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Aging is one of the most important risk factors for the development of several

neurodegenerative diseases including progressive multiple sclerosis (MS). Cellular

senescence (CS) is a key biological process underlying aging. Several stressors

associated with aging and MS pathology, such as oxidative stress, mitochondrial

dysfunction, cytokines and replicative exhaustion are known triggers of cellular

senescence. Senescent cells exhibit stereotypical metabolic and functional changes,

which include cell-cycle arrest and acquiring a pro-inflammatory phenotype secreting

cytokines, growth factors, metalloproteinases and reactive oxygen species. They

accumulate with aging and can convert neighboring cells to senescence in a paracrine

manner. In MS, accelerated cellular senescence may drive disease progression by

promoting chronic non-remitting inflammation, loss or altered immune, glial and neuronal

function, failure of remyelination, impaired blood-brain barrier integrity and ultimately

neurodegeneration. Here we discuss the evidence linking cellular senescence to the

pathogenesis of MS and the putative role of senolytic and senomorphic agents as

neuroprotective therapies in tackling disease progression.

Keywords: multiple sclerosis, cellular senescence, inflammation, remyelination, neurodegeneration,

neuroprotection, senolytics

INTRODUCTION

Multiple sclerosis (MS) is a chronic, immune mediated disease of unknown etiology characterized
by inflammatory demyelination, astrogliosis, neuronal and axonal loss involving the brain
and spinal cord. The majority of MS patients follow an initial course with relapses and
remissions (RR-MS) followed by a phase of progressive accumulation of disability termed
secondary progressive (SP-MS). Ten to 15% of patients with primary progressive MS (PP-
MS) exhibit gradual worsening from the start and typically PP-MS presents at an older age
than RR-MS (Compston and Coles, 2008). The pathogenesis of the progressive disease courses
(P-MS) is poorly understood. However, epidemiological evidence indicates that age is the
strongest predictor for the transition from the relapsing phase, which is considered primarily
inflammatory to the secondary progressive phase of the disease, which is mainly neurodegenerative
(Trapp and Nave, 2008; Scalfari et al., 2011).

Although our understanding of the biological basis of aging remains incomplete, the prevailing
hypothesis postulates that it is driven by the accumulation of irreparable molecular and
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cellular damage leading to an increased risk of functional decline,
disease and ultimately death. Aging exhibits a great diversity
of phenotypes and a loose connection between biological and
chronological age, probably due to the stochastic nature of
molecular damage and the complexity of the interaction between
genetic and environmental factors (Kirkwood et al., 2005;
Kirkwood and Melov, 2011). Aging is the most important risk
factor for the development of neurodegenerative disease (Hou
et al., 2019). Cellular senescence (CS) has been recognized as
a key biological process underling normal aging (López-Otín
et al., 2013; Gorgoulis et al., 2019) and evidence suggest that
the accumulation of senescent cells with time may contribute
to the pathogenesis of age-related and neurodegenerative disease
(Kritsilis et al., 2018). Here, we review the data that support a role
for cellular senescence in the pathogenesis of MS.

THE SENESCENCE STATE

Several cell stressors have been identified as triggers of CS,
which among others include oxidative stress, mitochondrial
dysfunction, replicative stress, cytokines, irradiation, genotoxic
agents presented in detail in Gorgoulis et al. (2019). Oxidative
stress, mitochondrial dysfunction and cytokines, such as TGF-
beta are key features of MS pathology (Gilgun-Sherki et al., 2004;
Mahad et al., 2009; Haider et al., 2011; Elkjaer et al., 2019). Most
of these triggering factors are associated with DNA damage and
activate the signal transduction system of DNA damage response
(DDR) (Nakamura et al., 2008). If the damage is irreparable DDR
may elicit CS (Rodier and Campisi, 2011).

