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We have developed a deep learning-based computer algorithm to recognize and predict
retinal differentiation in stem cell-derived organoids based on bright-field imaging. The
three-dimensional “organoid” approach for the differentiation of pluripotent stem cells
(PSC) into retinal and other neural tissues has become a major in vitro strategy to
recapitulate development. We decided to develop a universal, robust, and non-invasive
method to assess retinal differentiation that would not require chemical probes or
reporter gene expression. We hypothesized that basic-contrast bright-field (BF) images
contain sufficient information on tissue specification, and it is possible to extract this
data using convolutional neural networks (CNNs). Retina-specific Rx-green fluorescent
protein mouse embryonic reporter stem cells have been used for all of the differentiation
experiments in this work. The BF images of organoids have been taken on day 5 and
fluorescent on day 9. To train the CNN, we utilized a transfer learning approach:
ImageNet pre-trained ResNet50v2, VGG19, Xception, and DenseNet121 CNNs had
been trained on labeled BF images of the organoids, divided into two categories (retina
and non-retina), based on the fluorescent reporter gene expression. The best-performing
classifier with ResNet50v2 architecture showed a receiver operating characteristic-area
under the curve score of 0.91 on a test dataset. A comparison of the best-performing
CNN with the human-based classifier showed that the CNN algorithm performs better
than the expert in predicting organoid fate (84% vs. 67 ± 6% of correct predictions,
respectively), confirming our original hypothesis. Overall, we have demonstrated that
the computer algorithm can successfully recognize and predict retinal differentiation in
organoids before the onset of reporter gene expression. This is the first demonstration
of CNN’s ability to classify stem cell-derived tissue in vitro.

Keywords: deep learning, convolutional neural networks, stem cells, retinal organoids, mouse embryonic
stem cells
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INTRODUCTION

The differentiation of pluripotent stem cells (PSC) using a three-
dimensional ‘‘organoid’’ approach has become the strategy of
choice to recapitulate the development of the retina, brain,
inner ear, intestine, pancreas, and many other tissues in vitro
(McCauley andWells, 2017). This technique allows to reproduce
the process of normal development and does not require
any exogenous stimulation of developmental pathways and
genetic modification of the cells used (Eiraku et al., 2011;
Meyer et al., 2011). Indeed hundreds of studies confirm
that retinal organoids, differentiated from mouse or human
pluripotent cells, show a unique resemblance to native tissue
architecture, cell specification and sub-specification, function,
and transcriptional profile (Hallam et al., 2018; Cowan et al.,
2019). This demonstrates the robustness of the technology and
makes it highly attractive for potential translation to the clinic
as a source of high-quality retinal neurons for transplantation
(Decembrini et al., 2014) or as a platform for the screening of
new therapeutics (Baranov et al., 2017).

The process of the differentiation itself is stochastic, which
causes the quantity of retinal differentiation to vary a lot even
among organoids within one batch—not to say when different
cell lines are used (Hiler et al., 2015; Hallam et al., 2018;
Cowan et al., 2019). The current approach to select retinal
tissue for further growth and maturation is based on subjective
morphological observation and features visible with bright-field
imaging: lamination of the neuroepithelium, adjacent pigment
epithelium areas, etc., and/or on the expression of fluorescent
reporter constructs driven by retina-specific promoters. These
reporters allow to assess the differentiation on different stages
of retinal development: from early eye field-specific genes [Pax6-
GFP mESCs (Völkner et al., 2016) and Rx-GFP mESCs (Eiraku
et al., 2011)] to terminal retinal cell types as rods Nrl-GFP
miPSCs (Ueda et al., 2018), Six6 (Sluch et al., 2018), or Rx
(Nakano et al., 2012) for early optic vesicles, Brn3a (Sluch et al.,
2015) for retinal ganglion cells, Crx (Nakano et al., 2012) for
photoreceptors, or Nrl (Phillips et al., 2018) for human rods.

The use of fluorescent reporters is a ‘‘gold standard’’—it is
a sensitive, specific, and easily quantifiable method to assess
retinal differentiation (Vergara et al., 2017), although it cannot
be used in cell manufacture for transplantation or to model
inherited diseases due to genome modification. The manual
selection under the microscope with bright-field imaging is
limited in throughput and the classification criteria can be
subjective, resulting in high variability between observers. This
puts its limitations on the further transition of this technology
‘‘from the bench to bedside.’’ Here we tried to address this issue
by developing an automated non-invasive method which can
predict retinal differentiation based on bright-field images of
retinal organoids on the early stage of their development using
artificial intelligence.

