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Background: Intrathecal immunoglobulin M (IgM) synthesis has been demonstrated in
the early disease stages of multiple sclerosis (MS) as a predictor factor of a worsening
disease course. Similarly, increased cerebrospinal fluid (CSF) molecules related to B-cell
intrathecal activity have been associated with a more severe MS progression. However,
whether CSF levels of IgM are linked to specific inflammatory and clinical profile in MS
patients at the time of diagnosis remains to be elucidated.

Methods: Using customized Bio-Plex assay, the protein levels of IgG, IgA, IgM, and of
34 other inflammatory molecules, related to B-cell, T-cell, and monocyte/macrophage
activity, were analyzed in the CSF of 103 newly diagnosed relapsing–remitting MS
patients and 36 patients with other neurological disorders. CSF IgM levels were
also correlated with clinical and neuroradiological measures [advanced 3-T magnetic
resonance imaging (MRI) parameters], at diagnosis and after 2 years of follow-up.

Results: A 45.6% increase in CSF IgM levels was found in MS patients compared
to controls (p = 0.013). CSF IgM levels correlated with higher CSF levels of CXCL13
(p = 0.039), CCL21 (p = 0.023), interleukin 10 (IL-10) (p = 0.025), IL-12p70 (p = 0.020),
CX3CL1 (p = 0.036), and CHI3L1 (p = 0.048) and were associated with earlier age of
patients at diagnosis (p = 0.008), white matter lesion (WML) number (p = 0.039) and
disease activity (p = 0.033) after 2 years of follow-up.

Conclusion: IgMs are the immunoglobulins mostly expressed in the CSF of naive
MS patients compared to other neurological conditions at the time of diagnosis. The
association between increased CSF IgM levels and molecules related to both B-cell
immunity (IL-10) and recruitment (CXCL13 and CCL21) and to macrophage/microglia
activity (IL-12p70, CX3CL1, and CHI3L1) suggests possible correlation between
humoral and innate intrathecal immunity in early disease stage. Furthermore, the
association of IgM levels with WMLs and MS clinical and MRI activity after 2 years
supports the idea of key role of IgM in the disease course.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
and neurodegenerative disease that affects the central nervous
system (CNS). The presence of oligoclonal bands (OCBs) in the
cerebrospinal fluid (CSF), but not within the serum, is a strong
indicator of intrathecal antibody synthesis (Ziemssen et al., 2019)
and has been considered a hallmark of MS that contributes
to the diagnosis (Thompson et al., 2018). Immunoglobulin
G (IgG) and IgM antibodies are major contributors to the
OCBs formation in the CSF (Ziemssen and Ziemssen, 2005;
Ziemssen et al., 2019). Elevated intrathecal IgM synthesis, but not
other immunoglobulins, has been suggested to predict a worse
disease evolution since the early MS stages, being associated in
patients with a more disability progression and with a more
aggressive form of the disease (Walsh and Tourtellotte, 1986;
Villar et al., 2002, 2003; Cepok et al., 2006; Durante et al.,
2012; Beltrán et al., 2014; Frau et al., 2018). In patients with
clinically isolated syndrome (CIS), IgM OCB detection was
associated with higher risks of conversion to clinically definite
MS and in relapsing–remitting (RRMS) patients predicted a
higher probability of converting to secondary progressive MS
(Villar et al., 2002). In addition, the presence of colocalizing
immunoglobulins and complement depositions in ongoing MS
lesions (Genain et al., 1999) and studies demonstrating that
antibodies isolated from the CSF of MS patients induce axonal
damage and complement-mediated demyelination when applied
to human CNS tissue ex vivo or in vitro (Elliott et al., 2012;
Blauth et al., 2015), strongly support a key role of plasma
cells and immunoglobulins, in MS pathology. It is known
that B cells play a pathogenic role in MS both through
the production of antibodies in the CNS and the release of
proinflammatory factors in the CSF (Li et al., 2018; Sabatino
et al., 2019), such as cytokines [tumor necrosis factor (TNF),
interferon IFN (IFNγ), interleukin 6 (IL-6), IL-10, IL-34, IL-35,
and granulocyte–macrophage colony-stimulating factor (GM-
CSF)] and lymphoid chemokines (CXCL10, CXCL12, CXCL13)
(Gardner et al., 2013; Li et al., 2015; Magliozzi et al., 2018).
The release of B cells–related factors in the CSF has been
suggested to have a key role in intrathecal inflammation, which
could be linked to neuronal loss and microglia/macrophage
activation and a worse MS course (Magliozzi et al., 2007, 2010;
Haider et al., 2016; Lisak et al., 2017; Touil et al., 2017).
More recently, increased CSF expression of similar inflammatory
pattern related to B-cell immunity and lymphoid neogenesis was
found associated with increased cortical lesion (CL) load, as
revealed by advanced 3-T double inversion recovery magnetic
resonance imaging (MRI) analysis, also in MS patients at time
of diagnosis (Magliozzi et al., 2018). These evidences support
the hypothesis of complex intrathecal immune interactions and
potential correlations between intrathecal antibody syntheses
by plasma cells, B cells–related factors release innate immune
activities, which occur since early disease stages (Magliozzi et al.,
2019). However, the definite inflammatory CSF milieu associated
with increased CSF IgM levels remains to be better clarified.

