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Determining biophysical details of spatially extended neurons is a challenge that needs

to be overcome if we are to understand the dynamics of brain function from cellular

perspectives. Moreover, we now know that we should not average across recordings

frommany cells of a given cell type to obtain quantitative measures such as conductance

since measures can vary multiple-fold for a given cell type. In this work we examine

whether a tight combination of experimental and computational work can address this

challenge. The oriens-lacunosum/moleculare (OLM) interneuron operates as a “gate”

that controls incoming sensory and ongoing contextual information in the CA1 of the

hippocampus, making it essential to understand how its biophysical properties contribute

to memory function. OLM cells fire phase-locked to the prominent hippocampal theta

rhythms, and we previously used computational models to show that OLM cells

exhibit high or low theta spiking resonance frequencies that depend respectively on

whether their dendrites have hyperpolarization-activated cation channels (h-channels)

or not. However, whether OLM cells actually possess dendritic h-channels is unknown

at present. We performed a set of whole-cell recordings of OLM cells from mouse

hippocampus and constructed three multi-compartment models using morphological

and electrophysiological parameters extracted from the same OLM cell, including

per-cell pharmacologically isolated h-channel currents. We found that the models best

matched experiments when h-channels were present in the dendrites of each of the

three model cells created. This strongly suggests that h-channels must be present

in OLM cell dendrites and are not localized to their somata. Importantly, this work

shows that a tight integration of model and experiment can help tackle the challenge
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of characterizing biophysical details and distributions in spatially extended neurons.

Full spiking models were built for two of the OLM cells, matching their current clamp

cell-specific electrophysiological recordings. Overall, our work presents a technical

advancement in modeling OLM cells. Our models are available to the community to use

to gain insight into cellular dynamics underlying hippocampal function.

Keywords: hippocampus, interneuron, inhibitory cell, dendrite, h-channels, multi-compartment model,

electrophysiology

INTRODUCTION

The challenge of understanding brain function given its
many cell types and circuits is being greatly aided by the
development of sophisticated experimental techniques, big
data, and interdisciplinary collaborations (Ecker et al., 2017).
Furthermore, the use of computational brain models is becoming
established as an important tool that can bridge across scales
and levels (Cutsuridis et al., 2010; O’Leary et al., 2015; Bassett
et al., 2018). It is now clear that it is essential to consider the
unique contributions of specific cell types and circuits in order
to understand brain behavior (Luo et al., 2018). In particular,
we know that different inhibitory cell types can control circuit
output and brain function in specific ways (Kepecs and Fishell,
2014; Roux and Buzsáki, 2015; Abbas et al., 2018; Cardin, 2018)
and, by extension, disease states (Marín, 2012; Giovannetti and
Fuhrmann, 2019).

The contribution of a specific cell type to network and
behavioral function is necessarily grounded in its biophysical
properties. While immunohistochemical and single-cell
transcriptomic studies provide insight into which ion channels
might be present in a particular cell type, how different cell types
contribute to function must necessarily include their activity
within circuits (Kopell et al., 2014). An individual neuron’s
electrical activity largely arises from its ion channel kinetics,
densities, and localization across its neuronal compartments.
In this regard, mathematical multi-scale (channel and cellular),
multi-compartment computational models are needed to help
provide insights and hypotheses of how specific cell types
contribute to brain function and disease processes. However,
creating such models requires quantitative knowledge of the
precise characteristics of the particular cell type, and it is
highly challenging, if not impossible, to obtain comprehensive

knowledge of all the relevant biophysical parameters of each

compartment of each cell type experimentally. All experiments
come with their own set of caveats and limitations, and

mathematical models, no matter how detailed, are always a
simplification relative to the biology. It is therefore important
not to lose sight of the limitations of both model and experiment

by having an ongoing dialogue between the two.
It is now well-known that the characteristics of a given

cell type are not fixed (Marder and Goaillard, 2006), and thus
a component of experimental variability reflects heterogeneity
inherent in specific neuronal populations and thus in circuits.
Moreover, such variability is likely to be functionally important
(Wilson, 2010). Previous work has shown that conductance

densities for a given ion channel in an identified cell type can have
a two- to six-fold range of values (Goaillard et al., 2009; Ransdell
et al., 2013). Despite this variability in channel conductances,
robust neuronal as well as circuit output is maintained, as
most clearly shown in the crustacean stomatogastric ganglion
circuit (Bucher et al., 2005; Schulz et al., 2006; Tang et al.,
2012). The conservation of individual neuronal electrical output
despite variable underlying ion channel conductance densities
has furthermore been demonstrated inmammalian CNS neurons
(Swensen and Bean, 2005), most likely arising from complex
homeostatic mechanisms for maintaining circuit stability that
are not fully understood. How should one proceed in building
cellular, computational models? Averaging of experimental
variables such as conductance densities as a way of accounting
for variability leads to erroneous conductance-based models
(Golowasch et al., 2002). As a consequence, single, “canonical”
biophysical models cannot capture inherent variability in the
experimental ion channel data. A more desirable approach is
to develop multiple models to capture the underlying biological
variability (Marder and Taylor, 2011). Indeed, such populations
of models representing a given cell type have been developed
to examine, for example, co-regulations between different
conductances thatmight exist in a given cell type (Hay et al., 2011;
Soofi et al., 2012; Sekulić et al., 2014). In this way, populations
of models could help suggest what balance of conductances are
important for cellular dynamics and their function in circuits.
Ideally, one should obtain biophysical properties of a given
cell type using recordings from the same cell. It is of course
unrealistic to consider an experimental characterization of all
the various ion channel types using the same cell of a given cell
type. This impracticality is further enhanced in consideration of
channel types in the dendrites of neurons. Besides needing to
patch from the same cell, there are also the practical limitations
of invasively investigating the biophysical characteristics of fine
dendritic compartments, performing multiple solution changes
to pharmacologically isolate specific conductances, and acquiring
high quality data within the time frame of optimal cell health.
However, dendrites are where most synaptic contacts are made
and where signal integration in neurons occurs (Stuart and
Spruston, 2015). Thus, these aspects must be tackled along with
considerations of cellular variability.

In this work we focus on the oriens-lacunosum/moleculare
(OLM) cell, an identified inhibitory cell type in the hippocampal
CA1 area (Maccaferri and Lacaille, 2003; Müller and Remy,
2014). OLM cells receive excitatory glutamatergic input
predominantly from local CA1 pyramidal neurons and form
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GABAergic synapses onto the distal dendrites of CA1 pyramidal
neurons, as well as onto other CA1 inhibitory cells (Blasco-
Ibáñez and Freund, 1995; Maccaferri et al., 2000; Klausberger,
2009; Leão et al., 2012). Functionally, proposed roles of OLM
cells include gating sensory and contextual information in
CA1 (Leão et al., 2012), and supporting the acquisition of fear
memories (Lovett-Barron et al., 2014). Moreover, OLM cell
firing is phase-locked to the prominent theta rhythms in the
hippocampus of behaving animals (Klausberger et al., 2003;
Klausberger and Somogyi, 2008; Varga et al., 2012; Katona et al.,
2014). Although it has long been known that OLM cells express
hyperpolarization-activated cation channels (h-channels)
(Maccaferri and McBain, 1996), it is still unclear whether these
channels are present in their dendrites. From a functional
perspective, the consequences of dendritic h-channel expression
in OLM cells was explored in our previous computational study
where h-channels were found to modulate the spiking preference
of OLM cell models—incoming inhibitory inputs recruited either
a higher or lower theta frequency (akin to Type 1 or Type 2 theta,
respectively—Kramis et al., 1975) depending on the presence
or absence of dendritic h-channels (Sekulić and Skinner,
2017). In that computational study, our OLM cell models were
derived from previously built populations of OLM cell multi-
compartment models in which appropriate OLM cell models
were found with h-channels present either in the soma only or
uniformly distributed in the soma and dendrites (Sekulić et al.,
2014). We had previously leveraged these models and showed
that appropriate OLM cell model output could be maintained,
even if h-channel conductance densities and distributions co-
vary, so long as total membrane conductance due to h-channels
is conserved (Sekulić et al., 2015)—a finding that was also
demonstrated in cerebellar Purkinje neurons (Angelo et al.,
2007). Moreover, these OLM cell models were developed using
morphological and electrophysiological data obtained from
different OLM cells as well as h-channel characteristics from
the literature, resulting in non-uniqueness of the fitted model
parameters (Rall et al., 1992; Holmes et al., 2006). However,
we do not actually know whether h-channels are present in the
dendrites of OLM cells. The existence of dendritic h-channels
has not been directly assessed using patch-clamp recordings
from OLM cell dendrites, and immunohistochemistry studies
have so far demonstrated expression of the HCN2 subunit of
h-channels only in the somata of OLM cells (Matt et al., 2011;
Hilscher et al., 2019).

Considering all of the above, in this paper we aimed to
build “next generation” multi-compartment models of OLM
cells to achieve a two-pronged goal. First, to determine whether
multi-compartment models built using morphological and
electrophysiological data from the same cell would produce
consistent results regarding h-channel localization to dendrites or
not, and second, to determine the biophysical characteristics of h-
channels in OLM cells. We consider the models developed here
to be next generation relative to previous multi-compartment
OLM cell modeling efforts (Lawrence et al., 2006; Sekulić et al.,
2014) because each model was built using experimental data
from the same cell, including its morphology, passive properties,
and biophysical h-channel characteristics. Using transgenic mice

in which yellow fluorescent protein (YFP) was expressed in
somatostatin (SOM)-containing neurons, we visually targeted
OLM cells from CA1 hippocampus, and fully reconstructed three
OLM cells for multi-compartment model development with h-
channel characteristics fit to each particular cell. We found that
in order to be compatible with the experimental data, all three
models needed to have h-channels present in their dendrites.
Using two of these reconstructed models, we completed their
development into full spiking models by including additional
ion channel currents whose parameters were optimized based on
voltage recordings from the same cell. These resulting models
and associated experimental data are publicly available and can be
subsequently used to develop further insight into the biophysical
specifics of OLM cells and to help understand their contributions
to circuit dynamics and behavior. This work demonstrates the
feasibility of combining experimental and computational studies
to address the challenging issue of determining the density and
distribution of specific dendritic ion channel types.

MATERIALS AND METHODS

Ethics Statement
All procedures were performed in accordance with the University
of Montana (Animal Use Protocols 026-11 and 017-14) and
Texas Tech University Health Sciences Center (Animal Use
Protocols 15025, 15031, and 16037) Institutional Animal Care
and Use Committees.

Animals and Brain Slice Preparation
Heterozygous crosses of homozygous somatostatin-CRE mice
(SOM-CRE; stock no. 013044; Jackson Labs) and Rosa26YFP
mice (Jackson Labs stock no. 007920) were obtained as previously
described (Yi et al., 2014). Transverse hippocampal slices were
prepared as described previously (Yi et al., 2014). Briefly, SOM-
CRE+/−:Rosa26YFP+/− (SOM-YFP) mice of both sexes (9–
10 weeks, n = 6) were anesthetized with isoflurane and then
transcardially perfused with ice-cold partial sucrose solution
(PSS) containing (mM): 80NaCl, 2.5 KCl, 24NaHCO3, 0.5 CaCl2,
4 MgCl2, 1.25 NaH2PO4, 25 glucose, 75 sucrose, 1 ascorbic acid,
3 sodium pyruvate, saturated with 95% O2/5% CO2, pH 7.4
(Bischofberger et al., 2006). After carefully extracting, blocking,
and mounting the brain, transverse hippocampal slices (300 µm)
were cut in ice-cold oxygenated PSS with a 1200 S Vibratome
(with Vibrocheck accessory; Leica Microsystems, Bannockburn,
IL, USA), and then were incubated in warm (36◦C) oxygenated
PSS at least 30 min before use.

