brain
areas, including PFC and hippocampus (Seki et al., 2018),
that in turn induce microglial activation mediated by α1- and
β-adrenoceptors leading to the release of pro-inflammatory
cytokines (Chen et al., 2018). Structural and functional
alterations mediated by increased NA levels have been detected
in association to cognitive impairment in chronic stress and
MDD. In this regard, direct and indirect mechanisms have
been proposed, NA neurotransmission potentiation induces
not only microglia activation but exerts also an indirect effect
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by enhancing the release of CRH from the hypothalamus,
influencing glucocorticoid levels and causing a synaptic
dysregulation in the hippocampus of MDD patients (Pace et al.,
2007; Pace and Miller, 2009; Wang et al., 2017). Moreover,
elevated NA levels associated to fear response are reported in
basolateral amygdala (BLA) and VTA, associated to anhedonia
in MDD patients (Seki et al., 2018).

GLUTAMATERGIC THEORY,
STRUCTURAL AND FUNCTIONAL
SYNAPTIC ALTERATIONS IN MDD

Dysregulation between excitatory glutamatergic transmission
and inhibitory GABAergic transmission is implicated in the
pathophysiology of depression ascribing to the “glutamatergic
theory of depression” that leads to excitotoxic damage,
neurodegeneration and consequent brain damage (Lener
et al., 2017; Meyer, 2017) (Figures 1, 3). Glutamate is the
major excitatory neurotransmitter in the human brain and
has a pivotal role in various brain functions and exerts its role
by binding at glutamate receptors (GluRs). Neuronal GluR
activation provides fast synaptic transmission activity and it
is required for synaptic plasticity, learning and memory. The
GluRs are represented by two main type of receptors, namely
ionotropic glutamate receptors [N-methyl- D-aspartate (NMDA)
receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPARs)], kainic acid receptors (KARs) and
metabotropic glutamate receptors (mGluRs) expressed at both
pre- and post-synaptic neurons (Popoli et al., 2012). In addition,
the glial compartment of CNS, namely astrocytes, microglia,
and oligodendrocytes exhibits GluR subtypes. To maintain
homeostasis in the brain, the release of glutamate to the synaptic
cleft is finely regulated by presynaptic metabotropic GluR
(mGluR) activation or by inhibitory potential triggered by GABA
but also from astrocytes through reuptake activity of excitatory
amino acid transporters (EAATs).

Over the past decades, preclinical and clinical studies
investigated the link between glutamatergic hyperactivity and
the pathophysiology of depressive disorder, thus identifying the
glutamate receptors (NMDA and AMPA) and glutamatergic
synapse as a potential target for pharmacological treatments.
Clinical studies suggest associations between glutamatergic
hyperactivity and regional volume reductions in the brains
of MDD patients as well as significant decrease in glial cell
numbers, density and neuronal atrophy (Rajkowska et al., 1999;
Sanacora et al., 2012). Furthermore, particularly relevant for the
glutamate hypothesis of mood disorders is the association with
specific SNPs in genes of GRIA3, GRIK4, GRIK2, and GRM7,
which encode proteins of the AMPA, kainate and metabotropic
receptors (de Sousa et al., 2017).

It is important to remind that the glutamate is an active
player in synaptic brain plasticity (i.e., long term potentiation,
LTP; long term depression, LTD) and cognitive impairment is
considered as a core endophenotype of MDD (Hasler et al.,
2004). Preclinical studies reported that exposure to stressful
stimuli alters synaptic plasticity in animal models of MDD,

suggesting that plasticity plays a key role in depressive behavioral
state induction (Liu et al., 2015; Milior et al., 2016). NMDAR-
dependent LTP is mediated by several signaling cascades
activation including cAMP-dependent protein kinase (PKA),
protein kinase C (PKC), the mitogen-activated protein kinase
(MAPK) cascade that activates extracellular signal-regulated
kinases (ERKs) and calcium/calmodulin-dependent protein
kinase II (CaMKII) (Malenka and Bear, 2004). Genetic studies
confirmed synaptic plasticity alterations in MDD by showing
a constitutively decreased expression of components of the
glutamatergic transmission machinery involved in glutamate
homeostasis, such as glutamate transporters, and glutamine
synthesis as well as oligodendrocyte and myelin related genes
especially in frontal cortex tissue (Khairova et al., 2009;
de Sousa et al., 2017).

The relevance of glutamatergic synaptic dysfunction in MDD
is corroborated by pharmacological evidence that drugs with
neuroprotective effects against excitotoxic mechanisms have
antidepressant properties. Indeed, riluzole, by inactivating the
voltage-dependent calcium and sodium channels exerts an
inhibitory effect on glutamate release, has also antidepressant
properties likely mediated by an enhancement of glutamate
clearance by astrocytes, with consequent neuroprotective effects
and synaptic plasticity preservation (Banasr and Duman, 2007).
Similar results have been obtained in patients treated with
ketamine, a high-affinity NMDA antagonist (Murrough et al.,
2017). In a double-blind randomized clinical study, it has
been demonstrated that patients suffering from treatment-
resistant depression showed a rapid onset (i.e., after a
single dose) antidepressant response to ketamine treatment
with respect to untreated controls (Singh et al., 2016).
Glutamatergic drugs have shed a light on the alternative
possibility of treating MDD patients with a strong and
rapid antidepressant effect induced by glutamatergic receptor
antagonism. Accordingly, pre-clinical studies conducted on
mice lacking various glutamatergic components (i.e., GLT-1 or
GLAST proteins, NMDAR or AMPAR) as well as on behavioral
mouse models, showed antidepressant effects mediated by
modulation of synaptic glutamate concentrations (Li et al.,
2011; Sanacora and Banasr, 2013; Fuchikami et al., 2015;
Fullana et al., 2019a,b).

