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Traumatic brain injury (TBI) is the leading cause of disability and mortality in children
and young adults and has a profound impact on the socio-economic wellbeing of
patients and their families. Initially, brain damage is caused by mechanical stress-
induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-
brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic
inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can
further aggravate disease pathology. Thus, TBI treatment requires prompt intervention
to protect against neuronal and vascular degeneration. Rapid advances in the field of
stem cells (SCs) have revolutionized the prospect of repairing brain function following
TBI. However, more than that, SCs can contribute substantially to our knowledge
of this multifaced pathology. Research, based on human induced pluripotent SCs
(hiPSCs) can help decode the molecular pathways of degeneration and recovery
of neuronal and glial function, which makes these cells valuable tools for drug
screening. Additionally, experimental approaches that include hiPSC-derived engineered
tissues (brain organoids and bio-printed constructs) and biomaterials represent a step
forward for the field of regenerative medicine since they provide a more suitable
microenvironment that enhances cell survival and grafting success. In this review, we
highlight the important role of hiPSCs in better understanding the molecular pathways
of TBI-related pathology and in developing novel therapeutic approaches, building
on where we are at present. We summarize some of the most relevant findings for
regenerative therapies using biomaterials and outline key challenges for TBI treatments
that remain to be addressed.

Keywords: hiPSC, regenerative therapies, stem cells, biomateriais, traumatic brain injury

INTRODUCTION

Traumatic brain injury (TBI) is defined as a disruption in the normal function of the brain
caused by a sudden blow or jolt to the head, which is frequently suffered during unintentional
falls, sporting activities, automotive accidents, or violent assaults (Peterson and Kegler, 2020).
According to the World Health Organization, TBI affects 69 million individuals globally, with the
highest prevalence in North America and Europe (Dewan et al., 2019), where it has become the

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 November 2020 | Volume 14 | Article 594304

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2020.594304
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2020.594304&domain=pdf&date_stamp=2020-11-12
https://creativecommons.org/licenses/by/4.0/
mailto:maria.lacalleaurioles@mcgill.ca
mailto:thomas.durcan@mcgill.ca
https://doi.org/10.3389/fncel.2020.594304
https://www.frontiersin.org/articles/10.3389/fncel.2020.594304/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Lacalle-Aurioles et al. Stem Cell-Derived Tools in TBI

leading cause of disability and mortality in children and young
adults. The mechanical force-driven axonal damage and vascular
dysfunction that occur during the acute phase of TBI are followed
by chronic inflammation, oxidative stress, and cytotoxicity.
These effects extend and aggravate neurodegeneration and
vascular pathology over time (Masel and DeWitt, 2010). Thus,
TBI is not a one-time event; rather it resembles a chronic
degenerative disease. This progressive deterioration of the brain,
in addition to causing mental and physical disability at early
stages, increases the risk of further developing Alzheimer’s
disease, Parkinson’s disease, chronic traumatic encephalopathy,
and sporadic amyotrophic lateral sclerosis (VanItallie, 2019).
Therefore, preventing and mitigating the outcomes of TBI is
a priority for the health care system.

Clinical therapies have predominantly targeted brain edema,
oxidative stress, and inflammation, but despite decades of
focused research, pharmacological and non-pharmacological
interventions aimed at improving the quality of life for
patients with TBI are scant (reviewed in Kochanek et al.,
2015). Regenerative medicine, based on the potential of stem
cells (SCs) to repair neuronal and vascular damage, has
emerged as a promising therapeutic strategy. However, clinical
translation of these therapies remains limited (Hasan et al.,
2017; Reis et al., 2017; Bonsack et al., 2020). A deeper
understanding of the proliferation and differentiation capabilities
of different SCs, the optimal administration routes, their
interplay with other tissue-resident cells, and potential side
effects is essential for advancing stem cell-based therapies
for TBI (Dekmak et al., 2018). On the other hand, since
neurons are highly dependent on nutrients and oxygen
supply from the vasculature and on the homeostatic activity
of astrocytes and microglia, it is important to restore the
full environment for these therapies to succeed. However,
the vast majority of research in the field has focused on
restoring neuronal function by promoting neurogenesis and
often disregard other facets of the degenerative process that are
equally relevant such as the recovery of the brain vasculature
and the glial cell function. Here, we review the multifaced
degenerative processes linked to TBI, focusing on how stem
cell research, namely through the use of human induced
pluripotent stem cells (hiPSCs; Takahashi et al., 2007), can help
decipher the molecular pathways suitable for pharmacotherapy
and facilitate drug screening in the context of personalized
medicine. HiPSCs are derived from somatic cells such as
fibroblasts or peripheral blood mononuclear cells (PBMC)
through the Yamanaka reprogramming factors (Oct4, Sox2,
c-Myc, and Klf4; Takahashi and Yamanaka, 2006; Takahashi
et al., 2007). These cells present with similar characteristics
as those of human embryonic stem cells (hESCs) for both
morphology, proliferation, surface antigens, gene expression,
and epigenetic status of pluripotent cell-specific genes with the
advantage of alleviating ethical concerns about their use for
biomedical research and clinical therapies (Chang et al., 2019;
Seranova et al., 2020).

We also describe how engineered tissues (i.e., brain organoids,
bio-printed tissues, and biomaterials) can enhance the success of
stem cell therapies in the treatment of TBI.

MOLECULAR BASIS OF TBI-INDUCED
NEURONAL DYSFUNCTION AND REPAIR
PATHWAYS

Diffuse Axonal Injury, White Matter
Degeneration, and Repair
Diffuse axonal injury (DAI) caused by shear stress is one of the
first histopathological hallmarks of brain trauma. It is particularly
evident in the gray matter (GM)–white matter (WM) interface
due to the marked transition between these two tissues with
different deformation properties (Sharp et al., 2014; Armstrong
et al., 2016). Axonal injury substantially disrupts the intrinsic
connectivity networks, precipitating a cognitive decline in TBI
patients (Sharp et al., 2014). Moreover, in subsequent hours
or even days after injury, axons often undergo the process of
Wallerian degeneration (Wld), resulting in axonal loss and WM
atrophy (Koliatsos and Alexandris, 2019). Thus, Wld prevention
has become one of the principal targets for therapies against
neurodegeneration in TBI.

