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Research over the last couple of decades has provided novel insights into lactate
neurobiology and the implications of lactate transport-driven neuroenergetics in health
and diseases of peripheral nerve and the brain. The expression pattern of lactate
transporters in glia and neurons has now been described, though notable controversies
and discrepancies remain. Importantly, down- and up-regulation experiments are
underway to better understand the function of these transporters in different systems.
Lactate transporters in peripheral nerves are important for maintenance of axon
and myelin integrity, motor end-plate integrity, the development of diabetic peripheral
neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain
energy metabolism and functions ranging from development to synaptic plasticity to
axonal integrity are also dependent on lactate transport primarily between glia and
neurons. This review is focused on critically analysing the expression pattern and the
functions of lactate transporters in peripheral nerves and the brain and highlighting their
role in glia-neuron metabolic crosstalk in physiological and pathological conditions.

Keywords: monocarboxylate transport, neurodegenerative disease, Schwann cell, oligodendrocyte, astrocyte,
peripheral nerve, lactate

INTRODUCTION

Though reported two centuries ago in exhausted animal muscle as a waste product, recent evidence
and new lines of investigation have redefined the biology of lactate (L-lactate or lactic acid).
Lactic acid, which is hydrophilic and a weak acid, donates hydrogen ions (H+) and the resultant
product, a hydroxy monocarboxylic acid anion, referred to as lactate, is the conjugate base of
lactic acid. Pyruvate under both anaerobic and aerobic (Warburg effect; Warburg et al., 1927)
conditions is metabolized by lactate dehydrogenase (LDH) to lactic acid. Importantly, the nervous
system operates mainly under aerobic conditions but cannot fully oxidize glucose and instead
generates a local surplus of lactate, a phenomenon termed aerobic glycolysis (Barros et al., 2020).
In aqueous solutions, lactic acid dissociates almost completely to lactate and H+. In nature, lactate
exists in two isomers: L-lactate and D-lactate, with L-lactate being by far the most abundant and
physiologically significant in all mammals, including humans. Recent studies have recognized
lactate as a major carbon source fueling metabolic pathways and a key molecule regulating diverse
biological processes (Faubert et al., 2017; Hui et al., 2017; Brooks, 2018; Magistretti and Allaman,
2018). Growing evidence now acknowledges lactate as an active metabolite capable of moving
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into or out of cells, acting as a signaling molecule, and regulating
diverse physiological and pathophysiological cascades.

Studies over the past 20 years have defined the cellular
metabolic heterogeneity of the nervous system, particularly
in the brain. Metabolically, neurons are mostly oxidative,
whereas glial cells, particularly astrocytes and oligodendrocytes,
are predominantly glycolytic, and thus metabolize glucose to
lactate to a greater extent than neurons (Funfschilling et al.,
2012; Magistretti and Allaman, 2015, 2018; Weber and Barros,
2015; Supplie et al., 2017). Neurons can use lactate from
astrocytes as an energy substrate particularly during functional
activation, suggesting that brain energy metabolism begins
as transient glycolysis in astrocytes and ends as oxidation
in neurons. The lactate: pyruvate concentration ratio of 10:1
under physiological conditions indicates that lactate is the
predominant glycolytic substrate for intercellular transfer in
the brain (Alberti, 1977; Levy, 2006; Redant et al., 2019).
Similarly, emerging evidence suggests a functional intercellular
lactate shuttle in peripheral nerves (Takebe et al., 2008; Brown
et al., 2012; Evans et al., 2013; Saab et al., 2013; Tu et al.,
2017). Schwann cells contain glycogen, which is metabolized
to lactate that can substitute for glucose in supporting axonal
functions and survival (Brown et al., 2012). Besides having
a metabolic role, a growing body of evidence demonstrates
that lactate functions as an important signaling molecule
in various tissues and cell types under physiological and
pathological conditions and contributes to several homeostatic
processes (Cha et al., 1991; Brooks, 2002; Hirschhaeuser
et al., 2011; Jha et al., 2015, 2016; Rahman et al., 2016;
Magistretti and Allaman, 2018).