The objective of this study was to evaluate the presence
of IgM, and others immunoglobulins (IgG and IgA) in the

CSF of both MS patients and controls with other neurological
disorders. Furthermore, we investigated the existence of specific
correlations between CSF IgM levels and the CSF inflammatory
profiling at the time of diagnosis and the clinical and MRI activity
in addition to baseline, even after 2 years of follow-up in a
cohort of MS patients.

MATERIALS AND METHODS

Patients Cohort
We recruited 103 treatment-naive RRMS patients (26 males and
77 females), followed at the MS Centre at Verona University
Hospital (Italy), who received a diagnosis of MS from January
2012 to December 2019. All MS patients underwent at the time
of diagnosis (T0) a detailed neurological evaluation including the
Expanded Disability Status Scale (EDSS) assessment (Kurtzke,
1983) and the 3-T MRI and the CSF examination. Seventy
patients who did not undergo second-line therapies, in particular
anti–B-cell drug treatments, were also monitored from a
clinical and radiological point of view for 2 years [24 months
(T24)]. The evidence (EDA) and no evidence (NEDA) of
disease activity, based on the presence of relapses and/or
disability progression and/or any MRI activity (Giovannoni et al.,
2015), were evaluated.

Demographic, clinical, and MRI data of MS patients are
reported in Table 1.

Thirty-six age- and sex-matched available patients affected
by other neurological diseases, who underwent neurological
evaluation and CSF examination at the time of the diagnosis,
were included in the study. This group included 21 individuals
with non-inflammatory neurological diseases, NIND (one
idiopathic tremor, two migraine, two amyloid angiopathy, two
fibromyalgia, four ischemic stroke, one spondylotic myelopathy,
two amyotrophic lateral sclerosis, one olivopontocerebellar

TABLE 1 | Demographic, clinical, and MRI data of MS patients.

Gender (male/female): T0, T24 26/77, 17/53

Age at diagnosis (years) 38.6 ± 13.2, 15–64

EDSS-T0 2.0 ± 2.0, 0–5

EDSS increase-T24 2.0 ± 0.0, 0–5

OCBs (positive/negative) 75/28

Albumin CSF/serum (mg/L) 4.6 ± 0.2, 2–11

WMLs number-T0 7.0 ± 2.0, 3–18

CL number-T0 2.0 ± 7.0, 0–23

New WMLs-T24 70

New CLs-T24 73

Relapses T0-T24 68

EDA/NEDA-T24 40/30

M, males; F, females; EDSS, Expanded Disability Status Scale; OCBs, oligoclonal
bands; WMLs, white matter lesions; CLs, cortical lesions; EDA, evidence of disease
activity; NEDA, no evidence of disease activity; T, timepoint (0 = baseline, 24 = after
2 years of follow-up).
Data are shown in the following order: mean ± SD (standard deviation) and range,
except for WMLs, CLs, and EDSS, for which the median ± IQR (interquartile range)
are considered in place of mean and SD.
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atrophy, one idiopathic spastic paraparesis, one idiopathic
ataxia, one myopathy, one endocranial hypertension, two
peripheral neuropathy), and 15 subjects with other inflammatory
neurological diseases, OIND (one infective myelopathy, two CNS
lymphoma, two intracranial abscess, one peripheral neuropathy,
two Behçet disease, three neuromyelitis optica spectrum disorder,
three autoimmune encephalitis, one aseptic meningitis).

