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Autophagy is a conserved process to maintains homeostasis via the degradation of
toxic cell contents, which can either promote cell survival or accelerate cellular demise.
Ferroptosis is a recently discovered iron-dependent cell death pathway associated with
the accumulation of lethal reactive lipid species. In the past few years, an increasing
number of studies have suggested the crosstalk between autophagy and ferroptosis.
Ischemic stroke is a complex brain disease regulated by several cell death pathways,
including autophagy and ferroptosis. However, the potential links between autophagy
and ferroptosis in ischemic stroke have not yet been explored. In this review, we
briefly overview the mechanisms of ferroptosis and autophagy, as well as their possible
connections in ischemic stroke. The elucidation of crosstalk between different cell death
pathways may provide insight into new future ischemic stroke therapies.

Keywords: autophagy, ferroptosis, cell death, ischemic stroke, iron overload, lipid peroxidation, reactive oxygen
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INTRODUCTION

Stroke is one of the major causes of death and disability worldwide (Haley et al., 2019), and includes
two main subtypes: ischemic stroke and hemorrhagic stroke. Ischemic stroke results from a lack of
blood supply to the brain, and accounts for approximately 85% of all cases of stroke. Nowadays,
several cell death pathways have been identified to be involved in ischemic stroke pathophysiology,
including apoptosis, necrosis, and autophagy. Among these, necrosis has been generally regarded
as a passive and uncontrolled form of cell death, while more recently, certain types of regulated
necrosis have also been found, such as necroptosis, pyroptosis, ferroptosis, parthanatos, and CypD-
mediated necrosis. Interventions targeting these specific types of regulatory necrosis have provided
new ideas for the treatment of ischemic stroke (Lu et al., 2020).

Autophagy is an evolutionarily conserved process to degrade toxic proteins, damaged organelles,
and invading pathogens via the lysosomal pathway. At the molecular level, autophagy is mainly
executed by multiple autophagy-related genes (Atg), and is also regulated by a complex signaling
network. Autophagy plays an important role in maintaining cellular homeostasis, regulating
organism growth, and modulating the development of diseases (Doria et al., 2013). In ischemic
stroke, it can either postpone or accelerate cell death, depending on the degree of activation.

Ferroptosis is iron-dependent regulated necrosis associated with excess reactive lipid species,
due to accumulated lipid peroxidation. Recently, studies found that ferroptosis also plays an
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important role in the development of ischemic stroke through
influencing iron metabolism or lipid peroxidation, whereas
inhibiting ferroptosis successfully reverses ischemic damages
(Tuo et al., 2017; Alim et al., 2019; Guan et al., 2019).
Furthermore, ferroptosis is significantly distinct from other
forms of cell death, including autophagy, in terms of cell
morphological characteristics, biological features and so on
(Dixon et al., 2012; Klionsky et al., 2016; Xie et al., 2016;
Zille et al., 2017). Conventionally, autophagy-dependent cell
death is characterized by the formation of autophagosomes,
which fuse with lysosomes to form autolysosomes. Differently,
ferroptosis is featured by an intact cell membrane and normal
nucleus, but shrinking mitochondria with increased membrane
densities, reduced even disappeared mitochondria crista and
ruptured outer membrane. For detailed information regarding
the difference between autophagy and ferroptosis (see Table 1).

While autophagy and ferroptosis are mechanistically and
morphologically distinct cell death pathways, an increasing
number of studies have recently reported significant crosstalk
between them (Kang and Tang, 2017; Zhou et al., 2019; Liu et al.,

TABLE 1 | Characteristics of autophagy and ferroptosis.

Autophagy Ferroptosis

Morphological
characteristics

Formation of
autophagosomes, a double
membrane vesicle
containing multiple
cytoplasmic contents. The
formed autophagosomes
fuse with lysosomes to
form autolysosomes

Atrophy of mitochondria
with increased membrane
densities, reduced even
disappeared mitochondria
crista and ruptured outer
membrane, normal nucleus

Development
steps

Iron overload, GSH
depletion and Gpx4
inactivation, lipid
peroxidation, and impaired
system Xc-

Initiation and nucleation of
autophagosomes,
maturation of
autophagosomes and
fusion of autophagosomes
with the lysosome and
degradation

Key regulators Atgs, mTOR, AMPK,
BECN1, PI3K, p62, p53,
ULK1, TFEB

Positive regulator: SAT1,
GLS2, p53, ACSL4, TfR1
Negative regulator: GSH,
NRF2, HSPA5, NCOA4,
HSPB1, Gpx4, SLC7A11

Common
inducers and
inhibitors

Inducer: Rapamycin,
Brefeldin A, Tunicamycin,
starvation media
Inhibitor: 3-MA, Bafilomycin
A1

Inducer: Erastin, RSL3,
Sorafenib, SAS, FIN56,
FAC
Inhibitor: DFO, Fer-1,
Vitamin E, Liproxststatin-1,
2,2-BP, DFA, ciclopirox
olamine

Atgs, autophagy-related genes; AMPK, Adenosine 5’-monophosphate (AMP)-
activated protein kinase; BECN1, beclin 1; PI3K, Phosphatidylinositol 3-kinase;
TFEB, Transcription factor EB; 3-MA, 3-Methyladenine; GLS2, Glutaminase 2;
ACSL4, Acyl-CoA synthetase long chain family member 4; TfR1, Transferrin
receptor 1; GSH, glutathione; NRF2, nuclear factor E2 related factor 2; HSPA5,
Heat shock 70kDa protein 5; NCOA4, Nuclear receptor coactivator 4; HSPB1,
heat shock protein family B (small) member 1; Gpx4, glutathione peroxidase 4;
SLC7A11, solute carrier family 7 member 11; RSL3, Ras-selective lethal small
molecule 3; SAS, sulfasalazine; FAC, ferric ammonium citrate; DFO, deferoxamine;
Fer-1, Ferrostatin-1.

2020). This identification not only favors a deeper understanding
of cell death, but also provides new ideas for the regulation
of disease and development of therapeutic strategies. In this
review, we briefly introduce the mechanisms of autophagy and
ferroptosis, as well as pathways that mediate their interactions.
On this basis, we further discuss their possible interrelationships
in ischemic stroke.