Lactate transport across membranes requires
monocarboxylate transporters (MCTs) of the SLC16 solute
carrier family (Halestrap, 2013b). MCTs are a family of
proton-linked plasma membrane transporters that allow the
passage of monocarboxylates, including lactate, pyruvate,
and ketone bodies (Halestrap and Price, 1999; Halestrap and
Meredith, 2004; Bosshart et al., 2019). Though there are 14
members of this family, only the first four (MCT1-4) have been
recognized experimentally to transport metabolically important
monocarboxylates such as lactate, pyruvate and ketone bodies,
each with distinct substrate and inhibitors affinities. However,
the key substrates for most of the other MCTs are different
from that of MCTs 1–4 or are still unknown [for review see
(Jones and Morris, 2016)]. MCTs display distinct affinities
for these monocarboxylates and are differentially expressed
within cells and tissues. Although Camillo Golgi proposed that
glial cells are metabolic supporters for neurons based on his
microscopic observations over a century ago [(Golgi, 1873) as
reviewed in Parpura and Verkhratsky (2012)], the metabolic
interactions and nutrient sharing between glia and neurons are
just now starting to be understood. Experiments completed
in the last couple of decades have led to several important
breakthroughs regarding the metabolic crosstalk between
glia and neurons. This review focuses on summarizing the
emerging roles of lactate transporters in glia-neuron metabolic
interactions in the central and peripheral nervous systems
(CNS and PNS, respectively) and exploring the therapeutic

potentials of targeting the lactate transporter pathways for
neurological disorders.

DIFFERENTIALLY EXPRESSED LACTATE
TRANSPORTERS ESTABLISH
GLIA-NEURON METABOLIC
CROSSTALK

In human and other mammalian cells, transport of L-lactate
across plasma membranes is mainly catalyzed by proton-linked
MCTs of the SLC16 solute carrier family. Sodium-coupled MCTs
(SMCTs) can also function as L-lactate transporters, though
the function for these transporters in the nervous system
remains unknown.

Each of these MCTs (1–4) exhibits a distinct regional and
cellular distribution (Tables 1, 2). MCT3 expression is restricted
to retinal pigmented epithelial cells (Philp et al., 1998) and
choroid plexus epithelium (Philp et al., 2001), but the other
three transporters are all expressed in the CNS and PNS
(Debernardi et al., 2003; Pellerin et al., 2005; Pierre and Pellerin,
2005; Lee et al., 2012; Halestrap, 2013b; Nijland et al., 2014;
Domenech-Estevez et al., 2015; Morrison et al., 2015; Perez-
Escuredo et al., 2016; Jha and Morrison, 2018; Mornagui et al.,
2019). In the CNS, MCT1 is expressed in oligodendrocytes
(Rinholm et al., 2011; Lee et al., 2012; Morrison et al., 2013),
astrocytes (Broer et al., 1997; Leino et al., 1999; Hanu et al.,
2000; Tseng et al., 2003; Pellerin et al., 2005; Tekkok et al.,
2005; Chiry et al., 2006; Nijland et al., 2014), microglia (Moreira
et al., 2009; Ding et al., 2013; Nijland et al., 2014; Kong et al.,
2019), endothelial cells (Gerhart et al., 1997; Pellerin et al.,
1998b; Mac and Nalecz, 2003; Tseng et al., 2003; Chiry et al.,
2006; Balmaceda-Aguilera et al., 2012), tanycytes (hypothalamus-
specific glial cell type) (Tseng et al., 2003; Cortes-Campos et al.,
2011), ependymocytes (Tseng et al., 2003), and some specific
neurons (Tseng et al., 2003; Chiry et al., 2006; Balmaceda-
Aguilera et al., 2012; Morrison et al., 2013; Perez-Escuredo
et al., 2016). Similarly, in the PNS, MCT1 is expressed in
perineurial cells (Takebe et al., 2008; Morrison et al., 2015) and
endoneurial cells, including Schwann cells (Domenech-Estevez
et al., 2015; Morrison et al., 2015; Jha et al., 2020b) and DRG
neurons (Domenech-Estevez et al., 2015; Morrison et al., 2015).
Though clearly expressed in the PNS (Domenech-Estevez et al.,
2015; Morrison et al., 2015), the precise cellular localization of
MCT2 in the PNS is still unclear. In the CNS, it is expressed
predominately in neurons (Tekkok et al., 2005; Chiry et al.,
2006; Balmaceda-Aguilera et al., 2012; Nijland et al., 2014;
Alvarez-Flores et al., 2019), though other studies have shown
expression in endothelial cells (Mac and Nalecz, 2003; Chiry
et al., 2006; Balmaceda-Aguilera et al., 2012), astrocytes (Gerhart
et al., 1998; Hanu et al., 2000; Nijland et al., 2014), microglia
(Moreira et al., 2009; Nijland et al., 2014; Kong et al., 2019),
and tanycytes (Cortes-Campos et al., 2011). MCT4 expression
in the CNS is very low and is expressed mostly in astrocytes
(Marcillac et al., 2011; Lee et al., 2012; Nijland et al., 2014;
Rosafio and Pellerin, 2014), though lower levels have been
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TABLE 1 | Regional and cellular distribution of MCTs in the peripheral nervous system.

