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In the healthy brain, neuronal excitability and synaptic strength are homeostatically
regulated to keep neuronal network activity within physiological boundaries. Epilepsy
is characterized by episodes of highly synchronized firing across in widespread neuronal
populations, due to a failure in regulation of network activity. Here we consider epilepsy
as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the
activity. How homeostatic compensation is involved in epileptogenic processes or in the
chronic phase of epilepsy, is still debated. Although several theories have been proposed,
there is relatively little experimental evidence to evaluate them. In this perspective,
we will discuss recent results that shed light on the potential role of homeostatic
plasticity in epilepsy. First, we will present some recent insights on how homeostatic
compensations are probably active before and during epileptogenesis and how their
actions are temporally regulated and closely dependent on the progression of pathology.
Then, we will consider the dual role of transcriptional regulation during epileptogenesis,
and finally, we will underline the importance of homeostatic plasticity in the context of
therapeutic interventions for epilepsy. While classic pharmacological interventions may
be counteracted by the epileptic brain to maintain its potentially dysfunctional set point,
novel therapeutic approaches may provide the neuronal network with the tools necessary
to restore its physiological balance.

Keywords: homeostatic plasticity, epilepsy, excitation inhibition balance, gene therapy, synaptic transmission,
REST (RE-1 silencing transcription factor)

INTRODUCTION

Epilepsy is a heterogeneous group of complex diseases, with intricate temporal profiles. In
many common forms such as temporal lobe epilepsy associated with hippocampal sclerosis,
the brain undergoes a process of epileptogenesis, culminating in the symptomatic, chronic
phase, characterized by interictal discharges and overt seizures (Devinsky et al., 2018). It
stands to reason that the cellular and molecular processes linked to the development of
epilepsy would follow an equally complex temporal profile. Similarly, the brain’s intrinsic
mechanisms to counter the detrimental effects caused by epilepsy are likely to be differentially
regulated in epileptogenesis and the chronic epileptic phase. A simplistic interpretation
of epileptogenesis is that it is a process that results in an imbalance of excitation and
inhibition. However, a more complete understanding of epilepsy requires the inclusion
of multiple dimensions, e.g., anatomy, synaptic and cellular features, transcriptome, and
circuits dynamics. These dimensions in the phase space of the brain may have very different
temporal dynamics and are, given biological constraints, often non-orthogonal. The healthy
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brain is a dynamic system that operates, most of the time,
within certain boundaries in its physiological multidimensional
zone while epileptogenic factors pull its trajectories towards
pathological regions. In epilepsy, the brain crosses these
boundaries more often, eventually resulting in seizures, so
it can be defined as a continuous interchange between
epileptic/pathological and physiological brain states associated
with the occurrence of epileptic activity (Abreu et al,
2019). The physiological mechanisms that can confine the
brain’s state inside healthy phase-space boundaries, despite
epileptogenic attractors, fall squarely within the definition of
homeostatic plasticity (Turrigiano, 2012). While many examples
of homeostatic downscaling in the face of disinhibition or
overexcitation can be observed in vitro or ex vivo (Grubb
and Burrone, 2010; Sun and Turrigiano, 2011; Barnes et al,
2017; Xu and Pozzo-Miller, 2017; Chowdhury et al., 2018),
hyperexcitability-induced homeostatic plasticity is a relatively
less characterized phenomenon in complex systems in vivo (Lee
and Kirkwood, 2019). In particular, the role of the homeostatic
machinery once chronic epilepsy has been established is still
unknown. In principle, in a persistently hyperexcitable network,
homeostatic mechanisms should bring the brain state back to
a physiological space, but this is not what has been observed
in rodent models and human patients (André et al, 2018).
One of the characteristic features of an epileptic brain is an
aberrant recurrent hyperactivity not present in non-pathological
circuits (Chang and Lowenstein, 2003). Therefore, by definition,
an epileptic brain is one in which homeostatic plasticity fails
to maintain the network’s physiological boundaries. Several
alterations, probably alongside compensations, occur during the
epileptogenesis period leading to hyperexcitable circuits which
cannot be compensated by homeostatic plasticity, leaving the
brain in an abnormal state and eventually causing seizures. The
shift to a pathological state can be also related to the transition
between interictal and ictal activity (Khambhati et al., 2017).
A possibility is that pathogenic events shift the homeostatic
equilibrium closer to the transition point between interictal and
ictal states, effectively making the plastic changes maladaptive.
While plausible, this hypothesis is difficult to test in a highly
dynamical system where the homeostatic set “point” is constantly
shifting in response to Hebbian and homeostatic perturbations.