In addition, there is cumulating evidence that dysfunction of
the GABAergic system is associated to the pathophysiology of
MDD (Fogaça and Duman, 2019). By regulating the HPA axis,
GABAergic neurons play an important role in the termination
of stress response, and the failure of this regulatory path leads to
anxiogenic and pro-depressive behaviors. Indeed, chronic stress
exposure causes a disruption of GABA-mediated inhibition of
the HPA axis by limiting the expression of the transmembrane
K-Cl cotransporter (KCC2) (Hewitt et al., 2009). Moreover, it
has been demonstrated that the downregulation of GABAA
receptors in the frontal cortex and other limbic areas is involved
in dendritic reorganization of interneurons (Gilabert-Juan et al.,
2013) and alterations of electrophysiological responses (Northoff
and Sibille, 2014). Of note, magnetic resonance spectroscopy
(MRS) studies conducted on MDD patients reported reduced
levels of GABA in several cortical areas and that a normalization
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of GABA levels is associated to the remission of depressive
symptoms (Hasler et al., 2007; Godfrey et al., 2018).

Finally, components of the endocannabinoid system (ECS),
such as the type-1 cannabinoid inhibitory receptors (CB1Rs),
have been linked to MDD (Shen et al., 2019). It is well known
that the ECS plays a key role in mood regulation, emotions,
and stress response; it protects from the excitotoxic neuronal
damage that impacts neuropsychiatric disorders by modulating
the balance between excitatory and inhibitory activity (Rossi
et al., 2009a; Ashton and Moore, 2011; Cristino et al., 2020).
CB1Rs are distributed in various areas anatomically involved in
mood control, particularly in the striatum, PFC and amygdala
(McLaughlin et al., 2013). In a mouse model of MDD, a
reduced expression of CB1Rs has been reported in the medium
spiny neurons (MSN) of the nucleus accumbens, a group of
GABAergic neurons expressing type-2 dopamine (D2) receptors
and involved in mood-control circuitry. CB1Rs downregulation
causes an increased activity of glutamatergic transmission
at the level of the BLA projecting to nucleus accumbens,
a key neuronal circuitry involved in MDD pathophysiology
(Shen et al., 2019).

Altogether these findings suggest a complex dysregulation
of neurotransmission in MDD (Figures 1, 3) and clarify the
advantages of a pharmacological approach based on glutamate
modulation in MDD, leading to a better knowledge of the
complex neurobiology of depressive disorders and to the
development of new therapeutic strategies (Gerhard et al., 2016;
Lener et al., 2017).

INFLAMMATION-DEPENDENT
SYNAPTIC ALTERATIONS IN MDD

A growing body of evidence is now looking at the
link between neuroinflammation and neurotransmitter
perturbations in MDD.

As previously mentioned, cytokines released from activated
microglia in the HPA-axis can modulate glucocorticoid receptor
signaling and induce alteration of hippocampal synaptic plasticity
in MDD and chronic stress (Pace et al., 2007; Pace and Miller,
2009; Wang et al., 2017).

The effects of proinflammatory cytokines (IL-1β and TNF-
α) released by activated microglia on synaptic plasticity include
alteration of NMDA and AMPA receptor subunit expression and
a decrease of AMPA receptor phosphorylation (Liu et al., 2015;
Riazi et al., 2015) (Figure 3). Human studies reported changes
in cortical excitability as well as reduced motor evoked potential
amplitudes observed following LTP- and LTD – induction
protocols in MDD patients (Cantone et al., 2017). Interestingly,
modifications of synaptic transmission and plasticity can in
turn influence peripheral cytokine levels as suggested by clinical
studies based on transcranial magnetic stimulation (TMS), a non-
invasive approach able to modulate brain activity and cortical
excitability (Chung et al., 2015; Croarkin and MacMaster, 2019).
In a group of MDD patients, modulation of cortical GABAergic
and glutamatergic imbalance by TMS protocols caused a decrease
of IL-1β and TNF-α serum levels (Zhao et al., 2019), suggesting

a bidirectional interaction between the inflammatory and the
neurotransmitter systems.

Moreover, a recent study investigated the biological
mechanism underlying the associations between the
proinflammatory cytokine IL-18 and depressive symptoms
related to MDD. IL-18 lacking mice showed degenerated
presynaptic terminals in the molecular and polymorphic layers
of hippocampal DG in association to loss of motivation at
motor behavioral tests and altered neurogenesis and apoptosis
(Yamanishi et al., 2019). Overall, both animal and human studies
indicate a possible involvement of cytokine-mediated synaptic
plasticity alterations in the cognitive deficits in patients with
depression (Innes et al., 2019).

Cytokines are also able to decrease serotonin synthesis by
activating the indoleamine 2,3-dioxygenase enzyme (IDO) that
metabolizes tryptophan to kynurenine (Raison et al., 2010). It
is well known that kynurenine itself has immunosuppressive
properties, such as induction of regulatory T cells and
deactivation of Th1 and Th17 cells (Lanz et al., 2017). On the
other hand, high levels of kynurenine can cross the blood brain
barrier (BBB) generating kynurenic acid or quinolinic acid, both
active at glutamatergic synapses. Inflammatory mediators acting
on microglia increase the quinolinic acid to kynurenic acid
ratio, leading to net NMDA receptor agonism. While kynurenic
acid blocks NMDA receptors, thus exerting a neuroprotective
effect against excitotoxicity, quinolinic acid, that is increased
in MDD, acts as an agonist of the NMDA receptor and
directly causes glutamate release contributing to neurotoxicity
(Dantzer, 2016) (Figure 3). Moreover, inflammatory mediators
adversely affect astroglial expression of EAAT thus impairing
glutamate removal form the synaptic cleft (Haroon et al.,
2017). Finally, activated microglia products (i.e., reactive oxygen
and nitrogen radicals) induce an irreversible oxidation of
enzymatic cofactors for the monoamines biosynthesis, such as
tetrahydrobiopterin (BH4), leading to reduction of monoamine
synthesis (Kalkman and Feuerbach, 2016).