MCTs Cells Species Methods References

MCT1 Perineurial cells Mouse qPCR, WB,
ISH, BAC, or
IHC

Takebe et al., 2008; Morrison et al., 2015

Schwann cells Mouse and rat qPCR, WB,
BAC, or IHC

Domenech-Estevez et al., 2015; Morrison
et al., 2015; Jha et al., 2020b

DRG neurons Mouse and rat qPCR, WB,
BAC, or IHC

Domenech-Estevez et al., 2015; Morrison
et al., 2015

MCT2 Expressed in
the PNS, but
cellular
distribution is
still unclear

Mouse and rat qPCR, WB, or
IHC

Domenech-Estevez et al., 2015; Morrison
et al., 2015

MCT4 Schwann cells Mouse and rat qPCR, WB, or
IHC

Domenech-Estevez et al., 2015

qPCR, real-time RT PCR; NB, Northern blot; WB, Western blot; ISH, In situ hybridization; BAC; BAC transgenic reporter; IHC, Immunohistochemistry.

TABLE 2 | Regional and cellular distribution of MCTs in the central nervous system.

MCTs Cells Species Methods References

MCT1 Oligodendrocytes Mouse, rat, and
human

qPCR, WB, BAC,
or IHC

Rinholm et al., 2011; Lee et al., 2012;
Morrison et al., 2013

Astrocytes Mouse, rat, and
human

WB, NB, or IHC Broer et al., 1997; Leino et al., 1999; Hanu
et al., 2000; Tseng et al., 2003; Tekkok
et al., 2005; Chiry et al., 2006; Nijland et al.,
2014

Microglia Mouse, rat, and
human

qPCR, WB, or IHC Moreira et al., 2009; Ding et al., 2013;
Nijland et al., 2014; Kong et al., 2019

Endothelial cells Rat, shark, and
human

NB, IHC, ISH, or
RT-PCR

Gerhart et al., 1997; Pellerin et al., 1998b;
Mac and Nalecz, 2003; Tseng et al., 2003;
Chiry et al., 2006; Balmaceda-Aguilera
et al., 2012

Ependymal cells
(tanycytes and
ependymocytes)

Rat qPCR or IHC Tseng et al., 2003; Cortes-Campos et al.,
2011

Neurons (some
specific neurons)

Rat, shark, and
human

IHC Tseng et al., 2003; Chiry et al., 2006;
Balmaceda-Aguilera et al., 2012

MCT2 Endothelial cells Rat, shark, and
human

qPCR or IHC Mac and Nalecz, 2003; Chiry et al., 2006;
Balmaceda-Aguilera et al., 2012

Neurons Shark and human IHC Tekkok et al., 2005; Chiry et al., 2006;
Balmaceda-Aguilera et al., 2012; Nijland
et al., 2014; Alvarez-Flores et al., 2019

Astrocytes Rat and human WB or IHC Gerhart et al., 1998; Hanu et al., 2000;
Nijland et al., 2014

Microglia Mouse, rat, and
human

IHC Moreira et al., 2009; Nijland et al., 2014;
Kong et al., 2019

Tanycytes Rat qPCR or IHC Cortes-Campos et al., 2011

MCT3 Retinal pigmented
epithelial cells

Rat IHC, WB, and NB Philp et al., 1998

Choroid plexus
epithelium

Rat IHC, WB, and NB Philp et al., 2001

MCT4 Astrocytes Mouse, rat, and
human

qPCR, WB, BAC,
and IHC

Marcillac et al., 2011; Lee et al., 2012;
Nijland et al., 2014; Rosafio and Pellerin,
2014

Microglia Mouse and human IHC Nijland et al., 2014; Kong et al., 2019

Tanycytes Rat qPCR and IHC Cortes-Campos et al., 2011

Endothelial cells Shark and human IHC Balmaceda-Aguilera et al., 2012; Nijland
et al., 2014

qPCR, real-time RT PCR; NB, Northern blot; WB, Western blot; ISH, In situ hybridization; BAC, BAC transgenic reporter; IHC, Immunohistochemistry.
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found in microglia (Nijland et al., 2014; Kong et al., 2019),
tanycytes (Cortes-Campos et al., 2011), and endothelial cells
(Balmaceda-Aguilera et al., 2012; Nijland et al., 2014). In the PNS,
MCT4 is expressed in Schwann cells (Domenech-Estevez et al.,
2015).