The Ethics Committee of the University of Verona
approved the study, and informed consent was obtained
from all participants.

CSF Collection and Analysis
CSF samples were obtained at least 1 month after the last relapse
and within 2 months from the MRI acquisition, according to the
Consensus Guidelines for CSF and Blood Biobanking (Teunissen
et al., 2009). Once collected, the CSF was centrifuged, and the
supernatant was divided from the cell pellet and stored at−80◦C
until use (Ethics Committee Protocol n◦ 66418). OCB presence
was evaluated by isoelectric focusing on agarose gel for each
MS patient group, as reported in Table 1. Protein presence and
levels in the CSF were assessed by multiplex technology using a
Bioplex assay (Bio-Plex X200 System equipped with a magnetic
workstation, BioRad, Hercules, CA, United States) as previously
described (Magliozzi et al., 2018). CSF samples were diluted 1:2
in phosphate-buffered saline to reach the optimal concentration.
The immunoglobulin protein analysis (IgG1, IgA, IgM) was
performed by using a custom Bio-Plex Pro-Human Isotyping
Panel (3-plex). In addition, levels of specific inflammatory
chemokines and cytokines associated with several pathways were
evaluated including B-cell pathway (APRIL, LIGHT, TWEAK,
BAFF, CXCL12, CXCL13, CCL21, IL-10, IL-34, IL-35, and
GM-CSF), T-cell pathway (IFNγ, IFNα2, IL-4, IL-8, IL-22,
CCL19, CCL20, and CCL25), monocyte/macrophage pathway
(IL-1β, IL-6, CCL2, CCL8, CX3CL1, CXCL10, CXCL11, CHI3L1,
sCD163, MMP1, and MMP2), and TNF pathway (TNFα,
sTNFR1, and sTNFR2), as previously optimized (Magliozzi
et al., 2018). These analytes were assayed by using customized
kits Bio-Plex Pro Human Chemokine Panel-40-Plex and Bio-
Plex Pro Human Inflammation Panel 1-37-Plex as previously
described (Magliozzi et al., 2018) (see Supplementary Material).
All samples were run in duplicate in the same experiment
and in two consecutive experiments in order to verify the
reproducibility and consistency of the results. The CSF analysis
was performed by two independent investigators (RM and SR),
blinded with respect to the clinical/radiological characteristics
of each patient. Index of blood–brain barrier damage was
calculated considering the CSF/serum albumin ratio and used to
verify the potential correlation between IgM intrathecal synthesis
and peripheral one.

MRI Acquisition Protocol and Analysis
At the time of diagnosis, 3-T MRI was performed in all MS
patients, and this was repeated 2 years after diagnosis on 70 of
these patients. MRI sequences were acquired at the Radiology
Unit of the University Hospital of Borgo Trento (Verona, Italy)
using a Philips Achieva 3T MR Scanner (Philips Medical Systems,

Best, Netherlands) as previously described (Magliozzi et al.,
2018). The following image sets were acquired:

• 3D T1-weighted turbo field echo [repetition time (TR)/echo
time (TE) = 8.4/3.7 ms, voxel size of 1 mm ×

1 mm× 1 mm), total acquisition time of 5:51 min;
• 3D double inversion recovery (DIR)

(TR/TE = 5,500/292 ms, inversion times (TI) TI1/TI2 =
525/2,530 ms voxel size of 1 mm × 1 mm × 1 × mm),
turbo spin echo (TSE) readout with an optimal variable
flip angle scheme and number of excitations (3, with total
acquisition time of 10:49 min;
• 3D fluid-attenuated inversion recovery (FLAIR)

(TR/TE = 5,500/292 ms, TI = 1,650 ms voxel size of
1 mm × 1 mm × 1 mm), same TSE readout as the DIR
sequence, number of excitations 1, with total acquisition
time 5:44 min.