The senescent phenotype is typically associated with several
metabolic and functional changes including stable cell cycle
arrest, the expression of a senescence-associated secretory
phenotype (SASP) and the accumulation of dysfunctional
mitochondria (Coppé et al., 2010; Munoz-Espin and Serrano,
2014; Correia-Melo et al., 2016). SASP consists of pro-
inflammatory cytokines, growth factors, cytotoxic mediators,
metalloproteinases and reactive oxygen species (ROS). These are
capable of affecting neighboring cells and converting them to
senescence in a paracrine manner (Kuilman and Peeper, 2009;
Acosta et al., 2013). Other changes characteristic of the senescent
state are described in greater detail elsewhere (Munoz-Espin and
Serrano, 2014; Gorgoulis et al., 2019). The senescence-associated
changes reported specifically for CNS cells are summarized in
Table 1.

Although CS is a homeostatic response aiming to prevent
the proliferation and neoplastic conversion of damaged cells
(Munoz-Espin and Serrano, 2014) it also has a role in
development (Rajagopalan and Long, 2012; Barbouti et al.,
2019). Damaged senescent cells remain viable and metabolically
active, they accumulate with aging and evidence suggests
that their build-up may promote neurodegeneration (Rodier
and Campisi, 2011). The detrimental effects of CS on the
brain are due to the pro-inflammatory milieu formed by
senescent cells that act as sources of inflammatory mediators
(Coppé et al., 2010). CS-associated cell-cycle arrest may
exhaust the regenerative capacities of adult progenitors, such as

oligodendrocyte progenitor cells (OPCs) responsible for myelin
repair. In addition, CS along with replication arrest is associated
with extensive changes in gene expression, which indicate severe
loss or alteration of physiological cell function (Purcell et al.,
2014). Finally, endothelial cell senescence may compromise
blood-brain barrier (BBB) integrity (Yamazaki et al., 2016), which
is essential for preserving brain tissue homeostasis (Berthiaume
et al., 2018).

CELLULAR SENESCENCE AND
INFLAMMATORY ACTIVITY IN MS

Both innate and adaptive components of the immune response
are known to play key roles in the immunopathogenesis of
MS (Weissert, 2013; Hemmer et al., 2015). Microglial cells,
the resident representative of the innate immune response in
the CNS (Ransohoff and Brown, 2012) are known to become
senescent under specific circumstances. Cultured microglial cells
can become senescent in response to chronic inflammatory
stimulation by lipopolysaccharide treatment (Yu et al., 2012).
Rat and human microglial cells from AD patients have been
shown to undergo replicative senescence due to telomere
shortening (Flanary and Streit, 2004; Flanary et al., 2007).
With aging, microglial cells exhibit a dystrophic phenotype
associated with functional changes, which seem to be distinct
from the typical microglial reaction (Streit et al., 2004, 2009;
Conde and Streit, 2006). Aged microglia exhibit decreased
migratory and phagocytic capacity and secrete constitutively
greater amounts of interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) in culture (Njie et al., 2012; Rawji et al.,
2020). The constitutive secretion of proinflammatory cytokines
by microglia from aged mice is consistent with the SASP
of senescent cells. Myelin clearance is a prerequisite for
remyelination to occur (Kotter et al., 2001, 2006; Cantuti-
Castelvetri et al., 2018) and impaired phagocytotic capacity of
aged microglia and macrophages could hinder myelin repair
in older patients. Nevertheless, the presence of senescent
microglia and macrophages in MS and its models has not
been shown.

With regard to the adaptive component of the
immune response in MS, there is evidence of premature
immunosenescence with T cell changes resembling those seen
in the elderly (Thewissen et al., 2005). An expansion of CD4(+)
CD28(–) T cells and a reduction of T-cell receptor excision
circles (TREC) has been observed in the peripheral blood of
MS patients (Thewissen et al., 2005). Peripheral blood CD4(+)
CD28(-) T cells in patients and healthy controls exhibit an
effector-memory T cell phenotype with cytotoxic properties,
as they secrete cytotoxic granules in response to polyclonal
stimuli and MS-related autoantigens. These CD4(+)CD28(-)
T cells are attracted by increased levels of fractalkine and
IL-15 and accumulate in demyelinated lesions (Broux et al.,
2012, 2015). Similarly, a population of IgD(-)−CD27(-)CD11c
(+)(CD21low) B cells, which have been associated with aging
was demonstrated in higher proportions in the CSF and
peripheral blood of MS patients than age-matched healthy
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TABLE 1 | Observed hallmarks, features, and functional changes associated with CS in CNS cells.