AUTOPHAGY AND ISCHEMIC STROKE

Mechanisms of Autophagy
Autophagy can be divided into three general subtypes:
macroautophagy, microautophagy, and chaperone-mediated
autophagy (Klionsky et al., 2016). Macroautophagy is a
continuous and dynamic process initiated by the formation
of autophagosomes, which are double membrane vesicles
that contain multiple cytoplasmic components, including
damaged organelles and dysfunctional proteins. The
formed autophagosomes then fuse with lysosomes to form
autolysosomes, and induce the degradation and recycling of
cellular components. This process allows cells to maintain
homeostasis under stressful conditions.

So far, more than 30 Atg proteins have been found to
participate in the execution of autophagy. The formation
of autophagosomes is considered to be regulated by two
macromolecular complexes, the ULK1 complex (ULK1/Atg1-
mTOR-Atg13-RB1CC1/FIP200), which is responsible for
the initiation of autophagy, and the PtdIns3K complex
(PIK3C3/VPS34- Beclin 1-Atg14), which is responsible for
the nucleation of autophagy (Xie et al., 2015). ULK1 kinase
can also recruit PtdIns3K complex by phosphorylating
some of the components, which results in the production
of phosphatidylinositol 3-phosphate [PI(3)P] and favors
autophagosomal membrane nucleation (Russell et al., 2013).
In addition, Atg5 and Atg12 have been showed to cooperate
with Atg7, forming the Atg5-Atg12-Atg16-like 1 (Atg16L1)
complex, which facilitates the elongation and expansion of
autophagosome membranes to form a completely closed
autophagosome (Nakatogawa, 2013), while the formation
of microtubule-associated protein 1 light chain 3 (LC3)-
phosphatidyl ethanolamine (PE) conjugate is also required in
this process. Fujita et al. proposed that the Atg16L1 complex
may function as a scaffold for LC3 lipidation and affect the
sites of autophagosome synthesis (Fujita et al., 2008). Finally,
the fusion of autophagosomes with lysosomes is also well-
regulated, wherein hairpin-type tail-anchored SNARE syntaxin
17, pleckstrin homology domain containing protein family
member 1 (PLEKHM1), and Atg14 have been identified as
important regulators.

In addition, several complicated signaling pathways could
also play important roles in autophagy regulation (Behrends
et al., 2010; Mizushima and Komatsu, 2011). For example, the
mTOR complex 1 (mTORC1) and AMP-activated protein kinase
(AMPK), are well-known upstream regulators of autophagy. In
nutrient-rich conditions, mTORC1 is overactivated, which then
suppresses autophagy by directly binding and phosphorylating
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ULK1 (Hosokawa et al., 2009). While in nutrient-depleted
conditions, AMPK is upregulated, which promotes the
activation of ULK1 kinase complex by inactivating mTORC1 or
dephosphorylating ULK1 (Egan et al., 2011), the activated ULK1
then induces Atg13 phosphorylation and autophagy.

BECN1 (beclin 1) is well-known as a key autophagy
modulator; its effects depend on its binding proteins. For
example, BECN1, which binds to core components of the Class
III PI3K complex, promotes the formation of autophagosomes
(Liang et al., 1999; Kihara et al., 2001). The BH3 structure of
the BECN1, which binds to the antiapoptotic protein Bcl-2/Bcl-
xl, inhibits the occurrence of autophagy, while downregulating
Bcl-2 activates the autophagic pathway (Lian et al., 2011;
Yang and Yao, 2015).

Phosphatidylinositol 3-kinase (PI3K) is another important
regulator involved in phagosome maturation and autophagy (Thi
and Reiner, 2012), which can be divided into three classes. Class
I PI3K has been shown to inhibit autophagy through the PI3K-
Akt-TSCl/TSC2-mTOR pathway (Hawkins et al., 2006; Pilli et al.,
2012), and S14161, a Class I PI3K inhibitor, induces autophagy
by regulating the Beclin-1/Vps34 complex (Wang et al., 2017).
Besides, apelin-13, an adipokine, inhibit foam cell formation by
activating autophagy via the Class III PI3K/Beclin-1 pathway
(Yao et al., 2015).

The ubiquitin-binding protein, p62, also known as
sequestosome1 (SQSTM1), is also involved in autophagy.
Conventionally, p62 is considered as a cargo receptor
recruiting/sequestering the ubiquitinated cargo to target
autophagosomes and then degrade within lysosomes. This
process can be suppressed by the Class III PI3K inhibitors, or
consumption of the Atg12 protein homolog (Kim et al., 2008).
Recently, it has also been found to play a more complicated
role via regulating various signaling pathways including the
mTORC1 pathway (Moscat et al., 2016); p62 deficiency impairs
the translocation of mTORC1 to the lysosomes and its activation
in response to amino acids and Tsc1 ablation (Duran et al., 2011;
Umemura et al., 2016).

The Dual Effects of Autophagy in
Ischemic Stroke
The induction of autophagy has been identified in neurons,
glia cells, brain microvascular cells, and other cell types after
ischemic stroke (Wang P. et al., 2018). It is generally believed
that autophagy can play a dual role in ischemic stroke (Table 2);
moderate activation of autophagy could enable neuronal
cell survival, while excessive autophagy triggers neuronal
death. For example, mitophagy can induce mitochondrial
clearance and the inhibition of apoptosis, which represents
the neuroprotective effect of autophagy (Zhang et al., 2014;
Shen et al., 2017). Sirtuin3 (Sirt3), upregulated by oxygen and
glucose deprivation, increases autophagy through regulating
the AMPK-mTOR pathway, and then plays a protective role
in neuronal ischemia (Dai et al., 2017). Metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) long non-coding
RNA (lncRNA) also activates autophagy and protects against
cerebral ischemia by binding to miR-200c-3p and upregulating

Sirt1 expression (Wang et al., 2019). On the other hand,
excess autophagy also contributes to endothelial damage and
destruction of the blood–brain barrier (BBB) under ischemic
conditions. Activation of the autophagy-lysosomal pathway
after ischemia promotes degradation of the BBB component
claudin-5, while the inhibition of autophagy prevents damage
to brain microvascular endothelial cells during reperfusion
(Yang G. et al., 2018). Similarly, the absence of the circadian
clock protein period1 (PER1) suppresses hippocampal autophagy
and leads to vulnerability during ischemic stroke (Rami
et al., 2017). So far, modulations of autophagy intensity
have been reported as feasible strategies in the treatment
of ischemic stroke. Drugs such as dexmedetomidine have
been found to protect neurons from ischemic damage by
promoting autophagy (Luo et al., 2017), and some non-coding
RNAs targeting autophagy have also been shown to play
important roles in ischemic stroke (Wang N. et al., 2018;
Yu et al., 2019).