The number of T2 hyperintense white matter lesions (WMLs)
and CLs were identified on FLAIR and DIR images by an observer
with a large experience on MS. The number of CLs was assessed
following the recommendations for CLs scoring in patients with
MS (Geurts et al., 2011). Owing to the suboptimal performance
of the image-acquisition sequences on MRI in visualizing subpial
lesions, the present analysis has taken into account mainly the
intracortical and leukocortical lesions. MRI data are reported
in Table 1.

Statistical Analysis
Mann–Whitney U test was used to test differences between MS
patients and control group, as well as differences between MS
patients stratified by CL number at diagnosis (</>4, where 4
was the mean of the CL number in all the examined patients)
and by the presence or not of the EDA after 2 years of follow-
up. Analysis of variance (ANOVA) followed by post hoc pairwise
comparison using the Tukey test was used to evaluate difference
among immunoglobulin CSF levels in MS patients.

Pairwise univariate Spearman rank index was used to evaluate
the correlation between CSF IgM levels and demographic
and clinical MRI parameters (both at diagnosis and after
2 years of follow-up) and several inflammatory/immune-
mediated pathways. Differences between males and females and
between those patients with or without OCBs were tested by
Mann–Whitney U test. p < 0.05 was considered statistically
significant. GraphPad (version 5.0) and R software (version 3.5.3)
were used to perform the analysis.

RESULTS

Immunoglobulin CSF Expression in MS
Patients and Controls
Intrathecal levels of IgG, IgA, and IgM were investigated in
the CSF of 103 RRMS patients and 36 controls with other
neurological disorders (Table 2).

CSF IgG levels in MS patients were significantly higher
compared to IgA (fold change = 2.65, p < 0.001; Figure 1A)
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TABLE 2 | Immunoglobulins assayed in the CSF of MS and control groups.

Immunoglobulin type MS patients (n = 103) Controls (n = 36)

Mean ± SD (ng/mL) Concentration range (ng/mL) Mean ± SD (ng/mL) Concentration range (ng/mL)

IgG 3,778 ± 2,760 365–8705 3,927 ± 64,059 315–19,042

IgA 1,707 ± 3,522 0.0–7977 6,244 ± 18,929 60–82,928

IgM 1,991 ± 1,396.9 67–6114 1,367 ± 1,560 104–17,910

Ig, immunoglobulin; SD, standard deviation.
IgG, IgA, and IgM were analyzed by Bio-Plex Pro-Human Isotyping Panel (3-plex), from the CSF of MS patients (n = 103) and control cases (n = 36).

FIGURE 1 | CSF expression levels of IgG, IgA, and IgM in MS and controls patients. (A) IgG levels were significantly higher in MS patients (n = 103) compared to IgA
and IgM levels (one-way ANOVA, p < 0.001); (B) IgM was the only immunoglobulin found to be higher in MS patients (n = 103) compared to controls (n = 36)
(Mann–Whitney U test, p = 0.013). The difference between (C) IgG and (D) IgA expression levels was not significant (respectively, p = 0.360, p = 0.700) between MS
patients and controls. *p < 0.05, ***p < 0.001.

and IgM (fold change = 2.15, p < 0.001; Figure 1A). However,
only the CSF IgM levels reached statistical significance in
MS patients when compared to controls (fold change = 1.46,
p = 0.013; Figure 1B), while there was no difference in IgG
(fold change = 0.96, p = 0.360; Figure 1C) and IgA (fold
change = 0.27, p = 0.700; Figure 1D) levels between the two
groups. In order to understand whether CSF IgM levels were
related to peripheral ones and inflammation, we have further
correlated CSF IgM concentration with measurement of blood–
brain barrier damage (calculated considering the CSF–to–serum
albumin ratio). However, we found no correlation (R = −0.12,
p = 0.270) between CSF IgM levels and blood–brain barrier
alteration, suggesting that IgM intrathecal levels were not related
to peripheral ones.