Chemical Reagents
DL-APV was purchased from R&D Systems (Minneapolis, MN,
USA). Tetrodotoxin (cat# 5651), TEA (cat# 2265), 4-AP (cat#
A78403), DNQX (cat# D0540), SR-95531 (cat# S106), and
ZD7288 hydrate (cat# Z3777) were purchased from Sigma-
Aldrich, Inc. (Saint Louis, MO, USA). Salts and chemicals for
saline solutions, including biocytin, were also purchased from
Sigma-Aldrich, Inc.
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TABLE 1 | Experimental protocols performed on OLM cells.

Order Bath solution Recording mode Description of protocol

#1 ACSF VC at −60 mV Seal test

#2 ACSF + DNQX/APV/Gabazine CC at −60 mV 2s-long steps from −120 to +90 pA

in 30 pA steps

#3 ACSF + DNQX/APV/Gabazine VC at −40 mV Ih activation: 1.2 s-long step at

progressively hyperpolarized potentials

to −120 mV in −10 mV increments

#4 ACSF + DNQX/APV/Gabazine CC at −60 mV Same protocol as #2

+ TTX/4-AP/TEA

#5 ACSF + DNQX/APV/Gabazine VC at −40 mV Same protocol as #3

+ TTX/4-AP/TEA

#6 ACSF + DNQX/APV/Gabazine VC at −40 mV Ih tail currents: a prepulse to −120 mV

+ TTX/4-AP/TEA for 1.2 s to fully activate h-channels.

Then, a depolarized relaxation step

at −110 mV was performed for 1 s

before returning to the holding potential.

Repeated multiple times,

with the relaxation steps becoming

successively more depolarized at 10 mV

intervals across each repeated sweep.

#7 ACSF + DNQX/APV/Gabazine CC at −60 mV Same protocol as #2

+ TTX/4-AP/TEA + ZD

#8 ACSF + DNQX/APV/Gabazine VC at −40 mV Same protocol as #3

+ TTX/4-AP/TEA + ZD

The order column displays the sequential order in which the protocols were performed.

Reagents concentration: DNQX (25 µM), APV (50 µM), Gabazine (5 µM), TEA (10 mM), 4-AP (5 mM), TTX (1 µM), ZD (10 µM). Further details in section Methods. VC, voltage clamp;

CC, current clamp.

Electrophysiological Recordings and
Analyses
Hippocampal slices were transferred to a recording chamber
and submerged in artificial cerebrospinal fluid (ACSF) solution
containing (mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 2 CaCl2, 1
MgCl2, 1.25 NaH2PO4 and 20 glucose, saturated with 95%O2/5%
CO2, pH7.4, at 34–35◦C. SOM-YFP cells in the CA1 stratum
oriens layer of hippocampus were visualized using IR-Dodt
contrast and fluorescence video-microscopy (Zeiss Axiovision
4.7) on either a Patch Pro 2000 (Scientifica Ltd, Uckfield, East
Sussex, UK) or Infrapatch (Luigs and Neumann, Ratingen,
Germany) on an upright Zeiss microscope (Axio Examiner; Carl
Zeiss Microscopy, LLC, Thornwood, NY, USA). On the Patch
Pro 2000, live YFP-positive cells were visualized with a 505 nm
LED (LED4C11-SP; Thorlabs) driven by a four-channel LED
driver (DC4100; Thorlabs). On the Infrapatch rig, a 505 nm LED
was controlled by the Colibri LED illumination system (Carl
Zeiss Microscopy). Patch pipettes (2–4 M�) were fabricated
using a two-step vertical electrode puller (PC-10; Narishige, East
Meadow, NY, USA) and filled with internal solution containing
(mM): 110 potassium gluconate, 40 KCl, 10 HEPES, 0.1 EGTA,
4 MgATP, 0.3 Na2GTP, 10 Na2 phosphocreatine and biocytin
0.2%, titrated to pH 7.2 with KOH, osmolarity 295–305mOsm/L.
Whole cell recordings were made using a Multiclamp 700B
amplifier (Molecular Devices, Union City, CA, USA), filtered

at 4 kHz, and digitized at 20 kHz (Digidata 1440A; Molecular
Devices). Current and voltage traces were acquired on a PC
running Axograph X (Axograph Scientific, Sydney, Australia).
Solutions were heated to 34–35◦C with an inline solution heater
(HPT-2, Scientifica; SH-27B/TC-324B, Warner, Hamden, CT,
USA). Access resistance (Rs) was monitored during recording.
Cells with initial Rs less than 20M�were recorded. If Rs changed
more than 20% during the course of the whole cell recording,
the data were excluded from further analyses. In all recordings,
the AMPA receptor antagonist DNQX (25 µM), the NMDA
receptor antagonist DL-APV (50 µM), and the GABAA receptor
antagonist SR-95531 (gabazine; 5 µM) were included in the
ACSF. For blocking intrinsic voltage-gated channels to isolate h-

channel currents (Ih), TEA (10 mM), 4-AP (5 mM), and TTX
(1 µM) were applied. The h-channel specific blocker ZD7288

(10 µM) was used to obtain and constrain Ih parameters on a
per-cell basis.

The order of protocols is important to consider during the
subsequent procedures of obtaining OLM cell passive properties
in light of varying stages of cell health and deterioration as

the recordings progressed. The chronological order of current
clamp and voltage clamp experimental protocols performed
are shown in Table 1. The approximate length of experiment
for a given cell patched was at most 30 min. At the end
of the recording, pipettes were withdrawn to outside-out
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patch configuration. Slices were kept on the rig for several
minutes to facilitate diffusion of biocytin to distant subcellular
compartments. Electrophysiological data were analyzed with
Axograph X. The junction potential was calculated to be 11.88
mV and was subtracted from all experimentally recorded voltage
values prior to use in subsequent data analysis and creation of
multi-compartment computational models.

Visualization of Biocytin-Filled Cells and
Confocal Imaging
During electrophysiological experiments, recorded SOM-YFP
cells were filled with biocytin for post-hoc morphological
reconstruction. After recording, slices were fixed overnight
at 4◦C in 0.1 M phosphate-buffered saline (PBS) containing
4% paraformaldehyde. After several washes in PBS, and 2
h permeabilization with 0.3% Triton X-100 in PBS at room
temperature, slices were incubated overnight at 16◦C in PBS with
Alexa 633-conjugated streptavidin (final concentration 1 µg/mL,
catalogue no. S-21375; Invitrogen). Slices were cryopreserved
in 30% sucrose containing PBS and then re-sectioned at 100–
150 µm thickness using a sliding freezing microtome (HM430;
Thermo Scientific, Waltham, MA, USA). After staining with
Neurotrace 435/455 (1:100 in PBS) and mounting on gelatin-
coated slides in Vectashield (catalogue no. H-1400; Vector
Laboratories), sections were imaged with a Fluoview FV-1000
confocal imaging system (Olympus) with 4x, 25x, and 60x
objectives. Tiled confocal stacks (800 × 800 pixels; 0.2 µm z-
step) of SOM-YFP cells were flat projected, rotated and cropped
in PhotoShop 13.0 or ImageJ for display.

Morphological Reconstruction of OLM
Cells
Confocal microscope images at 60X magnification were acquired
for the cells used in this work. The field of view of each image
was restricted to 200× 200 µm, resulting in 2–11 image “stacks”
per cell. Bitplane Imaris was used for viewing reconstructions
in 3D and for validating the z-stack. The microscope step size
was 0.2 µm in the Z-plane, resulting in 150–200 images per
stack. Variation in contrast between stacks were likely due to
photobleaching, as stacks acquired later in the image acquisition
process for each cell were more apparently bleached than the
ones acquired earlier. Bleach correction was performed using
ImageJ (Schneider et al., 2012) by normalizing the contrast of
all stacks for each cell according to the average intensity value
across all stacks per cell. Stacks were then stitched together to
recover the volume information for the entire cell. Stitching was
performed using the XuvTools software package (Emmenlauer
et al., 2009). We next performed volumetric reconstruction of
the soma, dendrites, and axons. This was done using the freely-
available Neuromantic software package that implements semi-
automated tracing (Myatt et al., 2012).

Criteria for Selection of OLM Cells
Patch clamp recordings were performed on a total of 45 cells from
the stratum oriens of SOM-YFP cells from SOM-Cre/Rosa26YFP
mice. After histological processing was complete, neurons
were classified as OLM cells if they possessed a horizontally-
oriented cell body and dendrites within the oriens layer and a

major axon projecting perpendicularly with ramifications in the
lacunosum/moleculare layer. Additional criteria were developed
for stability of access and input resistance, completeness of
electrophysiological protocols, and signal-to-noise level in both
current and voltage clamp recordings. Only those cells that
exhibited <20% change in input resistance over the course of the
experiment were considered for further modeling. The full suite
of electrophysiological protocols, including wash-in of ZD7288
blocker to be able to determine Ih was required to fulfill selection
criteria. Of the 45 cells recorded from in total, 11 OLM cells
met electrophysiological criteria for stability, completeness, and
noise level. Of these 11 OLM cells, three (Cell 1, Cell 2, Cell 3)
were advanced for subsequent detailed experimental analyses and
multi-compartment computational model development. Over
the course of the recordings for these three cells, the input
resistances as determined from seal test recordings changed from:
260.5 to 216.9 M� (−16.7%) for Cell 1; 147.3 to 175.1 M�

(+18.9%) for Cell 2; and 458.7 to 390.6 M� (−14.8%) for Cell
3. The sources of these modest changes in input resistance are
not clear, but mechanical drift, activity-dependence (execution
of many protocols), and intracellular dialysis are suspected to be
contributing factors.

Multi-Compartment Model Creation and
Passive Property Fitting Considerations
Reconstructed OLM cells yielded soma and somatodendritic
surface areas (µm2) of: 7,651 and 29,378 for Cell 1; 13,035 and
35,159 for Cell 2; 6,911 and 21,990 for Cell 3. The NEURON
simulation environment (Hines and Carnevale, 2001) was used
to create the multi-compartment models. Compartmentalization
of the models was done using the dλ rule where compartment
lengths are set to a fraction of the length constant λf , where
f=100 Hz. We set the fraction of dλ to be 0.1 for all models. The
finalized number of compartments (after staggered re-fitting) in
each of the model cells is: 303, 632, and 837 for Cell 1, Cell 2, and
Cell 3, respectively.

We selected long current clamp steps for the fitting of passive
membrane properties rather than shorter voltage clamp “seal
test” protocols due to the incomplete clamping of the membrane
by short voltage clamp steps (Holmes, 2010). Recordings with
synaptic blockers in addition to potassium and sodium blockers
are referred to as “TTX traces” (i.e., step #4 in Table 1), due
to TTX application. Recordings with synaptic blockers obtained
in the presence of h-channel blocker ZD7288 in addition to
TTX/4-AP/TEA are referred to as “ZD traces” and are given
by step #7 in Table 1. Recordings performed with synaptic-
and all voltage-gated channels blocked (i.e., ZD traces) were
initially considered preferable for passive membrane property
fitting in the models. However, due to the possibility of changes
in membrane responses as a function of the length of the
recording session, we compared the membrane time constants
(τm) during the charging portion of the current clamp step for
the voltage traces obtained across recordings with synaptic- and
voltage-gated blockers applied. We found that the −30 pA ZD
traces, being the last traces recorded in the session, showed
noisier membrane responses compared to the−120 pA ZD traces
obtained earlier. This manifested as an “undershoot” of the −30
pAZD traces (see Supplementary Figure 1). After normalization
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of the traces was done, it was clear that the −30 pA ZD traces
showed a marked slowing of τm compared to both the −120
pA ZD as well as −30 pA TTX traces, the latter two being
largely overlapping. This demonstrated that in the case of the
−30 pA TTX current injection, few or no h-channels were
activated as the Vm response was nearly identical to that of
the ZD traces.

