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Synapse loss is the strongest correlate for cognitive decline in Alzheimer’s disease. The

mechanisms underlying synapse loss have been extensively investigated using mouse

models expressing genes with human familial Alzheimer’s disease mutations. In this

review, we summarize how multiphoton in vivo imaging has improved our understanding

of synapse loss mechanisms associated with excessive amyloid in the living animal brain.

We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic

calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune

cells of the brain, in mediating synapse loss.

Keywords: dendritic spines, microglia, two-photon, in vivo imaging, amyloid mouse models

INTRODUCTION

Immunohistochemistry of postmortem brain from Alzheimer’s disease (AD) patients revealed that
synapse loss is the strongest correlate for the cognitive deficit (Terry et al., 1991; DeKosky et al.,
1996; Scheff and Price, 2006; Scheff et al., 2007; de Wilde et al., 2016). Mouse models that express
familial AD-associatedmutations in genes coding for amyloid precursor protein and presenilin that
increase amyloid levels in the brain or that express mutated Tau leading to neurofibrillary tangles
provide an entry point to study mechanisms of synapse loss associated with prominent AD related
pathologies, such as amyloid plaques and neurofibrillary tangles (Jankowsky and Zheng, 2017).
Morphological and electrophysiological studies done on ex vivo and postmortem preparations
from these mice have confirmed that human familial AD associated mutations cause synaptic
dysfunction, ranging from impaired plasticity to increased loss of synapses (Selkoe, 2002; Knobloch
andMansuy, 2008; Spires-Jones andKnafo, 2012; Yu and Lu, 2012; Pozueta et al., 2013; Forner et al.,
2017). Postmortem preparations only offer a snapshot of pathology that does not capture dynamic
events that precede or follow the observed deficits. Ex vivo preparations, on the other hand, allow
for monitoring dynamic events but not in the context of the intact neural circuitry of a living brain.
In addition, the functions of microglia, which are the immune cells of the brain, are severely affected
by experimental procedures (Hellwig et al., 2013; Gosselin et al., 2017).

The advent of fluorescence labeling technologies and two-photon microscopy enabled direct
visualization of synapse dynamics in vivo in the living mouse brain (Grutzendler et al., 2002;
Trachtenberg et al., 2002). Typically, neurons are sparsely labeled with a fluorescent cell fill to
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visualize the morphology of subcellular structures, such as
dendritic spines (postsynapse) or axonal boutons (presynapse).
Fluorescence labeling is achieved by expressing fluorescent
proteins through transgene integration, viral delivery, or in utero
electroporation. Optical access to fluorescently labeled neurons
is achieved by replacing part of the skull with a glass coverslip
or thinning it. Though two-photon excitation provides higher
depth resolution than traditional single-photon excitation, it is
still limited to ∼450µm from the surface of the brain (Takasaki
et al., 2020). Therefore, non-invasive two-photon imaging studies
are restricted to superficial layers of the cortex, however synaptic
imaging in the hippocampus has been achieved using more
invasive approaches, such as removal of overlying cortical tissue
or micro-endoscopy (Mizrahi et al., 2004; Gu et al., 2014; Attardo
et al., 2015). Two-photon imaging in mouse models of AD has
allowed for the interrogation of synaptic dysfunction associated
with amyloid and tau pathology in the intact circuitry of living
animals (Tables 1, 2). More importantly, in vivo imaging of
synapses allows for chronic monitoring of synaptic changes in
the same neurons over time, thereby enabling the visualization
of synaptic dynamics. In this review, we focus on how in
vivo imaging using two-photon microscopy has revealed the
properties and mechanisms of synapse loss in mouse models
of AD, emphasizing mouse models of amyloidosis. Due to the
depth limitations of two-photon imaging, most of these studies
tracked synaptic changes in the somatosensory cortex (unless
otherwise mentioned).

AMYLOID ASSOCIATED NEURITE
PATHOLOGY

After its development for in vivo imaging (Grutzendler et al.,
2002; Trachtenberg et al., 2002), two-photon microscopy was
quickly adopted to visualize neurite dystrophy associated with
amyloidosis (D’Amore et al., 2003). The initial study confirmed
findings from postmortem AD patient brains (Onorato et al.,
1989) and amyloid mouse models (Richardson and Burns, 2002)
that plaques alter the trajectory of neurites and are associated
with their dystrophy (D’Amore et al., 2003). Consistently, many
subsequent in vivo imaging studies confirmed the existence of
dystrophic neurites (variably defined as swelling >2.5µm or a
volume 2-fold over normal neurites) near plaques (Tsai et al.,
2004; Brendza et al., 2005; Spires et al., 2005; Spires-Jones et al.,
2007, 2011; Kuchibhotla et al., 2008; Meyer-Luehmann et al.,
2008; Bittner et al., 2010, 2012; Wu et al., 2010; Zou et al.,
2015, 2016; Schmid et al., 2016; Blazquez-Llorca et al., 2017;
Peters et al., 2018). The presence of dystrophic neurites near
plaques could either mean that plaques cause neurite dystrophy
or dystrophic neurites promote plaque formation. Addressing
this question requires monitoring the dynamics of neurites and
plaques over time, which is not possible with traditional imaging
approaches on postmortem brain slices. Longitudinal imaging of
dystrophic neurites and plaques shows that plaque formation
precedes dystrophic neurites (Meyer-Luehmann et al., 2008;
Blazquez-Llorca et al., 2017; Peters et al., 2018). In one of the
mouse models, APPswe/PS1E9 mice, dystrophic dendrites were
present in regions with no apparent plaques (Meyer-Luehmann