Wld is thought to be mediated by severe deprivation of
nicotinamide adenine dinucleotide (NAD+), a redox cofactor
essential for axonal maintenance that plays an important role
in protecting axons from mechanical injuries and ischemia
(Fricker et al., 2018). Following DAI, activation of the stress
mitogen-activated protein kinase (MAPK) pathway induces the
depletion of nicotinamide mononucleotide adenylyltransferase 2
(NMNAT2), compromising NAD+ biosynthesis (Walker et al.,
2017). In parallel, NMNAT2 loss activates the sterile α and
Toll/interleukin-1 receptor (TIR) motif-containing 1 (SARM1)
domain, which has intrinsic NADase enzymatic activity, thus
drastically impacting NAD+ availability and triggering neuronal
death (Coleman and Freeman, 2010; Gerdts et al., 2016; Brazill
et al., 2017; Essuman et al., 2017; Koliatsos and Alexandris, 2019).
Downregulation of SARM1 and upregulation of NMNAT2 are
promising strategies for Wld prevention in TBI, but the
specific mechanisms for SARM1-NMNAT2 interactions have
yet to be elucidated to enhance drug efficiency and ensure
neuroprotection (Ziogas and Koliatsos, 2018).

Small molecule screening for modulators of
NMNAT2 activity has identified compounds that enhance
neuroprotection in mouse primary neuronal cultures (Ali et al.,
2017). Similarly, SARM1 deletion successfully reduced axonal
damage, demyelination, and WM atrophy in TBI mouse models
(Marion et al., 2019). Most promisingly, pharmacological
blockade of the SARM1 NADase enzymatic activity, responsible
for axonal degeneration, with small-molecule inhibitors has
proven beneficial in protecting hiPSC-derived motor neurons
from traumatic injury (Krauss et al., 2019, 2020). The work by
Krauss and collaborators demonstrates that pharmacological
inhibition of the SARM1 enzymatic activity in mechanically
injured hiPSC-derived motor neurons mimics the axonal
protective phenotype (reduced axonal fragmentation post-
injury) observed in SARM1 knockout mice. In this regard,
the possibility of performing high-content drug screening
on patient-derived iPSC represents a major advance towards
precision medicine in the field of TBI and provides an excellent
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tool to decode the molecular mechanisms of axonal protection
and regeneration in the human genetic background.

In addition to axonal injury, oligodendrocytes, whose main
role is to maintain myelin sheaths and provide trophic support
for axons (Baumann and Pham-Dinh, 2001; Du and Dreyfus,
2002; Morrison et al., 2013), are also subject to degeneration
following TBI (Dent et al., 2015; Shi et al., 2015). Several factors
contribute to oligodendrocyte death and axonal demyelination,
including glutamate and calcium cytotoxicity, oxidative stress,
pro-inflammatory cytokine release by microglia, and the loss of
crosstalk with astrocytes and neurons (Matute, 2011; Shi et al.,
2015). Hence, finding approaches to prevent oligodendrocyte
death or to enhance oligodendrocyte progenitor cell (OPC)
maturation and remyelination will provide novel means to
restore WM integrity and improve neurological recovery in
TBI patients. Some of the key molecules under investigation
to enhance oligodendrocyte survival and diminish axonal
demyelination are the ionotropic (P2X) and metabotropic
(P2Y) purinergic receptor families (Welsh and Kucenas,
2018). Extracellular nucleotides such as ATP participate
in several physiological processes via purinergic receptors:
neurotransmission and neuromodulation, regulation of the
activity for glial cells (microglia and astrocytes), and axonal
myelination by oligodendrocytes. However, the same receptors
mediate neurodegeneration and demyelination when, under
stressful conditions, damaged cells release increased amounts
of nucleotides into the extracellular space, evoking excitotoxic
degeneration (Puchałowicz et al., 2014). Namely, ATP released
in significant amounts chronically activates calcium-permeable
P2X7 purinergic receptors, which are highly expressed on the
surface of differentiated and mature oligodendrocytes, leading
to oligodendrocyte death, demyelination, and axonal injury.
Notably, P2X7 receptor antagonists have been shown to prevent
ATP-mediated excitotoxicity in oligodendrocytes and to inhibit
demyelination by countering the P2X7-facilitated intracellular
calcium elevation triggered by ATP (Matute et al., 2007).
Moreover, P2Y receptor activation was shown to be involved in
the control of migration and maturation of OPCs (Agresti et al.,
2005). As shown by Agresti and collaborators, ATP and ADP
inhibit the proliferation of OPCs induced by platelet-derived
growth factor while inducing OPC migration via the activation
of the P2Y1 receptor, the main metabotropic receptor expressed
in OPCs, whose effects can be dampened by the presence of
the P2Y1 antagonist MRS2179. Given these findings, expanding
our understanding of the roles of these receptors will increase
the likelihood of successes for pharmacological therapies focused
on OPCs migration and maturation, and myelin regeneration.
Studies with hESC-derived OPCs have demonstrated differential
expression patterns and effects from the modulation of P2X and
P2Y receptors during OPC maturation (Kashfi et al., 2017). In
this regard, in vitro cultures of oligodendrocytes differentiated
from hESCs or iPSCs (Wang et al., 2013a; Douvaras et al., 2014;
Douvaras and Fossati, 2015; Ehrlich et al., 2017) represent a
valuable model for identifying optimal pharmacological targets
for the prevention of oligodendrocyte degeneration.