Machine learning has been evolving rapidly during the
last decades. This is mostly due to the increase in accessible
computational power and the ability to generate and store
massive amounts of data. Nowadays, one of the most actively
developing branches of artificial intelligence is deep learning,

which was able to outperform the best conventional machine
learning algorithms inmultiple fields including speech and image
recognition (LeCun et al., 2015). This technology was inspired by
the principles which lay in cognition and data processing by the
brain. In simple understanding, the biological neuron is receiving
information from other neurons, combines it, and transmits a
modified signal to the next pool of neurons. In general, the
artificial neuron works in a similar way: it receives inputs from
the group of neurons, combines them with some weights for
each input, and transmits the result to the next set of neurons
using some non-linear function. So, each artificial neuron itself
can be interpreted as a function, which gets a vector of inputs
from neurons from the previous layer and returns some value
(activation) which is being transmitted to the next layer. The
neural network usually contains several layers of these neurons
connected together, starting from the input layer and finishing
with the output layer which returns the result. The general task
for supervised learning is to find optimal weights for each neuron
in the network to minimize an error between the value predicted
by the program and the value which was assigned before the
training (e.g., ground truth label for classification or some score
for regression task).

This approach showed itself to be extremely effective in
solving multiple tasks such as speech recognition, computer
vision (LeCun et al., 2015), processing of medical and biological
data (Ching et al., 2018), etc. For the analysis of images
(or any data which has local adjacency structure), the special
type of neural networks was developed—convolutional neural
networks (CNN). This type of neural network has a few
so-called convolutional layers in the beginning of the learning
process, which allows to find relationships between spatially
adjacent parts of the image for the dimensionality reduction
and extraction of features. This approach has found a lot of
applications in multiple fields of biology and medicine. For
example, for diagnosis of diabetic retinopathy based on fundus
imaging (Gulshan et al., 2016) and for skin cancer classification
(Esteva et al., 2017), and recently it was proven effective to
predict the very early onset of PSC differentiation (Waisman
et al., 2019) and the quality of retinal pigment epithelium
(RPE) differentiation in a two-dimensional setting (Schaub et al.,
2020). Being inspired by the success that this approach showed
on the prediction of spontaneous differentiation of PSCs with
basic bright-field imaging used as a source of information,
we hypothesized that basic-contrast bright-field images contain
sufficient information on tissue specification, and it is possible
to extract it using convolutional neural networks. In this study,
we decided to test the ability of CNN to: (1) recognize early
retinal differentiation in organoids; and (2) predict retinal
differentiation in individual organoids before the onset of the
expression of the eye field-specific reporters—for instance, Rx.

To predict early retinal differentiation, we utilized a transfer
learning approach: CNN is being pretrained on the ImageNet
classification dataset (Deng et al., 2009) containing more than
10 million images which are split into more than 20,000 classes.
This approach allows to transfer the ability of a pretrained
network to extract low-level features from natural images and
focus more on high-level features from the target dataset during
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the training. Such a trick helps to achieve desirable results using
lower amounts of training data and have been proven useful for
the analysis of biological images (Ching et al., 2018).

MATERIALS AND METHODS

mES Cell Culture
mES reporter cell line RxGFP has been used in this study
(RIKEN; Eiraku et al., 2011). The cells were cultured in the mES
medium (Supplementary Table S1), fed every other day, and
passaged at 70–80% confluence on a cell culture-treated T-75
flask coated with 1% Matrigel (Corning) solution for 1 h. For
replating or seeding for retinal organoid formation, the cells were
dissociated using 0.25 Trypsin solution (Gibco) for 7 min on
37◦C in a CO2 incubator.

Retinal Differentiation
Retinal differentiation was performed as was shown before, with
minor modifications (Perepelkina et al., 2019). The protocol is
outlined in Figure 1A. The RxGFP mES cells were dissociated
from the flask with 0.25 trypsin and seeded in a differentiation
medium (OV; Supplementary Table S1) on a 96-well U-bottom
polystyrene plate (Greiner) at a cell density of 3,000 cells per
well in 50 µl of the media. The cells were fed with 50 µl
of OV supplemented with 1% Matrigel (Corning) on day 1
of differentiation. Additional feeding with 50 µl of OV with
0.5% Matrigel was performed on day 5 of differentiation.
Further medium change was performed with OC media starting
from day 9.