Although further investigations are needed to fully elucidate
the challenging relationship between inflammation and synaptic
dysfunction in depressive symptoms, we propose that an
inflammatory-mediated synaptopathy might be an integral part
of the pathophysiology of MDD as suggested by studies
conducted in MS and in its experimental model EAE (Figure 3).

PATHOPHYSIOLOGY OF MS AND OF
THE ASSOCIATED DEPRESSIVE
SYMPTOMS

MS is an autoimmune disorder of the CNS characterized by
loss of myelin sheaths and gray matter damage, followed by
neurodegeneration. Although its etiology is still unclear, it is
now known that interactions between susceptible genes and
environmental factors are involved in disease pathogenesis. MS is
mainly driven by an inflammatory cascade in the CNS, triggered
by autoreactive immune cells that attack myelin and neuronal
epitopes leading to demyelination and axonal degeneration.
Blood–brain barrier damage allows the infiltration of immune
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cells, including activated T and B cells, into the CNS. The local
activation of microglia and astroglia cells exacerbates the immune
response and causes further damage to the neuronal cell network
resulting in the genesis of demyelinating plaques and excitotoxic
damage (Dendrou et al., 2015; Mandolesi et al., 2015; Reich
et al., 2018) (Figures 2, 3). The manifestations of inflammatory
lesions/plaques in the CNS present heterogeneous temporal
and pathological patterns, resulting in a variety of neurological
symptoms, including motor, sensorial, cognitive and mood
disorders. It is possible to distinguish various MS phenotypes: a
relapsing-remitting (RR) form, mainly characterized by clinical
relapses followed by a complete recovery from symptoms in
80% of patients, and progressive forms, classified as primary-
progressive (PP) starting with a partial recovery from relapses
followed by an increasing rate of disability, and secondary-
progressive (SP) in which the progression phase is preceded by
a relapsing-remitting (RR) phase. Other important variants of
disease are represented by Clinically Isolated Syndrome (CIS),
in which a single clinical episode typical of MS is accompanied
by a radiologically active single lesion, symptomatic or not, and
Radiologically Isolated Syndrome (RIS), characterized by one or
more radiologically active demyelinating lesions in absence of
clinical manifestations (Vaughn et al., 2019).

Depressive Symptoms in MS
Depression is the main psychiatric feature reported in MS
patients (Di Legge et al., 2003; Marrie et al., 2015) and
includes feelings of helplessness, reduced social participation
and enjoyment of activities (Feinstein et al., 2014; Solaro et al.,
2018). A clinical study conducted on a small cohort of RRMS
patients with mood disorders reported a 38% prevalence of MDD
(DSM-IV) (Byatt et al., 2011).

The main consequence of depressive symptoms is scarce
adherence to pharmacological treatments or rehabilitative
programs associated to worsening of functional outcomes (Binzer
et al., 2019). Although these symptoms represent one of the
main determinants for quality of life in MS, they are currently
undervalued and undertreated in clinical practice. Depressive
manifestations are part of a more complex disease and may
influence other neurological and systemic symptoms, including
motor, sensitive and cognitive impairment, fatigue, and pain.
Furthermore, it is worth to mention that a bidirectional and
detrimental interaction occurs between disease course and
depression (Rossi et al., 2017) as suggested by the evidence
that treatment of depression is effective in fatigue improvement
(Solaro et al., 2018). Whether depressive syndrome in MS
is “organic” in nature (an epiphenomenon due to increased
inflammatory activity) or “reactive” (a functional reaction to
neurological and physical symptoms) has been highly debated,
highlighting the difficulties of its diagnosis (Feinstein et al., 2014;
Rossi et al., 2017). This issue arises from the high variability
of clinical measures and assessment methods used to identify
clinical features of mood disorders in MS patients (Marrie et al.,
2018). Therefore, it has been reported a wide range of general
prevalence of depression from 4.27 to 59.6%, and of incidence
from 4.0 to 34.7% in MS patients. These variable ranges are
also attributable to an analysis conducted on a non-uniform

population, including patients affected by RR and progressive
forms of MS with an unclear distinction between active and
non-active phase of the disease (Moore et al., 2012).

Of note, the risk to develop depression is two or five-times
higher for MS patients than general population, with a lifetime
prevalence of 50%, a rate of 44,5% during relapses but with
no differences in terms of gender (Feinstein, 2011). In a recent
meta-analysis, depressive symptoms have been reported in 35%
of CIS and in the early phase of MS (Rintala et al., 2019). They
may occur even in the absence of physical disability, sometimes
anticipating the onset of clinical deficits (Haussleiter et al., 2009;
Lo Fermo et al., 2010), suggesting that mood disturbances are
not a reactive phenomenon to the pathology, but a considerable
part of it (Feinstein et al., 2014). Furthermore, the occurrence of
depressive symptoms has been associated with clinical relapses
and progressive neurological disability, linking mood disturbance
to immune attack and chronic neuroinflammation (McCabe,
2005; Moore et al., 2012).

Along with neuroinflammation, a combination of several
predisposing factors, including environmental factors and
aspects of individual personality (e.g., emotional focused, low
self-esteem, maladaptive coping strategies, and other mood
disturbances) are involved in the etiology of depressive symptoms
in MS patients as reported for MDD (Pravatà et al., 2017;
Di Filippo et al., 2018). On the contrary, some prominent
risk factor such as age, sex, and family history of depression
are less consistently associated to depressive symptoms in MS
patients when compared to MDD (Patten et al., 2017). Differently
from MDD, further studies are required to better clarify
the involvement of genetic predisposing factors to depression
in MS, especially concerning cytokine gene polymorphisms
(Feinstein et al., 2014).