WM is highly susceptible to TBI-related ischemia. Lowering
of the blood supply initiates small vessel remodeling within

WM fibers during which endothelial tight junctions degenerate
and allow serum molecules to penetrate the brain (Rosenberg,
2009). Specifically, fibrinogen extravasation initiates a cascade
of chronic inflammation by activating microglia (Ryu and
McLarnon, 2009; Davalos et al., 2012), which has detrimental
effects on OPCs and oligodendrocyte survival (Yune et al., 2007;
Pang et al., 2010; Li et al., 2017). The tight dependence of
WM on the vascular system requires that reparative therapies
integrate a multifactorial approach that counters endothelial
dysfunction and inflammation, since oligodendrogenesis may
not be sufficient to fully restore WM fibers (Hamanaka et al.,
2018). Indeed, transplantation of hiPSC-derived endothelial
cells (ECs) within demyelinated areas has been shown to
form functional vessels in a mouse model of WM ischemic
infarct (Xu et al., 2019). Transplantation of ECs enhanced
cell survival, increased the number of OPCs, suppressed
inflammatory responses and astrocytosis, decreased the ischemic
area, promoted remyelination, and recovered limb coordination.
Taken together, these results suggest that EC transplantation
accelerates WM recovery after TBI.

Cerebrovascular Dysfunction and Repair
In parallel with axonal damage, in the acute phase, shear
stress causes brain vessel disruption and vascular dysfunction
that encompasses changes in the blood-brain barrier (BBB),
microhemorrhages, focal ischemia, and edema (Logsdon
et al., 2015). Namely, BBB disruption in this phase induces
calcium perturbations within cells that trigger cellular stress,
inflammation, and apoptosis. However, it is the delayed
microvascular pathology that is associated with prolonged
inflammation, WM degeneration, long-term neurodegeneration,
and disability (Glushakova et al., 2014; Sandsmark et al., 2019).
Microvascular pathology has been proposed as a link between
TBI and the greater prevalence of Alzheimer’s disease-like
pathology and dementia in these patients (reviewed in Ramos-
Cejudo et al., 2018). Vascular dysfunction appears to be related to
the appearance of several major histological hallmarks of AD in
TBI patients. On one hand, it impedes amyloid β (Aβ) clearance,
thus favoring perivascular aggregation and Aβ-mediated
oxidative stress, endothelial dysfunction, and death worsening
the chronic TBI-driven encephalopathy. On the other hand,
the suppression of nitric oxide production by impaired ECs is
associated with increased ratios of tau phosphorylation. Hence,
the full recovery of the cerebrovascular function is essential
to maintain brain homeostasis and to palliate TBI-derived
pathology long term.

The receptor for advanced glycation end-products (RAGE)
is involved in BBB and WM fiber degeneration following
intracerebral hemorrhages. Consequently, RAGE antagonists
have been proposed for therapeutic intervention to prevent
hemorrhage-related injuries and microgliosis (Yang et al., 2015).
According to the study by Yang et al. (2015), in which
they injected autologous arterial blood into the basal ganglia
to recreate intracerebral hemorrhages, the iron released by
the degenerating hemoglobin exacerbates RAGE expression,
mainly in microglia, and initiates a RAGE-dependent signaling
cascade leading to increased BBB permeability and WM fiber
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degeneration. The blockage of this response with a RAGE
antagonist (FPS-ZM1) exhibited considerable benefits in terms
of reduced BBB permeability, brain edema, motor dysfunction,
and nerve fiber injury, as well as reduced expression of
proinflammatory mediators.

Due to species differences in BBB receptor expression
(Warren et al., 2009; Song et al., 2020) and the limitations in
acquiring fresh vascular tissue from human biopsies; vascular
research can benefit from hiPSC-derived BBB in vitro models.
hPSC-derived ECs co-cultured with astrocytes respond to
astrocytic cues, express a variety of endothelial transporters
and receptors, and recapitulate several relevant BBB attributes
including well-organized tight junctions and polarized efflux
transporter activity (Lippmann et al., 2012). Thus, in vitro
BBB-like cultures are important tools for understanding BBB
pathology. However, these models remain challenging since EC
function is highly dependent on blood pressure-induced shear
stress (Thosar et al., 2012), and EC cultures in a dish do not
mimic the complex vascular physiology of the BBB. In particular,
they cannot self-assemble into vascular networks and fail to
form a functional vasculature. Fabricating microfluidic channels
based on biomaterials that can be further endothelialized
with human umbilical vein ECs or iPSC-ECs is a promising
approach (Williams and Wu, 2019). In this regard, hiPSC-
derived BBB chips enable more reliable disease modeling since
they incorporate flow dynamics and facilitate BBB-brain tissue
interactions by combining two or more iPSC-derived cell types
in the same chip (Vatine et al., 2019). Nevertheless, one of the
major current challenges is to reduce the microchannel diameter
to better mimic physiological vessel diameters and improve
tissue-engineered microvascular networks (Williams and Wu,
2019). Regarding vascular function recovery in vivo, a potential
strategy for restoring perfusion in ischemic tissue is to apply
autologous hiPSC-derived ECs, alone or in combination with
a printed scaffold, directly into the affected area to replace
the dysfunctional vasculature and promote the growth of new
blood vessels (Rosa et al., 2019). However, vascular function
is not limited to ECs but requires the proper functioning of
several cells that comprise the expanded neurovascular coupling
(eNVC): neurons, astrocytes, endothelial cells, pericytes, and
smooth muscle cells (reviewed in Salehi et al., 2017). Often,
after the structural recovery of the brain vessel following a
traumatic event, the eNVC function is not fully restored. Thus,
another challenge for in vitro models of the vascular system
is to recapitulate the complexity of the eNVC and permit
the study of more complex cell-to-cell interactions beyond the
structural recovery.