Cell type Senescence-associated changes SASP factors Functional changes References

Neurons γH2A.X and 53BP1 upregulation

SAHF (macroH2A)

SA-β-Gal activity↑

Lipofuscin accumulation

IL-6 protein ? Sedelnikova et al., 2004; Jurk et al.,

2012; Kritsilis et al., 2018

Astrocytes Cell-cycle arrest

SAHF (Hp1γ↑); 53BP1 foci↑

p16INK4A mRNA and protein↑, p21

mRNA and protein↑, p53 mRNA↑

p38MAPK and NF-κB activation

SA-β-Gal activity↑

EAAT-1 mRNA and protein↓, Kir4.1

mRNA and protein ↓, GFAP protein↓,

S100β, TIMP-1 mRNA ↑; Lamin

B1 mRNA↓

CXCL-1 mRNA

TGF-β

HMGB1

IL-6 mRNA and protein

IL-8 mRNA and protein

MMP-3 mRNA and protein

MMP-9 mRNA

Loss of support of

oligodendrocyte differentiation

in vitro

Loss of ability to support

neuronal survival in vitro

Bitto et al., 2010; Salminen et al., 2011;

Bhat et al., 2012; Al-Mashhadi et al.,

2015; Görg et al., 2015; Nie et al.,

2015; Crowe et al., 2016; Hou et al.,

2017, 2018; Chinta et al., 2018;

Turnquist et al., 2019; Limbad et al.,

2020; Willis et al., 2020; Yabluchanskiy

et al., 2020

Oligodendrocytes γH2A.X upregulation

SA-β-Gal upregulation

? ? Al-Mashhadi et al., 2015

Microglia Cell-cycle arrest

Telomere attrition

p38MAPK activation

SA-β-Gal activity↑

SAHF

IL-6, IL-1β, TNF-α Impaired phagocytic capacity

in vitro*

Flanary and Streit, 2004; Flanary et al.,

2007; Sierra et al., 2007; Bachstetter

et al., 2011; Njie et al., 2012; Yu et al.,

2012; Rawji et al., 2020

Oligodendrocyte

progenitor cells

(OPCs)

SA-β-Gal upregulation

Increased DNA damage

p21↑ and p16INK4A mRNA and

protein↑

mTOR activation

? Impaired proliferation and

differentiation

Kujuro et al., 2010; Choi et al., 2016;

Neumann et al., 2019; Zhang et al.,

2019

Neural precursor

cells (NPCs)

Flattened morphology

Telomere attrition

p16INK4A

SA-β-Gal activity↑

HMGB1

ROS production

Impaired adult neurogenesis

in vivo

Inhibition of oligodendrocyte

differentiation in vitro

Ferron et al., 2004, 2019; Bose et al.,

2010; He et al., 2013; Yang et al., 2017;

Nicaise et al., 2019; Willis et al., 2020

Ependymal cells p16INK4A mRNA ↑

SA-b-Gal activity ↑

? Impaired BBB function in vitro Yamazaki et al., 2016; Yang et al., 2017

Pericytes p16INK4A mRNA ↑

SA-β-Gal ↑activity

? Impaired BBB function in vitro Yamazaki et al., 2016

BBB, blood-brain barrier; 53BP1, p53 binding protein-1; CXCL-1, chemokine C-X-C motif ligand 1; CS, cellular senescence; GFAP, glial fibrillary acidic protein; H2A.X, H2A histone

family member X; HMGB1, high mobility group box-1; Hp1γ , heterochromatin protein-1γ ; IL, interleukin; MMP, metalloproteinase; mTOR, mammalian target of rapamycin; NPCs,

neural progenitor cells; OLG, oligodendrocytes; OPCs, oligodendrocyte progenitor cells; p38MAPK, p38 mitogen-activated protein kinases; ROS, reactive oxygen species, SA-β-Gal,

senescence-associated β-galactosidase; SAHF, senescence-associated heterochromatin formation; SASP, senescence-associated secretory phenotype; Timp-1, tissue inhibitor of

metalloproteases-1; TNF-α, tumor necrosis factor-α.
*Njie et al. (2012) and Rawji et al. (2020) have provided in vitro evidence of impaired phagocytic capacity of microglia from aged mice but have not provided evidence of CS.