Correlation Between CSF IgM Levels
With Demographic, Clinical, and MRI
Data
CSF IgM levels of MS patients were correlated with demographic,
clinical, and MRI data, at the time of diagnosis and after 2 years
of follow-up. The results of these correlations were reported
in Table 3.

At T0, CSF IgM levels were correlated negatively with the age
of MS patients (R =−0.26, p = 0.008; Figure 2A); on the contrary,
no correlation was found between CSF IgM levels and EDSS
and MRI data. Although there were no significant correlations
between the CSF IgM levels and WMLs and CL number at
diagnosis, when MS patients were stratified according to the CL
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TABLE 3 | Correlation between CSF IgM levels with demographic,
clinical, and MRI data.

R p

Gender (male/female) — 0.313

Age at diagnosis −0.26 0.008

EDSS T0 −0.04 0.678

EDSS change T24 0.09 0.498

OCBs – 0.432

Albumin CSF/serum −0.12 0.270

WMLs number –T0 0.03 0.740

CLs number-T0 0.15 0.130

New WMLs-T24 0.24 0.039

New CLs-T24 0.17 0.140

Relapses T0-T24 0.11 0.340

EDA/NEDA – 0.033

M, males; F, females; EDSS, expanded disability status scale; OCBs, oligoclonal
bands; WMLs, white matter lesions; CLs, cortical lesions; EDA, evidence of disease
activity; NEDA, no evidence of disease activity; T, timepoint (0 = baseline, 24 = after
2 years of follow-up); R, Spearman correlation coefficient.
Spearman correlation coefficient (R) was used to evaluate the correlation between
CSF levels of IgM levels with demographic, clinical, and MRI data in MS patients,
except for differences between males and females, EDA and NEDA patients,
and between those patients with or without OCBs that were tested by Mann–
Whitney test.
Demographic, clinical, and MRI data that correlated with IgM are reported in bold.

load, we found a trend to increase of CSF IgM levels that were
almost twice higher in MS patients with CLs≥ 4 compared to MS
patients with CLs < 4 (fold change = 1.74, p = 0.072; Figure 2B).

Considering the second year of follow-up, CSF IgM levels
(measured at the time of diagnosis) were significantly higher
in patients with EDA compared to NEDA (fold change = 1.61,
p = 0.033; Figure 2C), and a mild correlation was found between
CSF IgM levels and the presence of new WMLs (R = 0.24,
p = 0.039; Figure 2D). By further analyzing the potential
correlation between both IgG and IgA with all the tested clinical
and radiological parameters, either at T0 and T24, we did not find
any significant correlation.

Correlation Between CSF IgM Levels and
Inflammatory Profiles
CSF IgM levels of MS patients were correlated with specific
inflammatory/immune-mediated molecules, which were
categorized in several pathways (Table 4). Among all the B
cell–related molecules, we found that CSF IgM levels mildly
correlated with CSF IL-10 (R = 0.22, p = 0.025; Figure 3A),
CCL21 (R = 0.23, p = 0.023; Figure 3B), and CXCL13 (R = 0.20,
p = 0.039; Figure 3C). Furthermore, the CSF IgM levels also
weakly correlated with macrophage and microglia-related
biomarkers such as CHI3L1 (R = 0.19, p = 0.048; Figure 3D),
CX3CL1 (R = 0.21, p = 0.036; Figure 3E) and IL-12p70 (R = 0.25,
p = 0.020; Figure 3F).

DISCUSSION

In the last decade, several studies have demonstrated a relevant
association between intrathecally produced IgM and a more

severe MS course (Villar et al., 2005, 2008; Calabrese et al., 2012).
However, other studies did not find an association between IgM
and a more severe MS course (Schneider et al., 2007; Stauch
et al., 2011). In our study, we aimed to define quantitatively the
intrathecal IgM levels and its possible association with combined
specific inflammatory profile in the CSF of MS patients.