FERROPTOSIS AND ISCHEMIC STROKE

Ferroptosis is a recently discovered regulated form of cell
death based on iron-dependent lipid peroxidation. In general,
the induction of ferroptosis can be divided into four critical
events: (1) iron overload, (2) glutathione (GSH) depletion
and glutathione peroxidase 4 (Gpx4) inactivation, (3) lipid
peroxidation, and (4) impaired system Xc-. These events form
positive feedback loops and generally push cells toward death.
Stopping any critical events would stop the co-dependent events
and then suppress the occurrence of ferroptosis. We now
briefly introduce the relationship between these events and their
potential roles in ischemic stroke (Figure 1 and Table 2).

Iron Overload
It is well-known that iron metabolism plays an important role
in the brain. In general, iron-loaded transferrin (holotransferrin)
transports iron to the brain through the endothelial cells of
the BBB and the choroid plexus epithelium. Physiologically,
the brain can be sheltered from fluctuations in systemic
iron due to the protection provided by the BBB. However,
under acute ischemic conditions, the BBB is disrupted, which
allows the entry of free iron and ferritin into the brain
parenchyma, converting hydrogen peroxide to hydroxyl radicals
via the Fenton reaction (Kell, 2009; Chen et al., 2011).
This process significantly increases the generation of reactive
oxygen species (ROS), which promotes nucleic, proteomic, and
membrane damage, and finally mediates ferroptotic cell death
(DeGregorio-Rocasolano et al., 2019). Nowadays, iron overload
has been identified as a major source of oxidative stress in
ischemic brains (Carbonell and Rama, 2007). Furthermore, in
the early stage of reperfusion, it also increases the risk of
hemorrhagic transformation, and thereby exaggerates the poor
outcomes associated with cerebral ischemia (García-Yébenes
et al., 2018). In clinical studies, high levels of serum ferritin
also offset the beneficial effect of thrombolytic therapies in
ischemic stroke patients (Millan et al., 2007). These studies
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TABLE 2 | Autophagy and ferroptosis in ischemic stroke.

References Interventions Subjects Targets Effects

Harmful autophagy

Feng et al. (2017) Melatonin MCAO mice ER stress ↓ Melatonin protects against cerebral ischemia through inhibiting ER
stress-dependent autophagy.

Bu et al. (2014) W007B MCAO rats Beclin-1, LC3B-II ↓
p62 ↑

W007B protects against cerebral ischemia through inhibiting autophagy.

Baek et al. (2014) Carnosine MCAO rats LC3-II formation ↓
P-p70S6K, p-mTOR ↑

Carnosine protects against cerebral ischemia at least partially by
attenuating deleterious autophagy.

Jiang et al. (2017) NaHS MCAO rats LC3 II/I ↓
P62 ↑
Autophagolysosomes ↓

NaHS protects against cerebral ischemia by inhibiting overactivated
autophagy.

Li et al. (2012) TMEM166 siRNA MCAO rats Beclin-1, LC3 ↓ TMEM166 siRNA protects against cerebral ischemia by inhibiting
TMEM166-induced autophagy.

Luo et al. (2017) DEX MCAO mice, OGD primary
cultured neurons

Bcl-1, p62, HIF-1α ↑

LC3, Beclin-1 ↓
DEX protects against cerebral ischemia via inhibition of neuronal
autophagy by upregulation of HIF-1α.

Yang G. et al. (2018) HSYA OGD primary BMECs Autophagosomes ↓
LC3, Beclin-1 ↓
P-Akt, p-mTOR ↑

HSYA protects against OGD by inhibiting autophagy via the Class I
PI3K/Akt/mTOR signaling pathway.

Protective autophagy

Qi et al. (2015) RIC MCAO rats P-Bcl-2 ↑
Bcl-2/Beclin1 complex ↓

RIC triggers autophagy and reduces mitochondrial damage after
cerebral ischemia

Li et al. (2014) Rapamycin MCAO rats LC3-II and Beclin-1 in the
mitochondria ↑
P62 translocation to the
mitochondria ↑

Rapamycin attenuates mitochondrial dysfunction following cerebral
ischemia, which is linked to enhanced mitophagy.

Zhang et al. (2014) TM and TG MCAO mice ER stress ↑ TM and TG protects against cerebral ischemia via inducing ER stress,
which are based on the PARK2-mediated mitophagy.

Wang et al. (2014b) ARRB1 OGD neurons Autophagosome ↑ ARRB1 protects against OGD through coordination of
BECN1-dependent autophagy.

Dai et al. (2017) / OGD neurons Beclin-1, LC3-II ↑
P-AMPK ↑
P-mTOR ↓

Sirt3 protects against OGD by inducing autophagy through regulation of
the AMPK-mTOR pathway.

Gao et al. (2015) IPC OGD neurons P-Akt, LC3-II/LC3-I↑ IPC may attenuate ischemic injury in neurons through induction of
Akt-independent autophagy.

Shen et al. (2017) APC MCAO mice
OGD neurons

TOMM20, COX4I1 ↓
PARK2 translocation to the
mitochondria ↑

PARK2-induced mitophagy is required for the APC-mediated
neuroprotection to ischemic injury, which also extends the reperfusion
window of cerebral ischemia.

Wang et al. (2019) MALAT1 lncRNAs OGD BMECs MALAT1, Sirt1 ↑
MiR-200c-3p ↓

MALAT1 lncRNAs activates autophagy and protects against OGD by
binding to miR-200c-3p and upregulating Sirt1 expression.
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TABLE 2 | Continued

References Interventions Subjects Targets Effects

Ferroptosis

Ahmad et al. (2014) SES MCAO mice GSH ↑
MAPK/ERK, P38 ↓
Superoxide radical ↓
Lipid peroxidation ↓

SES induces neuroprotection by ameliorating lipid peroxidation and increased
GSH activity following cerebral ischemia.

Guan et al. (2019) Carvacrol OGD neurons
Gerbils with bilateral carotid
artery ligation

Lipid peroxide ↓
Gpx4 ↑

Carvacrol protects against ischemic stroke by inhibiting ferroptosis through
increasing the expression of Gpx4.