controls. These IgD(-)−CD27(-)CD11c(+)(CD21low) B cells
produced proinflammatory cytokines upon ex vivo stimulation
and showed MHC class-II expression and costimulatory
molecule expression capable to induce proinflammatory
T cell responses. Their presence indicates that premature
senescence of B cells may promote inflammation and
thereby contribute to disease progression in MS (Claes et al.,
2016).

Senescent neurons and glia accumulating in the MS brain and
secreting SASP-related inflammatorymediatorsmay represent an
alternative source of inflammation independent of the immune
cells that bring about innate and adaptive immune responses.
We have previously provided evidence of senescent glial cells
and neurons showing lipofuscin+ senescent glial cells in acute
and chronic actively demyelinated white matter lesions from SP-
MS cases using GL13 histochemistry (Kritsilis et al., 2018). All

resident CNS cell types that under some circumstances acquire
a senescent phenotype may become sources of parenchymal
inflammation. The documented ability of senescent cells to
convert neighboring cells to senescence via paracrine action
of SASP mediators is consistent with the progressive nature
of disability seen in P-MS (Acosta et al., 2013; Chen et al.,
2015). Current therapeutic strategies fail to tackle disability
progression in P-MS despite being efficacious in preventing MS
relapses and new lesion formation thought to be mediated by
adaptive immune responses (Pardo and Jones, 2017). This is
consistent with the concept of resident glia and neurons secreting
SASP-related factors that maintain a low-burning yet persistent
and self-enhancing inflammatory environment not affected by
immunomodulators and immunosuppressants. The glial cell
types, which are prone to senescence in the MS lesions remain
to be specified.
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AGING, CELLULAR SENESCENCE, AND
FAILURE OF MYELIN REPAIR

Endogenous myelin repair (remyelination) of axons surviving
inflammatory demyelination is known to occur in MS (Patani
et al., 2007). Remyelination contributes to restoration of impulse
conduction along axons traversing demyelinating plaques and
exerts a neuroprotective effect on remyelinated axons preventing
axonal degeneration associated with chronic demyelination
(Kornek et al., 2000; Franklin and Goldman, 2015; Mei
et al., 2016). Adult oligodendrocyte progenitor cells (OPCs)
comprising 5–10% of all CNS cells are primarily responsible
for carrying out myelin repair following demyelinating events
(Reynolds et al., 2002; Tripathi et al., 2010). The efficiency
of myelin repair is known to gradually decline with time
and it is shown to be least extensive in the SP-MS phase
of the disease (Bramow et al., 2010). This suggests that
age-related remyelination failure may contribute to disability
progression seen at the advanced stages of MS (Kuhlmann
et al., 2008; Goldschmidt et al., 2009). Aging has been shown
to reduce the capacity for remyelination in several animal
models of demyelination (Shen et al., 2008; Hampton et al.,
2012; Cantuti-Castelvetri et al., 2018) in which remyelination
inefficacy is associated with impaired recruitment of OPCs into
demyelinated lesions and slower differentiation into myelinating
oligodendrocytes (Sim et al., 2002). OPCs from aged rats
show features of CS with increased levels of DNA damage,
mitochondrial dysfunction and p38MAPK mRNA upregulation
(Neumann et al., 2019). In addition, recent experimental
evidence indicates that murine astrocytes aged in culture
develop a pro-inflammatory senescence-like phenotype and
lose their ability to support oligodendrocyte differentiation
(Willis et al., 2020).