Besides the proton-linked co-transporters of monocarboxylic
substrates, there is a second class of MCTs known as sodium-
coupled MCTs (SMCTs). This class of MCTs contains two
members, namely SMCT1 (SLC5A8) and SMCT2 (SLC5A12),
that mediate cellular uptake of monocarboxylates in a sodium
(Na+)-coupled manner (Ganapathy et al., 2008; Srivastava et al.,
2019). SMCTs, which depend on a sodium gradient for their
functional activity, act as a symporter and play an important role
in handling multiple endogenous monocarboxylates in various
tissues throughout the body (Ganapathy et al., 2008; Halestrap,
2013a; Lu et al., 2013; Vijay and Morris, 2014; Iwanaga and
Kishimoto, 2015). SMCT1 is a high-affinity, whereas SMCT2
is a low-affinity, lactate transport system. Both are expressed
in the brain and retina. SMCT1 is restricted to neurons and
retinal pigment epithelium and contributes to cellular uptake of
lactate in neurons (Martin et al., 2006). The expression pattern of
SMCT1 is similar to that of neuron-specific MCT2 (Ganapathy
et al., 2008). The expression of low-affinity SMCT2 is restricted
to astrocytes and Müller cells, the glial cells of the retina (Martin
et al., 2007). Physiologically, SMCT1 can transport lactate and
ketone bodies into neurons and also functions as a tumor
suppressor in the brain, but the importance of this transporter
in normal physiologic conditions is unknown (Ganapathy et al.,
2008). The function of SMCT2 in the nervous system has been
even less explored.

LACTATE TRANSPORTER-DEPENDENT
GLIAL METABOLISM SUPPORTS
PERIPHERAL NERVE INTEGRITY AND
FUNCTION

Integrity and function of the PNS depends upon uninterrupted
energy supply. Although the transfer of metabolic substrates
form Schwann cells to axons was reported about two decades
ago (Vega et al., 2003), the specific mechanism behind the
metabolic transfer in the PNS is still unclear. Emerging evidence
suggests that lactate is a preferred and an effective energy source
for the PNS, and the lactate shuttle, similar to that in the
CNS (Pellerin et al., 1998a; Magistretti, 2006; Belanger et al.,
2011; Magistretti, 2011), also functions in the PNS through
the differential expression of MCTs in PNS cells (Domenech-
Estevez et al., 2015; Morrison et al., 2015; Jha and Morrison,
2018; Jha et al., 2020b). Earlier studies suggest that Schwann
cells contain glycogen, which can be metabolized to lactate
and substitute for glucose in maintaining axonal function and
survival via a lactate transporter-mediated mechanism (Brown
et al., 2012). Some recent studies from different laboratories,
including ours, document that MCT1 is the primary and
most abundantly expressed lactate transporter in peripheral
nerves, and is crucial for neuron-glia metabolic coupling

in the PNS (Takebe et al., 2008; Domenech-Estevez et al., 2015;
Morrison et al., 2015; Jha and Morrison, 2018; Jha et al.,
2020b).

MCT1 has been found to be crucial for Schwann cell
biology and it contributes to both myelin maintenance (Jha
et al., 2020b) and neuromuscular innervation (Boucanova et al.,
2020). These recent studies support the notion that MCT1
modulates the metabolic support from Schwann cells to axons
and is essential for normal peripheral nerve physiology. We
have recently evaluated the impact of Schwann cell-specific
MCT1 ablation on cell biology, peripheral nerve metabolism,
and the integrity and function of peripheral nerves during
development and aging (Figure 1). Ablation of MCT1 only in
Schwann cells is found to significantly reduce its expression in
the whole sciatic nerve, indicating that Schwann cells are one
of the major MCT1 producing cells in the peripheral nerve
(Jha et al., 2020b). MCT1 ablation in Schwann cells impairs
glycolytic and mitochondrial functions, depletes the nerve of
critical lipids, especially sphingomyelins, diacylglycerides, and
triacylglycerides, and results in hypomyelination (Jha et al.,
2020b). Hypomyelination was detected specifically in sensory
nerves both by electrophysiology (i.e., slowed nerve conduction