INFLAMMATORY RESPONSE IN TBI

The axonal shearing, vascular disruption, and ischemia
associated with TBI pathophysiology elicits a complex multi-
stage immune response, which can be neuroprotective in
some instances and neurotoxic in others (Loane and Kumar,
2016). Mechanical injury leads to the release of damage-
associated molecular patterns (DAMPs), including alarmins
and pathogen-associated molecular patterns (PAMPs). Among

these, Galectin-3 (Gal-3) functions as a crucial regulator of the
inflammatory response (Simon et al., 2017; Yip et al., 2017).
These signals lead to microglial cell recruitment and activation
at the site of damage. Microglia are among the earliest immune
effectors and undergo polarization along a spectrum ranging
from M1-like to M2-like phenotypes (Simon et al., 2017).
The function of microglia includes cytokine, chemokine, and
neurotrophin release, as well as debris phagocytosis (Jassam
et al., 2017). The involvement of microglia-derived cytokines
such as tumor necrosis factor-alpha (TNFα), IL-6, and IL-1β as
signal-transducers that amplify inflammatory immune responses
after trauma is well established (Simon et al., 2017). Notably,
treatment with antibodies against Gal-3 has been shown to
reduce cytokine release and neurodegeneration (Yip et al., 2017).
Also, microglial depletion with the colony-stimulating factor
1 receptor (CSF1R) inhibitor Plexxikon 5622 was demonstrated
to reduce TBI-induced neuroinflammation and neuronal cell
death, leading to improved motor and cognitive function
(Henry et al., 2020). Moreover, microglia-released pro-nerve
growth factor (proNGF) was shown to promote oligodendrocyte
death by binding the p75NTR receptor, thereby exacerbating
neurodegeneration. This process can be countered by inhibiting
proNGF release with minocycline (Yune et al., 2007). The
modulation of microglial activation and function has been an
extensively studied target for therapeutic intervention in TBI
(Chio et al., 2015).

Importantly, crosstalk between activated microglia and other
central nervous system-resident cells, such as astrocytes and
peripheral immune cells, plays a crucial role in TBI-induced
neuroinflammation. Astrocytes undergo reactive astrogliosis,
upregulate the marker GFAP, and produce cytokines and
chemokines (Simon et al., 2017). A recent report demonstrated
that a member of the purinergic receptor family P2Y1 mediates
the intercommunication between microglia and astrocytes in a
mouse model of TBI (Shinozaki et al., 2017). Either ablation
of microglial function or pharmacological inhibition of the
P2Y1 receptor led to an altered reactive astrocyte response.
Interestingly, knockout of the P2Y1 receptor enhanced the
protective facet of astrogliosis and decreased neuronal damage
in a mouse model of TBI. Furthermore, an elegant in vivo
study of apoptotic neurons demonstrated that microglia and
astrocytes act in a specialized but coordinated manner to
effect clearance (Damisah et al., 2020). In particular, microglia
were shown to encapsulate the soma of apoptotic neurons,
while astrocytes polarized towards neurites. Robust activation
of microglia and astrocytes is beneficial in targeting damaged
neurons, but can also have toxic effects (Liddelow and Barres,
2017). Thus, understanding the regulation of the delicate balance
between the neuroprotective and the neurotoxic potential of
immune responses in TBI is important for the identification
of new biomarkers and targets for promoting repair. Although
rodents, especially mice, have been widely used to model
neuroinflammation in developing pharmacological therapies,
significant discrepancies in immune receptors, cell types,
and signaling pathways between humans and mice may be
responsible for the limitations of these models for drug discovery
(Kodamullil et al., 2017). For this reason, in vitro models in
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human genetic backgrounds will help to complement drug
screening studies towards validating the benefits and efficacy of
potential new pharmacological therapies.

Recent protocols have shown efficient derivation of
microglia-like cells from hiPSCs (Muffat et al., 2016; McQuade
et al., 2018), as confirmed by expression of the microglial
markers IBA1, CD45, and CD11B (reviewed in Hasselmann
and Blurton-Jones, 2020). A study by Ormel et al. (2018)
demonstrated that microglia can be grown within cerebral
organoids (CO), representing the development of a valuable
tool for studying the interactions of microglia with astrocytes,
oligodendrocytes and neurons in vitro. COs are iPSC-derived
three-dimensional (3D) cell cultures that recapitulate many of
the features observed in a developing human brain in terms
of cell types and cytoarchitectures and offer promise as an
in vitro model of human brain diseases due to their ability to
mimic complex interactions among the multiple cell types of
the brain tissue (Lancaster et al., 2013; Lancaster and Knoblich,
2014). Human brain organoids enriched with microglia can
serve as a window to study the multicellular implications of
the neuroinflammatory response that follows traumatic axonal
injury with a higher level of complexity than reported 2D
primary tri-cultures of neurons, microglia, and astrocytes (Goshi
et al., 2020). However, to date, in vitro models of inflammation
do not fully capture the complex responses that follow TBI, as
some major inflammatory process are driven by the infiltration
of peripheral immune cells (reviewed in Reis et al., 2017).
For instance, the infiltration of neutrophils alters the vascular
permeability and contributes to oxidative stress and changes in
cerebral blood flow that accentuates brain damage. On the other
hand, infiltrating macrophages alternate between phagocytic,
proteolytic, and proinflammatory states in the very early stages
of anti-inflammatory and regenerative functions, including
growth, angiogenesis, and matrix deposition at later stages.

NEUROGENESIS AND STEM CELL
THERAPIES

There is currently no existing treatment capable of fully repairing
the damage resulting from TBI and its sequelae (Zibara et al.,
2019; Schepici et al., 2020). As outlined in previous sections,
effective approaches to repair TBI-induced damage would
promote not only neurogenesis, but also repair lost circuitry,
integrate glial support cells, and form functional vasculature
(Rolfe and Sun, 2015; Schepici et al., 2020), an extremely complex
task that requires highly sophisticated strategies. Human SCs
can proliferate and differentiate into all the cell types needed to
regenerate injured brain tissue and have the potential to heal
TBI-induced damage in ways that have not been possible with
any other treatment to date (Skardelly et al., 2011; Zibara et al.,
2019; Schepici et al., 2020). Numerous studies spanning more
than two decades have tested the use of SCs for the treatment
of TBI in animal models with varying degrees of success (Zibara
et al., 2019). However, the translation of these approaches to the
clinic is still at an early stage.

Regenerative therapies being currently explored focus on
promoting repair either by stimulating endogenous SCs or by

employing exogenous SCs (Kochanek et al., 2015; Rolfe and
Sun, 2015; Zibara et al., 2019). The regenerative potential of SCs
in the field of TBI has been widely reviewed before (Harting
et al., 2008; Gennai et al., 2015; Reis et al., 2017; Zibara
et al., 2019; Schepici et al., 2020). Here, we provide a summary
of the main achievements and limitations of these therapies,
to frame the current situation, before arguing the benefits
of incorporating new biotechnological tools including hiPSC-
derived three-dimensional (3D) cell cultures and biomaterials to
enhance the success of reparative strategies for TBI patients.