Alim et al. (2019) Selenium MCAO mice TFAP2c, Sp1 ↑
Gpx4 ↑

Pharmacological Se supplementation protects cells from ferroptosis in ischemic
stroke via increasing GPX4 expression.

Liu et al. (2017) DMED OGD PC12 and primary
neuronal cells

SOD, GSH-Px ↓ DMED protects against OGD depending on its anti-oxidative activity.

García-Yébenes et al. (2012) Iron-fed diet MCAO mice Iron accumulation ↑ Iron-fed diet increases ischemic damage and HT by increasing brain iron
accumulation.

Hanson et al. (2009) DFO MCAO rats Iron accumulation ↓ Intranasal DFO treatment decreases infarct volume by inhibiting iron overload.

Tuo et al. (2017) / Tau−/− young and aged
MCAO mice and rats

Intensity of iron accumulation Tau suppression induced by cerebral ischemic prevent ferroptosis in young
tau-/- mice, while the protective benefit of tau-/- was negated in older mice due
to the accelerated age-dependent brain iron accumulation.

García-Yébenes et al. (2018) Iron-fed diet Mice subjected to
thromboembolic stroke
treated with tPA

Lipid peroxidation ↑
Iron accumulation ↑

Iron-fed mice show less neuroprotection after tPA administration. Iron overload
also exacerbates the risk of HT after early tPA administration enhanced basal
serum lipid peroxidation.

Lan et al. (2020) NTE MCAO rats TFR1, DMT1 ↓
Iron accumulation ↓
SLC7A11, Gpx4, GSH ↑

NTE treats ischemic injury by inhibiting ferroptosis through the TFR1/DMT1 and
SCL7A11/Gpx4 pathways.

DeGregorio-Rocasolano et al. (2018) ATf MCAO rats
OGD primary neuronal cells

TSAT, HTf uptake ↓
4-HNE ↓

ATf reduces neuronal damage by preventing NMDA-induced HTf uptake and
ROS production.

Papazisis et al. (2008) DFO Neonatal rats with
hypoxia-ischemia

Iron accumulation ↓
Glutamate, aspartate ↓

DFO decreases the excitatory amino acid levels and improves the histological
outcome after hypoxia-ischemia.

Millan et al. (2007) / Patients with acute
ischemic stroke treated
with tPA

Intensity of iron accumulation Increased body iron stores are associated with poor outcome and symptomatic
HT. Iron overload may offset the beneficial effect of thrombolytic therapies.

Pekcec et al. (2013) / MCAO mice Sema3A, 12/15-LOX ↑ Sema3A increases cortical damage, which is reversed by 12/15-LOX inhibition.

van Leyen et al. (2006) Baicalein MCAO mice 12/15-LOX ↓ Baicalein protects against cerebral ischemia by inhibiting the 12/15-LOX
pathway.

Yigitkanli et al. (2013) LOXBlock-1 MCAO mice 12/15-LOX ↓ LOXBlock-1 protects against ischemic stroke by inhibiting lipid peroxidation.

MCAO, middle cerebral artery occlusion; ER, Endoplasmic reticulum stress; NaHS, sodium hydrosulfide; TMEM166, transmembrane protein 166; RIC, remote ischemic conditioning; TM, tunicamycin; TG, thapsigargin;
ARRB1, arrestin, β1; OGD, oxygen-glucose deprivation; Sirt1, sirtuin1; IPC, ischemic preconditioning; LC3, light chain 3; APC, acidic post-conditioning; MALAT1, metastasis-associated lung adenocarcinoma transcript
1; LncRNAs, long non-coding RNAs; BMEC, brain microvascular endothelial cell; PER1, PERIOD1; DEX, dexmedetomidine; HIF-1α, hypoxia-inducible factor-1α; HSYA, hydroxysafflor yellow A; SES, sesamin;
GSH, glutathione; GSH-Px, glutathione peroxidase; Gpx4, glutathione peroxidase 4; DFO, deferoxamine; DMED, dexmedetomidine; SOD, superoxide dismutase; ROS, reactive oxygen species; HT, haemorrhagic
transformation; NTE, naotaifang extract; TFR1, transferrin receptor 1; DMT1, divalent metal transporter 1; SLC7A11, solute carrier family 7 member 11; ATf, apotransferrin; TSAT, transferrin saturation; HTf, holotransferrin;
tPA, tissue plasminogen activator; 12/15-LOX, 12/15-lipoxygenase.
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FIGURE 1 | Schematic overview of ferroptosis in ischemic stroke. Following ischemic stroke, the BBB is disrupted, which allows a large amount of ferritin-containing
Fe3+ in the blood to be released into the brain parenchyma. This converts hydrogen peroxide to hydroxyl radicals via the Fenton reaction. Meanwhile, system Xc- is
simultaneously impaired, which inhibits cystine-glutamate exchange and decreases the generation of the antioxidant GSH, and reduces its oxidation to GSSG
catalyzed by Gpx4. Furthermore, excessive glutamate accumulation within the cell can also activate glutamate-NMDA receptors, which in turn promote neuronal iron
uptake. These two processes consume antioxidants and result in oxidative stress. The excessive free radicals then target sensitive fatty acids to promote lipid
peroxidation, leading to the impaired integrity of lipid membranes and mitochondrial dysfunction, which can release ROS into the cytoplasm. BBB, blood-brain
barrier; Gpx4, glutathione peroxidase 4; GSH, glutathione; GSSG, glutathione disulfide; NMDA, N-methyl-D-aspartate; ROS, reactive oxygen species.

confirm the important role of iron overload in ischemic
stroke.

Depletion of GSH and Gpx4 Inactivation
Glutathione is a tripeptide (Glu-Cyc-Gly) that can combine with
free radicals to protect cells from oxidative damage (Aoyama
and Nakaki, 2015). Gpx4 is an important antioxidant enzyme
that converts GSH into oxidized glutathione (GSSG), and then
transforms the cytotoxic lipid peroxides to the corresponding
alcohols. During ferroptosis, accumulation of redox-active iron
consumes GSH reserves through the Fenton reaction, which then
suppresses the activity of Gpx4 and leads to an overwhelming
antioxidant response (Nunez et al., 2012). The absence of
antioxidant enzymes in turn result in the accumulation of iron.
In a mouse model of ischemic stroke, decreased GSH and
Gpx4 activity in neurons have been identified, accompanied with
enhanced lipid peroxidation (Ahmad et al., 2014). A study using
brain cells also indicated that a reduction of GSH can sensitize
cells to oxidative stress and trigger lipid peroxidation (Andersen
et al., 1996). In a gerbil cerebral ischemia model, carvacrol also
successfully protects hippocampal neurons against ferroptotic
cell death by increasing the expression of Gpx4, which provides a
promising target for ischemic stroke therapies (Guan et al., 2019).