Why Is Homeostatic Plasticity Unable to
Suppress Seizures in Epilepsy?

The precise mechanisms by which seizures arise are still
debated, but it is widely speculated that some circuits become
overactive (Devinsky et al., 2018). Why homeostatic plasticity
is not able to counteract this aberrant network activity is
still unknown. One possibility, plausible in acquired epilepsies,
is that a gradual weakening of the homeostatic response or
a maladaptive compensation may be due to the progressive
neuronal degeneration during epileptogenesis. The loss of a
small percentage of interneurons may have huge consequences
in the network’s ability to maintain the brain in its physiological
space (Houweling et al., 2005; Cossart, 2014; Queenan et al.,
2018). Another possibility, that would better explain genetic

epilepsies, is that the homeostatic processes occurring during
the epileptogenesis, e.g., compensation of a mutated gene
function, maybe at the basis of the hyperactive network
observed in the chronic phase, because of the impossibility of
a biological system to constantly compensate for the chronic
loss of key proteins fundamental to maintain the brain within
physiological boundaries.

In both cases, the failure of homeostatic plasticity in
suppressing network hyperexcitability may be attributed to a
failure of cellular and/or molecular mechanisms that would
normally re-establish and constantly maintain the network’s
physiological boundaries.

TEMPORAL PROFILE OF HOMEOSTATIC
ADAPTATIONS IN EPILEPSY

Neuronal networks are highly dynamic systems that require
appropriate compensation. Homeostatic plasticity can act on a
variety of different sub-cellular signaling cascades to regulate
activity (Wefelmeyer et al., 2016). Similarly, the temporal profile
of homeostatic plasticity must evolve to follow the network’s
requirements for regulation with minimal disruption of its
function. An example observed in non-pathological conditions is
the developmental change in the synaptic valence of GABAergic
transmission. While in the mature brain opening of GABAAR
commonly leads to an influx of chloride ions and subsequent
hyperpolarization, in early development chloride concentration
is higher in the cell leading to GABAAR-mediated depolarization
due to the efflux of chloride jons. A recent study of a
specific type of interneurons, Chandelier cells, shows that,
in response to sustained stimulation, GABAergic inputs are
homeostatically reduced in early developmental stages (high
intracellular chloride) and increased in the mature system
when GABA has an inhibitory effect (Pan-Vazquez et al,
2020). This example underlines how homeostatic processes
are developmentally regulated and that the direction of the
compensations is dynamically guided by the network state
rather than be simply fixed at the single-cell level. Experimental
models of epilepsy offer a unique opportunity to study the
evolution, and failures, of homeostatic processes. Most of these
models introduce a perturbation in the system that leads to
expanding the boundaries of the brain’s trajectory towards
seizure space. In some cases, these extensions in phase space
trajectory outlast the duration of the perturbation, as in the case
of intracranial infusion of Tetanus toxin (TeNT). The TeNT is
a small protein that impairs preferentially GABAergic release
by cleaving Synaptobrevin2 at interneuron terminals (Schiavo
et al., 2000). Intracranial injections of TeNT are used to induce
epilepsy with two distinct phases: (I) an acute phase with a high
number of ictal events and detectable TeNT activity; and (II) a
chronic phase with no TeNT activity and a slowly decreasing
number of ictal events (Jefferys et al., 1995; Mainardi et al,
2012; Wykes et al., 2012; Vannini et al,, 2016; Chang et al,
2018; Snowball et al.,, 2019). In this model, the impairment of
a key “homeostatic tool” prevents the system from reaching its
physiological set point. However, looking at the ultrastructural
level, homeostatic mechanisms are still put in place to reduce
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the network’s hyperexcitability. In mice injected with TeNT in
the visual cortex, the active zone length of inhibitory synapses
is significantly increased in the acute phase of TeNT-induced
focal epilepsy (Vannini et al.,, 2020). At this stage. increase in
active zone size is unlikely on its own to have a major effect
on GABA release, given the continued catalytic effect of TeNT
at this stage of the model. At a later point, changes occur in
the organization of the functional fraction of excitatory vesicles.
Synaptic release in response to mild visual stimulation is similar
in control and epileptic mice but vesicular positioning within
the presynaptic terminal is considerably different. While in
control conditions release-competent vesicles are spatially biased
toward the active zone (Marra et al., 2012; Rey et al., 2015), in
the chronic phase of TeNT-induced epilepsy functional vesicles
are evenly distributed within the cluster, presumably reducing
synchronization of excitatory vesicles’ release (Vannini et al.,
2020). It is plausible that increasing the average distance between
functional vesicles and release site has an impact on temporal
and filtering properties of excitatory synapses, changing the
synaptic transfer function (action potential to vesicular release)
so that high-frequency firing (typical of seizure) has a lower
output while leaving information transmission within healthy
space relatively unchanged (Trigo et al, 2012; Pulido et al,
2015; Pulido and Marty, 2017; Miki et al., 2018). The change
in the positioning of release-competent vesicles is preceded by
a sustained increase in Carboxypeptidase E, a protein required
for vesicle positioning in the proximity of their release site (Park
etal,, 2008; Lou et al., 2010; Vannini et al., 2020). This adaptation
of homeostatic mechanisms over time, and across different
neuronal types, is an example of the complex and dynamic
processes involved in maintaining neuronal function within
healthy boundaries by acting on seemingly independent synaptic
features. However, if the time course of the homeostatic response
does not match closely the one of its triggering cause, plasticity
may lead to a maladaptive regulation of network activity. For
example, ischemic events or traumas may transiently impair
neurotransmission and as a result, the system will compensate for
reduced excitatory inputs becoming less stable and more likely
leading to an ictal state.