et al., 2008). Longitudinal imaging of these regions did not
identify any de novo plaque formation near the dystrophic
dendrites. Interestingly, during this time, some of the neurites
returned to normalcy or disappeared. Only 60% of the dystrophic
neurites remained stable over 2 weeks (Meyer-Luehmann et al.,
2008). If dystrophic neurites do not promote plaque formation, it
is more likely that plaques increase the abundance of dystrophic
neurites. This possibility is supported by the observations that
the appearance of dystrophic neurites follows plaque appearance
(Meyer-Luehmann et al., 2008; Blazquez-Llorca et al., 2017). The
curvature of neurites across the plaque continues to increase
following plaque formation, with damaged neurites appearing in
the subsequent days (Tsai et al., 2004; Meyer-Luehmann et al.,
2008). Only ∼25% of neurites near plaque developed dystrophy,
and more detailed analyses of their dynamics revealed that they
are highly stable with a mean lifetime of 76 days (Blazquez-
Llorca et al., 2017). The volume of dystrophy is highly variable,
and interestingly, is also highly dynamic, with dystrophies
undergoing both shrinkage and expansion (Blazquez-Llorca
et al., 2017). Plaques smaller than 4µm are not associated with
dystrophic neurites, and as the plaque size increased, the extent
of dystrophy also increased (Blazquez-Llorca et al., 2017; Peters
et al., 2018).

Though dystrophic neurites do not appear to promote plaque
formation, they may still contribute to the growth of preformed
plaque. Plaque growth occurs over a long period, exhibiting
sigmoidal growth kinetics (Christie et al., 2001; Yan et al., 2009;
Burgold et al., 2011, 2014; Condello et al., 2011; Hefendehl et al.,
2011; Bittner et al., 2012). One of the contributing factors for
plaque growth is the local concentration of the enzyme BACE-1,
whose cleavage of amyloid precursor protein results in amyloid
peptides present in the plaque (Hussain et al., 1999; Sinha et al.,
1999; Vassar et al., 1999; Yan et al., 1999; Lin et al., 2000).
BACE-1 levels are increased in dystrophic neurites in cultured
neurons and brain sections of AD patients, and 5XFAD amyloid
mouse model (Zhang et al., 2009; Kandalepas et al., 2013; Sadleir
et al., 2016), and therefore, dystrophic neurites can contribute to
plaque growth. Consistent with this idea, inhibition of BACE-
1 decreased the growth rate of plaques (Peters et al., 2018),
which, in turn, reduced the formation of dystrophic neurites
associated with plaque (Peters et al., 2018). The vicious cycle of
amyloid plaque growth, the formation of neurite dystrophy, and
accumulation of BACE-1 in dystrophic neurites also results in the
formation of satellite plaques (Peters et al., 2018). Interestingly,
the deletion of the gene coding for microtubule binding protein
Tau reduces the accumulation of BACE-1 in dystrophic neurites
and reduces the formation of satellite plaques (Peters et al., 2019).
Thus, in vivo two-photon imaging approaches have allowed us to
understand the kinetics of plaque formation and growth and its
relevance to the appearance of dystrophic neurites in a manner
not feasible with traditional postmortem analyses.

AMYLOID ASSOCIATED DENDRITIC SPINE
PATHOLOGY

Dystrophic neurites near plaques have a reduced density of
dendritic spines (Spires et al., 2005). Since neurite dystrophy is
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TABLE 1 | Studies examining dendritic spine and neurite pathology in mouse models of amyloidosis using in vivo two-photon microscopy that are discussed in this review.

Model strain Method of neuronal

labeling

Age at imaging Brain region

imaged

Interval between

imaging sessions

Dendritic spine/bouton

changes (compared to

control)

Presence of

neurite dystrophy

References

PDAPP Alexafluor-594-Dextran 19–22 months Non-specified

cortical regions

− − Yes D’Amore et al., 2003

PSAPP Crossed with Thy1-YFP

transgenic mice

6 months Non-specified cortex 2–4 days, 1–2

weeks, 4–5 weeks

Increased spine gain and loss

but loss greater than gain

Yes Tsai et al., 2004

Tg2576 Viral delivery of GFP 21–24 months Somatosensory

cortex

1 week − Yes Spires et al., 2005

Tg2576 Viral delivery of GFP 8–10 months; 18–24

months

Somatosensory

cortex

Minutes to 1 hour Increased spine loss in 18–24

but not 8–10 months

Spires-Jones et al.,

2007

Tg2576; PS11E9;

APP/PS1; PS1M146V

Viral delivery of a calcium

indicator YC3.6

Tg2576: 17–20

months; PS11E9:

5- 6 months;

APP/PS1: 3–3.5

months.

Somatosensory

cortex

− Elevated intracellular calcium

and disrupted calcium

compartmentalization.