Regarding neuroimaging analysis, several MRI studies
highlighted specific modifications, such as reduced cortical
thickness, in the brain of depressed MS patients when compared
to non-depressed MS patients. In overlap with MDD, the most
involved areas include temporal pole, PFC, hippocampus with
anterior and posterior cingulate cortex (Feinstein et al., 2014).
Moreover, as it occurs in MRI studies conducted on MDD
patients, altered connectivity between limbic system areas (i.e.,
amygdala and dorsolateral PFC) is extensively described in
depressed MS patients (Feinstein et al., 2014; Nigro et al., 2015).
On the other hand, it is worthy to note that there are radical
differences between MDD and MS in their radiological features
(Morris et al., 2018), considering the autoimmune etiology of
MS disease. Cortical thickness and functional connectivity of
the whole cortex are indeed diffusely altered in MS patients
and are associated with subpial white matter demyelination and
alteration of dendritic spines, the specific association between
these radiological features and depressive symptoms in MS needs
further investigations (Lassmann and Bradl, 2017).

The limited attention toward the mood aspects of MS
symptomatology is in part due to an inadequate knowledge of
their pathological basis. In this respect, some critical issues have
been in part addressed by studies in animal models of MS that,
despite several limitations, can reproduce some of the MS clinical
and histopathological features (Ransohoff, 2012). One of the most
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FIGURE 2 | Pathophysiological theories of depression in MS. The number of green arrows in windows is directly proportional to the importance of each theory in the
pathophysiology of the disease. Pathophysiological theories to explain the onset of depressive symptoms in MDD. Depression in the course of MS/EAE presents a
wide range of clinical presentations. Compared to MDD, monoamine dysfunction is likely less relevant, although it is fundamental in the genesis of depressive
symptoms, as it is supported by a good pharmacological response to SSRIs (anti-inflammatory effect). The neuroendocrine theory, responsible of HPA-cortisol
perturbation is less investigated in MS than in MDD. The neuroinflammatory theory stands out of importance in MS depressive disorder, sustained by activated T
cells and macrophage/microglia that secrete proinflammatory cytokines, causing demyelination, axonal loss a neurodegeneration. Perturbation of limbic areas has
been associated to microgliosis. Finally, the glutamate theory is essential in understanding depressive symptoms associated to MS/EAE, especially in the early phase
of the disease even before clinical onset. Increased hyperexcitability, caused by enhanced glutamatergic transmission and by a reduced GABAergic tone, has been
associated to early mood disturbances. Altered synaptic plasticity also causes cognitive impairment. The link between the neuroinflammatory theory and the
glutamatergic hypothesis has been well characterized in MS and the inflammatory synaptopathy has been recognized as a reliable hallmark of MS/EAE.

accredited MS model is the myelin oligodendrocyte glycoprotein
p35–55 (MOG35–55)-chronic EAE induced in C57BL/6 mice
(Furlan et al., 2009). Such model presents different phases of
the disease: the pre-symptomatic phase with absence of motor
deficits, the acute phase starting from the onset to the peak of

clinical symptoms and the following chronic phase, in which
motor symptoms become milder. Several studies have reported
depression-like behaviors in all EAE clinical phases in correlation
with a number of cellular and molecular players (for review
see Gentile et al., 2015). Sickness behavior (Pollak et al., 2002;
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FIGURE 3 | Inflammatory synaptopathy in early depressive symptoms of MS and MDD. MS and MDD are different brain diseases, induced by (1) environmental
factors, genetic susceptibility and individual factors (most of these factors are still unknown and apparently not in common). In the early MS and MDD courses, a
chronic inflammatory state can promote synaptic dysfunctions in brain areas involved in mood control, leading to depressive symptoms. (2) Immune dysfunction
driven by T cells and monocytes/macrophages activation as well as by microgliosis in the CNS is responsible of detrimental synaptic dysfunctions. Proinflammatory
cytokines, such IL-1β, TNF-α, and IL-6, are the main players of the crosstalk between the immune and the nervous system. (3) Glial cells lead to tryptophan
conversion into kynurenine, a metabolite at the basis of the synthesis of quinolic acid. (4) Quinolic acid, produced by activated microglia, stimulates post-synaptic
NMDA glutamate receptors, with an excitotoxic effect. (5) Moreover, proinflammatory cytokines cause an overstimulation of AMPA receptors and an impairment of
glutamate reuptake, responsible of enhanced glutamatergic transmission. Hyperexcitability is also a consequence of a low GABAergic tone and ECS impairment.
These alterations exacerbate excitotoxicity and lead to synaptic plasticity perturbation, eventually resulting in neurodegeneration.

Pollak, 2003) impairment in social relationships and a reduced
self-preservation, expressed by social defeat and anhedonia,
have been also detected in the EAE model (Rodrigues et al.,
2011). EAE emotional changes have been linked to alterations
of several brain regions that include the HPA (Pollak, 2003;

Acharjee et al., 2013), the hippocampus (Musgrave et al., 2011;
Peruga et al., 2011) and the striatum (Haji et al., 2012; Gentile
et al., 2014, 2016) in association to inflammatory mediators
affecting catecholamine and glutamatergic neurotransmission
(Gentile et al., 2015).
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THE MONOAMINE THEORY IN
DEPRESSION ASSOCIATED WITH MS

As in MDD, monoamines are important determinants in
neuroinflammation-based diseases. Low tryptophan serum
concentration is observed in infectious, autoimmune, and
malignant diseases and disorders that involve immune cells
activation due to an increase in tryptophan metabolism
(Schröcksnadel et al., 2006). Accordingly, recent studies
strengthen a role of serotonin in the genesis of mood disorders
in MS, as demonstrated by the successful recovery from
depressive symptoms with administration of SSRI in MS
depressed patients (Carta et al., 2018). However, among the
several pathophysiological theories at the basis of MDD, the
monoaminergic hypothesis seems to impact less the course
of MS. In this context, neuroinflammatory and glutamatergic
theories may play a major role (Figure 2).