Lipid Peroxidation
The depletion of GSH, as well as Gpx4 inactivation, has
been confirmed as a requisite factor for the promotion of
lipid peroxidation during ferroptosis. Specifically, when the
antioxidant system is overwhelmed due to the iron overload,

excessive free radicals target sensitive fatty acids and promote
their peroxidation, which then impairs the integrity of lipid
membranes and induces suicide signaling cascades (Reed,
2011; Yin et al., 2011). Besides, it also causes lysosomal
membrane permeabilization and the release of redox-active iron
into the cytoplasm, which in turn promotes the generation
of Fenton radicals, cell membrane denaturation, and GSH
depletion (Galluzzi et al., 2014). During this step, peroxidation
of polyunsaturated fatty acids (PUFAs) has been considered
as a key player (Kagan et al., 2017). Two enzymes, acyl-
CoA synthetase long chain family member 4 (ACSL4) and
lysophosphatidylcholine Acyltransferase 3 (LPCAT3), have been
identified to be responsible for the biosynthesis and remodeling
of PUFA-containing phospholipid, while inhibiting ACSL4 or
LPCAT3 prevents ferroptotic cell death (Yuan et al., 2016; Li
et al., 2019; Cheng et al., 2020). Then, oxidation of PUFA-
phosphatidylethanolamines by cyclooxygenases, lipoxygenases
(LOX) and cytochromes P450 lead to the accumulation of
peroxides, finally contributing to the generation of lipid
peroxides (Yang et al., 2016; Çolakoğlu et al., 2018; Tyurina
et al., 2018). So far, inhibiting lipid peroxidation through
lipoxygenase inhibitors or lipophilic antioxidants has been
shown successfully reduce ferroptotic cell death (Matsushita
et al., 2015). Since membrane phospholipids in the brain are
highly enriched in PUFAs, they are easily disrupted by a
high quantity of ROS, and thereby induce lipid peroxidation
(Chen et al., 2008). In animal and human ischemic stroke
models, it has been found that lipoxygenase inhibitors can
play protective roles by eliminating the overexpression of
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lipoxygenases (Cui et al., 2010; Karatas et al., 2018). Besides,
the increased 12/15-LOX was also observed following ischemic
stroke, contributing to neurological damage, while 12/15-LOX
inhibition reversed the detrimental effects (Pekcec et al., 2013;
Yigitkanli et al., 2013).

Impaired System Xc-
Glutamate-induced neurotoxicity is a well-known important
mechanism underlying ischemic stroke. In recent years, it was
also identified to participate in the process of ferroptosis (Dixon
et al., 2012). Non-synaptic extracellular glutamate in the brain
is mainly derived from the system Xc-, which is responsible
for glutamate extracellular export and cystine import (Domercq
et al., 2007). In physiological conditions, system Xc- could
maintain a reducing extracellular environment, but in ischemic
stroke, excessive glutamate inhibits cystine uptake via inhibiting
system Xc- (Banjac et al., 2008), which impairs cystine absorption
and decreases the generation of antioxidant GSH (Conrad and
Sato, 2012). In addition, the accumulated glutamate within the
cell also results in the activation of glutamate-NMDA receptors,
which promote neuronal iron uptake and eventually cause
ferroptotic damage (Cheah et al., 2006). In neuronal cell lines, it
has been shown that both the 5 -LOX inhibitor zileuton and the
iron chelator ferrostatin-1 can protect neurons from glutamate-
induced oxidative stress, through the inhibition of ferroptosis
(Liu et al., 2015).

CROSSTALK BETWEEN AUTOPHAGY
AND FERROPTOSIS

In recent years, emerging studies have identified that some
selective autophagy can also degrade damaged mitochondria,

aggregated proteins, excess peroxisomes and invading
pathogens through recognizing specific cargos, thus allowing
the maintenance of intracellular homeostasis (Kraft et al.,
2009; Rogov et al., 2014; Khaminets et al., 2016). These
autophagic degradation may contribute to iron overload or lipid
peroxidation, eventually causing ferroptosis (Kang and Tang,
2017; Zhou et al., 2019; Liu et al., 2020). Since the selective
autophagy and ferroptosis have been found to play important
roles in ischemic stroke, it is possible that autophagy may
participate in the modulation of brain iron accumulation and
lipid peroxidation following ischemic process, subsequently
promoting ferroptotic cell death. A specific introduction to this
hypothesis is identified in Figure 2.

Nuclear Receptor Coactivator 4
(NCOA4)-Mediated Ferritinophagy and
Regulation of TfR1
Iron is necessary for the high metabolic demands of brain
cells, however, excessive free iron can promote oxidative stress
and cause brain damage; thus, iron availability must be strictly
controlled within brain cells. In general, cellular iron is stored
in the non-toxic and bioavailable form of ferritin, which is
composed of ferritin heavy chains (FTH) and ferritin light
chains (FTL) (Arosio et al., 2009), which can prevent harmful
oxidative stress when free iron is overloaded, and release iron
when cells require it. The primary pathway to release iron from
ferritin is via ferritinophagy, which is NCOA4-mediated ferritin
degradation. Specifically, NCOA4 links ferritin to growing
autophagosomal membranes, where ferritin is degraded and
releases chelated iron, which is then used by the cell to induce
oxidative stress (Mancias et al., 2014). Several studies have
demonstrated that ferritin degradation and cellular free iron

FIGURE 2 | The possible pathways mediating the crosstalk between autophagy and ferroptosis in ischemic stroke. We have illustrated the possible pathways
involved in the crosstalk between autophagy and ferroptosis and their downstream effects in ischemic stroke, including NCOA4-mediated ferritinophagy and
upregulation of TfR1, RAB7A-mediated lipophagy, BECN1-mediated system Xc- inhibition, STAT3-mediated lysosomal cell death, SQSTM1-mediated clockophagy,
HSP90-mediated CMA, mitochondrial dysfunction and ER stress.
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overload, induced by the overexpression of NCOA4, can promote
ferroptosis, whereas the depletion or inhibition of NCOA4
increases serum ferritin levels and reduces free iron levels, which
thereby inhibits oxidative stress during ferroptosis (Mancias
et al., 2015; Gao et al., 2016; Hou et al., 2016). Moreover, the
level of GSH is also increased with NCOA4 knockdown and
is decreased with NCOA4 overactivation. These results strongly
support the presence of a connection between NCOA4-induced
ferritinophagy and ferroptosis through the regulation of iron
homeostasis and GSH levels.