Yes Kuchibhotla et al.,

2008

APPswe/PS1d9;

Tg2576; PDAPP

Crossed with Thy1-YFP

transgenic mice

5−6 months Non-specified cortex One day or one

week

− Yes Meyer-Luehmann

et al., 2008

3xTg-AD Crossed with Thy1-YFP

transgenic mice

4-6, 8–10, 13–15

and 18–20 months

Somatosensory

cortex

Few days 8–10 month - no change,

13–15 and 18–20 month -

increased spine gain and loss

Yes Bittner et al., 2010

APP1PS1 Viral delivery of GFP 6 month Somatosensory

cortex

− − Yes Wu et al., 2010

APP PS1 Crossed with Thy1-YFP

transgenic mice

3–4 months and

18–19 months

Somatosensory

cortex

One week Increased spine loss but same

spine gain

− Bittner et al., 2012

5X-FAD Crossed with Thy1-YFP

transgenic mice

3–4 months Somatosensory

cortex

Few days Not reported. No gross deficit

observed.

Buskila et al., 2013

APP PS1 mice Crossed with Thy1-GFP

transgenic mice

3–4 months Somatosensory

cortex

One week Increased spine gain and loss − Liebscher et al.,

2014

APP23 and

APPswe/PS1deltaE9

Crossed with Thy1-GFP

transgenic mice

4–5 months Somatosensory

cortex

One week Decreased spine gain and no

change in loss.

− Zou et al., 2015

APPPS1 Crossed with GAD1-GFP

mice

4–11 months Hippocampus Weekly, monthly Increased spine loss with age.

Decreased spine stabilization

after learning.

− Schmid et al., 2016

APPswe/PS1deltaE9 Crossed with Thy1-GFP

transgenic mice

4–5 months Somatosensory

cortex

One week Enriched environment does

not change spine turnover

whereas it is increased in

controls.

− Zou et al., 2016

APP swe/PS1deltaE9 Viral delivery of calcium

sensor GCaMP6

3 months Primary motor

cortex

Hours Longer duration calcium

transients in dendrites,

decreased spine size in

dendrites with long duration

calcium currents.

− Bai et al., 2017

(Continued)
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triggered only after plaque formation? One of the consensuses
from the different in vivo imaging studies performed in mouse
models of amyloidosis is that the density of dendritic spines is
lower within 50µm from the plaque compared to farther away
from the plaque or non-transgenic controls (Spires-Jones et al.,
2007; Kuchibhotla et al., 2008; Zou et al., 2015) but see Stephen
et al. (2019). Though less pronounced, a reduction in spine
density (Spires et al., 2005; Bittner et al., 2010) or a reduction
in mature spine morphology (Zou et al., 2015) compared to
non-transgenic controls was observed in dendrites > 50µm
away from plaque. A smaller reduction in spine density farther
away from plaque could be due to reduced local concentration
of soluble amyloid compared to the vicinity of a plaque. The
reduction in spine density did not correlate with the size of
the plaque (Spires et al., 2005), supporting the idea that soluble
amyloid in the periphery of the plaque rather than the plaque
itself is responsible for synapse loss (Mucke et al., 2000; Koffie
et al., 2009). Consistently, spine loss is observed in ex vivo
preparations following exposure to amyloid peptides (Hsieh et al.,
2006; Shrestha et al., 2006; Shankar et al., 2007), and in vivo 1
day after the injection of soluble amyloid in non-transgenic mice
(Arbel-Ornath et al., 2017).

Soluble amyloid is present even in the absence of plaques;
therefore, if soluble amyloid alone were sufficient for spine loss,
one would expect a significant reduction in spine loss prior to
plaque formation. Longitudinal imaging of spines before and
following de novo plaque formation reveals that spine density
begins to reduce only 4.5 weeks after plaque formation (Bittner
et al., 2012). Consistently, multiple imaging studies show normal
spine density before plaque formation (Spires-Jones et al., 2007;
Kuchibhotla et al., 2008; Bittner et al., 2010). Though these
observations tend to support a role for amyloid plaque itself
in spine loss, a more parsimonious explanation is that spine
loss requires a high enough concentration of amyloid peptides
that becomes available at an age when plaques are formed in
the strains used for in vivo imaging (Maia et al., 2013). The
less dramatic effect of soluble amyloid in transgenic mouse
models of amyloidosis on overt spine loss in vivo compared
to ex vivo preparations indicates possible resistance to spine
loss when the buildup of amyloid is gradual compared to a
sudden spike used in bath applications of ex vivo preparations. In
addition, the lack or alteration of clearance mechanisms, such as
microglial phagocytosis (Mandrekar et al., 2009), may exacerbate
the synaptotoxic effect of amyloid in ex vivo preparations. These
explanations, however, are at odds with the findings that brain
slices from some mouse models of amyloidosis show synapse
loss prior to plaque formation (Hsia et al., 1999; Moechars et al.,
1999; Mucke et al., 2000; Lanz et al., 2003; Jacobsen et al., 2006).
One plausible explanation for this discrepancy is that the brain
regions examined for synapse loss using in vivo imaging (mostly,
somatosensory cortex) and brain slices (mostly, hippocampus)
are not the same. The vulnerability of synapses or the local
concentration of amyloid could differ between brain regions
and contribute to the plaque dependence for spine loss in brain
regions imaged using two-photon microscopy. However, this
may not be the sole reason because, in 3xTg-AD mouse strain,
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TABLE 2 | Studies examining dendritic spine and neurite pathology in mouse models of Tauopathy using in vivo two-photon microscopy that are discussed in this review.