However, OPC senescence may not only be associated
with aging. In experimental autoimmune encephalomyelitis
(EAE) model of MS in young mice, OPCs exhibited cell-
cycle arrest linked to an upregulation of sirtuin 1 (SIRT1)
transcription, suggesting that failure of OPC proliferation may
be due to CS (Prozorovski et al., 2019). Furthermore, in
vitro exposure of cultured murine OPCs to Aβ oligomers
triggered CS and inhibited myelin sheet formation indicating
that toxic factors can elicit senescence in OPCs (Horiuchi
et al., 2012; Zhang et al., 2019). In the APP/PS1 model of
Alzheimer’s disease OPCs expressing upregulated p16, p21,
and senescence-associated-β-Galactosidase (SA-β-Gal) markers
of CS have been identified in association with Aβ plaques
and treatments aiming to remove senescent OPCs (senolytics)
attenuated neuroinflammation and cognitive deficits, indicating
that OPC SASP promotes neuroinflammation and functional
impairment (Zhang et al., 2019).

Other progenitor cells including neural progenitor cells
(NPCs) and mesenchymal stem cells (MSCs) also have a role
in promoting remyelination and tissue repair (Nicaise et al.,
2017; Rivera et al., 2019). It is documented that the adult CNS
harbors multipotent neural progenitor cells (NPCs) that can
produce neurons, astrocytes, and oligodendrocytes (Weiss et al.,
1996; Johansson et al., 1999). They are thought to primarily
reside in the subventricular zone (SVZ) and the subgranular zone

(SGZ) of the dentate gyrus (Kriegstein and Alvarez-Buylla, 2009;
Ming and Song, 2011). Most NPCs in the adult brain exist in a
quiescent state (Ding et al., 2020) unless CNS injury or specific
stimuli elicit their proliferation, migration and differentiation
(neurogenesis) (Mothe and Tator, 2005). Evidence supports the
functional significance of NPCs as hippocampal neurogenesis is
critical for cognition (Suh et al., 2009; Christian et al., 2014) and
its disruption is associated with cognitive impairment (Aimone
et al., 2014). In addition, studies have demonstrated that adult
NPCs from the subventricular zone (SVZ) and the spinal cord
contribute to the generation of new oligodendrocytes and myelin
repair in models of demyelination (Nait-Oumesmar et al., 1999;
Danilov et al., 2006; Menn et al., 2006; Xing et al., 2014; Maeda
et al., 2019). Thus, NPCs could provide an alternative source
of myelinating oligodendrocytes and probably also a source of
neurons in demyelinated MS lesions (Chang et al., 2008).

Aging is associated with progressive reduction in adult
neurogenesis (Lugert et al., 2010; Cipriani et al., 2018), which
is ascribed to a diminution of the pool of stem cells capable
of activation and division (Lugert et al., 2010) and it is
associated with functional impairment (Hollands et al., 2017).
Accumulating evidence suggests that these NPCs are also
prone to senescence. Cultured NPCs exhibit characteristics
of senescence, such as enlarged and flattened morphology,
increased levels of SA-β-Gal and p16 and decreased level
of phospho-Retinoblastoma (pRb) upon long term incubation
with Aβ oligomers (Ferron et al., 2004; He et al., 2013; Li
et al., 2016). Cell cycle arrest of adult progenitor cells in the
context of CS or inhibitory paracrine stimuli by neighboring
senescent cells may impair progenitor proliferation, reduce the
regenerative capacities of the CNS and render it susceptible
to neurodegeneration. This notion is supported by in vivo
evidence from the BUBR1 KO progeroid mouse model in which
adult neurogenesis was impaired in the SGZ and SVZ in an
age-dependent manner (Yang et al., 2017). In MS, SOX2+
NPCs from demyelinated white matter lesions of autopsy
material and NPCs from induced pluripotent stem cell lines
from P-MS patients were found to express markers of CS.
These senescent progenitor cells exhibited impaired capacity
to support oligodendrocyte maturation in vitro, compared to
NPCs from age-matched controls. Proteomic and transcriptomic
analysis of the P-MS NPC secretome identified high-mobility
group box-1 (HMGB1) as a senescence-associated inhibitor of
oligodendrocyte differentiation, which induces expression of
epigenetic regulators. HMGB1 was found to be expressed by
progenitor cells in MS white matter lesions (Nicaise et al.,
2019). Failure of spontaneous remyelination in MS may be
at least partly due to conversion of OPCs and other neural
progenitor cells to a state of CS induced by MS-specific triggers
including oxidative stress, chronic inflammation, mitochondrial
dysfunction and aging.