FIGURE 1 | MCTs mediate the lactate shuttle between Schwann cells and
neurons in the peripheral nervous system. Schwann cell-imported glucose
through the glucose transporters GLUT1 and GLUT3 is metabolized to
pyruvate and ATP by glycolysis, and pyruvate to lactate using a glycolytic
enzyme lactate dehydrogenase (LDH; especially LDHA). Schwann cells
employ monocarboxylate transporters MCT1 and MCT4 to import and/or
export lactate. MCT2, or potentially other transporter, functions to import
lactate into axons. LDH (especially LDHB) oxidizes lactate to pyruvate that can
provide substrates to the tricarboxylic acid (TCA) cycle, which results in
adenosine triphosphate (ATP) production through oxidative phosphorylation.
This Schwann cell to neuron lactate shuttle and subsequent downstream
metabolic pathways provide metabolic support and contribute critically to
lipogenesis and myelination, which are essential for axonal function and
integrity.
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studies) as well as histologically. Functionally, mice with Schwann
cell-specific MCT1 deficiency show deficits in sensory, but
not motor, peripheral nerves during aging (Jha et al., 2020b).
We did not observe any significant compensatory alteration
in the expression of other MCTs (i.e., MCT2 and MCT4)
following Schwann cell-specific MCT1 ablation, likely reflecting
the subtle role of Schwann cell MCT1 in maintaining myelination
that does greatly impact development or animal survival.
Interestingly, a recent study suggests significant reduction of
MCT1 in peripheral myelin of periaxin-deficient mice, which
is a model of inherited Charcot-Marie-Tooth 4F peripheral
neuropathy (Siems et al., 2020). These mice lacking periaxin
develop clear evidence of impaired axonal integrity, such as
reduced axonal diameters, a progressively reduced total number
of axons, and a considerable number of myelin whorls lacking
a visible axon. A more recent study has also characterized the
impact of Schwann cell-specific MCT1 or MCT4 ablation on
nerve biology during development (Boucanova et al., 2020).
Consistent with our findings (Jha et al., 2020b), this study
reports normal development of the PNS in Schwann cell-
specific MCT1 deficient mice. This study also reports no
notable impact of Schwann cell-specific MCT4 deletion on
PNS development. Potentially due to differences in genetic
background or quantification of myelination from different
nerves (e.g., sciatic vs. sural nerve), this study found no impact
of Schwann cell-specific MCT1 ablation on sensory nerve
conduction velocity or myelination (Boucanova et al., 2020),
which clearly differs from our study, as described above (Jha
et al., 2020b). This study also reported that Schwann cell-specific
MCT1 is necessary for long-term maintenance of motor end-
plate integrity, which was not investigated in our Schwann cell-
specific MCT1 null mice, while MCT4 appears largely dispensable
for the support of motor neurons (Boucanova et al., 2020).
Taken together, both studies demonstrate important, though
different, roles of the lactate transporter MCT1 in Schwann
cell function and metabolic interactions with axons during
development and aging.

Lactate transport through MCT1 in the PNS also has
an essential role in axonal regeneration following injury,
potentially through metabolic support from Schwann cells to
axons (Morrison et al., 2015). Consistent with an earlier study
using sciatic nerve explants to demonstrate the dependence of
axons on lactate for metabolic energy (Brown et al., 2012), we
demonstrated that axons in an injured condition, specifically
following crush of the sciatic nerve, depend on MCT1 for
transport of lactate as an energy substrate (Morrison et al.,
2015). This study demonstrates that MCT1 is critical for
peripheral nerve regeneration and its deficiency delays the
recovery following sciatic nerve injury in mice. Given that these
experiments were completed in heterozygous MCT1 null mice,
which have a 50% reduction of MCT1 in all cell types, the role
of MCT1 during regeneration in individual cell types remains
to be determined.

Diabetic peripheral neuropathy (DPN) is the most common
complication of diabetic patients and it involves metabolic
dysfunction and energy failure in the PNS. Our most
recent studies suggest a critical role of lactate transporter

MCT1 in the pathogenesis of DPN (Jha et al., 2020a).
MCT1 expression in the PNS, both peripheral nerve and
the dorsal root ganglion, of mice is decreased after diabetic
induction. Employing heterozygous MCT1 null mice, as
described above, we have found that mice with reduced
expression of MCT1 develop more severe DPN compared
to wild-type mice following streptozotocin injection (Jha
et al., 2020a). Streptozotocin is an alkylating agent toxic to
insulin-producing pancreatic beta cells. Streptozotocin injection
induces hypoinsulinemia and chronic hyperglycemia, mimicking
type 1 diabetes phenotypes in mice. MCT1 heterozygous
null mice after diabetes induction develop greater axonal
demyelination, decreased peripheral nerve function as measured
by electrophysiology, and increased numbness to innocuous low-
threshold mechanical stimulation, suggesting an important role
of MCT1 in the development of DPN. Though the mechanism
is still to be explored, the findings of this study, along with
others (Morrison et al., 2015; Feldman et al., 2017; Jha and
Morrison, 2018; Jha et al., 2020b; Siems et al., 2020) support
an important role for predominately glycolytic Schwann cells
to supply metabolic energy to axons during development and
certain disease models.