We fitted the passive membrane properties of multi-
compartment models, as well as the h-channel parameters, using
a virtual current clamp and the Multiple Run Fitter (MRF) of the
NEURON simulation environment (Hines and Carnevale, 2001).
The −120 pA ZD traces (or TTX traces for fitting h-channels)
for each cell were used as the experimental recording for which
the models’ Vm trajectories needed to match in response to
−120 pA virtual current. During use of the MRF in NEURON
for the passive property fitting procedure, certain regions of
the traces were discounted from fitting, such as the first 500
ms portion so that initial model transients did not affect the
fitting. Furthermore, because the charging portion of Vm was
very short—on the order of 100 ms—it was given a greater
weight value (10X) compared to the rest of the trace, in the
MRF. For fitting passive responses, typically only the initial
portion of the steady-state response during the hyperpolarizing
current clamp step was used for fitting, that is, about 50–60
ms after the charging portion was completed. This was because
for some cells, a small depolarization was present even under
ZD7288 block, which could have been due to noise or the
presence of another, unidentified inward current that was not
blocked. For cells where no such depolarization was present,
the entire current membrane trace during the current clamp
step was used for fitting. Additionally, approximately 1 second
of the trace after the current clamp step was completed was
used for fitting for each cell, to ensure the model’s response
to the release from the current clamp was captured. When
fitting with h-channels, the entire steady-state response was used
for fitting the model parameters, but with 10X higher weights
assigned to the charging portion of Vm portions of the trace,
as when doing the passive fitting. Also, when fitting the h-
channel parameters in the model using the TTX traces, the post-
inhibitory rebound portion of the experimental traces were also
considered during the fits. An exception was for Cell 3 where the
post-inhibitory rebound region was not included, since for this
cell model, no appropriate fits of h-channel parameters that could
also adequately capture the sag response could be found (see
section Discussion).

In summary, the duration of the experimental recordings is
from 0 to at least 5,000 ms, with the current clamp step starting
after one second for two seconds, i.e., from 1,000 to 3,000 ms.
Model traces from 500 to 5,000 ms were used in the MRF for
fitting both passive and Ih parameters.

Passive Membrane Model and Experiment
Comparisons
Input resistance (Rin) in the passive models computed using
a current clamp protocol of −120 pA, i.e., the same protocol
used to fit the passive properties, is given by values of Vm taken

at the start and end of the current clamp step: Rin=(Vstart −

Vend)/(120pA). Using experimental−120 pAZD traces, the input
resistance is also computed. These computed values are: Rin
(M�) (passive model) = 411 (Cell 1), 332 (Cell 2), and 550 (Cell
3); Rin (M�) (expt with ZD7288)= 363 (Cell 1), 326 (Cell 2), and
531 (Cell 3).

We note that for the comparison of membrane time constants
(τm) of the OLM cells used to the models, we fitted exponential
curves to the charging portion of Vm for each cell at various
time points of the recording session using a nonlinear least
squares regression (see above). The amplitude of the traces were
normalized at the time point at which depolarizing responses in
the TTX traces due to Ih cause the membrane potential to deviate
from the (putatively) passive response under the ZD traces. The
fitted values are: τm (ms) (using −30 pA TTX trace) = 32.8 (Cell
1), 29.1 (Cell 2), and 40.5 (Cell 3). τm (ms) (using −120 pA ZD
trace) = 32.3 (Cell 1), 33.8 (Cell 2), and 39.3 (Cell 3). Cell 1
in particular exhibited a very good match between the −30 pA
TTX and −120 pA ZD traces. We also fitted the membrane time
constant for the models, using a −120 pA current clamp step in
the models without Ih included. Resulting Vm traces were fit in
the same way as the experimental traces, except that the Vm data
points were weighted by the relative time step of integration in
the NEURON simulations such that data points in the Vm vector
closely spaced in time would be weighed less. This ensured that
the fit was not disproportionately weighed by the early, rapidly
changing charging portion with many more data points. The
fitted values are: τm (ms) (passive model) = 30.4 (Cell 1), 27.4
(Cell 2), and 36.4 (Cell 3).

Mathematical Equations for the Current
Due to H-Channels
The specification of the current for h-channels, Ih, was taken
from our previous work (Lawrence et al., 2006; Sekulić et al.,
2014). However, the kinetics for activation and deactivation,
the steady-state activation curves, and the conductance densities
were defined on a per-cell basis in the present work. This
required moving the relevant variables in the Ih MOD-file into
the PARAMETER block to allow per-cell configuration in the
NEURON code.

The conductance-based mathematical formulation used to
represent current flow through h-channels is given by:

Ih = Gh · r (V − Eh) (1)

dr

dt
=

r∞ − r

τh
(2)

r∞ =
1

1+ exp
(

V−V1/2

k

) (3)

whereGh is themaximal channel conductance for the h-channels,
r is the activation variable, Eh is the h-channel reversal potential,
r∞ is the steady-state activation, k is the slope of activation and
V1/2 is the potential of half-maximal activation of Ih, τh is the
time constant of activation, V is the membrane potential, and
t is time. The voltage dependence of τh is given by a double
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exponential expression with parameters t1, t2, t3, t4, t5 as follows:

τh(V) =
1

exp(−t1 − t2V)+ exp(−t3 + t4V)
+ t5 (4)

Extraction of H-Channel Characteristics
From Voltage and Current Clamp Traces
Given our experimental protocol (see Table 1), we were able
to obtain h-channel current (Ih) reversal potentials, activation
kinetics, and steady-state activation for each of the three
chosen cells.

Reversal Potential
To obtain the reversal potential for Ih, we first removed the leak
components and capacitive transients from the voltage clamp
recordings in order to isolate the Ih components. This was
done by taking the traces obtained by the reversal potential
protocol (step #6 in Table 1) and subtracting from them
the capacitive response generated by an equivalent magnitude
voltage clamp deflection from the Ih activation protocol with
ZD7288 application (step #8 in Table 1), resulting in Ih tail
currents (see Supplementary Figure 2). The traces were then
smoothed using the rloess smoothing function in MATLAB,
which performs local linear regression over a window, using
weighted linear least squares. The smoothing window was set to
25 ms so that only noise in the recordings was removed, and not
time-dependent changes attributable to ion channel currents.

To create the current-voltage (I–V) plot, a fixed time point
after the capacitive transient ended was determined by eye, which
allowed us to obtain the time point of maximum deflection after
the voltage clamp step (Magee, 1998; Molleman, 2003). We refer
to this as the “fixed” time point for determining the I–V plot.
The validity of this technique relies on the assumption that the
maximal number of h-channels are still open by the time the
capacitive transient is abolished, so that the resulting current
does not depend on changes in the conductance, only on the
driving force. The fact that Ih deactivates slowly means that this
assumption is likely to be a safe one. However, to account for
the possibility of early channel closure, a second method for
extracting the current values and constructing an I–V plot was
used. This consisted of fitting single exponential functions to the
time course of the decay of current upon the step relaxation
of the voltage clamp, which is used primarily to determine
the voltage-dependent time constants of deactivation. The fitted
exponential functions were then evaluated at the time of the
relaxation of the voltage clamp step. In this way, we could deduce
the amount of current that is masked by the capacitive transient
by extrapolating the value from the exponential functions that
were fitted on the non-capacitive portions of the current trace.
That is, the functions were fitted to a window corresponding
to the fixed point as the start time, and the end of the voltage
clamp step as the end time. We refer to the current values
and resulting I–V plot as the “extrapolated” method. We note
that the smoothed traces were only used for the fixed method
so that noisy fluctuations in the current traces did not unduly
influence the resulting I–V plot; however, for the extrapolated
method the exponential functions were fitted using the original,

non-smoothed subtracted traces. The current traces with fitted
exponentials are shown in Supplementary Figure 2, and I–V
plots for both fixed and extrapolated methods are shown in
Figure 2B. The resulting reversal potential (Eh) values for each
cell were determined by fitting a first-order polynomial to the
linear portion of the I–V curve only. For Cell 1 and Cell 2, the
linear portion of the extrapolated I–V curve overlapped with the
fixed I–V curve, and the resulting Eh values were similar between
the two methods. For these cells, we therefore took Eh from
the extrapolated I–V curves. For Cell 3, however, the capacitive
transients disrupted the response and affected the fitting so that
the extrapolated I–V values did not exhibit as strong of a linear
relationship as the fixed I–V values. One possible explanation for
the distorted (non-linear) measurements of I–V values with Cell
3 is that the current traces for Ih deactivation, from which the
reversal potential I–V plots were determined, did not match fully
between the control case (with only TTX/4-AP/TEA blockers)
and the later protocol with the Ih blocker ZD7288, due to the
effects of noise. Thus, the subtraction of the two to remove the
leak components introduced some distortion in the resulting
current traces. As a result, although the resulting Eh values
between extrapolated and fixed points were similar, we took
Eh for Cell 3 from the fixed I–V curve instead, to minimize
possible error from using the line fitted with only 4 out of the
8 possible I–V datapoints (Figure 2B, Cell 3). The resulting Eh
values for all cells are given in Table 3. These values are in general
agreement with literature values of Ih reversal potentials in OLM
cells (Maccaferri and McBain, 1996).

Voltage-Dependent Time Constant of Activation and

Deactivation and Steady-State Activation
To obtain the time constants of activation/deactivation for Ih
(τh) we used the recordings where a voltage clamp protocol
with an initial clamp at a holding potential was then stepped
to various hyperpolarized potentials, measuring the resulting
transmembrane current (#3 in Table 1). The identical protocol
was then performed with the Ih-specific blocker ZD7288 (#8
in Table 1). Using this data, we subtracted the ZD7288 traces
from the control traces to isolate Ih for the activation time
constants. Then, single exponential functions were fitted to the
time-varying change in current upon each voltage step. Ih showed
no voltage-dependent inactivation. To obtain the deactivation
time constants, single exponential functions were fitted to the tail
currents as obtained above (in the Reversal potential section).
To construct the curve of voltage-dependent activation and
deactivation kinetics, the time constants of activation were
combined with the deactivation time constants obtained from the
tail currents (see Supplementary Figure 2).

The time course of activation and deactivation was then
described using a double exponential function of the form
given by Equation (4) in section Methods, with parameters
t1, t2, t3, t4, t5 to be fit. Fitting of the double exponential functions
was done using a nonlinear least squares fit in MATLAB.
However, due to the method of leak subtraction, some noisy
differences in the capacitive transients between the two traces
used in the subtraction may have overlapped with the initially
observable Ih deactivation kinetics in the short time window
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upon current clamp release (see Supplementary Figure 2A).
Accordingly, many of the deactivation time points were clear
outliers and thus not reasonable measures of Ih deactivation,
and these were not included in the fitting. All of the data
points (including those not included in the fitting are shown in
Supplementary Figure 3A). The resulting fitted values for the
voltage-dependent time constant of activation and deactivation
are given in Table 3 and plotted in Figure 2C. We note that
the shape of the time constant of activation function is roughly
similar across the three cells, with particular overlap between Cell
1 and Cell 2. In all three cases, the slowest component of the time
constant activation function is around 300 ms, whereas the fast
component is less than 100 ms for all three cells.