NEURODEGENERATION AND DISABILITY
PROGRESSION IN MS

Neuroaxonal loss is the pathological correlate of irreversible
disability (Trapp et al., 1998; Papadopoulos et al., 2006).
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Although axonal loss can be an early feature of MS pathology
associated with inflammatory lesion formation, in P-MS new
focal inflammatory demyelinating plaques are rare (Trapp
and Nave, 2008). Neuroaxonal loss in P-MS is driven by
neurodegenerative mechanisms, which are poorly understood
(Lassmann et al., 2007, 2012; Trapp and Nave, 2008).

Recently, telomere length of white blood cells (WBCs) used
as a measure of WBC biological age was found decreased
in P-MS patients compared to aged-matched controls (Habib
et al., 2020). Moreover, shorter telomere lengths correlated with
greater brain atrophy and higher levels of disability (Krysko
et al., 2019), suggesting that biological aging contributes to
neuroaxonal loss and disability progression in MS. Total brain
atrophy, as assessed by MRI, reflects primarily gray matter
atrophy due to neurodegeneration (Filippi et al., 2012) and
correlates with long-term disability in MS (Fisniku et al., 2008;
Filippi et al., 2013). Combined longitudinal MRI-based brain
morphometry and brain age estimation using machine learning,
revealed accelerated progressive brain aging in MS patients
compared to healthy controls, which was related to brain atrophy
and increased whitematter lesion load (Høgestøl et al., 2019; Cole
et al., 2020). Healthy aging is associated with brain cell loss, which
may account up to 0.4% of brain volume per year (De Stefano
et al., 2016). Both apoptotic and senescent cells are cleared by the
immune system in a highly regulatedmanner andmay contribute
to age-related brain volume loss (Hoenicke and Zender, 2012;
Ovadya et al., 2018).

Although post-mitotic cells do not fit the strict definition
of CS, there is evidence of neurons developing a senescence-
like phenotype. Neurons of aged mice have been shown to
accumulate hallmarks of cellular senescence including double-
strand DNA breaks, heterochromatinization, upregulation of SA-
β- Gal, p38MAPK activation and production of SASP-related
mediators including ROS and IL-6 (Sedelnikova et al., 2004; Jurk
et al., 2012). The demonstration of neuronal granular cytoplasmic
lipofuscin deposits in subpial demyelinated cortical lesions
and normal appearing cortex from SP-MS cases using GL13
histochemistry supports the notion that human neuronsmay also
acquire a senescence-like phenotype in MS (Kritsilis et al., 2018).

Although the functional state of senescent cells has not
been fully elucidated, CS is accompanied by changes in gene
expression and phenotypic changes, which constitute serious
restrictions in the functionality of cells (Purcell et al., 2014).
The number of senescent cells increases with age (Rodier and
Campisi, 2011). When the number of dysfunctional senescent
cells exceeds a certain threshold in a brain with reduced reserves
due to age and MS-related cell loss, brain tissue function is likely
to become compromised (Oost et al., 2018).