To date, little is known about the expression of NCOA4 in the
human brain, however, it’s expression in murine and rat brains
has been identified (Siriett et al., 2006; Kollara and Brown, 2010).
Acute systemic consumption of NCOA4 shows accumulation of
FTH1 within a week, which suggest a potential role of NCOA4
for FTH1 turnover in the brain (Santana-Codina et al., 2019).
Interestingly, excessive iron measured as serum ferritin was
also associated with poor prognosis following ischemic stroke
(García-Yébenes et al., 2012), indicating the important role of
ferritin as an iron carrier to mediate iron storage and release
under ischemic conditions. Nowadays, a possible link between
neurodegeneration and NCOA4-mediated ferritinophagy have
been exhaustively reviewed (Quiles Del Rey and Mancias, 2019),
however, their effects in ischemic stroke are still unclear. Since
the disruption of iron homeostasis is concurrently observed with
autophagy defects in ischemic stroke, and autophagy maintains
cell homeostasis mainly by promoting the clearance of toxic
proteins, we propose that it is highly possible for aberrant
autophagy to mediate ferritin degradation, which then promote
iron overload and ferroptosis in ischemic stroke.

Transferrin receptor 1 (TfR1) is a major receptor involved
in iron transport to the brain, which plays an important role
in maintaining the homeostasis of brain iron and regulating
ferroptosis (Lo et al., 2007; Raje et al., 2007; Kawabata, 2019).
The regulation of TfR1 expression as well as its related TfR/
Tf endocytic pathway has been identified as a critical event
that influences the outcome of ischemic stroke (Lo et al.,
2007; Park et al., 2011; Lan et al., 2020). Interestingly, recent
studies have shown that activation of autophagy increases the
expression of TfR1 and subsequent intracellular iron (Qian et al.,
2002). In wild-type cells, autophagy leads to ferroptosis via the
degradation of ferritin and enhanced expression of TfR1, while in
autophagy-deficient cells and autophagy inhibitor-treated wild-
type cells, this effect is abolished (Park and Chung, 2019).
These results raise the possibility that autophagy may regulate
ischemic stroke by influencing the expression of TfR1 and iron-
dependent ferroptosis.

RAB7A-Mediated Lipophagy
Neutral lipids can deposit in the bilayer membranes of the
endoplasmic reticulum (ER), which causes the outer layer to
expand and form a unique dynamic organelle called lipid
droplets (LDs) (Liu and Czaja, 2013). LDs have been found
in most eukaryotic cells and in some prokaryotes, and can
regulate cellular lipid storage and release in response to metabolic
changes (Welte and Gould, 2017). Recently, the autophagic
degradation of LDs, also known as lipophagy, has been identified

to promote RSL3-induced lipid peroxidation and ferroptosis,
while genetically increasing lipid storage by upregulating the level
of tumor protein D52 (TPD52) suppressed lipid peroxidation
and subsequent ferroptosis (Bai et al., 2019). In rat ischemic-
reperfusion (I/R) models, studies have found a reshaping of
neutral lipids and generation of LDs alongside the induction of
lipophagy, which leads to lipid degradation (Lonati et al., 2019).
Thus, it is possible that in ischemic stroke, the activated lipophagy
might promote lipid peroxidation, which then contributes to
ferroptosis.

BECN1-Mediated System Xc- Inhibition
System Xc- is an amino acid anti-transporter composed of two
core components: solute carrier family 7 member 11 (SLC7A11)
and solute carrier family 3 member 2 (SLC3A2). It can exchange
cystine and glutamate in and out of the cell; the imported cystine
then reduces to cysteine and participates in the synthesis of
the antioxidant GSH. So far, system Xc- has been shown to
be involved in ischemic stroke through modulating glutamate
transport and GSH synthesis (Krzyzanowska et al., 2016). In
middle cerebral artery occlusion rat models, naotaifang extract
treatment significantly inhibits ferroptosis by increasing the
SLC7A11/GPX4 pathway (Lan et al., 2020). BECN1 is widely
identified as an important autophagy modulator in ischemic
stroke (Wang et al., 2014a,b; Liu et al., 2016). Recently, a
study reported that BECN1 can also block the activity of
system Xc- by directly binding to its core component, SLC7A11,
and thereby promoting ferroptosis. In contrast, knockdown of
BECN1, or inhibiting the phosphorylation of BECN1 limits
the formation of a BECN1-system Xc- complex, which then
suppresses ferroptosis induced by system Xc- inhibitors (Song
et al., 2018). In primary oligodendrocytes, it has been shown
that treatment with glutamate blocks system Xc- function,
induces mitochondrial dysfunction, and promotes ferroptosis
(Novgorodov et al., 2018). Besides, pretreatment with selenium in
neurons attenuates glutamate toxicity, reduces ROS production,
and preserves mitochondrial function after glutamate exposure
and/or hypoxia, accompanied by reduced levels of BECN1 and
LC3-II (Mehta et al., 2012). Since the dysfunction of system
Xc- and BECN1 were concurrently observed with glutamate
exposure, we propose whether BECN1 can interact with system
Xc- to regulate ferroptosis in the brain. However, the upstream
mechanisms to regulate BECN1 to determine its preferred
interaction with system Xc- or Class III PI3K to mediate
ferroptosis or autophagy remain undefined, which may be a key
topic for future research.