Steady-State Activation
The steady-state activation curves, r∞, for the OLM cells were
constructed by measuring the current amplitude in the ZD7288-
subtracted traces at the end of each step of the voltage clamp
protocol for Ih activation (see Supplementary Figure 2). The
current at each voltage step was plotted and normalized to the
greatest recorded current value which for h-channels is at the
most hyperpolarized range. Then, a Boltzmann function for
r∞ (Equation 3) with parameters V1/2 for the voltage at half-
activation and slope factor k for the steepness of the sigmoidal
curve, was fitted to each cell’s voltage-dependent activation data.
The fitted values are given in Table 3, and the resulting activation
curves for the three cells are shown in Figure 2D.

Maximal Conductances
To determine the maximal conductance for Ih, Gh, we used the
tail currents from the reversal potential step protocol as this
corresponded to the point in time when Ih was fully activated
(Magee, 1998; Dougherty et al., 2013). These currents were thus
measured when all h-channels are opened, and thus describe the
ratio of maximum current to voltage needed to obtain I-V plots
for determining Gh (Molleman, 2003). The slope of the linear
portion of the I–V plot for the tail currents, with the reversal
potential as origin (denoting zero current flow), was used as
the measure of Gh. As described above, a line was fitted to the
linear portion of the I–V plots for all three cells to determine the
reversal potential. The slope of the line gives Gh and the resulting
values for the three cells are given in Table 3. When scaled by the
surface area, we obtain an Gh as a conductance density that is
used in the model code.

Full Spiking Multi-Compartment Model
Optimizations
In creating full spiking models, we used the final passive
model backbone with h-channels in the dendrites, and used
the same complement of ion channel types that had been used
in previous instantiations of the OLM cell model (Lawrence
et al., 2006; Sekulić et al., 2014). The equations used are all
given in the Appendix of Lawrence et al. (2006). They include
transient sodium, fast and slow delayed rectifier potassium, A-
type potassium, M-type, T- and L-type calcium, and calcium-
dependent potassium channels. Their conductances in soma
(s), axon (a), or dendrites (d) are represented respectively

as GNaT ,GKdrf ,GKdrs,GKA,GM ,GCaT ,GCaL,GKCa as given in
Supplementary Table 2.

In our optimizations, we allowed GNaT ,GKdrf ,GKdrs to vary
independently in the soma, dendrites, and axon, and we also
allowed the sodium channel to have some flexibility by allowing
alterations in its voltage dependency, i.e., introducing a free
parameter, Vshift that could change by ± 7 mV. Note that soma,
dendrites, and axon each have an independent Vshift parameter,
but the Vshift value remains the same across forward and
backward rate activations and inactivations such that activation
and inactivation curves shift by the same amount and the
“activation/inactivation window” stays constant. Except for the
inclusion of Vshift , the activation and inactivation equations
underlying the sodium current are the same as used previously
(Lawrence et al., 2006), and as based on experimental data of
Martina et al. (2000). For completeness, the equations for the
sodium current, INaT , are shown below:

INaT = GNaT ·m3h (V − Eh) (5)

dm

dt
= αm(1−m)− βmm (6)

dh

dt
= αh(1− h)− βhh (7)

where, for somatic compartments,

αm(V) =
−0.1(V + 38− Vshift)

exp(−(V + 38− Vshift)/10)− 1
(8)

βm(V) = 4 exp(−(V + 63− Vshift)/18) (9)

αh(V) = 0.07 exp(−(V + 63− Vshift)/20) (10)

βh(V) =
1

1+ exp(−(V + 33− Vshift)/10)
(11)

and for dendritic and axonal compartments,

αm(V) =
−0.1(V + 45− Vshift)

exp(−(V + 45− Vshift)/10)− 1
(12)

βm(V) = 4 exp(−(V + 70− Vshift)/18) (13)

αh(V) = 0.07 exp(−(V + 70− Vshift)/20) (14)

βh(V) =
1

1+ exp(−(V + 40− Vshift)/10)
(15)

Optimization Approach and Parameter Details
For the optimizations, we did the following:

1. Performed multi-objective optimizations using the
BluePyOpt module in Python (Van Geit et al., 2016)
and high performance computing resources via the
Neuroscience Gateway (Sivagnanam et al., 2013) to find
ion channel conductances in order to minimize the error
across multiple features in the electrophysiology (see
Supplementary Table 3).

2. Fine-tuned the parameter ranges and objectives to avoid
areas of the parameter space that generate undesirable results
and keep re-doing the optimizations using this approach
until the top models consistently generate appropriate
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electrophysiologies. The parameter ranges used that produced
the final models are shown in Supplementary Table 2.

During the optimizations, the fitness for each model is quantified
as the sum of the number of standard deviations away from
the experimental target efeature values and as such, is a unitless
quantity. Standard deviation values (Supplementary Table 3) are
chosen manually in order to weight each efeature (i.e., since
we are fitting each model to a single voltage trace, there is no
standard deviation that can be derived from the experimental
data). Note that because the standard deviation values are chosen
manually, choosing smaller standard deviation values to weight
specific efeatures will increase the magnitude of the fitness values
since this increases the number of standard deviations away from
the target value. As such, since we used small standard deviation
values, this caused the fitness values of the model to artifactually
be quite large. The top five optimized models for Cell 1 and Cell 2
are presented in Figure 6A and Supplementary Figure 4. Their
fitness values are: (Cell 1: 411.53, 425.38, 430.68, 430.93, 438.65;
Cell 2: 660.96, 665.49, 669.06, 678.58, 684.60).

In order of model rankings (i.e., [1st,...,5th]), the values below
are the Vshift parameters (in mV) for the top five full spiking
models (see Figure 5C to see the resulting voltage-dependencies).
Cell 1:
Vshift,s = [−4.83,−6.55,−6.70,−6.46,−6.68],
Vshift,d = [4.85, 6.37, 3.71, 2.86, 4.17],
Vshift,a = [2.49, 2.82, 2.84, 5.70, 2.82].
Cell 2:
Vshift,s = [−4.36,−4.69,−4.88,−4.36,−4.36],
Vshift,d = [−1.26,−1.12,−0.54,−1.46,−1.41],
Vshift,a = [6.57, 6.57, 6.30, 6.57, 6.57].
After performing several optimizations and adjusting the
parameters to improve the optimization outputs, we used the
following optimization parameters for both models: Number of
Offspring = 100, Number of Generations = 200, Mutation Rate
= 0.15, Crossover Rate = 0.85, Eta (i.e., learning rate) = 0.5,
Optimizer= “IBEA,” Random Seed= 61 (Cell 1) and 9 (Cell 2).

All of the objective features that were used in the optimization
are listed in Supplementary Table 3, and the parameter ranges
are given in Supplementary Table 2. Features 1–10 were used
for the +30, +60, and +90 pA current injection protocols.
Features 11–12 were only used for the +60 and +90 pA current
injection protocols, since the +30 pA current injection did not
always generate a sufficient number of spikes for those features
to be calculated. Since we were fitting the models to single
current injection traces, standard deviation values were chosen
manually for each objective feature, in order to weight each
objective feature by hand. Since standard deviation is used in
computing the fitness for each model (i.e., fitness is quantified
as the sum of the number of standard deviations away from the
experimental target efeature values), manipulating these values
offered a way to weight particular target measurements. More
specifically, we initially chose standard deviations that were 1–
2 order of magnitudes smaller than the largest significant digit
for each measurement. For example, AP_duration_half _width in
the somatic area of a neuron is usually a small value between
0.5 and 2 ms, and we used a standard deviation of 0.01 ms for

this efeature. If the optimization ended up under-performing
on any specific efeature measurements, we would sometimes
attempt to improve it by using smaller standard deviation values
for those measurements. Though this had some mild effects on
improving the optimizations, constraining the free parameter
ranges ended up showing much better improvements in the
optimization results. We also added a heavy penalization on
models that generated spikes during the baseline periods. Finally,
in order to make BluePyOpt compatible with the OLM cell
model compartmentalization, we adjusted BluePyOpt’s method
for compartmentalization such that it uses the dλ rule (Hines and
Carnevale, 2001).

To check if axonal properties were appropriate for what
is known experimentally (Martina et al., 2000), we performed
simulations with our final optimized spiking models of Cell 1
and Cell 2 to investigate morphological sites of action potential
(AP) initiation. Specifically, Martina et al. (2000) previously
showed that depending on whether a short high-intensity current
or a long low-intensity current was injected into the soma,
an AP would occur initially in the soma or axon-bearing
dendrite, respectively. For both models of Cell 1 and Cell 2,
short high-intensity current evoked action potential initiation
in the soma, but long low-intensity current evoked action
potential initiation in axon-lacking dendrites. This suggests that
specialized distributions of spike-initiating channels are missing
in the axon of the model and are necessary for correctly setting
the action potential initiation site. Given that OLM cell axonal
channel properties are unknown, we did not venture further into
specializing axonal properties in our models.

RESULTS

YFP-Positive Stratum Oriens Interneurons
From SOM-Cre/Rosa26YFP Mice Contain a
Population of OLM Cells
Patch-clamp recordings from 45 SOM-YFP neurons in the
stratum oriens of SOM-Cre/Rosa26YFP mice were obtained
using a detailed protocol as given in Table 1. Of these recordings,
11 of them met criteria for stability (see section Methods)
and were morphologically confirmed as OLM interneurons,
having horizontal cell body and dendrites confined to the oriens
layer, and perpendicularly projecting axons which ramify in
the lacunosum/moleculare layer. An analysis of these 11 cells
is given in Table 2 in which the experimental data analysis
was performed as in Yi et al. (2014). From these 11 OLM
cells, three (Cell 1, Cell 2, Cell 3) were chosen for subsequent
detailed analyses and computational model creation. Their
specific properties are given in Table 2. Morphological and
electrophysiological characteristics for these three OLM cells are
shown in Figures 1A–L.

SOM-YFP stratum oriens interneurons mice had slow
membrane time constants and relatively high input resistances,
in accordance with our previous study (Yi et al., 2014). Action
potential half-widths were larger and membrane time constants
were slower than previously reported for YFP neurons from
PV-CRE/Rosa26YFP mice, consistent with the exclusion of
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TABLE 2 | Passive and active properties of OLM cells from SOM-Cre/Rosa26YFP

mice.

Property SOM-YFP (n = 11) Cell 1 Cell 2 Cell 3

Rin (M�) 314.3 ± 33.8 360.1 259.0 490.2

Cm (pF) 107.1 ± 13.0 62.8 123.7 79.6

Sag ratio (SS/peak) 0.89 ± 0.03 0.70 0.84 0.74

τm (ms) 31.1 ± 2.5 22.6 32.0 39.0

Ihold (pA) 3.4 ± 4.8 2.7 −2.8 2.5

First AP half-width (µs) 595.1 ± 26.4 617.2 551.2 691.6

First AP height (mV) 66.0 ± 2.7 69.3 61.4 67.7

Adaptation coefficient 0.5 ± 0.1 0.41 0.61 0.49

Frequency at 90 pA (Hz) 15.5 ± 2.1 20 19.5 8

Frequency at 60 pA (Hz) 8.3 ± 1.5 12.5 11.5 3

Frequency at 30 pA (Hz) 2.1 ± 0.8 4 1 1

Values are presented as means ± SEM. Rin, input resistance; τm, membrane time

constant; AP, action potential; Cm, membrane capacitance; SS, steady state; Ihold , the

current injected to hold the recorded cell at −60 mV (not junction potential corrected).