Neuronal survival strongly depends on the functional integrity
of glial cells. Cultured astrocytes from aging rats have been
found to upregulate the activity of SA-β-Gal, a marker of CS
while they showed a reduced ability to maintain survival of
co-cultured neurons, thus associating astrocyte senescence with
neurodegeneration (Pertusa et al., 2007). Senescent astrocytes
expressing P16INK4A and secreting metalloproteinase-1 (MMP-
1) have been found in post-mortem tissues of Alzheimer’s
disease patients (Bhat et al., 2012). Primary human astrocytes

made senescent by X-irradiation were found to downregulate
genes encoding glutamate and potassium transporters leading to
neuronal death in co-culture assays. These findings indicate that
excitotoxicity, a recognized mechanism of neurodegeneration in
MS (Werner et al., 2001) may result from impaired homeostatic
capacities of senescent astrocytes (Limbad et al., 2020). Notably,
dysregulated splicing of several genes from human senescent
astrocytes has been demonstrated and an association between
peripheral blood GFAPa, TAU3 and p14ARF isoform levels
and cognitive decline has been demonstrated, indicating a link
between astrocyte senescence and disability (Lye et al., 2019).
Although no evidence of astrocyte senescence has been shown
in association with MS pathology, their key role in neuron-glial
crosstalk, regulation of neuronal metabolic and ion homeostasis
and modulation of synaptic transmission via glutamate suggest
that age-related astrocytic senescence may promote neuronal
dysfunction and degeneration, contributing to MS progression.

Age-related accumulation of senescent endothelial cells is
linked to impaired tight junction structure and compromised
blood-brain barrier (BBB) function (Farrall and Wardlaw, 2009;
Yamazaki et al., 2016; Castellazzi et al., 2020). Several lines of
evidence from human studies and experimental animal models
support a key role for fibrinogen in neuroinflammation (Davalos
andAkassoglou, 2012). Blood-derived fibrinogen has been shown
in vivo to interact with microglia via the CD11b/CD18 integrin
receptor leading to perivascular microglial activation and axonal
loss (Davalos et al., 2012). Fibrinogen has been found at the edge
of chronic active lesions, which exhibit ongoing inflammatory
demyelination, but not in inactive lesions, suggesting that
fibrinogen may play a role in sustained inflammation even
in the chronic setting. Endothelial senescence leading to a
constantly leaky BBB may permit fibrinogen to diffuse into the
brain parenchyma and drive axonal damage and loss mediated
by persistent microglia activation as well as inhibition of
remyelination (Petersen et al., 2018). The sustained nature of age-
related BBB leakiness is consistent with the putative role of CS in
neuroaxonal loss-mediated disability progression in MS.

CAN SENOLYSIS BE NEUROPROTECTIVE?

Currently, there is an unmet need for neuroprotective treatments
that can effectively prevent disability progression in MS. A
growing body of evidence implicates CS in the pathogenesis
of neurodegeneration in a number of settings (Martínez-
Cué and Rueda, 2020), rendering CS a promising target for
neuroprotection. Anti-senescent or senotherapeutic approaches
may involve the selective death of senescent cells (senolysis) to
reduce the load of senescent cells and their detrimental effects
on tissues. Alternatively, senotherapy may be based on the
modulation of the senescent cell phenotype (senomorphism)
in order to block the damaging effects of the SASP or other
senescence-associated mediators (Kirkland et al., 2017).
Senotherapy in MS would aim at preventing senescence-
associated chronic inflammation, loss of cell function and
neuroaxonal loss and promoting remyelination. Compounds
with senolytic or senomorphic actions have been studied in
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vitro and in vivo with promising results (Myrianthopoulos
et al., 2019; Thoppil and Riabowol, 2020). Evidence from
genetically modified mice support the neuroprotective
potential of senolytic manipulation. Lifelong elimination of
p16INK4A cells in BubR1 progeroid mice by activation of
an INK-ATTAC transgene substantially delayed age-related
disease, whereas late life elimination of p16INK4A cells
attenuated these age-related pathologies (Baker et al., 2011).
In addition, a senolytic compound (ABT263) was shown
to attenuate tau phosphorylation and aggregation and to
improve memory deficits in the PS19 transgenic model of
tau-dependent neurodegeneration, by removing senescent glial
cells (Bussian et al., 2018).