THE NEUROINFLAMMATORY THEORY
IN MS DEPRESSION

The immune-mediated hypothesis of depression in MS patients
has been supported by evidence from both preclinical (Chen
et al., 2016; Gentile et al., 2016) and clinical studies (Gold and
Irwin, 2006; Rossi et al., 2017; Lee and Giuliani, 2019).

Cytokine Hypothesis in MS Depression
The cytokine profile of depressed MS patients is characterized by
increased levels of proinflammatory cytokines, including TNF-
α, IL-1β and IL-6 in both CSF and peripheral blood (Imitola
et al., 2005; Rossi et al., 2017) (Figures 2, 3). Particular attention
has been payed to TNF-α and IFN-γ as inflammatory mediators
that drive severity of depressive symptoms during a clinical
relapse in MS (Rossi et al., 2018). Similarly, peripheral levels
of IL-1β in RRMS patients correlate with a negative psychiatric
evaluation (Rossi et al., 2017). Furthermore, increased levels
of IL-6 and decreased levels of IL-4 have been reported in
depressed MS patients when compared to non-depressed MS
patients and to healthy controls (Kallaur et al., 2016). This is
also supported by the evidence that amelioration of depressive
symptoms occurs when the inflammatory activity is attenuated
(Rossi et al., 2015). Differently from MDD, CSF levels of IL-8
seems not to correlate with depressive symptoms in MS patients
exposed to violence episodes during the adulthood (Brenner et al.,
2018). However, further investigations are necessary to extend
the cytokine profile associated to depressive symptoms in MS
patients versus non-depressed MS patients, as well as to provide a
comparative analysis with MDD. Few studies investigated genetic
polymorphisms associated to depression in MS. In this regard,
it has been reported that a favorable TNF-B1/B2 genotype is
accompanied by a low inflammatory potential, decreased levels of
TNF-α and increased IL-4 and IL-10 levels (Kallaur et al., 2016).

Preclinical studies investigated the link between mood
disturbances and cytokines (Il-1β and TNF-α) in EAE (Mandolesi
et al., 2012; Gentile et al., 2015). Regarding EAE behavioral
symptoms, it is still debated whether mood disturbances are

due to chronic alterations of both immune system and CNS
or to an acute response to active or passive immunization
used to induce EAE, resembling the LPS induced sickness
behavior (Duarte-Silva et al., 2019). Differently from sickness
behavior, EAE behavioral symptoms are associated to a
chronic activation of HPA axis, increased inflammatory activity
together with synaptic alterations (Duarte-Silva et al., 2019).
These differences may suggest that EAE behavioral symptoms,
and more specifically depressive symptoms, are probably not
associated with sickness behavior (Duarte-Silva et al., 2019).
Similarly to depressed MS patients, depressive-like symptoms
in EAE have been associated to increased TNF-α and IL-1β

plasmatic levels, increased inflammatory activity mediated by
CD4+ and CD8+ T-lymphocytes in both peripheral blood and
CNS and inflammation-mediated hypothalamic release of CRH
(Duarte-Silva et al., 2019). EAE exhibits a depressive behavioral
phenotype linked also to increased levels of IL-1β and TNF-α in
the brain. Indeed, EAE behavioral abnormalities were reversed
by blocking TNF-α or IL-1β signaling through central delivery
of etanercept or IL-1ra, respectively (Haji et al., 2012; Gentile
et al., 2015). These alterations have been associated to microglial
activation (Gentile et al., 2015).

The Role of Lymphocytes in MS
Depression
The main difference of the immunological profile between MDD
and MS is the prominent role of CD8+ T lymphocytes in
the genesis of depressive symptoms in MS, where CD4+ T
lymphocytes seem to have a primary role (Solaro et al., 2018).
Clinical studies reported that CD8+ T lymphocyte levels in
MS depressed patients are significantly increased compared to
non-depressed patients, although CD4+ T lymphocytes play
an important role in triggering depressive symptoms in MS,
as suggested by other authors (Morris et al., 2018). CD8+ T
lymphocytes are more frequently detectable in serum of MS
patients during active phases (Kaskow and Baecher-Allan, 2018),
and the incidence of depressive symptoms in the course of MS
is more elevated during clinical relapses, consequently related
to the increase in CD8+-mediated cell immunity during disease
exacerbation (Tauil et al., 2018).

The Role of Microglia in MS Depression
It is well known that activated microglia and infiltrating
peripheral monocytes in CNS are crucial neuroinflammatory
determinants in the pathophysiology of both MS and EAE.
Together with primed T cells, they are the main inflammatory
players involved in neuronal and oligodendrocyte alterations
associated with synaptic dysfunction, subpial and axonal
demyelination in MS/EAE (Mandolesi et al., 2015; Dong and
Yong, 2019; Mecha et al., 2020). Increased microglial activity
in brain regions involved in mood and cognitive control
(including PFC and hippocampus) has been detected, by means
of both PET and post-mortem clinical studies, in depressed
MS patients in comparison to non-depressed MS patients and
healthy controls (Politis, 2012). Accordingly, preclinical studies
carried out on EAE investigated the link between inflammation
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and depressive states, revealing a direct role of microglia in the
amplification of CNS neuroinflammatory response implicated in
mood control (Gentile et al., 2015). In particular, depression-
and anxiety-like behavior in EAE mice have been associated to
the involvement of proinflammatory cytokines, such as TNF-
α and IL-1β in the presence of intense microgliosis (Haji
et al., 2012; Acharjee et al., 2013; Mandolesi et al., 2013;
Gentile et al., 2015). Moreover, several studies demonstrated
that the inflammatory milieu produced by activated microglia
includes proinflammatory cytokines, prostaglandins, C3 and C4
complement proteins, reactive nitrogen species, glutamate and
quinolinic acid (Gentile et al., 2015; Morris et al., 2018; Bar
and Barak, 2019), suggesting a direct impact on the synaptic
compartment at both structural and functional level. Of note,
the inflammatory dysregulation of mechanisms responsible for
synaptic homeostasis together with a dysfunction of brain area
implicated in the mood control (Figures 2, 3) may occur even
before the myelin damage and axonal loss in both MS patients
and EAE mice (Zorrilla et al., 2001; Gentile et al., 2015; Zrzavy
et al., 2017; Acharjee et al., 2018).