Passive properties were extracted at a current injection of−60 pA. Active properties were

extracted at a current injection of 90 pA, unless otherwise specified. APs were detected at

a derivative threshold of 20 mV/ms. The adaptation coefficient was calculated by dividing

the first inter-spike interval by the last inter-spike interval of the AP train during current

injection of 90 pA.

PV-positive basket and bistratified cells from this population.
Moreover, this population had considerable hyperpolarization-
induced sag, which, when combined with their higher input
resistance, is considered a hallmark feature of OLM cells
(Maccaferri and Lacaille, 2003).

Multi-Compartment OLM Cell Models
Capture Corresponding Passive
Responses
We used the NEURON simulation environment (Hines and
Carnevale, 2001) to develop our multi-compartment models.
Figures 1A–J shows representative confocal images of the
three cells, with the reconstructed cell morphologies shown in
Figures 1C–K, paired with electrophysiological OLM cell profiles
featuring hyperpolarization-induced sag. Details of the model
reconstructions are given in section Methods.

To capture the passive response of the three cells we used
the 2 s-long −120 pA current clamp traces in which all synaptic
and voltage-gated channels were blocked. This choice was made
because we found that the −30 pA traces were noisier in
general (see Figure 2A, top panels), and the −120 pA traces
best captured the passive response of the cells. This can be seen
from a comparison of the membrane time constants (τm) for
different current clamp steps (see Figure 2A, bottom panels) and
consideration of the protocol ordering of the recording session
as in Table 1. Time constants were obtained by quantitatively
fitting single exponential equations to the Vm responses from
the time point of the onset of the hyperpolarization current
clamp step (1,000 ms) to the point at which the steady-state of
the Vm response was approximately achieved (Figure 2A, top
panels).We refer to “TTX” and “ZD” traces as those with blockers
given respectively by steps #4 and #7 in Table 1. For all cells,

τm for the −30 pA TTX trace was most closely matched by the
−120 pA ZD trace (dashed red line), with the subsequent ZD
traces (−90, −60, and −30 pA) exhibiting an increased, and
hence slower, membrane response (Figure 2A, bottom panels).
The fact that the −120 pA ZD trace exhibited a similar response
as a current injection of one quarter magnitude and without h-
channels being blocked (i.e.,−30 pA TTX) indicated that in both
cases, the response of the membrane was mostly passive. Thus,
given the lower signal-to-noise of the −30 pA ZD traces, we
considered that the passive properties obtained using the −120
pA ZD traces would be better representations of the electrotonic
features of the experimental cells. Further details are provided in
section Methods.

To confirm that the −120 pA ZD traces led to better fits
of the cells’ passive properties, we compared the fits obtained
using −120 and −30 pA ZD traces. The resulting fitted passive
parameters of axial resistivity (Ra), specific capacitance (Cm),
leak conductance (Gpas), and leak reversal potential (Epas)
are displayed in Supplementary Table 1. For each cell, the
cumulative root-mean-square error (RMSE) across all traces used
for each fit was lower when the −120 pA ZD trace was used
for fitting the passive properties (Supplementary Table 1, left
column for each cell). These parameters with the respective cell
morphologies form the “backbone” of the OLM cell models, and
there was a favorable comparison of input resistances and time
constants between model and experiment (see section Methods
for details). We noted that the Cm’s obtained from our model fits
were lower than the ≈ 0.9–1µF/cm2 that have been previously
reported as a “standard” value in mammalian neurons (Gentet
et al., 2000). To consider potential errors in dendritic estimations
due to tissue shrinkage, swelling and other limitations, we did
a simple dendritic scaling check as described in Appendix 1
(Supplementary Material), that provided support for these low
capacitance values.

OLM Cell Multi-Compartment Models With
Constrained Passive Properties and Added
H-Channel Models Do Not Match
Experimental Recordings
We use a standard conductance-based formalism to represent
the ionic current due to h-channels (Ih), and we obtain Ih
parameter values as fits to the experimental data for each of
the three cells (see section Methods). The parameters extracted
from each of the OLM cells in this work included the Ih
reversal potential (Eh), the time constants of activation and
deactivation of Ih (τh), the steady-state activation curve of Ih
(r∞), and the Ih maximum conductance density (Gh). They
are plotted in Figures 2B–D and parameter values are shown
in Table 3. These h-channel models are added to our OLM
cell multi-compartment models’ “backbone” of morphological
reconstructions and passive property fits.

We demonstrated in our previous work that OLM cell
models exhibited a tradeoff between total membrane Gh and
the dendritic distribution of h-channels so that if the total Gh

was conserved, the resulting model output would be appropriate
(Sekulić et al., 2015). Now, for the first time, we have a measure
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FIGURE 1 | Morphological and electrophysiological properties of OLM interneurons. Anatomical and electrophysiological properties of three OLM cells: (A–D) (Cell 1),

(E–H) (Cell 2), and (I–L) (Cell 3) are shown. (A) Low magnification confocal image of the hippocampus showing Cell 1 localized within CA1. Dashed square in (A)

(Continued)
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Sekulić et al. Novel OLM Cell Models

FIGURE 1 | indicate boundaries of higher resolution images in (B). (B) Expanded view of Cell 1 localized to the stratum oriens layer of CA1. (C) Reconstructed

morphology of Cell 1, (D) Voltage responses to a family of 2 s-long current hyperpolarizing (black; −90, −60, −30 pA) and depolarizing (light gray; +90, +60, +30 pA)

current steps from −73 mV for Cell 1. Synaptic blockers were present (see section Methods). Hyperpolarization-induced sag is evident upon introduction of the −90

pA current step. Cell 2 and Cell 3 are shown in (E–H,I–L), respectively.

of total Gh. Thus, a key prediction for the resulting multi-
compartment models is that the total Gh will constrain the
distribution of h-channels to allow the models to appropriately
capture the OLM cell electrophysiological characteristics. To
consider this, we added an additional parameter to our models
termed Hdist , which is defined as the centripetal extent for
which h-channels are inserted in the dendrites. It is defined
by a real-valued number in the range of [0, 1] and represents
the fraction of maximum dendritic path length from the soma
on a per-cell basis. Compartments with a path length from
the soma that was smaller than any given Hdist value were
included when subsequently inserting h-channels, whereas those
compartments whose distance from soma exceeded Hdist were
excluded. The boundary condition of Hdist = 0 is defined as the
case where h-channels are only present in somatic compartments
and not present in the dendrites. A non-zero value for Hdist

meant that the amount of dendrite specified by Hdist itself had
h-channels in addition to the somatic compartments. Hdist =

1 refers to full somatodendritic presence of h-channels, i.e.,
uniform distribution in the dendrites and soma. The per-cell
Ih parameters were inserted into each of the three models
and two cases of Hdist were initially considered to test the
boundary cases: either no dendritic h-channels (Hdist = 0) or full,
uniform distribution of h-channels in the dendrites (Hdist = 1).
The resulting h-channel conductance density was calculated by
dividing total Gh by the resulting surface area of only somatic
or somatodendritic compartments. These values and the other h-
channel parameters are given in Table 3. The model outputs were
fitted to experimental traces similarly as in the case with passive
properties and ZD traces (see section Methods). The Vm output
of each of the three models being developed here, with boundary
conditions ofHdist = 0 or 1 for the case of−120 pA current clamp
injection, compared to the experimental TTX trace for each cell,
is shown in Figure 3A. It is clear that these models do not fully
match the experimental traces. Although we did explore Hdist

values that were between 0 and 1 (not shown), it is clear that
given the fits shown in Figure 3A, it is unlikely that changing
Hdist to a value between 0 and 1 would improve the fits to the
experimental data.

A Staggered Re-fitting Procedure Yields
Consistent and Generalized Model Fits for
OLM Cells With Dendritic H-Channels
Given the sub-optimal match of our models with the
experimental data, even with model parameters determined
from experiment on a per-cell basis, we considered the possibility
that one or more of the parameters were mismatched between
the experimental cells and the parameter values derived from
the recordings. We considered re-fitting the various parameters
in the model to ensure that Ih and passive parameters resulted
in correct output for each cell. However, due to the sheer

number of parameters present in the model, care needed to be
taken in how the parameters were adjusted as there are many
interdependencies between the fitted parameters. For instance,
when Ih is present, the trajectory of the Vm response upon a step
of hyperpolarizing current in a cell depends not just on Cm and
Ra, but also on the time constants of activation and deactivation
of h-channels (τh) and, to a degree, the h-channel steady-state
activation curve (r∞). Therefore, if there is error in the model
Vm response compared to the experimental trace in this portion
of the trace (Figure 3A), the mismatch between model and
experiment may have been either due to the passive parameters,
or due to τh or Gh, which gated by the activation, determines the
amount of Ih. The problem, then, is how to attribute errors in
any particular portion of a Vm trace to any given parameter in
the model.

We noted that the initial mismatch in the case of Hdist=1
and for Cell 1 and Cell 2 seem primarily to be located in the
initial hyperpolarizing phase and the sag portion (see Figure 3A).
Because the τh functions were constructed using a limited set
of data, it was reasonable to suppose that a large source of
mismatch in this portion of Vm could be due to errors in the τh
function itself. We thus re-fitted the parameters for τh, namely
t1, t2, t3, t4, t5 for all three cells, against each respective −120
pA TTX trace and then compared the models’ responses to the
other current clamp steps to see how much of the error could
be accounted for by re-fitting τh alone Figure 3B shows how
the −120 pA τh re-fit parameters compares to the −90 pA TTX
trace for each cell. This re-fitting of τh alone could not address
the mismatch in Vm between model and experiment although it
may have played some role, as evidenced by improving the match
in Vm in some cases. Thus other parameter re-fitting needed to
be considered.

We adopted the following approach and rationale. Since the
passive properties were not as tightly constrained as the Ih
properties, and could account for some of the mismatch in both
the transient and steady state portions of the traces, we re-
fitted them first. That is, Ra, Cm, Gpas, Epas. Turning to the Ih
properties, we first re-fitted the total Gh, which determines the
per-compartment conductance density, as well as the steady-state
activation curve r∞ since it determines the voltage dependency of
how many channels are open. We could not fit Gh and r∞ in the
reverse order because any error in Gh—that is, how Ih scales with
voltage when all channels are opened—could be accounted for by
refitting r∞ by “flattening” it, thus lowering the total number of
channels that are open at any given voltage. This would not be
physiologically correct since the model would then imply that Ih
is never fully activated, i.e., r∞ does not reach unity. Thus, by re-
fitting Gh first, followed by r∞, we increased the likelihood that
r∞ did not diverge too much from the experimental data points
obtained from the protocol for Ih activation. Finally, we re-fitted
τh. If the passive properties and steady-state Ih due to Gh and r∞
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FIGURE 2 | Extracted passive and Ih properties of OLM cells from experiment. (A) (Top) Membrane potential (Vm) normalized at steady-state, showing noisier

responses of −30 pA ZD trace compared to the −120 pA ZD trace. (Bottom) Fitted membrane time constants (τm) for all current clamp steps with ZD7288

application, as well as the −30 pA TTX trace. “ZD traces” are those in which synaptic and voltage-gated currents are blocked including h-currents with ZD7288

application, and “TTX traces” are the same except that h-currents are not blocked (protocols #7 and #4, respectively in Table 1 of section Methods). (B) Ih reversal

potential as determined from current-voltage obtained from tail currents. See section Methods for difference between “extrap” and “fixed” values in plots and further

details. (C) Time constants (τh) or kinetics of activation and deactivation as determined from voltage clamp experiments. (D) Steady-state activation curves (r∞) as

determined from voltage clamp experiments. See section Methods for details.
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TABLE 3 | Computed Ih parameter values obtained from fits to experimental data

with computed conductance densities for somatic or somatodendritic

distributions.

