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The brain shows a complex multiscale organization that prevents a direct understanding
of how structure, function and dynamics are correlated. To date, advances in neural
modeling offer a unique opportunity for simulating global brain dynamics by embedding
empirical data on different scales in a mathematical framework. The Virtual Brain
(TVB) is an advanced data-driven model allowing to simulate brain dynamics starting
from individual subjects’ structural and functional connectivity obtained, for example,
from magnetic resonance imaging (MRI). The use of TVB has been limited so far to
cerebral connectivity but here, for the first time, we have introduced cerebellar nodes
and interconnecting tracts to demonstrate the impact of cerebro-cerebellar loops on
brain dynamics. Indeed, the matching between the empirical and simulated functional
connectome was significantly improved when including the cerebro-cerebellar loops.
This positive result should be considered as a first step, since issues remain open
about the best strategy to reconstruct effective structural connectivity and the nature
of the neural mass or mean-field models generating local activity in the nodes. For
example, signal processing is known to differ remarkably between cortical and cerebellar
microcircuits. Tackling these challenges is expected to further improve the predictive
power of functional brain activity simulations, using TVB or other similar tools, in
explaining not just global brain dynamics but also the role of cerebellum in determining
brain states in physiological conditions and in the numerous pathologies affecting the
cerebro-cerebellar loops.

Keywords: brain dynamics, The Virtual Brain, cerebro-cerebellar loop, multiscale approach, structural
connectivity, functional connectivity

Abbreviations: BOLD, blood oxygenation level dependent; DCM, Dynamic Causal Modeling; empFC, empirical FC; FC,
functional connectome; SC, structural connectome; simFC, simulated FC; TVB, The Virtual Brain.
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INTRODUCTION

The brain is made of several interconnected networks that
differently contribute to generate its global activity. To improve
the understanding of mechanisms that subtend physiological and
pathological dynamics, these networks need to be investigated
at different organization scales. Thus, a multiscale approach
that combines results from microscopic, mesoscopic and
macroscopic experiments could help facing the challenge. The
relationship between brain structure, function and dynamics
can be investigated using appropriate experimental and
modeling approaches. The microscale concerns local neuronal
microcircuits (e.g., a cerebral cortical microcolumn or a
cerebellar cortical microzone), the mesoscale is a collection of
local microcircuits possibly of different nature (e.g. a cortical
area connected to the corresponding thalamic nucleus or
a cerebellar microcomplex including multiple microzones
and the connected deep cerebellar nuclei neurons), while
the macroscale refers to large-scale circuits (e.g., the cerebral
cortical and subcortical circuits forming cerebro-cerebellar
loops). To date, microscale and mesoscale data have been
made available for the rodent brain and are being used to
implement detailed computational models and simulate the
underlying physiological processes and computational rules
(Markram et al., 2015; D’Angelo et al., 2016; Casali et al.,
2019). Non-invasive functional macroscale data, in humans
in vivo, can be acquired using electroencephalography (EEG)
or magnetoencephalography (MEG), but magnetic resonance
imaging (MRI) is the most widely used techniques for its
great versatility.

Magnetic resonance imaging can provide several parameters
informing about both structural and functional features of
the brain. On the one hand, microstructural information
can be inferred from diffusion-weighted (DW) MRI, which
can be exploited for tractography, providing the only way
of reconstructing in vivo axonal tracts (∼2 mm resolution)
connecting distant brain regions. On the other hand, functional
MRI (fMRI), by means of the blood oxygenation level
dependent (BOLD) signal changes, reveals brain activity at
very-low frequency (delta-band or below) providing an indirect
measurement of the ensemble activity ongoing at cellular level.
It should be noted that functional brain activity can be recorded
with higher temporal resolution and better neuronal correlations
using EEG or MEG, but these techniques are essentially used to
reveal cerebral cortical signals. The rich information provided by
MRI can also be exploited to calculate the brain connectome,
i.e., a matrix of functional or structural connectivity between
pairs of regions of gray matter. Once again, these connectomes
have mostly been created for the cerebrum without including the
cerebellum (Uddin et al., 2019; Kaestner et al., 2020).