Automated Imaging
Both bright-field and fluorescent images of the organoids have
been taken using the EVOS fl Auto microscope. For bright-
field imaging, the plates were scanned with a 4× phase-contrast
objective on day 5 of differentiation, with fine autofocus function.
As each organoid is seeded separately in a separate well of a
96-well plate, each image contained no more than one organoid.

Immunohistochemistry and Confocal
Imaging
Ten organoids from each batch were collected and fixed with
4% PFA for 20 min at room temperature (RT). Prior to staining,
they were blocked with a blocking buffer for 1 h at RT. Staining
with primary antibodies (Santa-Cruz anti-Rx antibody #SC-
79031 and Hybridoma Bank anti-PAX6 antibody #AB528427)
was performed overnight at +4◦C in staining buffer. On the next
day, after washing with a wash buffer (Supplementary Table
S2), secondaries were applied overnight at +4◦C. After staining
with antibodies and washing, the organoids were stained with
4′,6-diamidino-2-phenylindole for 10 min at RT and mounted
on concavity slides (Lab Scientific). Confocal images were taken
using a Leica SP5 confocal microscope.

Classification Criteria for Fluorescent
Images
The discrimination between retinal and non-retinal organoids
for the purpose of assigning ground truth labels was based

primarily on the expression of the Rx-GFP reporter, which is a
very specific marker for early retinal progenitor cells (Medina-
Martinez et al., 2009; Zagozewski et al., 2014). The criteria took
into account the brightness of the reporter, localization, and
pattern of the retinal area.

We have sorted organoids based on the fluorescent images
on day 9 into three groups: ‘‘retina,’’ ‘‘non-retina,’’ and
‘‘satisfactory.’’ The following criteria were utilized (Figure 2):

• The retinal organoids should have bright fluorescence or
localized fluorescent retina-like structures.
• A satisfactory organoid should have sparse or scattered
fluorescence pattern without clearly separable retinal areas.
• A non-retinal organoid should not be fluorescent or have
uniformly distributed green background fluorescence.

Classification Criteria for Bright-Field
Images
For sorting organoids on day 6 using bright-field images, the
following criteria were defined:

• Retina—distinct layer-like (neuroepithelium) transparent
areas on the periphery of the organoids
• Non-retina—uniform cellular aggregate without distinct
transparent areas

Dataset Preparation and Images
Preprocessing for Training the Network
The initial dataset (1,209 images in total) was split into three
parts: the training one (64% of total), the validation (16% of
total), and the test one (20% of total). The training and validation
datasets were used for architecture and parameter selection. The
test dataset was used only for the final validation of the best
neural network after the whole process of parameter tuning and
architecture selection is completed.

Before feeding the images to neural networks, we
implemented a few preprocessing steps. First, we find the
position of the organoid on an image and crop it out using
Python OpenCV script based on blob detection. This is a very
simple and straightforward approach for object detection.
It works best if the target object is significantly darker or
brighter than the background as it is based on automated
thresholding (Otsu method). This is exactly the case for
retinal organoids—they are significantly darker than the
background and have pretty contrast borders. Thus, we
found the algorithm to work very efficiently. Furthermore,
it does not require any manual parameter adjustments,
except for the average organoid size which stays stable, if
the same quantity of cells is used for seeding in the beginning
of differentiation.

We also applied Gaussian normalization to the images and
augmented them with random horizontal and vertical flips,
rotations, width and height shifts, and zoom transformations.
Proportionally more transformations were applied to the
non-retina class images in order to balance the number of images
used for CNN training. Additional information on augmentation
parameters can be found in the ‘‘Supplementary Extended
Methods’’ section.
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FIGURE 1 | Retinal differentiation. (A) Experimental outline: the organoids were imaged on day 5 using bright-field and on day 9 using fluorescent microscopy.
Fluorescent images were used to assign true labels and bright-field ones for feeding neural network. This figure was created with BioRender.com. (B) Confocal
image of retinal organoid on day 9 of retinal differentiation. Staining was performed for early retina-specific markers: Rx and Pax6. (C) Representative organoids from
retinal and non-retinal classes. Different patterns in fluorescent images reflect the difference in bright-field ones.

Interpretation of CNN Output and
Threshold Selection
The neural network takes some piece of data as an input,
i.e., image, and is designed to predict the probability for it to be
retinal—value between 0 and 1. This is done in the following way.