Model

strain

Method of

neuronal labeling

Age at imaging Brain region

imaged

Interval between

imaging sessions

Dendritic spine/bouton changes

(compared to control)

Presence of

neurite dystrophy

References

rTg4510 Crossed with

Thy1-YFP

transgenic mice

9–10 months Somatosensory

cortex

– Reduced spine density – Kopeikina et al.,

2013a

P301S Tau Crossed with

Thy1-YFP

transgenic mice

4 months Somatosensory

cortex

3–4 days Reduced spine density. Decreased

spine gain and slightly decreased

loss

– Hoffmann et al.,

2013

rTg4510 Viral delivery of

calcium indicator

YC3.6

8–9 months Somatosensory

cortex

– Reduced spine density did not

correlate with calcium levels in

parent dendrite

– Kopeikina et al.,

2013b

rTg4510 Viral delivery of GFP 4, 5, and 6.5

months

Somatosensory

cortex

One week Reduced spine density. Both gain

and loss are increased. Bouton

turnover decreased.

– Jackson et al., 2017

rTg4510 Viral delivery of GFP 4,5,6 and 7

months

Somatosensory

cortex

One week Reduced spine and bouton density.

Spine turnover increased and

bouton turnover decreased.

– Jackson et al., 2017

spine loss was observed in brain slices of the hippocampus and
frontal cortex only after plaque formation, though these areas did
not exhibit a characteristic plaque-distance dependence for spine
loss (Bittner et al., 2010).

Pre- and postsynaptic terminals may exhibit differential
plaque distance dependent vulnerability. The evidence for the
vulnerability of presynaptic terminals in amyloid mouse models
has been contradictory. Some histological studies found evidence
for the loss of synaptophysin (Rutten et al., 2005; Dong et al.,
2007; Tampellini et al., 2010) whereas others have not (King and
Arendash, 2002; Rutten et al., 2003; Boncristiano et al., 2005;
Hong et al., 2016), even in the same amyloid mouse model. In
vivo imaging of presynaptic boutons in amyloidmodel mice show
increased dynamics of boutons near the plaque compared to
farther away from the plaque (Liebscher et al., 2014; Blazquez-
Llorca et al., 2017; Stephen et al., 2019). The plaque distance-
dependent synaptic loss and dystrophy holds up even when a
presynaptic protein (Vglut1) is directly visualized in vivo (Peters
et al., 2018). One of the reasons for the lack of consensus
with respect to loss of presynaptic terminals in amyloid models
could be due to variations in the sampling of different cell types
between studies.

The plaque distance dependence of synapse loss observed
in in vivo imaging studies using amyloid mouse models is in
stark contrast to the observed loss of synapses affecting both
pre- and postsynaptic elements across postmortem cortex (Terry
et al., 1991; DeKosky et al., 1996; Sze et al., 1997; Scheff and
Price, 2006; Scheff et al., 2007; de Wilde et al., 2016), despite
plaques occupying only 5–10% of cortical volume in AD patients
(Terry, 2000). Multiple differences between AD patients and
mouse models of amyloidosis can account for the difference in
plaque distance-dependent effect on synapses. One remarkable
feature of mouse models of amyloidosis is that they exhibit
limited or no neuronal death (Wirths and Bayer, 2010; Jankowsky
and Zheng, 2017). The death of a neuron whose axons travel
far will be accompanied by synapse loss farther from the soma.
Thus, the lack of synapse loss farther away from plaque could

be a consequence of limited or no plaque-associated cell death
in these mouse models. Another possibility for preferential loss
of synapses closer to plaques is that most mouse models of
amyloidosis do not display the Tau pathology observed in human
AD patients. When Tau mutation is combined with amyloidosis,
as in the triple transgenic 3xTg-ADmice, spine loss was observed
closer to and farther away from the plaque (Bittner et al., 2010).

SPINE LOSS AND COGNITIVE DECLINE

If spine loss increases only at the age when plaques are
present, then one would expect cognitive deficits to be apparent
only after plaque formation. However, cognitive deficits are
observed before plaque formation in many amyloid mouse
models (Holcomb et al., 1998;Wisniewski and Sigurdsson, 2010).
In one of the strains, APP23, where cognitive decline precedes
plaque formation, it was found that amyloid precursor protein
accumulates intracellularly, and the amount of intracellular
accumulation correlates with spine loss (Zou et al., 2015).
Another caveat in reconciling cognitive studies with in vivo
spine imaging studies is that most in vivo imaging studies
in amyloid mouse models are restricted to the somatosensory
cortex. Typically used cognitive tests, such as spatial or
contextual memory tasks, may not elicit synaptic remodeling
in the somatosensory cortex. In contrast, changes to sensory
experience have been shown to cause synaptic remodeling in
the somatosensory cortex (Trachtenberg et al., 2002). In the
one of the amyloid mouse models, synaptic remodeling elicited
by exposure to an enriched environment is disrupted in the
somatosensory cortex before plaque appearance when spine
density is normal (Zou et al., 2016; Heiss et al., 2017).