BRAIN ENERGY METABOLISM AND
FUNCTION CRITICALLY DEPEND ON
GLIA-NEURON LACTATE DYNAMICS

Glia-neuron metabolic coupling in the CNS is primarily mediated
by lactate shuttling through MCTs, and the expression of
MCTs varies during development and under the influence
of neurotransmitters and nutritional modifications, indicating
its pivotal role in brain energy metabolism and functions
(Pellerin et al., 1998b). Most of the neuronal and glial cells
in the CNS differentially express MCTs (Table 2). Glial cells
produce lactate from glycogen stores or glucose via glycolytic
metabolism (Cortes-Campos et al., 2011). MCT1 is a bi-
directional transporter that is highly expressed in astrocytes
(Broer et al., 1997; Leino et al., 1999; Hanu et al., 2000;
Tseng et al., 2003; Tekkok et al., 2005) and oligodendrocytes
(Rinholm et al., 2011; Lee et al., 2012). Therefore, MCT1 may
be important in these cell types both for importing lactate that
can ultimately be metabolized in the TCA cycle or exporting
lactate to clear this end product of glycolysis. It is now
well accepted that exported glial lactate can provide metabolic
energy to surrounding neuron and axons, primarily by being
metabolized in the TCA cycle/oxidative phosphorylation (Jha
and Morrison, 2018), and contribute to the maintenance of
axonal myelination and neuronal integrity (Debernardi et al.,
2003; Belanger et al., 2011; Harris and Attwell, 2012; Saab
et al., 2016; Descalzi et al., 2019). In contrast to MCT1, MCT2
is highly expressed in neurons. This cell-specific expression
of MCTs in the CNS facilitates the proposed glia-neuron
lactate shuttle (Figure 2), which depends on lactate being
produced and released from astrocytes and oligodendrocytes
(via MCT1 or possibly MCT4) and taken up by neurons
(via MCT2) during neuronal activities (Pierre et al., 2000;
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FIGURE 2 | MCTs mediate the lactate exchanges between glia and neurons in
the brain. Astrocyte, oligodendrocytes, and microglia are highly glycolytic cells
that take up circulating glucose through glucose transporters (GLUTs; GLUT1
for astrocytes and oligodendrocytes, and GLUT1 and GLUT5 for microglia).
GLUT3 facilitates neuronal uptake of glucose. The glucose is metabolized to
pyruvate using glycolysis, and pyruvate to lactate using a glycolytic enzyme
lactate dehydrogenase (LDH). Although unknown for microglia, astrocyte and
oligodendrocyte-derived intracellular lactate is transported to neurons through
a pathway involving monocarboxylic acid transporters, MCT1/4 and MCT2, as
depicted in figure. Gly, glycolysis; TCA, tricarboxylic acid.

Funfschilling et al., 2012; Lee et al., 2012; Morrison et al., 2013).
The kinetics of neuronal MCT2 and LDH1 and astrocytic
MCT1/4 and LDH5 supports the astrocytic production and
neuronal consumption of lactate (Bittar et al., 1996; Laughton
et al., 2000; Debernardi et al., 2003; Pierre and Pellerin,
2005; Machler et al., 2016). Although the role of microglia in
metabolite sharing in the brain has not been as comprehensively
studied, recent publications propose an astrocyte-microglia
lactate shuttle during chronic neuroinflammatory infectious
diseases (Mason et al., 2015; Mason, 2017). Utilizing proton
magnetic resonance (1H NMR)-based metabolomics analysis
and several chemometric methods in lumbar cerebrospinal
fluid samples, this study suggests that astrocytes respond to
signaling from Mycobacterium tuberculosis-infected microglia by
increasing glucose metabolism that ultimately leads to increased

extracellular lactate in the cerebrospinal fluid. This astrocyte-
derived lactate may subsequently be used by microglia as an
energy source for the production of reactive oxygen to destroy the
invading Mycobacterium tuberculosis (Mason et al., 2015; Mason,
2017). Similarly, microglial activation with lipopolysaccharide
and interferon-γ has been proposed to activate a microglia-
astrocyte-neuron lactate shuttle, particularly in response to
excitotoxic stimuli (Gimeno-Bayon et al., 2014).

Astrocyte-neuron metabolic coupling established mostly
through MCTs is the underlying molecular mechanism for the
astrocyte-neuron lactate shuttle and brain energetic support
(Pellerin et al., 1998a; Magistretti et al., 1999; Whitlock et al.,
2006; Herrero-Mendez et al., 2009; Belanger et al., 2011). During
periods of high energy demand, glycogen stored in astrocytes
is metabolized to lactate and shuttled to neurons though MCTs
(Pellerin and Magistretti, 1994; Suzuki et al., 2011). Besides
providing this neuronal energy support, MCTs and lactate play
an active role in neural and synaptic plasticity and function,
learning, and memory (Dringen et al., 1993; Brown et al., 2004;
Gibbs et al., 2006; Jahanshahi et al., 2008; Halassa and Haydon,
2010; Henneberger et al., 2010; Bezzi and Volterra, 2011; Suzuki
et al., 2011; Santello et al., 2019; Ding et al., 2020; Murphy-
Royal et al., 2020; Netzahualcoyotzi and Pellerin, 2020). Cognitive
dysfunction and learning and memory impairment are found
to be associated with altered expression of MCTs (Leroy et al.,
2011; Lauritzen et al., 2012; Perez-Escuredo et al., 2016). Recent
studies have also demonstrated that learning and memory deficits
are observed in rats following inhibition of hippocampal MCT1
and MCT4 (Suzuki et al., 2011; Sun et al., 2018; Descalzi et al.,
2019). Similarly, expression knockdown of MCT2, which is
selectively expressed by neurons, impairs memory, suggesting the
critical role of astrocytic lactate to provide energy for neuronal
responses, including learning-induced mRNA translation in
both excitatory and inhibitory neurons, required for long-term
memory (Descalzi et al., 2019).