The network consists of small abstract units called neurons;
each of those has several inputs (like axons/dendrites in real
neurons). Each dendrite of each neuron has its own value called

weight, and each neuron itself has its own value called bias.
When a neuron gets some numerical values to its inputs, it
multiplies them with the corresponding weights, sums them up,
adds bias, and applies to the result some non-linear function
(usually called activation function). The resulting value is sent to
the output.

The neurons are aggregated into groups called layers. The
inputs of the neurons of the first layer are attached to the pixels
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FIGURE 2 | Image annotations. (A) Fluorescent images of representative organoids from each class which experts have classified to “retina,” “non-retina,” and
“satisfactory.” (B) Ratios of labels assigned by two experts for the training dataset. (C) Summary of ratios for different classes which can be assigned after combining
the votes from two experts.

of the input image. The inputs of the neurons from any internal
layer are attached only to the outputs from the neurons in the
preceding layers. The last layer consists only of one neuron—its
output value is interpreted as the probability of the organoid to
be a retinal one. The way to organize the neurons and the layers
is called the architecture of the network.

Initially, the weights and the biases of the neurons
are taken randomly. While the network gets training
images, it tries to predict their classes, evaluates the
results using true classes of the images, and adjusts
the weights and the biases of its neurons using a
backpropagation algorithm.

Therefore, after processing the image, CNN returns a value
from 0 to 1, which can be interpreted as a probability for this
organoid to belong to the ‘‘retina’’ class. Thus, the threshold
should be selected to make the final prediction: organoids with
scores higher than the threshold would be considered ‘‘retinal,’’
and with lower—‘‘non-retinal.’’

We determined a threshold by maximizing the value of
sensitivity ∗ specificity [true positive rate ∗ (1- false positive rate)]
on the training dataset. This approach helps to improve both
the sensitivity and the specificity of the classifier, which can be
affected by the imbalance between classes.

Selection of the Best CNN Architecture
and Cross-Validation
For our task, we selected four convolutional neural networks
with different architectures, which showed themselves
effective on ImageNet competitions and in multiple biological
applications (Esteva et al., 2017; Waisman et al., 2019): VGG19
(Simonyan and Zisserman, 2014), ResNet50v2 (He et al., 2016),
DenseNet121 (Huang et al., 2017), and Xception (Chollet, 2017).
All of these CNNs were initially pretrained on the ImageNet
dataset (Deng et al., 2009).

For the selection of the best network, 10-folds cross-
validation was used: the training dataset was split into 10
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non-overlapping subsets. On each step of the process, the
network is training on nine out of these 10 subsets and then
uses the last subset for validation. Each subset is used for
validation once. So, this allows to perform statistical tests for
CNN performance comparison.

Hyperparameters Tuning and Training of
the Networks
The training was performed on the training dataset, and multiple
hyperparameters have been optimized using the validation
dataset (learning rate, set of frozen layers, dropout rate of
the last layer, etc.). Additional information on the actual
values of the hyperparameters used for each CNN can be
found in the ‘‘Supplementary Extended Methods’’ section and
Supplementary Table S3. Also, as we are using transfer learning
approach, only the few last layers of the CNN are trained. The
number of these layers depends on the architecture chosen and
should be also considered as a hyperparameter.

Assessment of CNN Performance
There are multiple approaches available to measure the
performance of classifiers, including accuracy, F1 score,
receiver operating characteristic-area under the curve
(ROC-AUC), Mathews correlation coefficient (MCC), and
many others.

The simplest and the most intuitive score is ‘‘accuracy’’—the
number of correct guesses divided by the total number of samples
in the dataset. Additional metrics are ‘‘precision’’—number of
objects which were correctly predicted as positive divided by
the total number of objects selected as positive, and ‘‘recall’’ or
‘‘true positive rate’’—number of objects which were correctly
predicted as positive divided by the total number of positive
objects in the initial dataset. The accuracy shows how many
selected objects are really the correct ones, and the recall shows
how many of the relevant objects the algorithm was able to
pick up. As precision and recall cannot be optimized separately,
metrics which take into account both these values are usually
used. The F1 score is a harmonic mean of precision and recall.
However, all of these scores have some drawbacks, especially for
imbalanced data, as both classes are treated equally and changes
in a wrongly predicted minor class do not have a high impact on
the score.

Alternatively, MCC can be calculated—the value which shows
how well the predictions of the classifier and the true labels are
correlated. One of the advantages of this metric is that it can be
very sensitive even when classes are imbalanced.