Stimulating Endogenous Stem Cells
Endogenous-targeted regenerative therapies aim to accomplish
repair by stimulating local neurogenesis and other endogenous
restorative processes. Given that regeneration and functional
recovery remain major challenges in TBI, relying on endogenous
neurogenesis alone is not sufficient, and therapeutic approaches
are necessary to augment the body’s response. These therapeutic
strategies are designed to capitalize on resident neural SCs
and rely on the presence of these cells to be effective. It is
worth noting that although there are cells with neurogenic
and gliogenic potential in the adult human brain, the extent
of neurogenesis in adulthood is controversial (Eriksson et al.,
1998; Rakic, 2004; Sanai et al., 2004; Spalding et al., 2013; Sun,
2016; Boldrini et al., 2018; Lee and Thuret, 2018; Paredes et al.,
2018; Sorrells et al., 2018). However, in the context of ischemia
or TBI, research points to the activation of neurogenesis and
gliogenesis following injury (Sun, 2016; Zibara et al., 2019). As
reported in the study by Zheng et al. (2013), in TBI patients,
the expression of neural stem/progenitor cell markers including
DCX, TUC4, PSA-NCAM, SOX2, and NeuroD was increased in
the perilesional cortex compared to a normal brain. Also, the
cell proliferation marker, Ki67, was significantly increased within
the affected area and colocalized with neural progenitor markers
suggesting trauma-driven neurogenesis (Zheng et al., 2013).
These types of observations have promoted further research into
potentiating endogenous neurogenesis after TBI events.

Endogenous-targeted therapeutic approaches aim to promote
endogenous stem cell migration, proliferation, survival,
differentiation, integration, or maturation. Potential molecular
effectors that act on SCs include morphogens, hormones, growth,
and neurotrophic factors, and these have garnered interest as
potential therapeutics (Lledo et al., 2006; Faigle and Song, 2013;
Mouhieddine et al., 2014; Berninger and Jessberger, 2016; Zibara
et al., 2019). Numerous small molecules have already been tested
for their capacity to make the environment more conducive to
regeneration. Among these are compounds that target oxidative
stress, the inflammatory response, neurodegeneration, and
apoptosis, including nimodipine, selfotel, and cyclosporine.
Other small molecules, such as progesterone and erythropoietin,
are purported to ameliorate the damaged environment through
neuroprotective, neurotrophic, or angiogenic properties
(reviewed in Zibara et al., 2019). Although many drugs showed
considerable promise in animal models, most failed to produce
functional improvement in clinical trials (Kochanek et al., 2015;
Zibara et al., 2019). Despite over 400 clinical trials, there are
currently no approved drugs that can modulate endogenous
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SCs for the treatment of TBI, and major challenges remain to
be addressed if endogenous SCs are to enable effective recovery;
these include insufficient neurogenesis, inadequate neuronal
differentiation, and maturation, and low survival rates (Zibara
et al., 2019). However, some promising results have been
obtained with exogenous stem cell transplantation.

Transplanting Exogenous Stem Cells
Transplanted exogenous SCs can promote repair in two ways.
They can directly give rise to new neurons and glia to
regenerate the damaged tissue, or they can promote repair
via a bystander effect (Rolfe and Sun, 2015; Napoli et al.,
2018). The latter stimulates the endogenous neurogenic niche
and innate repair mechanisms through the secretion of various
molecules. For example, exogenous SCs can secrete growth
factors for trophic support, cytokines, extracellular matrix
(ECM) molecules, and exosomes, which have been shown to
reduce the inflammatory response, mediate neuroprotection,
and stimulate endogenous stem cell activation and neurogenesis
(Tajiri et al., 2014; Kochanek et al., 2015; Rolfe and Sun, 2015;
Napoli and Borlongan, 2017; Zuo et al., 2017; Schepici et al.,
2020). In this regard, the bystander mechanism of repair shares
similarities with the endogenous stem cell-based approach for
TBI treatment but depends on cell transplantation to stimulate
neurogenesis. Of note, transplanted SCs engineered to express
neurotrophic factors have been demonstrated to further enhance
this potential (Bakshi et al., 2006; Blaya et al., 2015; Chen
et al., 2017). Neurotrophic factors regulate neuronal survival
by promoting differentiation, neurite outgrowth, synaptic
plasticity, cell repair, or apoptosis, however, the efficiency
of neurotrophin-based treatments is compromised by their
short half-lives, reduced BBB permeability, and the limited
diffusion within the neural parenchyma. Also, the fact that
cells express neurotrophin Trk (tropomyosin-related kinase)
receptors differentially limits the broad therapeutic effect
of these molecules. In this sense, providing multifunctional
neurotrophins could enhance its benefits. For example, in
the study by Blaya et al. (2015) in a rat model of TBI,
the pericontusional transplantation of neural progenitors,
collected from rat fetuses and genetically modified to secrete
a synthetic human multifunctional neurotrophin (MNTS1),
reported long term benefits regarding transplant survival and
neuronal differentiation. However, the secretion of MNTS1 did
not have an impact on the cytoarchitecture preservation
compared to animals transplanted with non-genetically modified
neuronal progenitor and did not significantly improve the
hippocampal-dependent learning and memory performance in
these transplanted animals. Moreover, SCs transplanted into the
brain have also been found to create a ‘‘bio bridge’’ between the
injury site and the neurogenic niche for migration of neurogenic
cells to the lesion (Tajiri et al., 2013, 2014). Taken together,
studies using exogenous SCs for TBI treatment have shown
encouraging results, and point to a prominent bystander role,
although further study is required (Napoli and Borlongan, 2017;
Zuo et al., 2017; Napoli et al., 2018).