The cerebellum is well known for its fundamental role
in sensorimotor control, planning, and learning. Interestingly,
evidence is growing on its role also in cognitive and emotional
functions (D’Angelo, 2019). Given these functional implications
and its extended connectivity with the cerebral cortex, it
is probable that the cerebellum takes part in global brain
dynamics. This aspect, however, remains largely unexplored.

Recently, using advanced tractography, it has been possible
to reconstruct the tracts wiring the cerebral cortex and the
cerebellum demonstrating the existence of cerebro-cerebellar
loops involving the associative areas (Palesi et al., 2015, 2017b).
Moreover, resting-state fMRI (rs-fMRI) has demonstrated that
the cerebellum is entrained into large-scale coherent oscillations
together with cerebral cortical regions to form several resting-
state networks, including the default-mode network, salience
network and attention network in addition to the sensorimotor
network (Buckner, 2013; Castellazzi et al., 2018). Finally, task-
dependent fMRI has shown cerebellar activation, together with
several cerebral cortical areas, during the execution of motor
and cognitive tasks (Casiraghi et al., 2019). These data add
to pioneering MEG recordings showing that the cerebellum is
entrained into low-frequency oscillations during motor planning
and execution (Gross et al., 2001). It is therefore imperative to
consider the cerebellum in current and future studies combining
whole-brain functional and structural connectivity with models
to simulate brain dynamics.

One of such comprehensive frameworks making use of
large scale data is The Virtual Brain (TVB) (Sanz Leon et al.,
2013), which has recently been developed to simulate whole-
brain dynamics in response to the challenge of bridging the
gap between microscale, mesoscale and macroscale data. To
do so, TVB comprises several tools that combine MRI brain
data with mathematical data-driven models emulating cellular
microcircuits behavior. Different brain regions are remapped
onto nodes and wired through a subject-specific structural
connectome (SC) obtained from DW MRI (Schirner et al., 2015;
Proix et al., 2016), while brain dynamics are simulated using
mathematical models [i.e., mean fields or neural masses (Pinotsis
et al., 2014)] that can reproduce excitatory and inhibitory
processes within a node. The resulting simulated neural activity
can be converted into a functional connectome (FC) that can
then be compared with the empirical functional data to assess the
predictive power of the model. A few studies have demonstrated
the potential of TVB to investigate physiological brain states
not only in healthy subjects (Schirner et al., 2018) but also
in neurological diseases. For example, in tumors and epilepsy
TVB has been used to predict the surgical outcome, while in
Alzheimer’s disease has been used to predict neurodegenerative
progression (Aerts et al., 2018, 2020; Zimmermann et al., 2018;
An et al., 2019).

Although the investigation of brain dynamics using combined
experimental and modeling approaches is in rapid expansion,
there are still major aspects worth being considered. Primary to
our view is that only cerebral nodes and their connections are
currently considered, while the cerebellum is overlooked. The
second issue concerns the inaccuracy of SC, which includes false
positive connections (Daducci et al., 2015; Jeurissen et al., 2019)
and may propagate over simulated brain dynamics. Last, but
quite relevant, TVB assumes that the neural mass and mean field
models are the same for all nodes, although some initial works
using different modalities have already addressed the need for
heterogenous parameterization (Stefanovski et al., 2019) and for
dedicated models for deep gray matter (GM) structures (van Wijk
et al., 2018; Friston et al., 2019; Palesi et al., in press).
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The cerebellum is tightly interconnected with the cerebral
cortex and engages complex local circuits containing more than
50% of all brain neurons, suggesting the importance to assess its
impact on whole-brain dynamics. Here, we wired cerebellar to
cerebral nodes using TVB. Then, the cerebellar contribution was
assessed in networks of different complexity to provide an initial
evaluation of the impact of SC accuracy on simulated whole-brain
dynamics. Moreover, we compared the contribution of cerebellar
nodes either within the whole-brain network or within specific
subnetworks. Ultimately, the pipeline presented here might be
applied within TVB or adapted to other modeling frameworks,
like Dynamic Causal Modeling (DCM) (Friston et al., 2003,
2019) that has been already used to address the contribution
of cerebro-cerebellar loops in social mentalizing (Van Overwalle
et al., 2019), to investigate the numerous neurological disorders
affecting the cerebro-cerebellar loops, from cerebellar ataxia to
autism, neurodegenerative disease, and multiple sclerosis (Jeong
et al., 2012; Castellazzi et al., 2014; Palesi et al., 2018; Parmar et al.,
2018; Farinelli et al., 2020). This modeling approach will prove
especially useful to investigate brain rewiring and compensatory
plasticity, which strongly depend on the cerebellum.