Another option is using ROC-AUC score—the area under
the ROC curve (true positive rate vs. false positive rate at
different threshold values). It is the ‘‘gold standard’’ for binary
classification with neural networks. It has a very meaningful
interpretation: this value shows the probability of a randomly
selected object from the ‘‘retina’’ class to have a higher
score than a random object from the ‘‘non-retina’’ class.
So, for a classifier that assigns labels randomly, the score
would be 0.5, and for the perfect algorithm, it would be
equal to 1. Therefore, this score can be considered as the
measure of order which the classifier provides. Thus, we chose

the ROC-AUC score as the main measure of performance
for our CNN.

RESULTS

Retinal Differentiation and Initial
Annotation of the Collected Images by
Experts
For dataset collection, approximately 3,000 retinal organoids
were differentiated and analyzed. For the training of our neural
network and annotating the dataset, we collected bright-field
and fluorescent images for each organoid on day 5 and day
9 of differentiation, respectively (Figures 1A,C). On day 9, in
most organoids, distinct optic vesicle areas could be observed.
In Figure 1B, a confocal image of retinal organoids on day
9 of differentiation is presented. Retina-like planar structures
are formed on the periphery of the organoid; these areas
are also positive for retina-specific markers Pax6 and Rx.
As Rx is known to be an essential transcription factor for
retinal development (Zagozewski et al., 2014), we chose its
expression at day 9 to be a ground truth indication for early
retinal differentiation.

All fluorescent images were collected on day 9 and pooled
together, filtered to get rid of pictures with poor quality,
anonymized, and offered to two independent experts for sorting
in three groups: (1) good retina (Figure 1C, left; Figure 2A, left);
(2) satisfactory retina (Figure 2A, center); and (3) not retina
(Figure 1C, right; Figure 2A, right). The classification criteria are
stated in the ‘‘Materials and Methods’’ section. The proportions
of each class for each expert are provided in Figure 2B, and
the cumulative distribution of organoids after classification is
summarized in Figure 2C.

For our network, we stated the two-class classification
problem: we asked the program to extract features which would
distinguish high-quality organoids from bad ones based only
on bright-field images. To do that, we generated the training
dataset by assigning to organoids with label ‘‘retina’’ only if both
experts put this organoid in class ‘‘retina’’ and ‘‘non-retina’’ if
at least one suggested it to be non-retinal. Classes ‘‘retina/non-
retina,’’ ‘‘retina/satisfactory,’’ and ‘‘satisfactory/satisfactory’’ were
not used for training the network. The resulting dataset consisted
a total of 1,209 bright-field images, with the proportion of classes
at 73 vs. 27% for retina and non-retina, respectively. As each
organoid is seeded in a separate well and they are developing
independently, we consider each of them to be an independent
biological replicate.

Selection of the Best CNN Architecture
Four networks based on different architectures (VGG19,
ResNet50v2, Xception, and DenseNet121) have been trained
and validated on the dataset. The learning curves are shown
in Figure 3A. All networks were successfully trained, but the
VGG19-based classifier shows signs of overfitting: loss score on
validation dataset is significantly higher than on training dataset;
so, for further comparison, we decided to keep only ResNet50v2-,
Xception-, and DenseNet121-based CNNs.
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FIGURE 3 | Comparison of different convolutional neural network (CNN) architectures. (A) Loss curves and receiver operating characteristic-area under the curve
(AUC) training curves for VGG19, ResNET50v2, DenseNet121, and Xception. (B) Comparison summary of three different CNNs using 10-fold cross-validation. The
mean AUC scores were 0.93 ± 0.03 vs. 0.91 ± 0.04 vs. 0.92 ± 0.04 (P = 0.3) for ResNET50v2, DenseNet121, and Xception, respectively; the mean F1 scores were
0.89 ± 0.02 vs. 0.88 ± 0.04 vs. 0.88 ± 0.04 for ResNET50v2, DenseNet121, and Xception, respectively; the mean accuracy scores were 0.85 ± 0.03 vs.
0.83 ± 0.05 vs. 0.83 ± 0.06 for ResNET50v2, DenseNet121, and Xception, respectively; the mean Matthews correlation coefficients were 0.64 ± 0.08 vs.
0.62 ± 0.11 vs. 0.63 ± 0.12 for ResNET50v2, DenseNet121, and Xception, respectively. Each dot on the graph corresponds to one cross-validation step. ns, not
significant (P-value > 0.05 on Friedman statistical test).