One of the main reasons most in vivo imaging studies are
restricted to the somatosensory cortex is that it is easily accessible
for non-invasive imaging. Imaging hippocampus, located∼1mm
deep in the brain, is out of the range for conventional two-
photon imaging. Two-photon imaging of dendritic spines in the
hippocampus is achieved by microendoscopy or by removing the
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overlying cortex (Mizrahi et al., 2004; Gu et al., 2014; Attardo
et al., 2015). To date, to our knowledge, spine imaging in vivo in
the hippocampus has not been performed in excitatory neurons
of amyloid mouse models. However, a group of inhibitory
neurons in the hippocampus, positive for somatostatin, that
possess dendritic spines, has been studied using in vivo two-
photon imaging in an amyloid mouse model (Schmid et al.,
2016). The density of spines on these interneurons is reduced
near the plaque. This reduction is due to a decrease in input from
cholinergic neurons, which are lost due to cell death. In these
somatostatin positive interneurons, new spines are formed in
response to fear conditioning; however, this process is disrupted
in the amyloid model (Schmid et al., 2016).

Most in vivo imaging studies use dendritic spines as a proxy
for excitatory synapses. The maturation status of the spine is
inferred from their shape, stability, and age. Newly formed spines
are usually thin and are transient. If they persist for more
than 4 days, they are highly likely to carry synapses (Knott
et al., 2006). Mature persistent spines resemble mushroom-
like structures and are called mushroom spines (Bourne and
Harris, 2007). Though age, shape, and stability of dendritic
spines could be a good predictor for the maturation status of a
synapse, they are not entirely reliable. Spines that persist for 4
days may not contain synaptic proteins associated with mature
synapses (Subramanian et al., 2019). Even if the plaque-associated
spine loss observed in the superficial cortical regions is globally
true, structural alterations, such as changes to AMPA receptors
concentration, not captured by imaging spine alone could
underlie cognitive decline. Therefore, synaptic abnormalities
associated with cognitive decline may not require overt spine loss
and the mechanisms could differ depending on the brain region
and the model strains.

MECHANISMS OF AMYLOID ASSOCIATED
SPINE LOSS

In adult mice, spine formation and elimination are balanced to
maintain spine density (Villa et al., 2016; Subramanian et al.,
2019). A reduction in the density of spines under amyloid
pathology could result from the decreased formation of new
spines or increased elimination of preexisting spines or both. No
consensus has emerged on whether amyloid pathology triggers
spine reduction by regulating formation or elimination. In vivo
imaging studies have found increased spine elimination with
no change in formation or smaller increase in formation (Tsai
et al., 2004; Spires-Jones et al., 2007; Bittner et al., 2012),
decreased spine formation with no change or an increase in
elimination (Zou et al., 2015), or an increase in both formation
and elimination (Bittner et al., 2010; Liebscher et al., 2014;
Heiss et al., 2017). How could an increase in both formation
and elimination result in reduced spine density? Newly formed
dendritic spines could mature into stable synapses or disappear
without forming synapses (Subramanian et al., 2019). If amyloid
pathology reduces synapse stabilization, neurons will continue
to make futile attempts to form synapses, whereas under non-
pathological conditions, due to synapse stabilization, there would
be fewer futile attempts. Each futile attempt will be counted as a

dynamic event, and therefore, APPmice would have higher spine
dynamics and yet have lower spine density.

How could amyloid pathology induce neurite dystrophy
and spine loss? Calcium signaling regulates synaptic plasticity
and dendritic arbor development (Konur and Ghosh, 2005),
and growing evidence suggests that amyloid pathology disrupts
neuronal calcium homeostasis (Holscher, 1998; Kawahara, 2004;
Small, 2009; Brawek and Garaschuk, 2014; Popugaeva et al.,
2017). Consistent with ex vivo preparations (Mattson et al.,
1992; Guo et al., 1999; Demuro et al., 2005; Smith et al., 2005;
Mattson, 2007), in vivo imaging of calcium reveals that dendrites
closer to plaque have increased intracellular neuronal calcium in
the intact brain of amyloid mouse models (Kuchibhotla et al.,
2008). Before plaque formation, dendritic calcium levels in an
amyloid mouse model are not different from non-transgenic
mice (Kuchibhotla et al., 2008). In non-transgenic mice, calcium
concentration within the spine does not correlate with that of
the parent dendrite, whereas under amyloid pathology, there
is a linear relationship between the two, suggesting that the
compartmentalization of calcium in spines is lost (Kuchibhotla
et al., 2008). Amyloid peptides can increase intracellular calcium
within an hour after exposure, but spine loss occurs only 24 h
later (Arbel-Ornath et al., 2017). Interestingly, spines that shrink
following the application of amyloid peptide in the motor cortex
are the ones that were activated during the prolonged dendritic
calcium current elicited by the amyloid peptide (Bai et al., 2017).