The glia-neuron lactate shuttle in the CNS has been found to
be crucial for axonal myelination and integrity. Like Schwann
cells in the PNS, oligodendrocytes are the cells that make myelin
to ensheath neuronal axons in the CNS. This process, which
requires large energy stores to maintain cell function and produce
the lipids and myelin proteins, depends predominantly on lactate
metabolism as a fuel (Sanchez-Abarca et al., 2001). In fact,
earlier studies suggest that lactate supports myelination in vitro
in the setting of glucose deprivation (Rinholm et al., 2011).
Several studies have previously reported higher expression of
MCT1 in the CNS myelin than in axons and conversely higher
expression of MCT2 in axons than myelin (Rinholm et al.,
2011; Lee et al., 2012; Jha and Morrison, 2018). Recent studies
also report that oligodendrocyte progenitor cells metabolize
glycogen to lactate and that lactate is transported through MCTs
to promote cell cycling and differentiation in oligodendrocyte
progenitor cell-rich culture (Ichihara et al., 2017). Given these
findings, it is not surprising that the expression of MCTs is
altered in multiple sclerosis (MS), which is the most common
demyelinating disease of the CNS. MCT1 expression is increased
in infiltrating leukocytes and reactive astrocytes in active MS
lesions, and MCT2 expression is decreased in inactive MS lesions
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(Nijland et al., 2014). The loss of MCT2 in MS brains certainly
may be from neuronal loss, and further experiments are necessary
to determine if the expression changes precede neuronal death.
If MCT and lactate changes occur early in MS, the deficiency
of lactate supply to hypoxic demyelinated axons may contribute
to neuronal degeneration in MS. These findings suggest that
targeting lactate transport through MCTs can be a promising
strategy for exploring therapeutics to promote remyelination
in diverse demyelinating neurologic disease, including multiple
sclerosis and inherited leukodystrophies.

Emerging evidence suggests a strong correlation between
disruption of MCTs and neurodegeneration, particularly in
amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease
(AD). Our earlier studies demonstrate that MCT1 expression is
reduced in the motor cortex of ALS patients and spinal cord
of the SOD1G93A ALS rodent models (Lee et al., 2012). In this
publication, we also found that MCT1 is highly enriched within
oligodendrocytes and that transgenic or viral-mediated reduction
of MCT1 either globally or selectively in oligodendrocytes causes
axonal damage and neuronal loss in animal and cell culture
models. These results suggest that oligodendroglia-specific
MCT1 plays a role in supporting axons and that disruption of
this support may contribute to motor neuron degeneration in
ALS. Similarly, MCT1 expression also declines in both aging
and Alzheimer’s disease (AD) (Ding et al., 2013). Furthermore,
both MCT2 expression and lactate content are reduced in the
cerebral cortex and hippocampus of a rat model of AD, suggesting
impairment of lactate transport and energy metabolism in the AD
brain (Lu et al., 2015). It is still not completely known, however,
whether alterations in MCT expression is a primary event that
contributes to neurodegeneration or a secondary event that
results from glial changes or neuronal loss. Interestingly, MCTs
appear to be altered early in patients at risk for developing AD
since young asymptomatic adult carriers of the apolipoproteins
E ε4 allele (APOE4), who are at high risk for developing AD,
have increased expression of MCT2 and decreased expression
of MCT4 in posterior cingulate cortex, as measured by Western
blot analysis (Perkins et al., 2016). Additionally, a recent study
found that astrocytic MCT4 is increased in the hippocampus
of a commonly used mouse model of AD and overexpression
in cultured astrocytes reduces neurite outgrowth and increases
apoptosis of primary neurons in a co-culture model (Hong
et al., 2020). In the same AD mouse model, viral delivery
of MCT4 siRNA improves their cognitive phenotype. Here,
the improvement following downregulation of MCT4 appears
counterintuitive to the lactate shuttling hypothesis and may
involve stimulating second messenger pathways within cells.
Though the exact mechanism has not been elucidated in these
paradigms, these results suggest that MCTs play a role in the
development of AD and that targeting MCTs may provide an
avenue for the development of novel therapies. The changes in
ALS and AD are not found universally in all neurodegenerative
diseases, however, since neither the expression of MCT1 or
MCT2, nor the content of lactate, is altered in the substantia nigra
and striatum in an experimental mouse model of Parkinson’s
disease (Puchades et al., 2013). Though the contribution of MCTs
to human neurological diseases still requires further study, the