The remaining three networks were run through 10-fold
cross-validation, and for each step, ROC-AUC score, optimal
thresholds, F1, MCC, and accuracy scores were calculated
(Figure 3B). The mean AUC scores were 0.93 ± 0.03 vs.
0.91 ± 0.04 vs. 0.92 ± 0.04 (P = 0.3) for ResNet50v2,
DenseNet121, and Xception, respectively; the mean F1 scores
were 0.89 ± 0.02 vs. 0.88 ± 0.04 vs. 0.88 ± 0.04 (P = 0.6)
for ResNet50v2, DenseNet121, and Xception, respectively; the
mean accuracy scores were 0.85 ± 0.03 vs. 0.83 ± 0.05 vs.
0.83 ± 0.06 (P = 0.6) for ResNet50v2, DenseNet121, and
Xception, respectively; and the mean Matthews correlation
coefficients were 0.64 ± 0.08 vs. 0.62 ± 0.11 vs. 0.63 ± 0.12 for
ResNet50v2, DenseNet121, and Xception, respectively. All of the
networks show similar results, and no significant difference has
been found using the Friedman test (analog of Wilcoxon test
when three or more samples are compared). So, we can conclude
that all of these CNNs can potentially be utilized for solving our
task. However, the Xception- and DenseNet121-based CNNs had
a noticeable variation of the loss score for the different validation
steps of cross-validation (Supplementary Figure S1). Also, we
noticed that ResNet50v2 had the smallest standard deviation
among other classifiers for each metric (Figure 3B); therefore,
at this step, we selected this CNN.

Convolutional Neural Network Can Predict
Early Retinal Differentiation
To evaluate the performance of the selected CNN, we utilized
the test dataset which was not used during the training
and parameter tuning process. The ROC curve is shown in
Figure 4A and the confusion matrix in Figure 4B. For this
dataset, the predictor showed the ROC-AUC score to be 0.91
(Figure 4A), accuracy—0.84, F1 score—0.89, and Matthews

correlation coefficient—0.63. Despite a significant imbalance
between the retinal and the non-retinal classes, the classifier was
able to reach 0.85 sensitivity and 0.82 specificity scores on the test
dataset. This indicates that augmentation and threshold selection
allowed to efficiently tackle the imbalance problem.

The prediction scores for every single image and the threshold
are shown in Figure 4C. As expected, the retinal and the
non-retinal organoids are ‘‘condensed’’ at the corresponding
values: 0 for non-retina and 1 for the retina; so, the model clearly
can separate these two types of organoids.

Then, we decided to have a look at the performance of
the model on different classes, which were obtained after
combining the experts’ annotations. The true prediction rates
for each class are presented in Figure 4D. Expectedly, the best
performance the model shows on organoids which came from
‘‘sure’’ classes: retina/retina and non-retina/non-retina, meaning
that the CNN is more likely to be mistaken where experts are
also less sure about the labels. Moreover, in Figure 4E, the
distributions of the prediction scores are shown for each class.
Again, retina/retina and non-retina/non-retina classes are clearly
separated. Moreover, organoids from retina/satisfactory class,
which were not used for training and validation, also were in
most cases correctly attributed by the network to the retina
class, although the median of the distribution is shifted from
1, showing that the program gets confused more often than
on ‘‘retina/retina’’ class, which is also consistent with the result
shown in Figure 4D.

Interestingly, the predictor could not separate organoids
from the retina/non-retina group, which can be concluded from
the fact that the median of the scores is located close to the
threshold: it can be interpreted as CNN is working almost as a
randompredictor for organoids from this group. Organoids from
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FIGURE 4 | Performance of the best convolutional neural network (CNN) on
the test dataset. (A) Receiver operating characteristic (ROC) curve for the
selected CNN on the test dataset. ROC-area under the curve value equals
0.91. (B) Confusion matrix for selected CNN. Values in the squares represent
percentages of true negative, false positive, false negative, and true positive
predictions. Color LUT shows the absolute number of images in each group.
(C) Prediction scores for the test dataset; each dot represents a single
organoid; the red line represents the threshold value for the classifier. (D) True
prediction rates for each class of organoids with the CNN classifier. (E) Violin
plots on all possible classes of organoids which can be assigned by
combining the votes from two experts. The white dot in the center of each
plot represents the median of the distribution; the boxes and the bars
represent the first quartile and the upper/lower adjacent value, respectively;
the red line is a classifier’s threshold.

satisfactory/satisfactory class also can be poorly distinguished,
but the median is shifted toward the retinal class, which is being
in accordance with the criteria that we used for this class.