STAT3-Mediated Lysosomal Cell Death
Autophagy has been confirmed to result in the delivery
of cytoplasmic contents and organelles to lysosomes for
degradation. Recently, studies have found that lysosomal
activity can also be impaired by ferroptosis, which provides
a new hypothesis for the relationship between autophagy and
ferroptosis. Since lysosomes are vulnerable to oxidative stress,
they could be damaged by the intralysosomal Fenton reaction and
the subsequent peroxidative instability of lysosomal membranes
(Brunk et al., 1995; Ollinger and Brunk, 1995). In contrast,
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intralysosomal ferritin increases lysosomal stability via iron
chelation, and then reduces oxidative stress (Garner et al.,
1997, 1998). Besides, treatment with lysosome inhibitors has
also shown to decrease erastin- and RSL3-induced ferroptotic
cell death by inhibiting ROS production and intracellular iron
overload (Torii et al., 2016). Signal transducer and activator
of transcription 3 (STAT3) is a signaling molecule response to
many cytokines and growth factors. It was recently identified
that STAT3-mediated overexpression of cathepsin B significantly
promotes ferroptosis via the activation of lysosomal cell death,
whereas pharmacologically or genetically inhibiting STAT3
blocked ferroptotic cell death (Gao et al., 2018). These findings
suggest a potential role of autophagy in ferroptosis via regulation
of the lysosomal pathway. Nowadays, increased active cathepsin
B levels and lysosomal membrane permeability have been proved
to play important roles in ischemic stroke, while treatments
reversing these impairments attenuated ischemic damage (Ni
et al., 2018). However, the relationship between impaired
lysosomal activity and ferroptotic damages in ischemic stroke
requires further exploration.

SQSTM1-Mediated Clockophagy
The circadian rhythm is an endogenous oscillation with a
periodicity of about 24 h that is mainly regulated by circadian
clock proteins, including aryl hydrocarbon receptor nuclear
translocator-like protein 1/brain and muscle ARNT-like 1
(ARNTL/BMAL1) (Partch et al., 2014). It has been shown that the
circadian rhythm plays an important role in maintaining normal
internal cycles of behavior and brain physiology in human
bodies, while its disruption can cause negative effects and even
lead to vascular diseases, including ischemic stroke (Karatsoreos
et al., 2011). In mouse I/R models, nighttime I/R injury has
been found to cause less severe neuronal damage, which is
related to the increased expression of circadian proteins such as
BMAL1, PERI, and clock proteins (Beker et al., 2018). In human
subjects, the outcome of ischemic stroke also shows a diurnal
variation through the regulation of circadian clock proteins
(Pardiwalla et al., 1993; Elliott, 1998). Besides, the autophagic
machinery is inhibited in PER1−/− hippocampal neurons, which
may lead to vulnerability during cerebral ischemia, suggesting a
functional relationship between autophagy and circadian rhythm
(Rami et al., 2017).

In recent years, emerging studies have suggested that the
circadian rhythm could control various cellular processes,
including iron metabolism, oxidative stress, and cell death, which
indicates its potential role in regulating ferroptosis (Magnone
et al., 2014). Besides, the expression of circadian proteins
also seems to be modulated by autophagy. A novel type of
selective autophagy called clockophagy has been discovered,
which is responsible for the degradation of the circadian clock
protein ARNTL/BMAL1 via the cargo receptor SQSTM1/p62
(Yang et al., 2019). Early studies have reported that suppressing
ARNTL expression by clockophagy effectively contributed to
lipid peroxidation and ferroptotic cell death via upregulating
the transcription of egl-9 family hypoxia-inducible factor 2
(EGLN2) and then decreasing hypoxia inducible factor 1 alpha
(HIF1A)-dependent lipid storage. Genetically or chemically

inhibiting ARNTL degradation or EGLN2 activation reduced
ferroptosis, whereas destabilizing HIF1A promoted ferroptosis
(Yang et al., 2019). These results provide a novel thought
for the crosstalk between autophagy and ferroptosis through
modulating circadian clock proteins, and prompts the possibility
that the decreased expression of circadian clock proteins may
lead to a poor prognosis in ischemic stroke due to clockophagy-
induced ferroptosis.

HSP90-Mediated CMA
Chaperone-mediated autophagy (CMA) is responsible for
delivering certain cytosolic proteins with a pentapeptide CMA-
targeting motif to lysosomes for degradation using molecular
chaperones such as HSC70 (heat shock cognate protein 70) and
LAMP2a (lysosome-associated membrane protein type 2a). In
recent studies, scientists have found that CMA is highly activated
during oxidative stress (Kiffin et al., 2004), which enhances the
degradation of antioxidant proteins such as Gpx4 and then
promote ferroptosis, while inhibition of CMA stabilized Gpx4
and protected against ferroptosis (Shimada et al., 2016; Muller
et al., 2017; Zhu et al., 2017). Furthermore, a widely expressed
heat shock protein, heat shock protein 90 (HSP90), which can
be activated under oxidative stress (Carper et al., 1987; Sidera
and Patsavoudi, 2014), has also been identified as an important
molecular chaperone that can increase the levels of LAMP2a
in the CMA pathway and mediate the degradation of Gpx4
during ferroptosis, while inhibition or knockdown of HSP90
blocks CMA and suppresses ferroptosis in HT-22 cells (a mouse
neuronal cell line) (Wu et al., 2019). Since oxidative stress is a
critical event during ischemic stroke, we assume that CMA might
be activated under ischemic stroke, which then participates in
ferroptosis by inducing Gpx4 degradation.

Mitochondrial Dysfunction
Mitochondrial dysfunction is a major pathological process
and also a critical therapeutic target in ischemic stroke. It
is regulated by a complex machinery network, which forms
a vicious cycle to disrupt mitochondrial homeostasis (Yang
J. L. et al., 2018). Mitophagy is a special type of autophagy
that can dictate mitochondrial turnover by degrading damaged
mitochondria (Pickles et al., 2018). Recently, the activation of
mitophagy has been shown to protect against mitochondrial
damage in ischemic stroke, which indicates the important role
of autophagy in regulating mitochondrial dysfunction (Shen
et al., 2017; Yuan et al., 2017). In addition, ferroptosis has also
been found to participate in the execution of mitochondrial
dysfunction. Morphologically, ferroptosis is characterized by the
atrophy of mitochondria with increased membrane densities,
as well as reduced or even absent mitochondria crista and a
ruptured outer membrane. Mechanically, as a core organelle
to regulate iron metabolism, as well as substance and energy
metabolism, the impairment of mitochondria can also affect
cellular iron utilization and disrupt redox homeostasis, and then
contribute to ferroptosis (Li et al., 2020; Wang et al., 2020).
In neuronal cells, recent studies have reported that erastin- or
RSL3-induced ferroptosis are associated with BID transactivation
to mitochondria, increased mitochondrial fragmentation, and
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decreased ATP levels, while the inhibition of BID preserves
integrity and function of the mitochondria and prevents
ferroptosis (Neitemeier et al., 2017; Jelinek et al., 2018).
Since the severity of ferroptosis is tightly associated with the
disruption and recovery of mitochondria, while mitophagy
is responsible for removing the damaged mitochondria and
dictating mitochondrial turnover, we assume that the induction
of mitophagy might be able to manipulate ferroptosis via
regulating mitochondrial function. Notably, these findings also
provide novel concepts regarding therapeutic interventions for
ischemic stroke.