MATERIALS AND METHODS

In this work TVB was used to simulate brain dynamics based
on a Human Connectome Project (HCP) MRI dataset including

DW and rs-fMRI data. The methodological workflow is shown
in Figure 1.

MRI Dataset
Minimally pre-processed MRI data were downloaded from
ConnectomeDB1 (Van Essen et al., 2013). The dataset included
high-quality DW data (1.25 mm isotropic resolution, b = 1000,
2000, 3000 s/mm2, 90 isotropically distributed directions/b-value
and 18 b0 images), high-quality rs-fMRI data (2 mm isotropic
resolution, TR/TE = 720/33.1 ms, 1200 volumes) and 3DT1-
weighted images (0.7 mm isotropic resolution resampled at
the same resolution of DW data) of 10 healthy subjects [3
males/7 females; 22–35 years (30.6 ± 4.1 years)] acquired using
a customized Siemens 3T Connectome Skyra scanner with a
32-channel receive head coil.

Definition of ad hoc Brain Atlas
An ad hoc atlas comprising 126 regions was created in MNI152
space. A total of 93 cerebral parcellations were defined combining
(1) cortical regions from the Automated Anatomical Labeling
(AAL) template (Tzourio-Mazoyer et al., 2002), (2) deep GM
structures identified with FIRST (FMRIB Software Library, FSL2),
while 33 cerebellar parcellations corresponded to those identified
by the SUIT (A spatially unbiased atlas template of the cerebellum

1http://db.humanconnectome.org
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

FIGURE 1 | Schematic representation of the experimental and modeling workflow. From top left, clockwise: diffusion preprocessing, fiber orientation distribution
calculation, whole-brain tractography, creation of structural connectome and its integration in TVB, spatio-temporal neural mass activity simulation, simulated
functional connectivity matrix definition. Simulated FC was optimized using a model inversion approach with the empirical FC as target.
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and brainstem) template (Diedrichsen et al., 2009). The atlas
was transformed to subject-space (DW atlas) by inverting the
calculated non-affine registration from DW to MNI152 space.

Definition of Structural Connectivity and
Lengths Matrices
3DT1-weighted images were segmented (FSL) in white matter
(WM), GM, subcortical GM (Patenaude et al., 2011), and
cerebrospinal fluid (CSF). From DW data, fiber orientation
distributions were calculated separately for each tissue with
the multi-shell multi-tissue constrained spherical deconvolution

algorithm (Jeurissen et al., 2014) in MRtrix33. Whole-brain
Anatomically Constrained Tractography (Smith et al., 2012) was
performed with 30 million streamlines and using probabilistic
streamline tractography (iFOD2) (Tournier et al., 2010).
To correct for spurious ipsilateral cerebro-cerebellar tracts,
contralateral efferent and afferent cerebellar connections were
selected from whole-brain tractograms as described in a previous
work (Palesi et al., 2017a).