To identify the image areas and features that are used by
the CNN, we utilized SHapley Additive exPlanations (SHAP)
value approach (Lundberg and Lee, 2017). We noticed that the
border of the organoids and, more specifically, the retina-like
neuroepithelium loops on the periphery are zones of interest for
the CNN (Supplementary Figure S2).

CNN Outperforms Human Classifier on
Prediction of Retinal Differentiation
To compare the CNN performance with the human-based
classifier, we asked four independent experts to assign the labels

‘‘retina’’ and ‘‘non-retina’’ for organoids from the test dataset.
The criteria for this classification can be found in the ‘‘Materials
and Methods’’ section.

True positive rates and false positive rates for each expert
are plotted on the classifier’s ROC curve (Figure 5A). The
CNN is clearly outperforming a human in distinguishing retinal
differentiation on the early stage of differentiation. Different
metrics for the comparison are provided in Figure 5B. On
average, a human expert has an accuracy of 0.67 ± 0.06, while
CNN has an accuracy of 0.84.

The more striking difference gives the comparison of a
Matthews correlation coefficient which takes into account class
disbalance: 0.63 vs. 0.27 ± 0.06 for Matthews correlation
coefficient for CNN and human, respectively.

DISCUSSION

Retinal organoid cultures have a great potential to model
human disease and development and as source of retinal
neurons for transplantation or platform for therapeutics testing.
The remaining challenges, highlighted in RPE transplantation
studies, include high variability between different cell lines
(Leach et al., 2016), scaled production with automation or other
approaches (Regent et al., 2019), and lack of cGMP-compatible
non-invasive readouts for the assessment of differentiation
during the development process (Schaub et al., 2020). The
translational success of regenerative therapies based on iPSCs-
derived RPE (Mandai et al., 2017; da Cruz et al., 2018) is largely
due to the development of strategies to overcome these issues.
In this study, we attempted to address the latter for retinal
3D organoids.

There are two distinct, non-mutually exclusive approaches
to characterize and identify the differentiating cell with
non-invasive imaging techniques. The classic strategy is to define
the exact features and the thresholds that are characteristics
of a particular cell type. This approach is based on our
understanding on how the cell looks in vivo: this was
demonstrated in decades of RPE differentiation studies in vitro
(Thumann et al., 2013), where pigmentation, cell shape, and
autofluorescence can be quantified and compared to the
pre-set quality criteria thresholds (da Cruz et al., 2018; Schaub
et al., 2020). The evolution of this approach involves better
understanding of the thresholds as well as introduction of new
imaging techniques that can detect new features—multispectral
fluorescent and non-fluorescent imaging, optical coherence
tomography (Browne et al., 2017; Capowski et al., 2019),
and others. An alternative strategy is machine learning that
is also highly dependent on the modality by which the
information is collected. However, the information is processed
in a different way: it does not require any predefined criteria
for assessment—the CNN learns how to find and extract
the most relevant features from the data by itself, provided
that the program ‘‘has seen’’ enough samples to learn it
from. Machine learning becomes particularly valuable when
there are multiple criteria and definitions or when they
are not very well established. In this case, the training of
computer algorithm occurs with the help of experts, who would
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FIGURE 5 | Human-based classifier vs. CNN-based classifier. (A) The receiver operating characteristic curve for the convolutional neural networks (CNN); the area
under the curve score for this classifier is 0.91. Each dot represents a single human expert predicting organoids to be from “retina” or “non-retina” class based on
bright-field images. (B) Metrics comparison for human-based classifier and CNN-based. CNN showed better results on all the metrics that we measured: 0.63 vs.
0.27 ± 0.06 Matthews correlation coefficient for CNN and human, respectively; 0.84 vs. 0.67 ± 0.06 accuracy for CNN and human, respectively; 0.89 vs.
0.75 ± 0.09 F1 score for CNN and human, respectively; 0.92 vs. 0.83 ± 0.07 precision for CNN and human, respectively; 0.85 vs. 0.72 ± 0.17 recall for CNN and
human, respectively.

classify or rank the training set of images, i.e., cats vs. dogs
(Krizhevsky et al., 2012), early vs. late diabetic retinopathy
(Pratt et al., 2016), etc. This technology becomes extremely
powerful when it is possible to use an orthogonal approach,
‘‘other modality,’’ to make a decision on what class the
object belongs to: molecular profile (Waisman et al., 2019) or
functional response (Schaub et al., 2020). This is the exact
case of retinal differentiation using 3D organoid strategy:
there are limited accurate criteria distinguishing good retinal
organoids and bad ones with BF imaging, especially on the
early stage of their development, although the availability of
reporter cell lines allows to determine retinal differentiation
with high accuracy. Here we showed that such discrimination
is possible with a convolutional neural network which could
predict early retinal differentiation based only on universal
bright-field imaging.