A ROLE FOR TAU IN SYNAPSE LOSS

The in vivo imaging studies described thus far are mostly focused
on how amyloidosis associated with familial AD cases influence
synapses. The effect of accumulation of hyper-phosphorylated
Tau, another prominent AD-related pathology, on synaptic
structure integrity is relatively less studied using in vivo two-
photon imaging. The effect of overexpressing mutant Tau on
synapse density has yielded mixed results in the histological
analysis (Shahani et al., 2006; Eckermann et al., 2007; Yoshiyama
et al., 2007; Hoover et al., 2010; Rocher et al., 2010; Crimins
et al., 2011; Jaworski et al., 2011; Kremer et al., 2011; Alldred
et al., 2012). In contrast, there is consensus among in vivo two-
photon imaging studies that dendritic spine density is reduced in
Tau mouse models (Bittner et al., 2010; Hoffmann et al., 2013;
Kopeikina et al., 2013a,b; Jackson et al., 2017, 2020). The first in
vivo imaging study describing the effect of Tau on synapses was
done in triple transgenic 3xTg-AD mice that also had mutations
associated with amyloidosis (Bittner et al., 2010). However, later
studies using Tau models also showed a decrease in spine density.
In a Tau model with P301S mutation, spine gain is reduced and is
not matched by an equivalent reduction in spine loss, whereas,
in the control mice, formation and elimination of spines are
balanced. As a consequence, spine density is reduced in the Tau
mutant model. Interestingly, the spine deficits are present at an
age when no neurofibrillary tangles are apparent, and Tau itself
is not localized to dendritic spines (Hoffmann et al., 2013). In
vivo imaging also revealed decreased spine density in 8–9month-
old rTg4510 mouse model with P301L mutation. Surprisingly,
in the same study, array tomography revealed no difference in
synaptic density compared to wild-type control mice (Kopeikina
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et al., 2013a). Later in vivo imaging studies using this model
confirmed a progressive decline in spine density between 4 and
6.5 months of age (Jackson et al., 2017, 2020). The decline in
spine density is not uniform in all dendrites, with some dendrites
exhibiting complete loss of spines. Higher turnover of dendritic
spines, in some instances, is followed by the loss of associated
dendritic branches. Over 6 months, ∼35% of the dendrites are
lost. In contrast, the axonal loss is preceded by a decreased
turnover of boutons. The loss of synapses in this model also
occurred at an age when neurofibrillary tangles are not yet
present (Jackson et al., 2017, 2020). Interestingly, unlike amyloid
models, spine loss in the rTg4510 model is not associated with
elevated intracellular neuronal calcium (Kopeikina et al., 2013b).

Multiple cellular pathologies, such as intracellular calcium
homeostasis, mitochondrial dysfunction, energy metabolism,
and reactive oxygen species, associated with amyloidosis, have
been imaged in vivo using two-photon microscopy (McLellan
et al., 2003; Xie et al., 2013; Arbel-Ornath et al., 2017; Bai et al.,
2017; Gomez et al., 2018; Lerdkrai et al., 2018; Calvo-Rodriguez
et al., 2020). However, the dynamics of synapse loss in relation
to these different cellular deficits resulting from amyloidosis
remains to be explored by in vivo two-photon imaging. Synapse
loss may not occur solely due to these cell-intrinsic factors.
Growing evidence indeed suggests that microglial phagocytosis
may be a key player in synaptic loss in amyloid and/or Taumouse
models. Below, we discuss how two-photon in vivo imaging has
also uncovered a novel role for microglia during amyloid and
Tau pathology.

MICROGLIAL IMPLICATION IN AD:
INSIGHTS FROM TWO-PHOTON IN VIVO

IMAGING STUDIES

Microglia, which are the resident innate immune cells of the
brain, have been intimately associated with AD since the
disease was first described. In his landmark studies, Dr. Alois
Alzheimer described glial cells developing excess fibers and
containing “adipose saccules” (Alzheimer et al., 1995). Over 80
years later, studies conducted on postmortem AD brain samples
revealed that microglia surrounding plaques express elevated
levels of histocompatibility antigens and the pro-inflammatory
cytokine IL-1 (Rogers et al., 1988; Griffin et al., 1989; Overmyer
et al., 1999). Ultrastructural studies further uncovered microglia’s
intimate relationship with plaques, and even posited that
microglia were responsible for amyloid deposition (Wisniewski
et al., 1989; Perlmutter et al., 1990). Though it was later
discovered that neurons produce amyloid precursor protein and
amyloid (Wisniewski et al., 1989; Alzheimer et al., 1995), the role
of microglia in AD has remained largely elusive. Over the past 30
years, microglia in the AD brain have vacillated between valiant
protectors, powerless observers, and indiscriminate destroyers.
In this section of the review, we cover the insights into their
roles in synaptic loss that were provided using two-photon in vivo
imaging (Table 3) and complementary techniques.