RE-1 SILENCING TRANSCRIPTION
FACTOR'’s (REST’s) JANUS ROLE IN
HOMEOSTATIC
PLASTICITY/EPILEPTOGENESIS

The temporal dynamic adaptation of homeostatic processes
during the epileptic phases is also reflected at the transcriptomic
level by differential changes in the regulation of gene
expression. Indeed, growing evidence demonstrates that the
same homeostatic transcriptomic pathways which in some
conditions favor the recovery of a physiological set point, in
other conditions exert the opposite action exacerbating neuronal
hyperactivity (Baldelli and Meldolesi, 2015).

A clear example is offered by the debated role of RE-1
Silencing Transcription Factor (REST), also known as neuron-
specific silencing factor (NRSF), in homeostatic plasticity. This

gene-silencing transcription factor, widely expressed during
embryogenesis, exerts a strategic role (Ballas et al., 2001; Roopra
et al, 2001; Ooi and Wood, 2007) during the late stages of
neuronal differentiation when the loss of REST is critical for the
acquisition of the neuronal phenotype (Su et al., 2006).

In mature neurons, REST exhibits several unique properties.
Indeed, its expression is increased by kainate-induced seizures
in vivo (Palm et al., 1998; Gillies et al., 2009) and chronic
hyperactivity in cultured neuronal cultures (Pozzi et al.,
2013). Interestingly, REST induces firing homeostasis by
downregulating voltage-gated Na* channel expression in
excitatory neurons (Pozzi et al, 2013) and scales down the
strength of excitatory synapses, acting presynaptically, in
response to chronic hyperactivity (Pecoraro-Bisogni et al., 2018).
Because REST knockdown impairs both intrinsic and synaptic
homeostasis, these results indicate that REST function is critical
for inducing homeostatic negative feedback responses to readjust
the network firing activity at a physiological set point and protect
it from hyperactivity. Following this homeostatic role, a 2-deoxy-
D-glucose ketogenic diet was reported to have an antiepileptic
effect via the activation of a chromatin remodeling complex
controlled by an increase in REST (Garriga-Canut et al., 2006)
and, in the kindling model of epileptogenesis, conditional REST
deletion in excitatory neurons of the postnatal mouse forebrain
resulted in a dramatic acceleration of seizure progression and
prolonged after-discharge duration compared with control mice
(Hu et al., 2011).