We found that higher levels of IgM, but not IgG and IgA,
were present already at diagnosis in the CSF of MS patients when
compared with patients with other neurological diseases. This
result corroborates the hypothesis that IgM production occurs
from the early stages of MS. As known in MS, B cells migrate from
the periphery into the meninges, CSF, and the CNS parenchyma
(Levinson et al., 1983; Sandberg et al., 1986), where these cells
showed a local activation and clonal expansion (Weber et al.,
2010). Plasma blasts and plasma cells, maturing from these B
cells, were capable to secrete oligoclonal antibodies in the CSF
of MS patients (Weber et al., 2010). MS patients showed an
intrathecal production of IgG, IgM, and IgA (Lolli et al., 1989);
about 95% of the MS patients displayed IgG OCBs (Link, 1978;
Villar et al., 2005), and around 40% also showed intrathecal IgM
production (Villar et al., 2005), while CSF IgA synthesis was only
occasionally observed (in 13% of cases) (Link and Müller, 1971;
Leary et al., 2000). Therefore, IgG (predominantly IgG1), and
IgM are considered the major contributors to the OCB formation
in the CSF (Ziemssen and Ziemssen, 2005; Ziemssen et al., 2019).

Intrathecal IgM synthesis is involved in demyelination and
axonal injury (Piddlesden et al., 1993; Villar et al., 2005),
the main source of disability in MS patients (Mead et al.,
2002). In particular, IgMs are the only immunoglobulins capable
of recognizing myelin lipids, such as myelin oligodendrocyte
glycoprotein, proteolipid protein, and myelin basic protein, in
most of MS patients (Villar et al., 2005, 2008; Owens et al.,
2009). In relation with these studies, we decided to analyze the
association between the CSF IgM levels, detected at diagnosis
(T0), and the clinical and MRI parameters after 2 years of
follow-up [24 months (T24)]. We found that while CSF IgM
levels did not correlate with any clinical/MRI parameters at
time of diagnosis, they were correlated, even if moderately,
with the presence of new WMLs at T24 and were significantly
higher in EDA patients compared to NEDA, thus suggesting a
possible prognostic role of IgM levels in terms of disease activity.
These results are in line with previously mentioned studies
(Villar et al., 2005, 2008; Owens et al., 2009) and with studies
showing an association between IgM with a severe MS course,
according to both clinical and MRI outcomes (Villar et al., 2003,
2005;Ozakbas et al., 2017).

Analyzing the correlations between CSF IgM levels and the
clinical and MRI parameters even at the time of diagnosis, we
detected only a negative and low correlation between CSF IgM
levels with and the age of patients at diagnosis, although previous
studies showed that IgM levels were strongly associated with
a younger age at first clinical symptoms (Tintore et al., 2008;
Huss et al., 2018; Pfuhl et al., 2019). Moreover, despite that CSF
IgM levels were higher in MS patients with high (CLs ≥ 4)
compared to MS patients with low (CLs < 4) CL load, such
a difference did not reach the statistical significance. On the
contrary, we detected low negative correlation with age of the
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FIGURE 2 | Association between CSF IgM levels in MS patients with demographic, clinical, and MRI data: (A) CSF IgM levels correlates negatively with the age at
diagnosis (R = −0.26, p = 0.008); (B) CSF IgM levels were higher in MS patients with CLs ≥ 4 compared to MS patients with CLs < 4, at the time of diagnosis
(Mann–Whitney U test, p = 0.072); (C) CSF IgM levels were higher in EDA patients compared to NEDA after 2 years of follow-up (p = 0.033); (D) CSF IgM levels
correlate with the presence of new WMLs after 2 years of follow-up (R = 0.24, p = 0.039). *p < 0.05.

patients. These results might be explained by the small number
of examined patients and by the possibility that other underlying
immunological mechanisms are involved in brain damage besides
the immunoglobulin production (Lassmann, 2008).