LOSS OF MICROGLIAL PHAGOCYTIC
ABILITIES IN AD

Two-photon in vivo studies in the APP/PS11e9 and Tg2576
models demonstrated that removing microglia during the
chronic disease stage causes significant growth of existing plaques
(Zhao et al., 2017). Combining these data with the fact that
microglia (including the dark microglia, a subset identified by its
markers of cellular stress including the condensation state of its
cytoplasm and nucleoplasm resulting in a dark appearance under
electron microscopy; Bisht et al., 2016) are occasionally seen
containing amyloid deposits led to conclude that while microglia
may be competent phagocytes, they are unable to control amyloid
levels late during AD pathology. Of note, the dark microglia
are rare in the healthy mature brain, but increase in number
up to 10-fold with pathological conditions that include chronic
stress, aging and amyloid deposition (in APP/PS11e9mice; Bisht
et al., 2016). This microglial subset discovered with electron
microscopy displays hyper-ramified processes that extensively
ensheath and engulf synaptic elements (pre- and postsynaptic),
suggesting their role in the pathological remodeling of neuronal
circuits in AD (Stratoulias et al., 2019; St-Pierre et al., 2020).

While neuroinflammation is a main hallmark of AD,
alongside amyloid deposition and tangle formation, prolonged
exposure to pro-inflammatory cytokines inhibits microglial
phagocytic ability (Koenigsknecht and Landreth, 2004). Two-
photon imaging in APP/PS11e9 mouse slices demonstrated that
microglia lose their mobility and phagocytic capabilities as plaque
deposition increases (Krabbe et al., 2013). Slice culture studies
further determined that microglia from aged APP/PS11e9 and
5XFAD mice have reduced phagocytic capacity, possibly due
to an impaired MerTK signaling (Savage et al., 2015). Work
by others has determined that acute exposure to amyloid
does not affect microglial phagocytic competence, whereas
prolonged exposure in later disease stages results in reduced
phagocytosis (Wendt et al., 2017). Together these data suggest
that while microglial response to amyloid may be beneficial
in the short-term, chronic exposure to amyloid may stunt
microglia and prevent them from performing their normal
phagocytic duties required to clear the brain from toxic or
inflammatory debris.

Environmental enrichment has been shown using two-
photon in vivo imaging to increase microglial amyloid clearing
capacities thus preventing prion-like seeding of amyloid in a
mouse model, while also reversing the deficits in neurogenesis
and memory (Ziegler-Waldkirch et al., 2018). Environmental
enrichment is well-known to promote beneficial neuroprotective
microglial activities (Savage and Tremblay, 2019). However,
increasing microglial phagocytosis with other strategies should
be undertaken with extreme caution, as microglia could
phagocytose the incorrect cargo. The same complement-
mediated pathway which prunes excess synapses during normal
brain development causes mistargeted phagocytosis of synapses
early in mouse models of amyloid pathology, before plaques are
deposited (Hong et al., 2016). Inhibiting C1q, C3, or microglial
complement receptor CR3 in amyloid mouse models was
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TABLE 3 | Studies examining microglial interactions with neuronal or synaptic loss in mouse models of amyloid or Tau pathology using in vivo two-photon microscopy

that are discussed in this review.

Model

strain

Method of

neuronal labeling

Age at imaging Brain region

imaged

Interval between

imaging sessions

Neuronal/synaptic changes

(compared to control)

Presence of

neurite dystrophy

Reference

3xTg-AD Crossed with

CX3CR1-GFP and

Thy1-YFP

transgenic mice

4–6 months Somatosensory

cortex

7 days Reduced neuronal loss in the

absence of CX3CR1 (knockout)

− Fuhrmann et al.,

2010

5xFAD Crossed with

Thy1-YFP and

CX3CR1-GFP

10–12 months Somatosensory

cortex

5 days Increased neurite dystrophy in the

absence of microglial coverage

Yes Condello et al., 2015

APP-PS1 Crossed with

Thy1-YFP and

CX3CR1-iDTR to

deplete microglia

>12 months Motor,

somatosensory,

and visual

cortices

7 days Increased loss of spines and shaft

atrophy associated with amyloid

plaques during microglial depletion

Yes Zhao et al., 2017

shown to prevent synaptic loss, as well as cognitive impairment
(Hammond et al., 2019). The microglial receptor TREM2, which
displays various genetic variants in AD and is expressed by dark
microglia, was also shown to mediate synaptic pruning during
normal development, in cooperation with astrocytes (Filipello
et al., 2018; Jay et al., 2019). Determining the outcome of TREM2
gene loss, haplodeficiency or variants on microglia-mediated
synaptic loss in mouse models of amyloid and Tau pathology is
an important topic of investigation (Yuan et al., 2016; Gratuze
et al., 2020).