In order to assess the impact of cerebellar connectivity
and SC accuracy on simulated brain dynamics, three different

3http://www.mrtrix.org/

FIGURE 2 | Structural connectome (SC) and time delay matrices. The top row shows the cerebro-cerebellar connectivity considered in each SC construct. For
clarity only tracts connected to the left hemisphere of the cerebellum are shown. From left to right: basic (all tracts, including the spurious ones), plusCRBL
(contralateral tracts only), dirCRBL (directional contralateral tracts). In basic and plusCRBL cerebellar connections are color coded with standard tractography rules
(i.e., red for streamlines following left-to-right direction, green for anterior-posterior, and blue for superior-inferior), while, in the dirCRBL, yellow refers to efferent
cerebellar connections and light blue refers to afferent ones to highlight anatomically inferred directionality. The middle row (A) shows the structural connectivity
matrices, while the bottom row (B) shows the time delay matrices. All matrices refer to an SC construct in a randomly chosen subject.
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subject-specific SC matrices (“SC constructs”) were generated.
Whole-brain tractography and DW atlas were combined to
extract streamlines (edges) between brain regions (nodes) and
considering: (1) all cerebro-cerebellar tracts, as extracted from
the whole-brain tractogram (basic); (2) contralateral cerebro-
cerebellar tracts only, obtained by manually selecting the
contralateral connections between cerebellum and cerebrum
(plusCRBL); (3) directional contralateral cerebro-cerebellar
tracts, obtained by extracting streamlines with the correct
assumptions on the directional connectivity of cerebellar efferent
streamlines, via the superior cerebellar peduncle, and cerebellar
afferent streamlines, through the middle cerebellar peduncle
(dirCRBL). The weight of each edge was normalized with respect
to the total number of streamlines belonging to each network
(basic, plusCRBL, dirCRBL). A corresponding matrix with edges
weighted by the mean path length of each connection was also
calculated. An example of these matrices is shown in Figure 2.

Definition of Empirical FC Matrix
Resting-state fMRI data were preprocessed, realigned to the
MNI152 template and noise components were removed (FIX,
FSL) (Griffanti et al., 2014). Further steps were performed with
CONN4: 3DT1-weighted images were aligned to rs-fMRI data
and segmented, then BOLD signal of each voxel was cleaned
for the effect of any possible confound, including motion,
physiological and other noise sources (i.e., BOLD signal from the
WM and CSF) by applying a linear regression, a linear detrending
and a band-pass filter with a window of (0.008–0.09 Hz).

Connectivity measures were calculated by extracting the
average time-course per brain region (node) and correlating
time-courses between pair of nodes. The resulting Fisher
z-transformed coefficients defined the FC matrix, which was
thresholded at 0.1206 to obtain the final empirical FC (empFC)
matrix including cerebellar regions.

Brain Dynamics Simulation With TVB
The Virtual Brain modeling consists of a series of steps: (1)
definition of the long-range macroscopic SC; (2) selection of the
mathematical model and parameters describing local (i.e., intra-
nodal) GM functional dynamics; (3) simulation of the BOLD
signal per node to generate the simulated FC matrix (simFC); (4)
iterative tuning of model parameters to achieve the best matching
between the simFC and empFC matrix; (5) simulation of brain
dynamics with the optimal model parameters (for more details,
see Ritter et al., 2013; Sanz-Leon et al., 2015). Here, these steps
were repeated for each one of the 3 SC constructs.

Long-range SC was defined by the subject-specific SC matrix
calculated from DW MRI. A reduced Wong-Wang model (Wong
and Wang, 2006) was chosen to generate the neural activity Si per
node i:

dSi

dt
=
−Si

τs
+ γ (1− Si) H (xi)+ σηi (t)

H (xi) =
axi − b

1− exp
(
−d

(
axi − b

))
4http://www.nitrc.org/projects/conn

xi = wJNSi + JNGcoupl
∑

j

CijSj + I0

where H(xi) is the transfer function that converts the input
synaptic activity xi into an output population firing rate, Cij are
the edges of SC matrix (between nodes i and j) reweighted by
the global coupling parameter Gcoupl, ηi (t) is a Gaussian white
noise with amplitude σ (the other parameters are defined in
Table 1). Conduction velocity (i.e., the speed of signal transfer
along axonal tracts) was set to 10 m/s on the bases of physiological
evidence (Purves et al., 2001), and time delays per edge were
calculated on the basis of the tract length matrix (Figure 2).
A model inversion approach was used to iteratively tune Gcoupl
across the whole-brain network in order to find the optimal Gcoupl
value that maximizes the matching of simFC with the empFC
of all nodes. The physiological consistency of this procedure
was evaluated calculating high and low firing rates (Hhigh and
Hlow) at the optimal Gcoupl value. Using these optimal parameters,
subject-specific brain dynamics were simulated for a period of
6 min and a specific time-series per node and simFC were
provided (Figure 1).