published studies are very provocative and suggest that MCTs are
critical for the maintenance of neuronal integrity and function in
the setting of neurologic disease.

CONTROVERSIES RELATED TO
LACTATE AND ITS TRANSPORTERS IN
THE NERVOUS SYSTEM

Though improving in recent years, the cellular/tissue-specific
distribution of lactate transporters and their functions in both
physiological and pathological conditions remains controversial
and highly debated. The cellular expression of MCTs discussed
above (Tables 1, 2) should be cautiously analyzed since
most of them are not completely validated in vivo by
proper knockout studies. Future studies are critically needed
to fully clarify the functional expression of MCTs in the
nervous system. The comprehensive understanding of any
biomolecule needs investigations employing specific antibodies
and pharmacological inhibitors as well as genetic tools. Currently,
there are only few available antibodies against these MCTs,
and their specificities, in many cases, are highly questionable.
Similarly, there is no specific pharmacological antagonist or
agonist for any of these MCTs. For this reason, the recent
development of conditional knockout mice for MCT1 and
MCT4 is critical for investigating the cell-specific role for these
transporters in vivo (Boucanova et al., 2020; Jha et al., 2020b).
Further development of these immunologic, pharmacological,
and genetic tools will be critical in the future for clarifying the
controversies surrounding the lactate transporters and lactate
functions in the nervous system.

Though it was proposed about 30 years ago, the glia to
neuron, especially astrocyte-neuron, lactate shuttle hypothesis
remains controversial and is not fully accepted (Magistretti
et al., 1993; Pellerin and Magistretti, 1994). There is still
debate on whether, and in what conditions, lactate is used as
the preferential metabolic substrate by neurons. Neurons are
reported to utilize their own glucose when cultured alone (Bak
et al., 2009). In fact, a study using simultaneous measurements
of electrophysiological and metabolic parameters during synaptic
stimulation in hippocampal slices from mature mice suggest
that neurons use both glycolysis and oxidative phosphorylation
to meet their energy demands, indicating that glucose, but not
lactate released from astrocytes, is an effective energy substrate
for neurons (Ivanov et al., 2014). Furthermore, one study suggests
that neuronal stimulation, at least in the hippocampus, triggers
neuronal glycolysis and the release of lactate from neurons (Diaz-
Garcia et al., 2017). In contrast, many others provide evidence
that lactate is released from astrocytes and delivered to neurons,
both in response to cortical activation by arousal triggers (Zuend
et al., 2020) or stimulation with cannabinoids (Jimenez-Blasco
et al., 2020). As with most complicated systems in neuroscience,
it is likely that all of these processes can occur depending on the
exact stimulus, environment, and cells involved. The inability to
visualize lactate in vivo has complicated these studies, but perhaps
further studies using lactate sensors, for example, laconic (San
Martin et al., 2013), will help clarify these issues in the future.
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DISCUSSION

Glial cells are now well acknowledged to be dynamic cells that
sense metabolic needs of neurons and regulate their function by
the transfer of energy metabolites. Lactate functions as a preferred
and an effective energy source in the nervous system especially
during high energy demands. Most glial cells, but especially
astrocytes and oligodendrocytes in the CNS, and Schwann cells in
the PNS, metabolize glucose to lactate and share it with neurons
through MCTs. Differentially expressed MCTs are crucial for
the establishment and functioning of the glia-neuron metabolic
interactions in health and disease. Further investigations are
necessary to confirm the contribution of these processes to
human disease and to evaluate potential therapeutic strategies
targeting lactate transporters for neurological disorders. Though
preferential expression of MCTs occur in specific cell types, many
of the MCTs, particularly MCT1, are expressed in numerous cell
types in the nervous system. Hence, careful cell-specific studies
will be necessary to better understand the exact mechanism

of their transporter action. Cell-specific genetic ablation and
high affinity pharmacological inhibitors/agonists are starting to
be developed and more are necessary for the selective and
controllable modulation of MCTs. These tools are highly awaited
and will be critical to better understand the biology of lactate
transport and glia-neuron metabolic interactions in health and
diseases of nervous system.
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