On the other hand, in the kainate mouse model of
temporal lobe epilepsy, blocking REST function repressed the
expression of the hyperpolarization-activated, cyclic nucleotide-
gated channel (HCNI1) attenuating the epileptic phenotype
(McClelland et al, 2011). Subsequently, the same authors
revealed that the repression resulting from REST increase was
not limited to HCN1 but also included 10% of the analyzed
target genes. REST inhibition was found to lead to attenuation
of seizures, strongly supporting the hypothesis that seizure-
induced increases of REST contribute to epileptogenesis via
REST-mediated repression of a group of genes that critically
influence neuronal function (McClelland et al., 2014).

These contrasting effects still prevent us from concluding
whether inhibition or enhancement of REST signaling should
prevent epileptogenesis. To address this question, it will be
essential to evaluate how REST changes its influences depending
on conditions, for example, cell specificity, neural networks,
expression timing and loci, and status of progression of epilepsy.
However, a reading key that could permit to better interpret why
REST-signaling is in some cases homeostatic while exerts in other
cases an opposite pro-epileptogenic action, is to consider that
probably the primary tasks of homeostatic plasticity is aimed
to constitute a constrain at the saturation of use-dependent
Hebbian plasticity (Turrigiano, 2012; Li et al., 2019).

Therefore, the homeostatic efficacy of REST is possibly
effective in the initial stages of epileptogenesis, when the
level of hyperactivity has not yet turned away the neuronal
network too far from its physiological space. Indeed, considering
that REST-signaling is strictly dependent on the neuronal
hyperactivity, when this assumes excessive values, due to
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chronic pathological conditions, the complete dysregulation of
the REST-pathway could transform its homeostatic capacity
in a pro-epileptogenic function, thus contributing to the
consolidation and aggravation of chronic epilepsy.

Nevertheless, homeostatic plasticity can still be considered
as a therapeutic target for the protection from epilepsy even
in chronic epileptic conditions, thanks to the possibility of
subtracting homeostatic plasticity from the control of advanced
pathological hyperactivity, through its direct and exogenous
modulation by pharmacological and genetic strategies.

THE COMPLEX UNIQUE PROPERTIES OF
THE HYPERPOLARIZATION-ACTIVATED
CATION CURRENT (Ih) IN HOMEOSTATIC
PLASTICITY AND EPILEPSY

In many cases, the same molecular actors playing crucial
roles in homeostatic plasticity are, in a different time or
place, fundamental mediators of the epileptogenic processes. A
paradigmatic example of such complex interpenetration between
homeostatic plasticity and epileptogenesis is offered by the Ih,
that in recent years was ascribed as a central player of both
homeostatic and epileptogenic processes. Ih is mixed sodium
and potassium conductance generated by the hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels and activated
by membrane hyperpolarization. Initially discovered in the
pacemaker heart sinoatrial node cells and subsequently found
to be widely expressed in the central and peripheral nervous
system (Brown et al., 1979; Robinson and Siegelbaum, 2003).
Ih plays an important role in determining membrane potential
and firing characteristics of neurons and therefore is a potential
target for homeostatic regulation. Indeed, in CAl pyramidal
cells, Th was found to be up- or down-regulated following
chronic (48 h) hyperactivity or activity deprivation, respectively.
Such bidirectional homeostatic regulation not only controls
spiking activity but also stabilizes the threshold for long-term
potentiation induced in CA1l pyramidal neurons by repetitive
stimulation, accelerating EPSP kinetics, and reducing temporal
summation of EPSPs (Gasselin et al, 2015). These results
suggest that modulation of Th represents a homeostatic plasticity
mechanism, allowing neurons to control their excitability and
EPSP summation in response to changes in synaptic activity on
both short and long-term time scale. Furthermore, the earliest
reports of HCN channel dysfunction in epilepsy revealed the
enhancement of somatic Th in hippocampal CA1 pyramidal
neurons of animal models of febrile seizures, and more recently,
in a mouse model of fragile X with audiogenic seizures (Chen
et al., 2001; Bender et al., 2003; Dyhrfjeld-Johnsen et al., 2008;
Brager et al, 2012). These results were unexpected, as an
increase in Ih is considered to be inhibitory, questioning that
these changes may be epileptogenic and suggesting that they
can potentially reflect a homeostatic process in response to
augmented neural network activity.