One of the major questions in the area of deep learning
is the role of individual features in image recognition. It is
not clear which parts of the image are most important for
the algorithm to classify an object. This issue of potential
unpredictability becomes more important when the action
is solely based on artificial intelligence decision. Also, by
extracting individual features that are most important in
predicting cell behavior, it may be possible to identify novel
biological processes and identify the actual determinants of
retinal formation in the embryoid bodies. By using SHAP
value approach, we were able to show the importance
of translucent neuroepithelium-like structures in decision-
making (Supplementary Figure S2), although we were not
able to show the actual causality of these structures in the
decision-making process.

The program clearly outperformed the experts in a
classification task (Figure 5) and was able to predict
eye field induction better than a human performing a

morphological observation of organoid with bright-field
microscopy: 0.84 vs. 0.67 ± 0.06 accuracy for CNN vs. human,
respectively. This additionally illustrates that the criteria for the
selection of retinal organoids at this stage are subjective.
Furthermore, the good performance of the CNN-based
classifier shows that the morphology of the organoids, even
on a very early stage, contains sufficient information to
predict retinal differentiation, and the program can extract
this information.

Moreover, the approach does not require any complicated
imaging, fluorescent reporters, or dyes for analysis; so, it
can be easily implemented in almost any laboratory or
manufacturing setting. Therefore, our method offers a robust
and universal non-invasive approach for the assessment of
retinal differentiation.

As we have stated the problem as a classification task,
we assume from the beginning that there should be some
threshold which would distinguish retinal and non-retinal
organoids. However, there are many organoids which are
‘‘on the border’’—these organoids we called ‘‘satisfactory’’
organoids; these are hard to separate in two distinct classes
with the single fluorescent reporter. Moreover, for different
applications, different thresholds may be needed: for example,
for disease or development modeling, the quality of the
organoid should be prioritized to get the proper physiology
and morphology of the retina, but for cell production, the
yield may be a priority and a lower threshold can be
applied for enrichment. Moreover, for drug discovery, using
retinal organoids can be problematic as the amount of retinal
differentiation varies between different organoids, and having
a method to grade organoids can be helpful to interpret
the assay results. Therefore, having an ability to select a
threshold according to the task can be rather important for
different applications. Thus, one of the further directions to
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be considered is a statement of the regression problem for
grading retinal organoids. This would significantly expand
the possible applications of the approach. However, this task
would require a reliable quantification method to assign
‘‘ground truth’’ values for the network training. One of the
possible metrics which can be utilized is not only the simple
quantification of total fluorescence in the organoid (Vergara
et al., 2017) if using fluorescent reporters but also the localization
and the shape of retina-like structures might be important
parameters which should be taken into account, as well as the
physiological and the metabolic state of the retinal neurons
(Browne et al., 2017).

We have used mouse embryonic stem cells with Rx reporter
in this work. Using this gene expression as a specific indicator
of eye field induction, we were able to predict differentiation
using CNN. We consider that the approach that we established
can be easily translatable not only to other mouse reporter cell
lines but also for human organoids. This is due to the fact that
the method relies only on the morphology of the organoids
during development, and Sasai’s differentiation protocol has
been shown to be effective on human embryonic stem cells
(Nakano et al., 2012). Moreover, here are multiple retina-related
human PSC reporter cell lines available, which target different
cell types and differentiation stages: Six6 (Sluch et al., 2018)
and Rx (Nakano et al., 2012) for early optic vesicles, Brn3a
(Sluch et al., 2015) for retinal ganglion cells, Crx (Nakano et al.,
2012) for photoreceptors, or Nrl (Phillips et al., 2018) for rods
specifically. Therefore, our approach with training the CNN
to predict the differentiation can also be utilized for human
cells and possibly for later differentiation stages. However, to
achieve the best results on human cells, additional training for
mouse-pretrained neural network may be required to adjust to
possible morphological differences between mouse and human
organoids.

Moreover, as we have shown that CNN can accurately
predict retinal differentiation based only on simple bright-
field images of the organoids, we suppose that not only
microscope images can be utilized for the CNN training.
For example, probably this approach can be incorporated in
the large-particle flow cytometer machines as an alternative
to fluorescence.
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