Fasting and metformin treatment could reverse the
senescent state of rat OPCs and improve remyelination
capacity (Neumann et al., 2019). Furthermore, rapamycin
treatment modified the senescent state of progressive MS
patient-derived NPCs produced from induced pluripotent
stem cells and improved their capacity to promote OPC
differentiation in vitro, providing evidence that senomorphic
treatment can promote remyelination in MS (Nicaise
et al., 2019). Simvastatin has shown efficacy in delaying
brain atrophy and disability progression in MS trials
(Chataway et al., 2014). This neuroprotective effect may
be mediated via its senomorphic actions, which include
downregulation of p38MAPK activation, SASP markers,
TNFa, and GM-CSF as shown in other settings (Liu et al.,
2015; Ayad et al., 2018). Many promising compounds
with senolytic or senomorphic activity, such as metformin
or simvastatin used with different indications could be
repurposed and used as neuroprotectants combined with
currently available immunomodulators. Immune-mediated
physiological clearance of senescent cells could potentially be
therapeutically enhanced by medications or vaccines aimed at
priming the immune response to remove specific senescent
populations (Burton and Stolzing, 2018; Song et al., 2020).
Reprogramming of senescent cells may be another approach
(Tamanini et al., 2018; Mahmoudi et al., 2019).

On the other hand, treatments aiming at the disease processes
that precede and accelerate CS, such as inflammation, oxidative
stress and mitochondrial dysfunction at the earliest stages of the
disease may delay CS and hinder CS-related neurodegeneration.
Furthermore, senescence-inducing practices and medications
including exposure to ionizing radiation and DNA-damaging
chemotherapeutics should be avoided. Interestingly, approved
MS treatments, such as corticosteroids, beta-interferons and
mitoxantrone should be re-evaluated for their long-term effects
given that they have been shown to promote CS (Moiseeva et al.,
2006; Ikeda et al., 2010; Poulsen et al., 2014).

CONCLUDING REMARKS

Aging is an important risk factor for the development of
several neurodegenerative diseases including P-MS, where the
neurodegenerative component dominates. A primary causative
role of CS in MS is highly unlikely given the great diversity
which characterizes aging-related neurodegenerative pathologies
that have CS as a common feature. However, CS may be
a shared mechanism, which substantially contributes to the
pathogenesis and impact of neurodegenerative diseases and
thereby may determine disease susceptibility, age at disease
presentation and rate of progression. In MS, senescence may
be responsible for chronic non-remitting inflammation, which
is not amenable to immunomodulation, lost or altered glial
and neuronal function, failure of remyelination, impaired BBB
integrity and neurodegeneration (Figure 1).

Nevertheless, current evidence for a role of CS in disability
progression in MS is intriguing but limited and indirect.
Shedding light on CS and its role in neurodegeneration is
essential to safely exploit it therapeutically. To facilitate these
efforts a thorough histopathological investigation of post-
mortemMS tissue at various disease stages and levels of disability
would inform us of the extent, timing, particular cell types
converted to senescence and all features of pathology associated
with the accumulation of senescent cells. A more concise

FIGURE 1 | Schematic representation of the putative impact of the conversion of different cell types to senescence on inflammation, remyelination, neurodegeneration

and ultimately on disability progression. OPCs, oligodendrocyte progenitors; MSCs, mesenchymal stem cells; NPCs, neural progenitor cells; EC, endothelial cells.
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understanding of the biology of CS of neural cells, its triggers and
mediators is required. Advanced human 3D and organoid culture
techniques (Marton et al., 2019; Yoon et al., 2019) could help
identify the specific factors that induce CS and the contribution
of each cell type to tissue injury. Transgenic animal models of
demyelination could providemechanistic evidence to disentangle
the detrimental effects of senescent cell types and their mediators
and become platforms on which to test senotherapeutic agents.
The complex physiological and pathophysiological roles of
CS, along with the cell-type specific variability in senescence
triggers and phenotypes, necessitates a cautious approach to
avoid pitfalls when dealing with such a multifaceted biological
process. If senescent cells are proven to drive neurodegeneration
senotherapy may become the groundbreaking neuroprotective

strategy to prevent and potentially reverse progressive disability
in MS.
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