A variety of different types of SCs have been explored
for TBI treatment in animal models, including embryonic

SCs, adult neural SCs, and different types of mesenchymal
SCs, such as bone marrow SCs, amnion-derived multipotent
progenitor cells, adipose-derived SCs and umbilical cord-derived
SCs (Rolfe and Sun, 2015; Sun, 2016; Zibara et al., 2019;
Schepici et al., 2020). Even hiPSCs directly derived from the
fibroblasts of the dura mater of TBI patients that undergo
surgery have been proposed as a new source of SCs to
generate neuronal progenitor cells (Cary et al., 2015). The
specific mechanisms of brain tissue repair facilitated by different
stem cell therapies have been recently reviewed (Zhou et al.,
2019). The most common methods of administration are
intravenous or stereotactic injection into the brain (Schepici
et al., 2020). Briefly, the results of animal studies have collectively
demonstrated survival and migration of the transplanted
cells, and differentiation of SCs into neurons, astrocytes, and
oligodendrocytes; they have shown increased angiogenesis,
reduced astrogliosis, and lesion volume, and attenuated axonal
degeneration; and, also, many have reported accompanying
improvements in cognitive and motor functions (reviewed in
Schepici et al., 2020). Nonetheless, other studies have failed
to rescue cognitive function despite the reduced lesion size
observed in injured brains that received stem cell treatment
and the successful recovery of the motor function in these
individuals, suggesting that a complex function like memory
may be more challenging to recover (Hoane et al., 2004).
Animal models have also demonstrated that intravenous or
intra-arterial injected SCs preferably migrate to the damaged
region and that the microenvironment of the trauma drives
the transplanted SCs to a neural phenotype, but the fate of
those SCs that migrate to non-target organs (e.g., lung and
liver) is unclear (Lu et al., 2001, 2002) and this issue is
still a big concern in the field. More recently, intravascular
injection of stem cell-derived exosomes alone have proven
beneficial in promoting angiogenesis and neurogenesis and in
reducing hippocampal neuronal cell loss by drastically reducing
neuroinflammation, leading to the notion of exosomes as a novel
cell-free therapy for TBI (Zhang et al., 2015, 2020). Exosomes
are small extracellular vesicles, 30–100 nm in diameter, involved
in the cell-to-cell communication through the transport of
various RNAs and proteins such as immunoinhibitory proteins
with therapeutic benefits (Zhou et al., 2019). These cellular
components, derived from multiple cell types, have been
used in the diagnosis of some pathologies associated with
cancer, genetics, or pathogenic infections, and are now under
investigation for their therapeutical potential due to their low
immunity, long half-life in the peripheral circulation, and their
ability to cross the BBB.

Beyond animal work, six clinical trials have been completed
to date, all using bone marrow-derived SCs except one, which
used umbilical cord-derived SCs (Cox et al., 2011, 2017; Tian
et al., 2013; Wang et al., 2013b; Liao et al., 2015; Cramer
et al., 2019). In the most recent trial, lead by Cramer et al.
(2019), 61 chronic TBI patients were randomized into stem
cell treated groups [receiving three different doses of allogeneic
modified bone marrow-derived mesenchymal SCs (SB623)]
by intracranial injection or surgical sham. The study showed
no dose-limiting toxicities or deaths in treated groups and a
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statistically significant improvement in the Fugl–Meyer Motor
Scale score at 24 weeks post-treatment, and the group treated
with the highest dose (5.0 × 106 SB623) was the one showing
the greatest benefits in motor status. In general, all six trials
demonstrated safe use and some demonstrated improvements in
motor and cognitive functions, as well as reduced inflammation.
Although the completed trials presented encouraging results, the
size of patient cohorts in the studies was small, making it difficult
to draw conclusions in the absence of larger patient numbers
from multicentric collaborations, to confirm the benefits of these
stem cell transplantation approaches. Six ongoing trials (listed
on clinicaltrials.gov) will use bone marrow or adipose-derived
SCs to treat larger numbers of patients, and will provide further
evidence as to the efficacy of exogenous stem cell therapy in
TBI (Schepici et al., 2020).

Despite the encouraging results in preclinical and clinical
studies, stem cell therapies are certainly not considered miracle
treatments as the field stands currently, and there are several
issues to be addressed going forwards. The success of stem
cell therapies for TBI treatment in the clinic will depend on
improving multiple parameters. In the case of endogenous
stem cell therapy, the focus is on developing better strategies
to guide the migration of endogenous stem cell-derived new
neurons to the injured site and on promoting vascularization
and cell survival. In the case of exogenous stem cell transplants,
reducing the risk of undesired side effects such as seizures
or tumor formation (Dekmak et al., 2018) and enhancing
transplant viability by countering the hostility of the host
environment are current priorities (Weston and Sun, 2018). One
aspect of the latter is the need to overcome the immunogenic
and rejection-prone nature of autologous stem cell grafts.
The identification of mitochondrial DNA (mtDNA)-derived
neoantigens and characterization of the immune responses they
elicit following autologous iPSC grafts represents a major step
forward in this direction (Deuse et al., 2019). Specifically,
Deuse et al. showed that subcutaneous transplantation of high
passage iPSCs with single nucleotide polymorphisms (SNPs)
in mtDNA that give rise to neoantigens, led to decreased
survival of grafted cells and elicited a strong T cell response
associated with IFNγ and IL-4 production in mice. Of note,
these features were not unique to iPSC grafts but were also
mirrored by differentiated endothelial cell grafts, which implies
persistent immunogenicity across cell differentiation. These
findings demonstrate that autologous iPSCs should be screened
for neoantigenic SNPs before transplantation to avoid immune
rejection. Other facets of improving transplant viability can be
addressed through the use of scaffolding support constructs,
which enhance stem cell grafting and survival, or by directly
transplanting 3D cell structures from patient-derived iPSCs,
such as brain organoids or bio-printed neural tissue on
biocompatible scaffolds.