However, in contrast with the above-mentioned results, in
most experimental paradigms for investigation of recurrent
epileptic seizures following administration of convulsant agents,

a reduction of Th was observed in multiple cortical and
hippocampal regions (Shah et al., 2004; Jung et al., 2007; Marcelin
et al., 2009). Furthermore, the deletion of HCN1 in mice resulted
in greater seizure susceptibility (Huang et al., 2009; Santoro et al.,
2010) and loss of function mutations in HCN1 have been recently
reported causing severe neonatal epileptic encephalopathies
(Marini et al., 2018).

In summary, these data can be explained only considering
the complex and dynamic role exerted by the modulation of
HCN channels in both epilepsy and homeostatic plasticity.
The timing is crucial, with different regulation of HCN1 in
the epileptic phases, with a decrease in expression during
epileptogenesis followed by an increase, potentially homeostatic,
in the chronic phase. On the other hand, HCN1 localization,
indirect action, and overall transcriptome could influence
its function. A decrease in HCN channels expression will
hyperpolarize the resting membrane potential (RMP) inhibiting
neuronal excitability, but at the same time, it will increase
the membrane input resistance (Rj,), exerting an excitatory
action, because of the reduction of the amount of current
needed to depolarize the cell (Kase and Imoto, 2012). Moreover,
HCN channels are differentially expressed across the brain and
neuronal populations, showing also a heterogeneous subcellular
distribution, with high expression in the dendrite and lower
expression in the soma (Magee, 1999). Importantly Ih net effect
on excitability depends on the cell-specific interplay of passive
and active membrane conductance. Indeed, multiple reports have
shown that Th currents affect particularly the activity of other
co-expressed subthreshold conductances (George et al.,, 2009;
Amarillo et al., 2014; Hu and Bean, 2018). The final effect of HCN
modulation therefore will depend on the specific combination
of such subthreshold conductances that change in different
neuronal populations and consequently the net outcome of a
similar Th modulation can be a reduced excitability in some cases
and increased excitability in others.

The HCN example highlights how the role of homeostatic
plasticity in epilepsy is complex and dynamic, depending not
simply on temporal and spatial expression of a gene and its
protein, but also the interactions between differently expressed
proteins and thus on the overall transcriptome and proteasome.

THERAPEUTIC INTERVENTIONS BASED
ON THE “GENETIC LEAD” OF
HOMEOSTATIC COMPENSATIONS

Gene therapy for epilepsy is a promising approach to treat
the chronic phase of the pathology (Kullmann et al.,, 2014).
Recent gene therapies target the symptoms (seizures) rather than
the cause of epilepsy, for example, decreasing the excitability
of excitatory neurons or potentiating inhibitory tone (Richichi
et al., 2004; Noe et al, 2008; Wykes et al., 2012; Krook-
Magnuson et al.,, 2013; Katzel et al, 2014; Lieb et al, 2018;
Agostinho et al, 2019; Wickham et al., 2019; Colasante
et al., 2020). These therapies have been efficient in decreasing
intrinsic neuronal excitability, synaptic transmission, and the
number of seizures, in rescuing cognitive defects and also
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in resetting a physiological transcriptomic profile. In these
cases, no homeostatic compensations have been observed to
counteract the decreased excitability induced by the therapeutic
approach. Furthermore, a net positive effect at transcriptomic
level induced by an increase of endogenous Kvl.l using
CRISPRa, suggests a compensatory mechanism in line with
a response to an increased network activity (Colasante et al.,
2020). This effect was surprising because of the uncertainty
on the effect of gene therapy: does it only increase seizure
threshold or does it also rescue the epileptogenic process
pushing back the brain state within its physiological boundaries?
Showing cognitive deficits and gene expression rescue, the
data pointed towards the latter. Importantly, Kvl.1 has been
recently associated with in vivo homeostatic response, where
to compensate network hyperexcitability, neurons increased
endogenous Kv1.1 expression leading to a clear reduction of their
firing rate (Morgan et al., 2019). These data together provide new
insights, but also open a new series of questions, on the possible
homeostatic mechanisms occurring in chronic established