ER Stress
The accumulation of misfolded proteins in ER, known as the
unfolded protein response (UPR), disrupts ER homeostasis and
leads to ER stress. Nowadays, ER stress has been confirmed as an
essential factor mediating cell death in ischemic stroke (Nakka
et al., 2010). Autophagy is a critical process activated by ER
stress, which is responsible for removing misfolded proteins. In
ischemic stroke, the induction of autophagy by ER stress can lead
to two-sided effects. On the one hand, inhibition of ER stress-
dependent autophagy could alleviate acute neuronal ischemic
injury (Feng et al., 2017). On the other hand, salubrinal, an ER
stress inhibitor, inhibits both the activation of autophagy and
neuroprotection mediated by brain ischemic preconditioning
(Gao et al., 2013). In contrast, activation of autophagy can
also regulate ER stress. It has been shown that inhibition of
autophagy by 3-Methyladenine (3-MA) significantly aggravates
ER stress in ischemic stroke, while treatment with the autophagy
inducer rapamycin reverses these effects (Sheng et al., 2012;
Fan et al., 2016).

Recently, emerging studies have also identified the
relationship between ER stress and ferroptosis (Dixon et al.,
2014). For example, redox imbalance and lipid peroxidation
can trigger ER stress (Vladykovskaya et al., 2012). RNA
sequencing demonstrated that inhibition of system Xc-
can lead to the activation of ER stress and upregulation
of CHAC1 (ChaC, cation transport regulator homolog 1)
(Dixon et al., 2014). Interestingly, ferroptosis could also
share cell death pathways with autophagy via the ER stress
response. Both ferroptosis inducers [artesunate (ART)
and erastin (ERA)] and autophagy inducers [bortezomib
(BOR) and XIE62-1004] promote the formation of
autophagosome by regulating ER stress (Lee et al., 2020).
These results not only provide a better understanding for the
manipulation of ER stress, but also provide a new thought
for the relationship between autophagy and ferroptosis in
ischemic stroke.

Other Potential Pathways Linking
Autophagy and Ferroptosis
In addition to the above, there are some other signals that
also indicate potential links between ferroptosis and autophagy.
For example, autophagy can significantly decrease the levels
of GSH (Mancilla et al., 2015; Stockwell et al., 2017), while
both autophagy inhibitors and selective ferroptosis inhibitors

improve GSH levels and suppress cell death, and vice versa
(Desideri et al., 2012; Sun et al., 2018). These results suggest
an important role of GSH in regulating both ferroptosis and
autophagy, and that activation of one process might promote
another through regulating GSH levels. ACSL4 is a critical
enzyme involved in arachidonic acid (AA) metabolism and
has been discovered to influence the sensitivity to ferroptosis
(Yuan et al., 2016; Doll et al., 2017). Interestingly, it has also
been identified as a novel activator of the mTOR pathway
(Orlando et al., 2015). Since mTOR can protect cells from
excess iron and ferroptosis (Baba et al., 2018), it might be a
potential target for ACSL4 to modulate ferroptosis sensitivity.
On the other hand, the induction of ferroptosis can also
influence autophagy. For example, erastin-induced excessive
ROS generation can activate autophagy, while overexpression of
Gpx4 suppressed ROS-induced autophagy (Garg et al., 2013).
Treatment with curcumin caused significant iron deprivation and
then induced protective autophagy, while iron supplementation
suppressed the occurrence of autophagy (Yang et al., 2017).
Furthermore, the products of lipid peroxidation can also inhibit
autophagy by activating mTORC1 signaling under ischemic
conditions (Ma et al., 2011), or causing lysosomal dysfunction
and lipofuscin generation to reduce autophagy activity (Krohne
et al., 2010). Heat shock 70 kDa protein 5 (HSPA5) is an
important molecular chaperone expressed primarily in the ER.
It has been shown to effectively protect against cell death in
response to ER stress-induced autophagy (Chang et al., 2019).
Besides, a recent study also demonstrated that overexpression
of HSPA5 can negatively regulate ferroptosis by limiting Gpx4
degradation and lipid peroxidation (Zhu et al., 2017). In the
future, additional studies are needed to clarify whether the
two processes mediated by HSPA5 function separately, or in
cooperation with each other.

CONCLUSION AND PERSPECTIVES

Nowadays, a number of cell death pathways have been discovered
(Galluzzi et al., 2014), which can cooperate with each other
to help maintain organismal homeostasis. Clarification of their
molecular mechanisms and crosstalk between each pathway
would not only favor a comprehensive understanding of cell
death pathways, but also open up new therapeutic approaches
for related diseases. In recent years, the interrelationship between
autophagy and ferroptosis has attracted more and more attention,
which provides a novel concept regarding the regulation of cell
death. However, their potential effects underlying ischemic stroke
have not yet been discussed. In this review, we briefly summarize
current knowledge on the mechanisms of autophagy and
ferroptosis, while focusing on the possible pathways that mediate
their crosstalk during ischemic stroke. Nevertheless, a lot of
questions still existed before its clinical application. For example,
the precise mechanisms underlying ferroptosis to govern iron
and lipid metabolism in ischemic stroke remain to be explored,
and the functional role of the different types of autophagy or
the associated autophagy receptors in ferroptosis are still unclear.
Besides, what are the effector molecules downstream of the two
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pathways to induce cell death? And can they influence each other
and form a feedback loop in ischemic stroke? Moreover, since
autophagy plays a dual role in ischemic stroke, it is critical for
future interventions to manipulate the intensity of autophagy to
find a balance between ferroptosis and autophagy and minimize
neurological damages. Lastly, recent research has revealed that
inhibition of two and more cell death pathways simultaneously
can decrease ischemic stroke damage more significantly than
inhibiting a single one (Tian et al., 2018). Therefore, interventions
targeting both autophagy and ferroptosis at the same time could
actually provide us with new ideas for the future treatment of
ischemic stroke. All in all, there is still a long way to go before
we fully understand the crosstalk between these two processes in
ischemic stroke.
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