Integration of Cerebro-Cerebellar
Connectivity in TVB
To investigate the impact of cerebellum on brain dynamics, three
different networks were considered (see an example in Figure 3):

1. Whole-brain network: TVB simulation was run considering
the whole-brain SC, and the simFC was derived for
all brain nodes.

2. Cerebral subnetwork: TVB simulation was run considering
only the cerebral SC, and the simFC was derived only for
the cerebral nodes.

3. Embedded cerebro-cerebellar subnetwork: the simFC was
evaluated only for the cerebral nodes as the discrepancy
between simFC of (1) and (2).

For each of these three networks, similarity was evaluated
by calculating the mean Pearson correlation coefficient (PCC)
between empFC and simFC matrices. Furthermore, to assess the
impact of SC accuracy, which is mainly affected by false positives,

TABLE 1 | Default reduced Wong-Wang model parameters.

Model
parameter

Value Unit Description

a 270 nC−1 Sigmoid function parameters

b 108 Hz

d 0.154 s

γ 0.000641 – Kinetic parameter

σ 0.001 nA Amplitude of the Gaussian white noise ηi (t)

w 1 – Local excitatory recurrence

τ 100 ms Kinetic parameter (NMDA decay time constant)

JN 0.2609 nA Synaptic coupling

I0 0.3 nA Effective external input

Parameters of the reduced Wong-Wang model used in all simulations.
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FIGURE 3 | Functional connectivity (FC) matrices for each network. The top row shows the connections of each network. From left to right: whole-brain network,
cerebral subnetwork, embedded cerebro-cerebellar subnetwork. Nodes are represented in red, while edges connecting nodes for which simulated FC (simFC) was
calculated are in gray. In the embedded cerebro-cerebellar subnetwork, cerebellar connections are represented in purple. The middle row (A) shows the empirical
FC, while the bottom row (B) shows simFC matrices for each network. All matrices are taken from a randomly chosen subject. For simplicity, only the structural
connectome (SC) construct that considers appropriate cerebro-cerebellar connections (i.e., the case that we named plusCRBL) is shown, since the trend is the
same in all SC constructs.

the three simFC described above and related similarity were
calculated for each of the three SC constructs (basic, plusCBL,
and dirCBL).

Statistics
Statistical tests were performed using SPSS software version
21 (IBM, Armonk, New York, United States). All data were
normally distributed (Shapiro–Wilk test), thus a general linear
model with repeated measures was performed twice to assess all
significant differences.

Firstly, the effect of the cerebellum on brain dynamics was
assessed by comparing individual mean PCC between the three
networks within each SC construct.

Secondly, the effect of SC accuracy was assessed by
comparing between different SC constructs: (i) optimal Gcoupl,
and Hlow and Hhigh parameters; (ii) individual mean PCC for
each network.

RESULTS

Results were obtained following the workflow shown in Figure 1.
SC and time delays matrices are shown in Figure 2. SimFC
and empFC are compared in Figure 3 for the three networks,
i.e., whole-brain network, cerebral subnetwork, embedded cerebro-
cerebellar subnetwork.
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FIGURE 4 | Correlation diagram between empirical and simulated data as a function of the global coupling parameter (Gcoupl ). The data are taken from a randomly
chosen subject for each SC construct (top to bottom: basic, plusCRBL, dirCRBL). The correlation between structural and simulated FC is shown with magenta line,
while correlation between empirical FC and simulated FC is shown with blue line.
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Parameter Estimation
The Gcoupl parameter search space showed an increment
of the correlation between empFC and simFC toward a
single optimal point, which was the absolute maximum
of the PCC plot as a function of Gcoupl (for greater
Gcoupl values PCC values were slightly lower but stable).
The shape of this curve representing PCC did not differ
across SC constructs (see Figure 4 for an example).
Furthermore, to assess whether SC accuracy could affect
model optimization, Gcoupl, Hlow, and Hhigh were compared
between SC constructs. Mean across-subject parameters and
p-values are reported for each SC construct in Table 2. No
differences were found between firing rates, or Gcoupl between
the SC constructs.