GLUTAMATERGIC THEORY,
STRUCTURAL AND FUNCTIONAL
SYNAPTIC ALTERATIONS IN MS
DEPRESSION

Glutamate plays a role of primary importance both in MS
and in EAE (Macrez et al., 2016) and elevated levels have
been detected in the brain and CSF of MS patients with
an impact on CNS integrity. Similar to MDD, an unbalance
between the glutamatergic and GABAergic transmission, namely
synaptopathy, has been described in several brain regions of the
EAE mice and likely in MS. A long lasting synaptic pathology
likely contributes to hyperexcitability and excitotoxic damage
in the inflammation-driven neurodegeneration that occurs in
MS/EAE (Mandolesi et al., 2015) (Figures 2, 3).

Electrophysiological studies conducted on EAE mice
demonstrated that a diffuse enhancement of the glutamatergic
transmission is strictly dependent on circulating pro-
inflammatory cytokines, such as TNF-α and IL-1β. Of note,
these synaptic dysfunctions have been detected in the gray matter
not only during the symptomatic phase of the EAE disease,
during which the detection of mood disturbances is challenging
(Gentile et al., 2015), but also during the preclinical phases
of the disease in association to depressive-like behaviors (see
next paragraph). Similar alterations likely occur in MS brain as
suggested by the recent development of a MS chimeric ex vivo
models and TMS studies. In this regard, electrophysiological
recordings from brain slices of healthy mice incubated with
CSF of MS patients carrying elevated levels of IL-1β, revealed
an IL-1β-dependent enhancement of the glutamate-mediated
excitatory postsynaptic currents – through modulation of the
transient receptor potential vanilloid 1channel (TRPV1) – and
also an IL-1β-induced neuronal swelling (Rossi et al., 2012,
2014). Accordingly, neurophysiological measures of glutamate

transmission in MS patients by TMS stimulation protocols
demonstrated a positive correlation with CSF levels of IL-1β

(Rossi et al., 2012). Furthermore, in a different MS chimeric
ex vivo model, consisting in incubation of peripheral CD3+
lymphocytes derived from active RRMS patients on healthy
mouse brain slices, it has been observed a TNF-α -dependent
enhancement of the glutamatergic transmission similar to that
observed in the EAE model (Musella et al., 2020).

Synaptopathy in the course of MS has been also associated
to cognitive impairment. In fact, almost half of MS patients
experience several cognitive deficits (Calabrese et al., 2011; Di
Filippo et al., 2018). A preclinical counterpart has been noticed
in EAE, revealing an early alteration in neurotransmission and
synaptic connection without evidence of neuronal death at the
hippocampal level. The excessive release of glutamate mediated
by TNF-α causes the loss of the post-synaptic excitatory terminals
in the CA1 region, with impairment of LTP and behavioral
symptoms of memory loss and spatial disorientation (Bellizzi
et al., 2016). Cognitive impairment is not only associated to a
dysregulation in glutamate levels. Lower GABA levels can result
in motor disability and cognitive dysfunction in MS patients, with
loss of connectivity in several brain areas involved in executive
functions and verbal memory (Nantes et al., 2017; Cao et al.,
2018). These effects can be explained by the release of IL-1β by
autoreactive lymphocytes, that has been suggested to cause a loss
of synaptic inhibitory transmission in hippocampus, striatum,
and cerebellum (Musella et al., 2020).

As observed for MDD, kynurenine system has been studied
in depth in MS and identified as a possible biomarker for the
development of disability in MS patients (Lim et al., 2017).
MS patients do not differ in absolute CSF levels of tryptophan,
kynurenine, kynurenic acid, and quinolinic acid compared with
non-inflammatory neurological diseases but evidence shows an
increase of quinolinic acid/kynurenine ratio during the relapsing
phase (Aeinehband et al., 2016; Donia et al., 2019). Moreover,
variable concentrations of tryptophan metabolites seem to be
related to specific MS subtypes: SPMS displays a trend for lower
tryptophan and kynurenic acid, while PPMS patients display
increased levels of all metabolites (Aeinehband et al., 2016). It
has been demonstrated that MS patients affected by depressive
symptoms have higher kynurenine and lower tryptophan CSF
levels (Aeinehband et al., 2016) in accordance with the above-
mentioned association between depression and kynurenine levels
(Raison et al., 2010) (Figure 3).

THE INFLAMMATION-DEPENDENT
SYNAPTIC ALTERATIONS OF MS
DEPRESSION

As already mentioned, most of the synaptopathy detected
in the EAE brain is dependent on a direct neuronal effect
of proinflammatory cytokines circulating in EAE/MS brain.
The association between these inflammation-dependent synaptic
dysfunction and mood alterations have been demonstrated
by studies conducted in the EAE striatum during the pre-
symptomatic phase of the disease or in mild-EAE mice
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(Haji et al., 2012; Gentile et al., 2015). The release of TNF-α by
activated microglia, was demonstrated to cause an abnormal
expression and phosphorylation of glutamate AMPA receptors in
the EAE striatum leading to an enhancement of glutamatergic
transmission during both the asymptomatic and the acute
phase of the disease course (Centonze et al., 2009) (Figure 3).
Accordingly, the preventive blockade of TNF-α signaling by
intracerebroventricular treatment with an anti-TNF-α antibody
rescued both anxiety-like behavior and synaptopathy in the EAE
model. Such observations point to TNF-α as cytokine responsible
of causing mood disorders mediated by glutamatergic alterations
in the animal model (Haji et al., 2012).