Tissue Engineering Strategies
The 3D engineered tissue transplant can contain a complete
microenvironment, including neuronal progenitors, mature
neurons, astrocytes, and oligodendrocytes (Lancaster and
Knoblich, 2014; Kim et al., 2019). These structures are thought

to enhance cell adaptation and survival in the injured area as
they facilitate vascularization in the transplanted area (Mansour
et al., 2018). Potentiating vascularization ensures that the
nutrient and oxygen supply reaches the area to be repaired and
promotes cell survival, maturation, and functional recovery (Ong
et al., 2018; Wang et al., 2020). As reported by Wang et al.
(2020) in a model of motor cortex injury in rats, transplanted
COs enhanced brain repair and were successfully vascularized.
Interestingly, improved results were obtained when they used
less mature COs (50 days post differentiation) in comparison
with more mature ones (85 days post differentiation). This
observation would imply that a greater number of neuronal
progenitors in the COs could be more beneficial for tissue
restoration. Similarly, pre-vascularizing bio-printed tissues with
hiPSC-derived ECs or incorporating angiogenic molecules into
bio-printed tissues enhanced vascularization from the host
(Moon and West, 2008). Moreover, engineered tissues are
of particular interest since they offer the possibility of being
generated in a way that fulfills injury-specific requirements
regarding shape, size, and cell type content for each individual
transplant. In preparation for customizing engineered tissues,
the damaged area can be scanned with magnetic resonance
imaging and a 3D reconstruction of the affected volume can
be used to optimize the modeling of the support scaffold (Fu
et al., 2017). On the undesirable side, hiPSC-derived tissues
are believed to present a higher risk of tumorigenicity due
to the reprogramming process by viral infection and so these
stem cell sources has not been yet considered for clinical
applications (Zhou et al., 2019).

In addition to the potential benefits that engineered tissues
could have for tissue regeneration, these 3D cultures also
represent a useful tool for drug screening and for the
study of the very first physiological alterations that occur in
traumatic events (Figure 1). Mimicking the cerebral cortex in
a dish makes it possible to perform functional assessments
in real-time of physiopathological events that take place in
the acute phases of the traumatic event (e.g., injury-induced
glutamate release and transient hyperactivity) that would not
be possible to monitor in humans or animal models due to
obvious time constraints (Shuler and Hickman, 2014; Tang-
Schomer et al., 2014; Chwalek et al., 2015). Namely, these
types of tissues could be of great interest for understanding
glutamate release-mediated excitotoxicity in TBI patients and the
screening of anti-excitotoxicity molecules. Acute excitotoxicity
is mainly caused by impact-induced presynaptic glutamate
release acting on AMPA and NMDA receptors but, to
date, treatments available for countering its effects hinder
neuronal survival and worsen TBI outcomes (Kochanek et al.,
2015). In comparison with 2D cultures, brain organoids
and bio-printed tissues also have the advantage of more
accurately recapitulating the cell-to-ECM interactions, which
has been proven a key modulator of drug efficiency (reviewed
in Langhans, 2018).

While biomaterial scaffolds can be used as components of
pre-formed engineered tissues, they can also be introduced into
the injured area in the brain to help create a pro-regenerative
environment and support tissue regeneration in situ
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FIGURE 1 | Workflow for human induced pluripotent stem cell (hiPSC)-derived tools for clinical and preclinical research in traumatic brain injury (TBI). HiPSCs are
induced from fibroblasts (skin biopsy) or peripheral blood mononuclear cells (PBMC; blood collection). Three-dimensional (3D) constructs are engineered via
bio-printing in biocompatible materials using hiPSC-derived cultured cells (bioinks). Bio-printed tissues can be enriched with pro-angiogenic molecules to enhance
host vascularization after transplant. These 3D constructs could potentially be used for transplantation as part of regenerative therapies. Alternatively, hiPSC-derived
cells can be grown as 2D and 3D cultures (brain organoids) that can be used for drug screening or in vitro disease modeling.

(Khaing et al., 2014; George and Steinberg, 2015; Boisserand
et al., 2016; Nih et al., 2016; González-Nieto et al., 2018;
Gopalakrishnan et al., 2019). This is a strategy that has
been largely unexplored in the context of TBI treatment but
that could have extensive benefits. Certain biomaterials like
collagen and hyaluronic acid can be polymerized in situ to
form hydrogel matrices and are compatible with stereotactic
injection into the brain. These materials are injected in liquid
form, thus they can fill and conform to the site of injury,
and subsequently polymerize into a gel with mechanical
properties similar to brain tissue (Mekhail and Tabrizian, 2014;
Boisserand et al., 2016; Nih et al., 2016). The incorporation
of biomaterials is a strategy that can complement both
the endogenous and exogenous stem cell transplantation
approaches, as a structural support scaffold for cells at the injury
site, and as a delivery vehicle for small molecule therapeutics
(Lu et al., 2007; Walker et al., 2009; Khaing et al., 2014;
Boisserand et al., 2016).

Using biomaterial scaffolds in stem cell-based TBI treatments
could provide many benefits by facilitating stem cell migration
and survival, and by reducing the unfavorable host conditions.
Hydrogel matrices can be prepared from many different
molecules, including numerous proteins and polysaccharides;
when the material polymerizes from a liquid to a gel, long

molecules link together into a mesh structure, forming an
ECM-like scaffold (Tibbitt and Anseth, 2009; Somaa et al., 2017).
This structure provides 3D support for cell infiltration and
attachment, enabling cells to migrate into the area, providing
them with a physical structure to adhere to so they can remain
there. In the context of ischemic brain damage, biomaterial
scaffolds have indeed been found to promote migration and
survival of both endogenous and transplanted neural cells,
and to promote their proliferation and differentiation (Lam
et al., 2014; Moshayedi et al., 2016; Nih et al., 2017; Somaa
et al., 2017). In addition to neural cells, these benefits apply to
ECs, as biomaterials have been found to promote angiogenesis
and revascularization of brain lesions (Ju et al., 2014; Nih
et al., 2018). Functional vasculature is critical for nutrient
and oxygen supply to the damaged area, and as has been
highlighted, restoring this function is essential to support
regeneration following TBI. Moreover, biomaterials can be
modified to contain specific cell adhesion motifs to further
encourage cell infiltration and attachment (Cui et al., 2006;
Lampe et al., 2013; Moshayedi et al., 2016). The RGD motif
from fibronectin is often used, and the concentration of motifs
in the material can be tailored. Optimized motif concentrations
have also been shown to promote NPC survival, neuronal
differentiation (Moshayedi et al., 2016), and neurite extension
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(Cui et al., 2006), so there are numerous potential benefits to
these engineered materials.