Prediction Power of TVB
In order to examine whether SC accuracy or different
networks (the SC construct or the embedding of cerebellar
SC, respectively), could affect the TVB predictive power of
brain dynamics, similarity was compared across SC constructs
(basic, plusCRBL, dirCRBL) and networks (whole-brain
network, cerebral subnetwork, embedded cerebro-cerebellar
subnetwork). Mean across-subject similarity measures between
empFC and simFC are reported in Table 3. All networks
generated acceptable PCC values (range 0.2224–0.4581) per
subject and per SC construct. No differences were observed
between SC constructs, while PCC was significantly higher
for the embedded cerebro-cerebellar subnetwork than for the
whole-brain network within each SC construct (p < 0.002).

TABLE 2 | Network and model parameters.

Basic PlusCRBL dirCRBL p-Value

Mean (SD) Mean (SD) Mean (SD)

Gcoupl 23.3 (0.95) 22.9 (0.97) 22.6 (1.21) 0.142

Hlow (spikes/s) 100.6 (3.8) 101.3 (5.4) 100.8 (4.5) 0.853

Hhigh (spikes/s) 101.3 (3.9) 101.5 (5.2) 101.0 (4.6) 0.918

Model parameters for the three SC constructs: basic, plusCRBL and dirCRBL.
Values are expressed as mean (SD). Gcoupl , global coupling; Hlow, low firing rate;
Hhigh, high firing rate. p-values do not show statistically significant differences
between the three SC constructs.

Boxplots of similarity measures (Figure 5) show that whole-
brain network has the lowest PCC, cerebral subnetwork
has an intermediate one and embedded cerebro-cerebellar
subnetwork has the highest PCC within basic and dirCRBL,
while the lowest PCC is for the cerebral subnetwork within
plusCRBL construct.

DISCUSSION

The present work provides the first application of TVB extended
to cerebellar nodes and cerebro-cerebellar connectivity. The
main observation is that the predictive power of the model
on brain dynamics is improved by including the cerebro-
cerebellar loops. The similarity between empFC and simFC
significantly increased when cerebro-cerebellar circuits were
considered. However, the SC accuracy, modified by a priori
information on cerebro-cerebellar circuits, did not significantly
affect either global (whole-brain network) or local (cerebral
subnetwork) brain dynamics. This might reflect the small
number of cerebro-cerebellar connections compared to the
total amount of brain connections. An extended filtering
of spurious tracts, which usually affect tractography, would
probably allow to improve the precision of predictions on
global brain dynamics.

The demonstration of a sizeable contribution of
cerebro-cerebellar connectivity to global brain dynamics
suggests that TVB has the potential to reveal the impact
of specific subnetworks on global brain dynamics and
to understand the interaction of multiple brain areas
(Aerts et al., 2018; Zimmermann et al., 2018; An et al.,
2019). A further improvement to TVB performance
could be achieved by using multimodal datasets merging
MRI, EEG, MEG, positron emission tomography (PET)
data (Schirner et al., 2018; Stefanovski et al., 2019;
Triebkorn et al., 2020).

Beside this positive evidence, our result is just a first
step toward a mechanistic interpretation of brain dynamics
that could be applied to clinical investigations. TVB is an
approximation of the brain currently loosing details on
microcircuits organization and function. TVB can indeed
simulate brain dynamics with some accuracy but without
precise correlation with the underlying physiological processes

TABLE 3 | Pearson correlation coefficients between empirical and simulated FC.