Parameter Cell 1 Cell 2 Cell 3

Eh (mV) −34.0 −27.9 −25.2

V1/2 (mV) −103.4 −100.1 −111.3

k (slope factor) 8.63 11.16 6.88

t1 (ms) 8.03 8.98 35.09

t2 (ms) 0.025 0.035 0.24

t3 (ms) −4.40 −8.49 −4.28

t4 (ms) 0.15 0.19 0.088

t5 (ms) 7.32 ×10−6 3.57 ×10−7 69.72

Total Gh (nS) 4.17 3.64 2.20

Gh (pS/µm2), Hdist = 0 0.546 0.279 0.380

Gh (pS/µm2), Hdist = 1 0.142 0.104 0.120

accounted for much of the mismatch in Vm, then the last step
of re-fitting τh should allow for any mismatch due to τh to be
corrected for.

Using this approach, which we termed a “staggered” re-fitting,
we show the model outputs in Figure 3C where only the −120
pA TTX traces were used for fitting the parameters, with the
−90 pA TTX traces provided test data to validate the fits. The
results with this approach were clearly more successful than the
previous approaches, as shown by the errors in Figure 3D. By
fitting the parameters in such a way that the ones most likely to
be responsible for errors in particular portions of the mismatched
model Vm traces were fitted first, the resulting fits were now
generalizable relative to the case of either re-fitting the passive
properties alone, or re-fitting τh alone, since the staggered re-
fitted values were able to match all of the other current clamp
traces that were not used for fitting. Figures detailing this as
well as considerations of overfitting, especially the pitfall of
simultaneously adjusting all model parameters, are provided in
Appendix 2 (Supplementary Material).

All the models in the staggered re-fit were done with Hdist =

1, because that value was the one that provided the closest fit to
the experimental traces (Figure 3A) when only passive properties
were fit to the Vm traces and Ih parameter values were obtained
from the voltage clamp protocols. These staggered re-fitted values
are shown in Table 4,Hdist = 1 column. Model parameters before
staggered re-fitting can be found in Supplementary Table 1

(passive properties) and Table 4 (Ih properties). We examined
whether using Hdist = 0 and applying our staggered re-
fitting approach could also produce good, generalizable fits to
the experimental data. The models with Hdist = 0 fitted the
experimental Vm traces well in all four current clamp steps as
it did for Hdist = 1, and we show the comparison to the −90
pA TTX trace for Hdist values of both 0 and 1 in Figure 4A,
noting that the −120 pA TTX trace was used for the fitting. The
staggered re-fitted values for Hdist = 0 are also shown in Table 4.
From a comparison acrossTable 4 of parameter values forHdist =

0, 1 and original Ih parameter values fit to the experimental data
(see Table 3, it is clear that the re-fitted parameter values using

Hdist=0 are inappropriate, specifically due to total Gh differences
(experimental total Gh values from Table 3 shown in bold in
Table 4 for convenience). For the case of Hdist = 1, Gh values
are reasonably close to what was measured directly from the I–V
plot of the reversal potential experimental protocol, unlike Hdist

= 0, which exhibited Gh values that were much less than half
of the experimentally-derived values. Given that this parameter
was taken from the slope of the I–V plot, the values from Hdist

= 0, if correct, would imply that the recorded current values
were double the “true” values in the cell. This is graphically
depicted in Figure 4B. We deemed this unlikely, and concluded
that the divergence in the re-fitted Gh with Hdist = 1 compared
to the experimental case indicated a much more reasonable
error. Model Ih time constants of activation (τh) and steady-state
activation curves (r∞) for Hdist = 0,1 are shown for comparison
along with the experimental fits in Supplementary Figure 3,
lending further support for Hdist = 0 being unlikely.

Hence, the fact that it was possible to match the experimental
Vm traces using both Hdist = 0 (Figure 4A) and Hdist =

1 (Figure 3C) did not mean that they were equally valid.
The benefit of having directly measured experimental values
representing Gh, τh, r∞ from the same cell meant that we
could confidently state that models with Hdist = 0, though they
fitted the Vm traces, were not appropriate models because they
did not match the experimentally-derived values. Thus, only
when h-channels were spread into the dendrites did we find
models whoseVm responsesmatched the experimental traces and
whose total Gh and other parameter values were in reasonable
agreement with the experimentally measured values. We thus
predict that the experimental cells in the dataset used here
have h-channels expressed in their dendrites, with biophysical
characteristics as given in Table 4, Hdist = 1.

Optimized Full Spiking Models of OLM
Cells Capture Responses to Current Step
Stimuli
We have so far developed three multi-compartment models
of OLM cells with fitted passive and Ih parameter values.
The presence of h-channels in the dendrites of these models
was found to be the most appropriate distribution given the
experimental data. We now focus on two of the OLM cell
models—Cell 1 and Cell 2—and move forward to include a full
repertoire of ion channel types as used in previous OLM cell
models (Lawrence et al., 2006), thus creating full spiking models
available for use in further studies.

To do this, we optimized the parameter values (see
Supplementary Table 2 for parameters and ranges) to
depolarizing steps of the particular cell, where most voltage-
gated ion channels were expected to be activated. We used
BluePyOpt (Van Geit et al., 2016) to perform multi-objective
optimizations that provided sets of parameter values which
generated appropriate OLM cell voltage output at +30, +60,
and +90 pA depolarizing steps (#2 in Table 1), given specified
features (see Supplementary Table 3). We note that our fits
were done using the specific experimental data sets and not
to a set of experimental data with variances associated with
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FIGURE 3 | Staggered re-fitting of Ih and passive property parameters successfully captures experimental cell responses to current clamp steps. (A) Boundary

conditions of Hdist parameter [0, 1] showing inappropriate fits when putting all experimentally derived parameters together with fitted passive “backbone.” (B) Re-fitting

only τh does not provide good fits (Hdist = 1). (C) Staggered re-fitting of parameters results in good fits. Shown in (B,C) are −90 pA TTX traces which are “test” traces

not used for fitting (−120 pA TTX trace was used for fitting, not shown). (D) Root-mean-square error (RMSE) of model responses to experimental traces in the case of

traces used for fitting (top) and those for validation (bottom).

electrophysiological features. We further note that we did our
fitting using holding currents in line with the experimental
data (4 pA for Cell 1 and −5 pA for Cell 2). Further details are
provided in section Methods.

The optimized spiking model features for the top five models
relative to the experimental data are shown in Figure 5A, and
the optimized parameter values are given in Figures 5B,C.
Further details of the objective features and fitness values
are provided in the Methods. The models with the resulting
best fits are shown in Figure 6A, and the next four top fits
are given in Supplementary Figure 4. Similar outputs were
obtained in the top five ranked optimized models and all
performed well in terms of capturing electrophysiological feature
measurements (Figure 5A). Cell 2 in particular had more
difficulty with the “AHP_depth” electrophysiological feature,
which is likely because the model failed to attain a high
enough spike threshold, and thus the resulting “AHP_depths”
were too low. While we tried to encourage the models to
reach higher spike thresholds by allowing the sodium voltage

dependencies to vary as free parameters in the optimizations
(Figure 5C), in the end, the models could not fully capture
the adaptation in spike threshold that was seen experimentally
(i.e., the spike threshold appeared to increase during spiking
at higher frequencies). These top models also had similar
optimized parameter values (Figures 5B,C), though this may be
a result of over-constraining the optimizations (see approach and
parameter ranges in section Methods).

To ensure that the full spiking models did not affect the
Ih fits, we applied hyperpolarizing steps to the full spiking
models as done experimentally, and found that they were
in full agreement with the experimental data, as shown in
Supplementary Figure 5. It was expected that adding the full
set of ion channel mechanisms would not affect the model’s
ability to match the hyperpolarizing steps since the additional
currents are not active at these hyperpolarized values. This can
be appreciated by looking at the contributions from the different
currents at the different current steps using “currentscapes,” a
novel visualization technique (Alonso and Marder, 2019). As
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TABLE 4 | Final fitted model parameters using either Hdist = 0 or Hdist = 1.

Parameter Cell 1 Cell 2 Cell 3

Hdist = 0 Hdist = 1 Hdist = 0 Hdist = 1 Hdist = 0 Hdist = 1

Ra (�cm) 34.4 125.2 285.4 348.1 211.8 317.9

Cm (µF/cm2) 0.20 0.27 0.37 0.38 0.52 0.58

Gpas (S/cm
2 ) 7.36 × 10−6 7.58 × 10−6 1.16 × 10−5 1.19 × 10−5 8.26 × 10−6 8.68 × 10−6

Epas (mV) −64.0 −64.6 −61.5 −61.8 −75.7 −76.1

Eh (mV) −34.0 −34.0 −27.9 −27.9 −25.2 −25.2

V1/2 (mV) −103.1 −103.7 −100.6 −99.6 −108.4 −113.8

k (mV) 9.99 9.99 9.93 9.99 9.39 9.99

t1 (ms) 12.30 8.56 12.73 11.28 36.77 41.84

t2 (ms) 0.063 0.029 0.071 0.056 0.25 0.29

t3 (ms) −22.87 −6.91 −20.38 −19.28 −3.22 −4.03

t4 (ms) 0.39 0.18 0.36 0.34 0.084 0.089

t5 (ms) 0.026 4.35 × 10−5 3.54 × 10−6 0.006 5.69 4.29

Total Gh (nS) 1.91 3.12 0.75 2.14 0.77 1.82

(Expt) Total Gh Cell 1 = 4.17 nS

(Expt) Total Gh Cell 2 = 3.64 nS

(Expt) Total Gh Cell 3 = 2.20 nS

shown in Figure 6B it is clear that only Ih and the leak current
are active during the hyperpolarization steps, and not other ionic
currents. In fact, contributions from all other currents during
these hyperpolarization steps were minimized beyond being able
to see them on the plots and outward current can become
non-existent since the reversal potential for potassium is passed.

Taking advantage of our generated currentscapes (Figure 6B),
we were able to easily observe several features in our optimized
models. A prominent feature was the large contributions from
A-type potassium currents during both the baseline periods as
well as during spiking regime activities. Since we minimized
slow delayed rectifier potassium conductances on purpose
in order to achieve better fits (see section Methods and
Figure 5), it was not surprising that the major contribution of
outward currents during spikes was from fast delayed rectifier
potassium ones. However, it was perhaps surprising that M-type
and calcium-activated potassium currents provided such large
contributions to outward currents, despite having considerably
smaller conductances relative to the other outward ion channel
types (Figure 5). Particularly, M-type exhibited larger current
contributions during the after-hyperpolarization periods (AHP)
at higher spike rates. In terms of inward current contributions, we
did not see any observable contributions from the L-type and T-
type calcium channel types. Mostly, inward current contributions
in the spiking regimes were from sodium channels. However,
Ih provided some observable contributions during the spike
recovery periods, and also provided a larger contribution leading
up to the first spike.