Recent studies have shown that intrathecal IgM synthesis,
mainly mediated by CD5+ B cells, contributes to B-cell
activation and differentiation within the CNS (Villar et al.,
2010). In particular, positive correlations between CSF
inflammatory biomarkers, especially of humoral immunity,
with MS severity support a pathogenic role of intrathecal
inflammation, particularly linked to B-cell immunity, in CNS
tissue destruction in MS patients (Milstein et al., 2019), causing
a more severe and rapid disease course (Magliozzi et al., 2007;
Howell et al., 2011). For all these reasons, we investigated
whether IgM overexpression in the CSF of MS patients at
diagnosis might be associated with a specific inflammatory
intrathecal milieu, by analyzing other cytokine/chemokine
CSF molecules related to either B cells or other immune cell

pathways. First, we observed mild correlation between CSF
IgM levels with some B cell–related factors, such as CXCL13,
CCL21, and IL-10. The chemokines CXCL13 and CCL21 are
particularly known to regulate B-cell migration into the CNS
and to favor the intrathecal accumulation of B cells (Kowarik
et al., 2012). In particular, CXCL13 has recently been suggested
as a prognostic marker for CIS and MS (Brettschneider et al.,
2010; Ferraro et al., 2015; Magliozzi et al., 2020) and seems
to play a role in the formation of ectopic lymphoid tissues
within the CNS in MS (Magliozzi et al., 2007). In addition,
CSF CXCL13 levels were found incremented in MS patients
(Khademi et al., 2011), in which they are correlated with a
high number of CSF CD5+ B cells and with intrathecal IgM
production (Krumbholz et al., 2006; Villar et al., 2010; Ferraro
et al., 2015). Moreover, the correlation between CSF IgM
levels and IL-10 supports the hypothesis that the B-cell activity
could regulate activation of further immune reactions, even
independently by immunoglobulin/complement–mediated
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TABLE 4 | Correlation between CSF IgM levels and Biomarkers in MS patients.

Pathways Biomarker R p

B-cell pathway APRIL 0.17 0.089

LIGHT −0.17 0.082

TWEAK 0.05 0.593

BAFF 0.13 0.210

CXCL12 −0.01 0.899

CXCL13 0.20 0.039

CCL21 0.23 0.023

IL-10 0.22 0.025

IL-34 0.17 0.089

IL-35 −0.11 0.269

GM-CSF 0.17 0.084

T-cell pathway IFNγ 0.13 0.194

IFNα2 −0.03 0.759

IL-4 −0.05 0.617

IL-8 0.14 0.147

IL-22 0.19 0.062

CCL19 0.13 0.617

CCL25 0.16 0.111

Monocyte/macrophage pathway IL-1β 0.21 0.584

IL-6 0.16 0.111

CCL2 0.05 0.584

CCL8 −0.04 0.668

IL-12 (p40) 0.01 0.931

IL-12 (p70) 0.23 0.020

CX3CL1 0.21 0.036

CXCL10 0.08 0.424

CXCL11 0.16 0.112

CHI3L1 0.19 0.048

sCD163 0.12 0.239

MMP1 −0.13 0.184

MMP2 0.16 0.100

TNF pathway TNFα 0.10 0.296

sTNFR1 0.04 0.688

sTNFR2 −0.06 0.546

APRIL, a proliferation-inducing ligand; LIGHT, TNF superfamily member 14
(TNFSF14); TWEAK, TNF-related weak inducer of apoptosis; BAFF, B cell–
activating factor; CXCL, “C-X-C” motif Ligand; CCL, “C-C” motif ligand; IL,
interleukin; GM-CSF, granulocyte–macrophage colony-stimulating factor; IFN,
Interferon; CHI3L1, chitinase 3-like 1; sCD163, soluble cluster of differentiation 163;
MMP, matrix metallopeptidase; TNF, tumor necrosis factor; sTNFR, soluble tumor
necrosis factor receptor; R, Spearman correlation coefficient.
Spearman correlation coefficient (R) was used to evaluate the correlation between
CSF levels of IgM and the other examined biomarkers (cytokines and chemokines)
in MS patients. Molecules that correlated with IgM are reported in bold.