Basic plusCRBL dirCRBL p-Value (between SC constructs)

Mean (SD) Mean (SD) Mean (SD)

Whole-brain network 0.3212 (0.0519) 0.3319 (0.0431) 0.3180 (0.0367) 0.535

Cerebral subnetwork 0.3387 (0.0468) 0.3113 (0.0553) 0.3458 (0.0596) 0.208

Embedded cerebral subnetwork 0.3540 (0.0521) 0.3667 (0.0520) 0.3637 (0.0345) 0.719

p-value (between networks) 0.118* 0.049* 0.036*

Across-subject mean Pearson correlation coefficients between empirical and simulated FC for the three SC constructs (basic, plusCRBL, dirCRBL) in the three networks:
whole-brain network, cerebral subnetwork, and embedded cerebro-cerebellar subnetwork. Values are expressed as mean (SD). p-values do not show significant
differences between the three SC constructs, while show differences between networks. *p < 0.002 between whole-brain and embedded network. The bold numbers
highlight the significative difference between the three groups, identified as the three networks.
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FIGURE 5 | Boxplots of Pearson correlation coefficients for whole-brain
network, cerebral subnetwork, and embedded cerebro-cerebellar subnetwork
models within each SC construct. Brackets and asterisks indicate significant
differences with p < 0.002.

(Ritter et al., 2013; Sanz Leon et al., 2013). Local neuronal
microcircuits are characterized by specific structural and
functional features and a single model is most likely not be
enough to accurately and insightfully simulate whole-brain
dynamics (van Wijk et al., 2018; Friston et al., 2019). Using
a conservative approach, we assumed that the Wong-Wang
model could provide a reasonable approximation of local
cerebellar dynamics as it does for the cerebral cortex (Wong
and Wang, 2006). However, the microcircuit organization of
subcortical structures, especially of the cerebellum, is quite
different (D’Angelo et al., 2016). Therefore, specific models
reflecting local microcircuit physiology need to be designed
and integrated into TVB. This could be achieved by replacing
generic oscillatory nodes with specific neural masses or mean
field models accounting for local connection rules and specific
features reflecting structural and functional knowledge at
the microscale. A cerebellar neural mass should include (i)
excitatory input units with center-surround organization
(representing granule cell clusters) connected in a recurrent
inhibitory loop with inhibitory units (the Golgi cells) generating
low-frequency oscillations and (ii) perceptrons (the Purkinje
cells) connected to a feed forward inhibitory loop (done
by molecular layer interneurons). Furthermore, spike-time
dependent plasticity rules and geometry-constrained local
connectivity (Sgritta et al., 2017) should be defined. These
essential computational features have been identified based
on experimental and theoretical works on rodents (Marr,
1969; D’Angelo et al., 2016; D’Angelo, 2018). Once this
neural mass will be integrated in TVB, microscale data
could be used to tune input signals deriving from the
long-range structural connectivity based on macroscale
empirical information.

Another issue that was opened by our work is how to
define the best long-range brain connectivity to be used
in TVB. In the MRI field, a relevant limitation is indeed
the difficulty to reconstruct crossing and polysynaptic tracts
and to identify the direction of axonal propagation (Hein
et al., 2016; Nath et al., 2020). We have shown here

that connectome corrections integrating physiological and
anatomical constraints provide an effective solution that
could be extended to an increasing number of long-range
brain connections.

CONCLUSION

For the first time, TVB simulations show that cerebro-cerebellar
connections play an important role in determining whole-brain
dynamics. We speculate that future simulations, using either TVB
or other similar approaches like DCM, driven by microscale
information on specific local microcircuits will increase the
reliability of predictions, setting out associations between global
signals (like fMRI, EEG, MEG) and “cellular” activity. This
will allow to investigate the temporal dynamics of the cerebro-
cerebellar circuits within the whole-brain network and to assess
their impact on emerging brain functions with special attention
to compensatory plasticity and large-scale circuit rewiring as
a consequence of various pathologies, which strongly depend
on the cerebellum. Moreover, the pipeline presented here
could be consistently applied to single patients to predict
the course of cerebellar ataxia or psychiatric disorders (i.e.,
autism), or the progression of neurodegenerative pathologies,
or the surgical outcomes, for example, in epileptic patients.
This will represent a fundamental step-ahead in understanding
physiological and pathological states involving the cerebro-
cerebellar circuits.
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