We note that our goal was to obtain spiking models
that could adequately capture the data for the particular
cell, that is, starting idealized “base” models of OLM cells.
These base models should be further explored for degeneracy
and can be leveraged for additional insights and hypothesis
generationmoving forward (see sectionMethods). However, they

represent themost comprehensivemulti-compartmentmodels of
OLM cells to date, having been produced using morphologies
and electrophysiological recordings obtained from the same
biological OLM cells.

DISCUSSION

In this work, we obtained a set of recordings from OLM
cells in hippocampal CA1 that allowed us to explicitly link
morphological, passive, and h-channel biophysical parameters
within the same cell. From this set, we constructed three “next
generation” experimentally constrained multi-compartment
models of CA1 OLM cells. The models developed here are
considered “next generation” in that, unlike all previous
computational models of OLM cells (Skinner and Ferguson,
2018), we have here for the first time matched morphology and
electrophysiology to characterize h-channels on an individual
per-cell basis and, further, to constrain two full spiking models
of OLM cells. At present, it is unknown whether OLM cells
express h-channels on their dendrites. Our models predict
that h-channels are not confined to the soma, but rather are
expressed along the dendrites of OLM cells. Our models can
be used in future studies to explore the synaptic and network
consequences of dendritic h-channels on OLM cells within the
context of hippocampal microcircuit function. Importantly, our
work shows that it is possible to robustly characterize dendritic
ion channels by tight interactions between multi-compartment
model building and somatic electrophysiological recordings.

OLM Cells: H-Channels and Hippocampal
Microcircuit Operations
The existence of h-channels, mixed cation channels that
activate with hyperpolarization, has long been known since
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A B

FIGURE 4 | OLM cell models with somatodendritic h-channels, but not somatic only, appropriately capture experimental data. (A) Using a staggered re-fitting, both

Hdist = 0 or 1 are good fits to the experimental data. Note that the −90 pA TTX traces are “test” traces and were not used for fitting (−120 pA TTX used for fitting),

Hdist = 0 or 1. (B) Hdist = 1 is clearly more appropriate than Hdist = 0 relative to the experimental data as shown in plotting I–V curves.

first discovered as “funny” currents in the heart (Brown
et al., 1979), and in the CNS, they contribute to maintenance
of the resting membrane potential, pacemaking ability, and
synaptic integration (Magee, 1998; Lörincz et al., 2002; Biel
et al., 2009). The contribution of h-channels in pyramidal
cells to subthreshold resonance and spiking output features
in hippocampus and cortex has been much studied (Santoro
and Baram, 2003; Biel et al., 2009; Zemankovics et al., 2010;
Narayanan and Johnston, 2012). In particular, it is known that
the distribution of HCN1-containing channels increases from
soma to distal dendrite and as such, have been shown to control

the temporal summation of synaptic inputs from dendrites to
soma (Magee, 1998; Vaidya and Johnston, 2013). However, h-
channels in cerebellar Purkinje neurons are uniformly distributed
in their dendrites and do not strongly affect temporal summation
to the soma (Angelo et al., 2007). For interneurons, and
OLM cells in particular, it is known that they express HCN
channels, as seen by a large sag upon hyperpolarization
(Maccaferri and McBain, 1996).

H-channels in OLM cells have been implicated in pacemaking
and oscillatory activities of the hippocampus (Maccaferri and
McBain, 1996; Gloveli et al., 2005), and theta (4–12 Hz) rhythms
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A

B

C

FIGURE 5 | Optimized spiking model features and parameters. (A) Measurements of objective e-features for each of the top five optimized models (shades of green)

during the +30, +60, +90 pA current injection steps. Each number on the x-axis corresponds to an e-feature. For corresponding e-feature names and descriptions,

see Supplementary Table 3. The corresponding target values obtained from the experimental data are shown as blue dots. (B) Optimized conductance values in the

top five spiking models. (C) Voltage-dependency of somatic, dendritic, and axonal sodium channels were allowed to shift during the optimizations. Here we show the

resulting voltage-dependent activation curves and time constants in the top five spiking models (shades of green) as compared to the activation curve used in

previous instantiations of the OLM cell model (black curves). See section Methods for specific numbers.

in particular (Maccaferri and Lacaille, 2003; Rotstein et al., 2005).
Subsequent experimental studies found that OLM cells did not
have any preferred spiking frequency response to broadband
artificial synaptic inputs (Kispersky et al., 2012). Kispersky et al.
(2012) did find, however, that OLM cells exhibited a phase-locked

spiking preference to theta frequency modulated inputs, but this
spike resonance did not depend on h-channels. However, these
frequency modulated synaptic inputs were delivered exclusively
to the soma of OLM cells via dynamic clamp technology. Using
computational model databases of OLM cells in the absence
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FIGURE 6 | Full spiking optimized OLM cell models and underlying currents. (A) The most highly ranked optimized models for Cell 1 and Cell 2 are plotted in red, and

the experimental data is plotted in blue. Model parameters were optimized using depolarizing +30, +60, and +90 pA current step recordings from protocol #2 given

in Table 1. (B) Currentscapes for top spiking models. Using −120, −90, +30, +60, and +90 pA current injection steps, the currentscape plots (Alonso and Marder,

2019) indicate the relative current contributions (i.e., the color areas in the plots) of the total inward or outward channel currents (i.e., black areas at the top and bottom

of each currentscape plot). Note that the recordings shown here are from the first dendritic compartment adjacent to the soma since calcium channels are not present

in the somatic compartment. During hyperpolarizing steps, it is evident from these plots that Ih (IH) and the leak current (IL) are the primary contributors to the

electrophysiological output. For depolarizing steps, we see the largest contributions are from A-type potassium current (IKa), fast delayed-rectifier current (IKdrf),

sodium current (INa), and calcium-dependent potassium current (IKCa), with increasing contributions from M-type current (IM) as the current step magnitude gets

larger. Slow delayed-rectifier current (IKdrs) contributes minimally.

or presence of h-channels in dendritic compartments revealed
that OLM cells modeled to be in a simplified in vivo-like
scenario could exhibit a theta frequency spiking resonance when
inputs were delivered to their dendrites (Sekulić and Skinner,
2017). We further found that a high or low theta frequency
spike resonance was possible and is respectively dependent
on whether h-channels were present in the dendrites or not
of the OLM cell models, reminiscent of Type 1 and 2 theta
rhythms in the behaving animal (Kramis et al., 1975). Our

modeling work examining dendritic distributions of h-channels
in OLM cells found that the distributions could vary so long
as total conductance was conserved (Sekulić et al., 2015), as
was also found in Purkinje cells (Angelo et al., 2007). Thus a
motivating factor in the present study was to constrain this extra
“free parameter” by obtaining direct measurements of the total
conductance in OLM cells. In doing this, we were able to show
that our OLM cell models best matched the experimental data
if h-channels are present in the dendrites. Interestingly, while
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the total h-channel conductance ranged from 2.2–4.2 nS in the
three cells that were fully analyzed (Table 4), the conductance
density in each of the three cells is about 0.1 pS/µm2, which
is the value found in highly ranked OLM cell models from
our previously developed model databases (Sekulić et al., 2014;
Sekulić and Skinner, 2017). Zemankovics et al. (2010) obtained
total conductance values averaging approximately 4 nS, which
are near the upper limit of our measurements. However, total h-
channel conductance values were obtained in OLM cells in rat,
which had a two-fold larger measured capacitance (208 pF) than
our mouse OLM cells (107 pF). Therefore, given the difference
in measured surface area between rat and mouse, our data is in
accordance with this previous study. Compared with Maccaferri
and McBain (1996) and Zemankovics et al. (2010) who obtained,
respectively, mean reversal potentials of −32.9 and −37 mV,
activation curves with mean half-activation voltages (V1/2) of
−84.1 and −97.7 mV, and slope factors (k) of −10.2 and −8.9
mV, our reversal potentials ranged from −25.2 to −34 mV, with
model V1/2 fits of −99.6 to −113.8 mV, and k of −9.99 mV
(Table 4). The voltage-dependence of the time constant yielded
fits that were different but with overlapping values for the three
cells (Figure 3C). A direct comparison of steady-state activation
and voltage-dependent time constants in previous and present
models are provided in Supplementary Figure 3C.

It has been proposed that OLM cells play a gating role (Leão
et al., 2012), akin to earlier work by Blasco-Ibáñez and Freund
(1995) who showed that “horizontal interneurons” (i.e., putative
OLM cells) could act as a switch controlling activation of local
pyramidal cells via Schaeffer collaterals or perforant path input
from entorhinal cortex. Further work has shown that OLM cells
in intermediate regions of CA1 exert a bidirectional control on
learning and memory (Siwani et al., 2018), and ventral OLM cells
control Type 2 theta rhythms and are associated with increased
risk-taking (Mikulovic et al., 2018). In a recent modeling study,
OLM cells were shown to be critical in producing a robust
intrinsic theta output (Chatzikalymniou and Skinner, 2018),
which suggests that their neuromodulation may be key to the
maintenance of theta rhythms.

In building our next generation OLM cell models using
morphological and electrophysiological data from the same cell,
we were able to robustly show, and thus predict, the presence of
h-channels in the dendrites of OLM cells. In doing this, it was
critically important that the experimental data came from the
same cell. OLM cells have been discovered to be comprised of
parvalbumin- and 5-HT3A receptor subtypes (Chittajallu et al.,
2013). With the advent of sophisticated genetic sequencing
techniques (Harris et al., 2018; Cembrowski and Spruston,
2019), additional OLM cell subtypes can be recognized. It
has been found that CA1 pyramidal cells have a continuous,
rather than discrete, variation on the longitudinal axis of the
hippocampus, indicating this as an organizational principle
(Cembrowski et al., 2016), and structural-functional correlations
are apparent for ventral, intermediate and dorsal regions of the
long axis (Fanselow and Dong, 2010). Given this observation, it
is interesting to note that Cell 1 and Cell 2 from an intermediate
CA1 region have more similar characteristics than Cell 3 which
is from a more ventral CA1 region (see Figure 2). This suggests
that hippocampal CA1 interneurons may also exhibit gradients

in channel, morphology, or physiological features along the
hippocampal longitudinal axis, although further study is needed
to verify this.

Exposing and Exploiting Limitations in
Experiments and Multi-Compartment
Model Development, and a “Cycling”
Strategy
It was initially unexpected that a model with fitted passive
properties and morphologies obtained in conjunction with
h-channel parameters extracted from the same cell did not
capture corresponding experimental voltage traces (Figure 3A).
To explain why this may be the case, some general issues
in building multi-compartment models directly from limited
experimental data need to be considered.

In an attempt to constrain as many distinct parameters
within the same cell as possible, we deliberately sacrificed depth
for breadth so that practical choices were inevitable in the
distribution of efforts. Thus the quality of the passive and h-
channel data obtained from experimentally recorded OLM cells
was not optimal. For example, there are inherent limitations to
cell stability that require rapid succession through a sequence
of experimental protocols (Table 1). In our hands, the limit
of stability was approximately 30 min. In this time, we were
able to obtain recordings, bath changes, and biocytin fills that
allowed us to do reconstructions, and obtain passive property and
h-channel biophysical properties, but having several protocols
prevented multiple sweeps of any given protocol. The I–V
relation for determining maximum conductance and reversal
potential was not always linear across all voltage steps, as
required from theoretical perspectives in themathematical model
formulations. Furthermore, there was some error associated
with fitting the Boltzmann function describing the steady-
state activation curves to all data points obtained from the h-
channel activation protocol. Indeed, due to inherent biological
variability and experimental constraints, some measure of error
is expected whenever experimental data is fitted to theoretical
or mathematical models, such as a Boltzmann function for the
activation curves, or a dual exponential function for the time
constant of activation. Accordingly, although we obtained the
requisite experimental data for fully characterizing h-channels
and fitting to mathematical models of them, we should not
expect that the resulting parameters will necessarily result in
fully appropriate cellular output when initially used. That is,
even when inserted into multi-compartment models built of
the same cells from which the h-channel characteristics were
obtained, there may be error in the resulting model’s Vm’s output
compared to that of the experimental recordings. In essence, this
is due to the accumulation of errors in estimating the various
parameters used, and is compounded with increasing number of
experimentally-constrained parameters in the model.