IL-1β is also able to alter synaptic activity in EAE striatum
in association to depressive-like behavior and to changing
of neuronal excitability (Hewett et al., 2012; Gentile et al.,
2016; Musella et al., 2020). These effects are in accordance
with a burst of circulating IL-1β in EAE brain following
leukocytes extravasation (Lévesque et al., 2016). Early mood
disturbances have been also associated to the loss of CB1Rs-
mediated control of GABA synaptic transmission in the
EAE striatum, demonstrating an involvement of IL-β on
CB1Rs function (Gentile et al., 2016). IL-1β is able to alter
GABAergic synaptic activity by affecting CB1Rs in presynaptic
compartment, not only during development of acute illness but
also in a pre-symptomatic phase of disease. Moreover, IL-1β

influences indirectly dopaminergic transmission in the striatum,
with a detrimental over sensitization of D1 receptors and
inhibition of D2 receptors that cause impairment of GABAergic
activity (Gentile et al., 2016). Interestingly, EAE depressive-like
symptoms were corrected by blocking IL-1β signaling through
central delivery of IL-1ra, thus indicating the involvement
of IL-1β in EAE depression. This effect was associated with
the concomitant rescue of DA-related depressive behavior, DA
CB1Rs neurotransmission and consequently to a functional
rescue of striatal CB1Rs signaling (Gentile et al., 2014, 2016).

Regarding the involvement of ECS in the genesis of mood
disorders in MS, many preclinical researches underlined that the
stimulation of the ECS improves depressive-like symptoms in
EAE mice (Poleszak et al., 2018). Clinical studies demonstrated
that pharmacological activation of CB1Rs with exogenous
cannabinoids causes the regression of depressive symptoms in
MS patients (Ashton and Moore, 2011), suggesting a potential
application in therapeutic treatments (Stampanoni et al., 2018).

It is worth noting that, besides depression, cognitive
impairments are early symptoms in MS patients as a consequence
of the inflammation driven dysregulation of glutamatergic and
GABAergic activity. Proinflammatory cytokines are the main
cause of synaptic plasticity alterations, a direct involvement of IL-
1β was explored in MS patients (Mori et al., 2014) and in EAE
models (Di Filippo et al., 2013; Nisticò et al., 2013).

CLINICAL INSIGHTS FOR CYTOKINE
THEORY

In accordance with the emerging role of proinflammatory
mediators in depressive states, cytokines represent potential

markers as clinical response to treatment or as prognostic
indicators of MDD course. For example, it has been proposed
that TNF-α and IL-6 serum levels can predict a minor response
to SSRI (O’Brien et al., 2007; Eller et al., 2008). Several studies
conducted on SSRI and TCAs, have demonstrated a facilitation of
noradrenergic neurotransmission associated with α2-adrenergic
receptor activation that decreases TNF-α levels released from
activated microglia in the CNS (Nickola et al., 2001; Reynolds
et al., 2004). Moreover, TCAs are associated to a reduction of
proinflammatory cytokines, such as TNF-α, IL-1β and IFN-γ,
together with an increase of anti-inflammatory cytokines, such
as IL-10, in serum of MDD patients (Maes, 1999). Interestingly,
in MDD patients, that do not respond to typical antidepressant
medications, elevated levels of inflammatory biomarkers were
detected (Eller et al., 2008; Cattaneo et al., 2013). More
specifically, lower IL-6 levels positively correlate with clinical
response to antidepressant drugs (Cattaneo et al., 2013), while
higher level of TNF-α are predictive of lower response to
SSRI (Liu et al., 2019). The evidence suggesting a pathogenic
role for proinflammatory cytokines in MDD has attracted
attention on the possible use of specific anti-cytokines drugs. The
antidepressant effects of drugs targeting TNF-α have already been
demonstrated in preclinical models and in depressed patients
suffering from autoimmune diseases. Accordingly, a recent
metanalysis has shown that anti-cytokine drugs (adalimumab
and tocilizumab) are associated with an antidepressant effect
and increase the response to antidepressants (Kettenmann
et al., 2013). Similar treatments with anti-inflammatory agents
support such effect.

Interestingly, in rodent models of depression, TCA and SSRI
are able to reduce the immune activation and to decrease the
levels of TNF-α (Connor et al., 2000; Grippo et al., 2005). It is
noteworthy that higher serotonin levels have been associated to
immunomodulating effects, including T-cell and natural killer
(NK) cell activation, delayed-type hypersensitivity response,
production of chemotactic factors, and natural immunity derived
from macrophages and microglia (León-Ponte et al., 2007; Lim
et al., 2009; Dhami et al., 2013; Talmon et al., 2018).

Furthermore, the delayed effectiveness of current
antidepressant drug treatment is associated with enhanced
brain plasticity especially in regions commonly affected in MDD,
such as the hippocampus, BLA and the PFC (Varea et al., 2012;
Carceller et al., 2018). This effect could be explained by the so-
called “neuroplastic hypothesis.” The activation of intracellular
second messengers and the consequent effect on dendritic spine
pruning may influence synaptic plasticity (Levy et al., 2018).
Moreover, it has been observed that SSRI, such as fluoxetine, can
reorganize the inhibitory circuitry which regulates interneural
connectivity and enhance BDNF levels favoring synaptic
plasticity in the hippocampus (Karpova et al., 2011). Accordingly,
the role of somatostatinergic interneurons is fundamental to
facilitate synaptic plasticity (Carceller et al., 2018).