Furthermore, certain biomaterials can interact with immune
cells, reducing inflammation (Austin et al., 2012; Nih et al.,
2018) and glial scarring at the injury site, and are considered
immunomodulatory (Hou et al., 2005; Khaing et al., 2011; Nih
et al., 2017). For instance, high molecular weight hyaluronic
acid has been shown to decrease microglial inflammatory
signaling (Austin et al., 2012). In addition to physical supports,
biomaterials can provide trophic support by acting as a depot for
soluble factors either delivered with the biomaterial (Wang et al.,
2012; Cook et al., 2017; Nih et al., 2018) or secreted by infiltrating
cells, thereby maintaining a high concentration of those factors
where they are most needed (Pakulska et al., 2012; Khaing et al.,
2014; George and Steinberg, 2015; Boisserand et al., 2016; Nih
et al., 2016, 2018; González-Nieto et al., 2018; Gopalakrishnan
et al., 2019). In general, biomaterials have garnered significant
interest as drug delivery vehicles, for their abilities to provide
local, controlled release of a therapeutic over time. This is of
particular relevance to the brain, as the BBB poses a major
challenge to intravenous drug delivery, and the prolonged release
of drugs by a biomaterial platform provides sustained treatment
in a single application/injection. This ability could be employed
in TBI treatment to deliver anti-inflammatory or neurotrophic
factors and help create a pro-regenerative environment. Also,
these materials can be biodegradable or bioresorbable to allow for
their gradual replacement with new tissue (Pakulska et al., 2012;
Nih et al., 2016; González-Nieto et al., 2018). These properties
have proven to be important for successful regeneration and
ultimately result in the elimination of any foreign material,
leaving only the tissue behind.

As a relevant example, biomaterials have been employed
in numerous studies to promote regeneration in the stroke-
damaged brain, where the injury microenvironment is as hostile
as it is in TBI. Other issues faced by stroke therapies that
are pertinent to TBI include the dispersion away from the
transplantation site and low survival rates of exogenous SCs, the
low numbers of migrating endogenous SCs, and the low levels
of differentiation and integration with existing tissue. These
issues are shared by TBI stem cell therapies, and attempts are
being made in the context of stroke to address all of them via
the incorporation of biomaterials (Nih et al., 2016; González-
Nieto et al., 2018; Gopalakrishnan et al., 2019; Ho et al., 2019;
Obermeyer et al., 2019). Biomaterials have been used in stroke
treatments as scaffolds to support endogenous cell infiltration
(Ghuman et al., 2016, 2017; Nih et al., 2017), and as delivery
vehicles for small molecules (Wang et al., 2012; Cook et al., 2017;
Nih et al., 2018) and SCs with encouraging results (Moshayedi
and Carmichael, 2013; Lam et al., 2014; Moshayedi et al., 2016;
Nih et al., 2018; Payne et al., 2019).

The importance of physical factors like support scaffolds
for cells has thus far been largely underexplored in the TBI
field. Several animal studies that used biomaterial scaffolds in
combination with SCs for TBI treatment demonstrated beneficial
effects. They have tested chitosan microspheres, collagen,
collagen-fibronectin, and collagen-hyaluronate scaffolds, some
functionalized with various moieties, to deliver neural progenitor

or other SCs into the brain. Notable effects included improved
survival and migration of cells injected with the biomaterial
(Tate et al., 2002; Skop et al., 2016), and differentiation
into glia, vascular endothelial cells (Elias and Spector, 2012),
and neurons (Shi et al., 2016). Intriguingly, several studies
found improvements in neuropathological parameters, such
as reduced lesion volume and axonal degeneration, increased
angiogenesis, infiltration of endogenous neural progenitor cells,
and differentiation into neurons with the formation of functional
synapses, as well as improvements in motor and cognitive
functions, such as spatial learning and sensorimotor function
(Lu et al., 2007; Xiong et al., 2009; Chen et al., 2011;
Duan et al., 2016). Although the majority of these studies
used collagen-based scaffolds, there are many biomaterials to
choose from, and hyaluronic acid is of particular interest
for stroke stem cell therapies (Moshayedi and Carmichael,
2013; Lam et al., 2014; Moshayedi et al., 2016; Nih et al.,
2017; Ho et al., 2019). The promising results of this small
number of studies using scaffolds together with stem cell
treatment are encouraging, but biomaterials are missing from
the majority of animal studies and all clinical trials for TBI
treatment. We believe that further attention to biomaterials
and their incorporation into future experiments and clinical
trials will be crucial for the improvement of outcomes of
stem cell-based therapies for TBI and the development of
the field.

CONCLUSION AND PERSPECTIVES

SCs are valuable tools for modeling and understanding
the cellular and molecular mechanisms of neurodegeneration
and repair in TBI. Namely, hiPSC-derived 2D or 3D cell
cultures provide researchers with appropriate models for drug
screening in a human genetic background, thereby representing
a significant step forward towards personalized medicine.
However, these in vitro models have their limitations, that
include not incorporating some of the relevant cell types from
the peripheral immune system, a lack of a complex ECM that
can modulate drug efficiency, and the lack of a functional BBB
that could limit, in vivo, the success of the drugs that have been
validated in vitro with these models.

Regarding regenerative therapies, while significant progress
has been made in recent years towards the treatment of
TBI using exogenous SCs, many challenges remain. Some
issues include the low survival rates of exogenous SCs and
their tendency to disperse away from the transplantation
site, a fact that seems governed by the harsh environment
within the injured area. Stem cell-derived 3D structures and
biomaterials applied either jointly with exogenous SCs or
alone, provide structural support and can help reproduce the
necessary microenvironment for successful transplantation of
cells or endogenous repair. For instance, optimizing scaffolds
to better interact with transplanted SCs seems promising. Also,
biomaterials have proven highly beneficial in restoring stroke-
induced brain damage, and the results from the few preclinical
studies that have applied this strategy to the TBI field are
encouraging. In our view, the optimization of biomaterials in
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combination with a better understanding and modulation of
the inflammatory response, and promotion of vascularization
within the injured region represents the most important areas
of focus for enhancing the success of regenerative therapies
in TBI.
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