epilepsy. It indicates that the brain is in a chronic altered
state in which homeostatic plasticity cannot maintain activity
in its physiological boundaries, but that with a “homeostatic
boost” in the direction of a reduction in neuronal excitability,
the entire network may be able to rearrange itself to a less
excitable state and take back control of phase-space regulation.
Because Kv1.1 is implicated in fast homeostatic response in vivo,
its increase could potentially drive the network compensation
observed (Morgan et al., 2019). Indeed, the potential homeostatic
role of Kvl.1 expression has been also corroborated in other
experimental settings. It has been shown that Kvl.1 reduction
improves spike timing precision and thus synchronization,
therefore an increase in Kvl.1 expression could desynchronize
the hypersynchronous epileptic network and in this way decrease
network activity (Cudmore et al, 2010). An example is an
increase of Kvl.1 in Dentate Gyrus in a mouse model of TLE
as a result of positive compensations to delay AP and decrease
neuronal excitability (Kirchheim et al, 2013). Furthermore,
Kvl1.1 expression is tightly correlated with the expression of other
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potassium channels, such as Kv7. Indeed, a homeostatic switch
from Kvl.1 to Kv7.2 in the AIS after input deprivation in the
avian cochlear nucleus has been shown to increase neuronal
excitability, and on the other hand, hyperexcitation induced by
Kv7 inhibition results in a fast intrinsic homeostatic response
in line with a possible Kv1.1 increase in the AIS (Kuba et al,
2015; Lezmy et al., 2020). These data provide important pieces of
evidence of the pivotal role of Kv1.1 in the homeostatic process
and how its enhancement could lead to a remodeling of the
pathological hyperexcitable network in epilepsy.

However is also possible that the Kvl.1 enhancement just
increased the threshold for seizure generation (unlikely because
not observed in acute seizure induction), that in turns allow a
rearrangement of network activity with a consequent resetting
of the transcriptional profile and physiological brain state
(Colasante et al., 2020). Another possible explanation is that
decreasing neuronal excitability to a certain extent, the system
can be pushed back to a more stable interictal state, less likely
to fluctuate go back into the ictal state. This hypothesis needs to
be tested experimentally with depth electrode recordings in the
epileptic focus, to capture the interictal activity before and after a
gene therapy treatment.

Therefore, further experiments need to be performed
to understand more in-depth this phenomenon and most
importantly the duration of these compensatory effects.
Furthermore, regarding genetic epilepsies, gene therapy
interventions at a later stage could shed light on the rules
underlying circuit rearrangement during epileptogenesis (Wykes
and Lignani, 2018).

Finally, these new observations also suggest that the epileptic
network is not reset at a different firing rate level but is in an
unstable pathological space in which network compensation can
still occur if driven by external interventions. This phenomenon
underlies the importance of developing potential treatments
for epilepsy based on the “genetic load” of the homeostatic
plasticity mechanisms.

CONCLUSION

The role of homeostatic plasticity in Epilepsy is still not fully
understood, however, new insights underline its importance
in the temporal and dynamic dysregulation of the neuronal
network in the consolidation of this pathology. Probably many
unseen homeostatic compensations occur to protect the network
for being hyperactive and prevent epileptogenesis and seizures.
These physiological protective processes are difficult to observe
experimentally and a full understanding of the molecular
mechanisms underlying seizure-induced homeostasis without
the confounding of epileptogenic processes is required. Relatively
simple in vitro systems (e.g., dissociated or slice cultures), where
homeostatic plasticity works in relative isolation, maybe better
experimental models for the dissection of different homeostatic
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