Similarly, fractalkine signaling between the neuronal
chemokine fractalkine and its unique receptor CX3CR1, which
is expressed by microglia, is a main mode of neuron-microglia
communication in the brain. During normal physiological
conditions, fractalkine signaling plays key roles in synaptic
maturation, pruning, and plasticity, and mediates the adaptation
of the brain and behavior to environmental challenges (Paolicelli
et al., 2014; Tay et al., 2017). In AD pathology, evidence from
complementary techniques revealed that fractalkine signaling
is detrimental during amyloid pathology, yet beneficial in Tau
pathology (Lee et al., 2010; Chen et al., 2016; Bemiller et al.,
2018). In vivo, two-photon imaging indicates that 3xTg-AD
mice deficient in fractalkine signaling are protected from
neuronal loss, contrary to 3xTg-AD controls with an intact
fractalkine signaling (Fuhrmann et al., 2010). In the 3xTg-
AD mice, microglia were also shown to display an increased
process velocity around the disappearing neurons, suggesting
a possible involvement in their elimination, at early stages of
pathology still devoid of plaques and Tau pathology (Fuhrmann
et al., 2010). Similarly, using two-photon in vivo imaging in a
zebrafish model of Tau pathology, in which neurons express
hTauP301L, microglia were recently shown to transform their
morphology (retraction and reduced number of processes,
enlarged cell bodies), while increasing their migration and
phagocytic activity toward dying neurons. Nevertheless,
microglial phagocytosis failed in this context to remove all the
dying neurons (Hassan-Abdi et al., 2019).

EMERGENCE OF NEUROPROTECTIVE
PHENOTYPES

While microglia are not sufficient to prevent AD pathology,
synaptic loss, and cognitive impairment, they nonetheless form a
barrier around plaques and slow disease progression, at least early
on during disease pathogenesis. A major avenue of therapeutic
research is focused on restoring proper microglial metabolism
and physiological function, thus enabling them to clear amyloid,
remove apoptotic neurons as well as provide trophic support
for synaptic maintenance. Two-photon in vivo imaging of
healthy mice revealed that microglia play an important role in
the formation of dendritic spines, through their secretion of
brain-derived neurotrophic factor, which is required for motor
learning (Parkhurst et al., 2013). Microglia were also well-
shown to dynamically contact pre- and postsynaptic elements
by two-photon in vivo imaging during normal physiological
conditions, and these interactions were frequently followed by
the elimination of dendritic spines during experience-dependent
plasticity (Tremblay et al., 2010). Whether microglia could
exert similar beneficial roles at synapses in AD remains to
be determined.

Recent studies identified a number of neuroprotective
microglial phenotypes present on a subset of microglia within
the AD brain, and these provide further potential for specific,
microglia-targeted therapeutics. Two-photon in vivo imaging in
5XFADmice revealed that microglia “wall off” plaques and likely
promote neuronal and/or synaptic survival in regions affected by
the amyloid pathology (Condello et al., 2015). In fact, dystrophic
neurons weremuchmore commonly seen in regions near plaques
that were not covered by microglia, as these regions contained
increased levels of toxic amyloid oligomeric and protofibrillar
species. Microglial ability to seal off amyloid plaques from the
surrounding neuropil is dependent on TREM2, as knockout
mice had significantly reduced plaque area covered by microglia,
while displaying increased plaque-associated neuronal dystrophy
(Yuan et al., 2016).
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Recent technical advances in the field now allow researchers
to study populations of microglia from specific brain
microenvironments, and thus characterize differences between
microglia associated with plaques and those from nearby brain
regions. These studies have begun to uncover the specifically
and differentially-regulated transcriptome of microglial cells
associated or not with plaques. When plaque-associated
microglia were microdissected from amyloid mouse models,
transcriptomic analysis identified increased genes associated
with priming (i.e., immunological alert) and cellular metabolism
as well as lysosomal activity (Kamphuis et al., 2016; Yin et al.,
2017). While two-photon in vivo imaging of the primed
microglia in particular and their dynamics at synapses is
currently lacking, these studies indicate that plaque-associated
microglia are not dystrophic or senescent, but rather highly
active cells attempting to digest the amyloid, as supported by
ultrastructural studies (El Hajj et al., 2019). These data support
the idea that microglia surrounding plaques prevent plaque
growth by removing oligomeric and protofibrillar amyloid from
their immediate surroundings.

Additional work using single-cell RNAseq uncovered a
disease-associated microglial (DAM) subtype in amyloid
mouse models and human brain tissues (Keren-Shaul
et al., 2017). A similar subtype was subsequently named
the microglia-associated with neurodegeneration (MGnD)
(Krasemann et al., 2017). These disease-associated subsets
lose homeostatic microglial markers and upregulate genes
associated with phagocytosis of apoptotic cells. The authors
posit that MGnD microglia require contact with, if not
phagocytosis of, dystrophic neurons like those associated with
plaques, while depending on Trem2 and Apoe expression
(Krasemann et al., 2017). These disease-associated phenotypes
echo the ultrastructurally-defined dark microglia, but further

in vivo research is required to determine the independent or
concerted implication of these different microglial types in
synaptic loss.

CONCLUSION AND PERSPECTIVES

In vivo imaging approach using two-photon in vivo microscopy
has found that dendritic spines are destabilized by the
extracellular deposition or intracellular accumulation of amyloid.
Cell intrinsic factors, such as elevated calcium, and extrinsic
factors, like microglial phenotypic transformation elicited by
the amyloid or Tau pathology, disrupt dendritic spine stability
and might specifically trigger synaptic loss. Future two-photon
imaging studies to simultaneously visualize the dynamics of
axon terminals, dendritic spines, synaptic proteins, intracellular
calcium, and microglia, together with amyloid and Tau
pathology, in vivo in mouse models, will provide novel insights
into the dynamic events preceding and causing loss of pre- and
postsynaptic elements.
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