Regarding treatment of MS depression, immunomodulatory
and immunosuppressive drugs, namely disease modifying
therapies (DMTs), such as oral dimethyl fumarate, teriflunomide,
fingolimod, and intravenous drugs, such as natalizumab, and
alemtuzumab (Kirzinger et al., 2013; Hunter et al., 2016;
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Montanari et al., 2016; Gasim et al., 2018) seem to modulate
depressive symptoms in MS. Furthermore, some of these DMT
drugs exert a direct beneficial effect on glutamatergic and
GABAergic synaptic transmission by modulating inflammatory
mediators (Gentile et al., 2016, 2018; Mandolesi et al.,
2017). Although this evidence does not guarantee a unique
interpretation of the relationship between DMTs and mood
disorder amelioration in MS, such treatments could influence
the disease course in its entirety. Regarding drugs that directly
block cytokines signaling, worsening of MS symptoms was
observed following treatment with anti-TNF-α due to still unclear
dichotomous action of TNF-α. Drugs that act on the IL-1β

system, that are effective/safe in other autoimmune diseases and
show a therapeutic potential in preclinical studies have not yet
been approved for MS (Musella et al., 2020).

Positive pharmacological response to SSRI, TCAs and iMAOIs
in the treatment of depressive symptoms in MS may confirm that
antidepressant drugs act simultaneously on both monoaminergic
and glutamatergic system dysregulations. Indeed, recent studies
demonstrated that SSRI treatment is effective not only on mood
comorbidities related to MS, but also as a potential DMT to treat
clinical relapses and progression of disability (Foley et al., 2014).
Moreover, preclinical studies highlighted that administration of
antidepressants, such as venlafaxine and fluoxetine, attenuates
the release of proinflammatory cytokines in EAE mice (Bhat
et al., 2017). These data are also supported by radiological
evidence from depressed patients with MS (Grech et al., 2019).
It has been demonstrated that treatment of MS patients with
fluoxetine over a 24-week period is able to reduce the number
of new, gadolinium-enhancing, demyelinating lesions detected at
the MRI (Mostert et al., 2008). The effect of infusion drugs on
depression is still a matter of debate and IFN-β or glatiramer
acetate have not been associated to significant amelioration of
the Beck Depression Inventory (BDI) score over 48 months of
therapy (Kirzinger et al., 2013). On the other hand, the efficacy
of IFN-1β on depressive symptoms has been demonstrated in
another study (Comi et al., 2017). However, antidepressant
treatment in combination with DMTs, particularly IFN-β, is not
routinely used in clinical practice (Mirsky et al., 2016).

Finally, non-pharmacological therapeutic approaches may
also improve mood symptoms in MS patients. Recent works
suggest a beneficial role of physical exercise in patients with
progressive MS and depression (Donia et al., 2019). In particular,
it has been observed that rehabilitation is protective against
neurodegeneration, improving long-term outcome and reducing
the risk of depression relapses in MS patients (Joisten et al.,
2019). Such effects have been related to a reduction of
serum and liquor levels of proinflammatory cytokines, with a
consequent modulation of glutamatergic neurotransmission and
enhancement of tryptophan metabolites (Joisten et al., 2019). In
EAE model, voluntary exercise improves motor disability and
rescues the sensitivity of CB1Rs signaling at GABAergic synaptic
terminals in the EAE striatum, suggesting a potential recovery of
inflammatory mediated mood disturbances (Rossi et al., 2009b;
Gentile et al., 2019).

Altogether, these observations concerning the treatment
of depressive symptoms in both MDD and MS show a

complex interaction between the immune and neuronal pathways
suggesting the needed of further investigations, both at preclinical
and clinical levels, to ameliorate the clinical outcomes.

CONCLUSION

In conclusion, based on the several evidences reported
here, we point to the relevance of inflammation-dependent
neurotransmitter alterations as potential contributors to
depressive symptoms in both MDD and MS disease. At a
first glance, these complex brain disorders that diverge in
multiple aspects (simply by considering MS as an inflammatory
neurodegenerative disease and MDD as a neuropsychiatric
disorder) seems to share few pathological aspects such as
damage of brain areas devoted to mood control and some
neuroinflammatory mediators. However, clinical and preclinical
investigations performed in both diseases revel common traits,
from the monoamine- to the glutamate- and inflammatory
theories, which are often interconnected and unbalanced in
the diseases (Figures 1, 2). While in MDD the contribution
of inflammatory synaptic mechanisms has been mainly related
to hyperactivity of the HPA axis as well as to alterations of the
monoamine pathways, in MS depression, an early inflammatory
synaptopathy is likely responsible of a glutamatergic and
GABAergic unbalance that in the long term can cause
excitotoxic damage. These observations strengthen the idea
that further investigations in both pathologies are necessary
to reciprocally reinforce the hypothesis that inflammation-
dependent synaptic perturbations are suitable substrate
for the induction of depressive symptoms in both MS and
MDD at early stages (Figure 3). Unfortunately, we are not
yet able to establish what are the mechanisms that drive
inflammation and/or synaptic dysfunction and more studies
need to be conducted.

Finally, despite we are aware that the role of inflammation
in the etiopathogenesis of depressive disorders is still debated
and several questions still remain open, we would like to
emphasize that inflammatory cytokines are potent modulators
of the synaptic compartment and that even subtle changes
in their levels can induce, likely in susceptible individuals,
synaptic perturbations responsible of early depressive
symptoms. The synaptic glutamatergic perturbation, in
different entities and with different outcomes, could represent
the keystone that connects the two pathologies, joined in
different ways by neuroinflammation. It is remarkable
that predisposing factors, especially genetic and epigenetic
factors, may play a central role to identify their common role
in both diseases.
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