response, since the earliest phase of the disease (Li et al., 2018).
IL-10 is a potent immunomodulatory cytokine that can promote
humoral immune responses by enhancing class II expression
on B cells and inducing immunoglobulin production (Saxena
et al., 2015). However, IL-10 could be also released, together
with IL-1, IL-6, IL-15, and TNF, by activated macrophages,
which can have a key role in B-cell activation. We also found
that the CSF IgM levels in MS patients weakly correlated also
with molecules related to monocyte/macrophage activity and
response, such as CHI3L1, IL-12p70, and CX3CL1, suggesting

a mild, but significant, association between humoral and innate
immune inflammatory processes. CHI3L1, also named YKL-40,
is a molecule released by activated macrophages and astrocytes,
and it was proposed as a putative CSF biomarker of disease
activity, indicating higher risk of conversion from CIS to MS
(Comabella et al., 2010). IL-12 protein is composed by p35
and p40 subunits; when combined, these subunits form the
bioactive IL-12p70, which is mainly produced by dendritic
cells, macrophages, neutrophils, and probably by naive B cells.
IL-12p70 is involved in the response to the antigen presentation,
possibly with anti-inflammatory function (Gee et al., 2009).
CX3CL1, also named fractalkine, is a chemokine mainly
produced by neurons and can be soluble, as well as membrane-
bound capable of attracting T cells, NK cells, and myeloid
cells, including microglia (Hatori et al., 2002; Savarin-Vuaillat
and Ransohoff, 2007). It has a key role in neuron–microglia
cross-talk in physiology and aging, but the exact role of this
chemokine in MS pathology still remains unclear, because
CX3CL1 appeared to interfere with proinflammatory microglia
activity, therefore with neuroprotective effect (Ransohoff and
El Khoury, 2015). We previously demonstrated that the CSF
levels of other specific markers of activated macrophages,
such as soluble CD163, positively correlated with CSF levels
of neurofilament, fibrinogen, and B cell–related molecules,
such as CXCL13, CXCL12, IL-10, and BAFF (Magliozzi et al.,
2019). Therefore, although the correlations that we identified
in the CSF at time of diagnosis between all these mediators
and IgM were modest and need to be validated in a larger and
independent MS population, it might be hypothesized that
IgM could possibly reflect the interactions between innate and
adaptive humoral immune responses, as previously suggested
(Boes, 2000; Villar et al., 2010).

This analysis was performed using a multiple, advanced
immunoassay methodology (Bio-Plex), to obtain a simultaneous,
sensitive, and reproducible evaluation of immunoglobulins and
several other inflammatory mediators in the CSF of MS patients.
Despite further studies are needed to confirm these preliminary
results, the sensitivity and reproducibility of this easily performed
procedure could allow extending such a detailed CSF proteomic
analysis to the clinical practice.

This study is not without limitations. The low number
of patients recruited, compared to the number of parameters
analyzed, and the limited MS phenotypes suggest that these
data need to be further validated, considering an independent
validation cohort, and confirmed by other studies. Moreover,
only 2 years of follow-up have been analyzed at the moment in
order to select only MS patients treated by first-line therapies,
in order to avoid further confounding factor of the correlation
analysis. All together, these limitations suggest that this study
needs to be confirmed by further analysis of a larger sample size
and longer follow-up and paired serum samples.

CONCLUSION

In this study, we used a comprehensive, advanced proteomic
approach for quantitative and qualitative CSF protein analyses
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FIGURE 3 | Correlations between IgM CSF levels and specific biomarkers in MS patients (n = 103). IgM CSF levels correlate with high CSF levels of (A) IL-10
(R = 0.22, p = 0.025), (B) CCL21 (R = 0.22, p = 0.023), (C) CXCL13 (R = 0.20, p = 0.039), (D) CHI3L1 (R = 0.19, p = 0.048), (E) CX3CL1 (R = 0.21, p = 0.036),
(F) IL-12p70 (p = 0.020).

in combination with clinical and radiological assessment of MS
patients, demonstrating that intrathecal IgM levels are increased
in the CSF of treatment-naive MS patients compared to controls
and that there is significant correlation between CSF IgM levels
and further CSF molecules related to B-cell, macrophage, and
microglia activity. Moreover, we found an association between
CSF IgM production and the number of new WMLs and MRI
activity after 2 years of follow-up, suggesting that CSF IgM
levels might reflect the relationship between humoral and innate
intrathecal immune response in MS and might represent an early
biomarker of underling disease activity.
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