To overcome this, we found that an approach of a staggered
re-fitting of the parameters in the model was able to produce
generalizable results so that the Vm output could match all
of the experimental traces including those for which it was
not specifically optimized. This approach can be thought of
as correcting for errors in the procedures for extracting the

Frontiers in Cellular Neuroscience | www.frontiersin.org 20 September 2020 | Volume 14 | Article 277

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles
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parameter values from the experimental data. Having many
recordings from the same cell allowed us to do a staggered re-
fitting of model parameters that avoided overfitting and allowed
validation (see Appendix 2 in Supplementary Material), as
well as consideration of the voltage dependence of h-channel
activation time constants. It may be possible to use more
sophisticated optimization schemes to obtain generalized fits, but
the challenge of fitting detailed multi-compartment models with
many parameters to experimental data is recognized, and has
led to use of two-stage fitting processes (Roth and Bahl, 2009;
Hay et al., 2011). We note that our staggered re-fitting can be
considered as a form of two-stage fitting where in our situation,
we determined how to proceed with the re-fitting stages based on
how robust the experimental recordings were considered to be.

Clearly, it is important to keep in mind what one’s goal(s)
are in the building of a multi-compartment model in the
first place. Without making some simplifying assumptions,
such as uniform passive properties, and having constraining
experimental data, we are necessarily faced with the curse of
dimensionality (Almog and Korngreen, 2016). In our original
multi-compartment models of OLM cells (Saraga et al., 2003),
we were motivated to include dendrites because of clear evidence
of highly active dendrites (Martina et al., 2000) in OLM cells.
Moving forward, we expanded the extent of ion channels present
in the models when experimental data specific to M-channels in
OLM cells was available (Lawrence et al., 2006). A key notion in
experimentally-constrained computational modeling is that the
models are never complete. A reciprocal transfer of knowledge
between model and experiment where experimental data is used
to constrain models which, in turn, both point out gaps in our
understanding of the underlying cellular neurophysiology as well
as generate hypotheses, refine protocols, and consider additional
measurable parameters that can then be incorporated into future
model revisions.

A particular conceptualization of the role of computational
modeling in neuroscience is to help resolve, or at least reframe,
these basic concerns of how “realistic” detailed models can
be. Rather than the idea of obtaining a detailed model as
a crystallized end point of any given study, we consider the
role of the detailed modeling as an integral component of
a cyclical process of knowledge generation in neuroscience.
We have expressed this as an experiment-modeling cycling
approach (Sekulić and Skinner, 2018) and we consider that
an essential goal in multi-compartment modeling is the back-
and-forth cycling between experiments and models that leads
to continual refinement of the model relative to the biological
cell, thus allowing for the generation of predictions for
further experiments.

Limitations and Future Work
Although doing more than three full reconstructions, analysis
and multi-compartment model building may be desirable, we
felt that consistently obtaining best matches with dendritic
h-channels in all three of our models when fit with data
from the same cell was enough to allow for predictions as to
dendritic expression of h-channels inOLM cells. Also, we focused
on uniform h-channel distribution in the dendrites since our
starting models using either no h-channels or h-channels fully

and uniformly distributed in the dendrites did not match the
experimental data (Figure 3A). Considering distributions that
were not uniformly distributed (e.g., distributed only in proximal
dendrites) would be unlikely to capture the data given that
the total h-channel conductance would remain the same. It is
also possible that decreasing or increasing conductance density
distributions may be present in the dendrites, but this was not
specifically explored here as additional parameters to fit would
be required (see previous computational explorations in Sekulić
et al., 2015), which could confound the staggered re-fitting
process. Indeed, a limitation of the electrophysiological data is
that our recordings were somatic. Due to the relatively compact
nature of OLM cell dendrites, this is not a major limitation unlike
what it may be for pyramidal cells which have extended dendritic
trees. Specifically, looking at attenuation in the OLM cell models
as well as previous work (Lawrence et al., 2006), space clamp is
expected to be good up to at least 100 µm. Placing h-channels
only in the soma failed to capture the experimental results. In the
end, we obtained a strong prediction of h-channels being present
in the dendrites since all three individual model fits supported
this interpretation, indicating the robustness of our staggered
re-fitting procedure.

Our development of full spiking OLM cell models here,
as based on Cell 1 and Cell 2, are available for future use.
In particular, it would be interesting to use currentscape
visualization analyses (Alonso and Marder, 2019) to help
disentangle the interacting dynamics, perhaps using it to direct
how one might best reduce the model complexity to allow
dynamical system analyses to be applied, as well as applying
sensitivity analysis techniques such as uncertainpy (Tennøe
et al., 2018). In turn, this could help decipher how OLM cells
preferentially respond to different theta frequencies based on
their biophysical profile as shown in our previous computational
models (Sekulić and Skinner, 2017). Further, these models now
provide a foundation or canonical start for the creation of new
databases designed to address specific biophysical questions as
done in our original database that was developed to ask whether
h-channels were present in the dendrites (Sekulić et al., 2014).
Interestingly, co-regulation of h-channels and A-type channels
are apparent in the currentscapes (see Figure 6B) as was observed
in our original OLM cell databases.

A discrepancy between model and experimental outputs has
to do with the post-inhibitory rebound responses in Cell 2
and Cell 3. These rebound responses are unlikely to be solely
due to Ih as the models with only Ih do not capture this
aspect in Cell 2 or Cell 3 for example (see Figure 3C). This
indicates that other currents such as T-type calcium currents
that were not blocked (see Table 1) are contributing to rebound
responses in Cell 2 and Cell 3, but less so for Cell 1. Given
that calcium currents, calcium-activated potassium currents and
calcium handling aspects in previous OLM cell models did not
have any direct experimental data constraints (Lawrence et al.,
2006), we elected not to focus on calcium specifics here, but
rather on the spiking activities with the existing current models
and adjusting only the maximal conductance values, as described
in detail in the Methods. Preliminary simulations with Cell 2
indicates that increases in T-type calcium conductances on its
own can produce rebound spikes, but this necessarily makes
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other spiking features inappropriate. For the models to more
fully capture electrophysiological responses, one could consider
using thesemodels to build newmodel populations, but nowwith
calcium currents rather than Ih as the focused question (Sekulić
and Skinner, 2018). It would also be helpful to acquire data on
axonal properties of OLM cells beyond Martina et al. (2000) to
figure out their properties, and new theoretical insights could
perhaps be harnessed (Goethals and Brette, 2020).

We have previously shown that using virtual networks, or
creating in vivo-like representations with multi-compartment
cellular models, as done with our earlier OLM cell models
(Sekulić and Skinner, 2017), can lead to insights of circuit
function from cellular specifics. Further, we have now used the
current OLM cell models to do detailed, dendritic explorations
of ion channel dynamics that would not be possible to
do experimentally (Guet-McCreight and Skinner, 2020). We
have also created in vivo-like states with interneuron-specific
interneuron models (Guet-McCreight and Skinner, 2019), and
used them to make links between in vitro and in vivo studies (Luo
et al., 2020). In essence, it seems possible that an understanding
of the contribution of biophysical cellular details to circuits in the
behaving animal can emerge by using virtual networks.

In a review, Almog and Korngreen (2016) demonstrate the
limitations associated with the re-usability of layer 5 pyramidal
cell models, and also state that there is a need for proving
that multi-compartment models are valid within the context of
network simulations. These are challenging issues to consider
but an important step that they suggest is to ensure that
models are linked with the experimental data. Along these
lines, neuroinformatic tool developments (e.g., Nexus—https://
bluebrainnexus.io) can help reduce the workload.

In conclusion, our work has shown that if the development
of multi-compartment models are done for a specific cell type
in which ion channel characterization and morphological and
passive data can be obtained from the same cell, it is possible
to determine their ion channel distribution and biophysical
characterization from somatic recordings alone. In this way, one
can envisage doing this in a cyclic fashion to characterize other
ion channel types and distributions that are unknown.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: NEURON
code for all the models are available at: https://github.
com/FKSkinnerLab/OLMng and associated experimental data
available at: https://osf.io/qvnu9/.

ETHICS STATEMENT

The animal study was reviewed and approved by University of
Montana, Texas Tech University.

AUTHOR CONTRIBUTIONS

FS: conceptualization, resources, supervision, funding
acquisition, validation, writing–original draft, project
administration, writing–review, and editing. VS:
conceptualization, resources, data curation, software,
formal analysis, validation, investigation, visualization,
methodology, writing–original draft, project administration,
writing–review, and editing. JL: conceptualization, resources,
supervision, funding acquisition, writing–original draft,
project administration, writing–review, and editing. AG-M:
conceptualization, software, formal analysis, investigation,
visualization, methodology, writing–original draft, writing–
review, and editing. FY and TG: conceptualization, data
curation, formal analysis, investigation, writing–review, and
editing. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant: RGPIN-
2016-06182 (FS); National Institutes of Health (NIH): R01
NS069689 (JL), NS069689-03S1 (TG); South Plains Foundation
(JL). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript. P20RR015583, P20RR017670, and P20GM10356
grants supported confocal imaging core facilities and the Bitplane
Imaris license.

ACKNOWLEDGMENTS

Preliminary studies of this work have appeared in the form
of several published Society for Neuroscience poster abstracts.
FKS thanks Dr. Scott Rich for an overall reading of this
work. This manuscript has been released as a pre-print at
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Sekulić et al. Novel OLM Cell Models

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). BluePyOpt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinformatics 10:17. doi: 10.3389/fninf.2016.00017

Varga, C., Golshani, P., and Soltesz, I. (2012). Frequency-invariant temporal

ordering of interneuronal discharges during hippocampal oscillations

in awake mice. Proc. Natl. Acad. Sci. U.S.A. 109, E2726–E2734.

doi: 10.1073/pnas.1210929109

Wilson, R. I. (2010). It takes all kinds tomake a brain.Nat. Neurosci. 13, 1158–1160.

doi: 10.1038/nn1010-1158

Yi, F., Ball, J., Stoll, K. E., Satpute, V. C., Mitchell, S. M., Pauli, J. L., et al. (2014).

Direct excitation of parvalbumin positive interneurons by m1 muscarinic

acetylcholine receptors: roles in cellular excitability, inhibitory transmission

and cognition. J. Physiol. 592, 3463–3494. doi: 10.1113/jphysiol.2014.275453

Zemankovics, R., Kli, S., Paulsen, O., Freund, T. F., and Hjos, N. (2010).

Differences in subthreshold resonance of hippocampal pyramidal

cells and interneurons: the role of H-current and passive membrane

characteristics: impedance characteristics and h-current of hippocampal

neurons. J. Physiol. 588, 2109–2132. doi: 10.1113/jphysiol.2009.

185975

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.
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