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Editorial on the Research Topic
Axon Neurobiology: Fine-Scale Dynamics of Microstructure and Function

The axon has been considered as a high-fidelity digital cable that reliably conducts action potentials
toward the presynaptic terminals (Rama et al., 2018). Comprehensive understanding of cell biology
and physiology of the axons is the key step in a bottom-up approach in cellular neuroscience,
although the small structure of the axon, as well as ultrafast signaling by action potentials, have
made the experimental analysis extremely difficult (Ohura and Kamiya, 2016). In this Research
Topic, we aimed at illuminating recent advances in the study of axon neurobiology, with a
focus on the cell biology of the axon initial segment (AIS), electrophysiology and modeling of
axon excitability and transmitter release. These studies highlighted that axonal spike signaling is
regulated much dynamically than previously thought, and substantially involved in fine-tuning of
neuronal information transfer both in time and space.

Action potentials are generated at the AIS or in the proximal axon near the soma, and therefore
the excitability of the AIS is the critical determinant of encoding output trains of the action
potential. In a series of papers, this Research Topic gained insight into our understanding of
the AIS structure and function. Raghuram et al. analyzed the AIS length and distance from
the soma in mice retinal ganglion cells and attempted to correlate AIS length with cell size,
and shown that both parameters are linked. Computational modeling suggested that this scaling
adjusts the spiking threshold, spike rate to support the light responses unrelated to the cell
size of the ganglion cells. A study by Kim et al. addressed an important aspect of auditory
experience-dependent AIS structure plasticity of the medial nucleus of trapezoid body (MNTB)
neurons, a relay of the ascending auditory pathway, during development and aging. It was shown
that AIS length and distance from the soma change with age and auditory experience, and that
these structural changes account for the modifications in the excitability of MNTB neurons, as
supported by modeling. The paper by Zhang et al. examined the roles of purinergic signaling
in the development and maintenance of AIS. Using mouse cultured hippocampal neurons,
they demonstrated that P,Y; purinergic receptors determine the initial development of AIS
structure and function. On the other hand, P,Xy receptors are involved in the maintenance of
AIS maturation. The study by Alpizar et al. explored the roles of the cell adhesion molecule
neurofascin-186 (NF-186) in the arrangement of ankyrin G and sodium channels in the AIS.
Ablation of NF-186 perturbed ankyrin G accumulation at the AIS and altered expression of
sodium channels and therefore suggested the possible contribution of this cell adhesion molecule
in AIS-specific molecular organization. Schliiter et al. reported the maturation of AIS in retinal
ganglion cells with a focus on the cisternal organelle, a presumed Ca*-store of the AIS, using
the marker synaptopodin. Since retinal development, as well as visual deprivation, alter the AIS
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and synaptopodin distribution, the authors suggested the
activity-dependent structural plasticity occur in both retinal
ganglion cells and pyramidal cells in the visual cortex.

This Research Topic puts special emphasis on the
understanding of basic mechanisms underlying fine-tuning
of the excitability of the axons. In this line, a few articles nicely
reviewed and summarized the current understandings of the
functional significance of the excitability tuning of the axons
as well as the underlying molecular identities. In combination
with the historical views as well as the recent updates on the
biophysical properties of axons, Alcami and El Hady offered a
comprehensive review of the computational abilities of axons
and the dynamic control of generation and propagation of action
potentials. This paper also lights up the issues to be investigated
in future studies with cutting-edge technologies. The authors
suggested the importance of “hybrid computation” of analog
and digital signals and their interplay. Burke and Bender
reviewed the mechanisms as well as the functional significance
of modulation of ionic channels in axons. Action potential
generation and propagation, as well as neurotransmitter release
and its short-term plasticity, are critically and dynamically
regulated by modulation of ion channels in axonal membranes.
The future perspective of looking for the functional consequence
of modulation of axonal excitability in vivo is of extreme
interest. Liu and Rasband provided a nice overview of the
axonal spectrin, a key cytoskeletal molecule determining the
microstructure of the axons. Thanks to the recent development
of super-resolution microscopy, the periodic spatial organization
of ring-like structures of actin and subcellular arrangement of
spectrin implicate the pivotal role of actin-spectrin cytoskeletons
in determining axonal excitable domains such as AIS and
nodes of Ranvier. Bonetto et al. reported the early steps of
compartmentalization of Kvl channels and associated molecules
preceding myelination of axons in cultured hippocampal
GABAergic neurons. Although K channels are well-known
to localized at nodes and juxtaparanodes to secure spike
propagation along myelinated axons, they demonstrated that
Kv1.2 channels are highly expressed all along the axons and
the AIS before myelination, in contrast with “pre-nodes”
localization of Nay; channels. Rozov et al. provided an overview
of the current understanding of the underlying mechanisms
for asynchronous transmitter release from the axon terminals.
Ca?™ sensors, Ca?t sources, and Ca’" extrusion mechanisms
may coordinate to limit the prolonged time course of the
asynchronous release. Although high-affinity Ca’" sensor
Syt7 has been suggested to play key roles in the asynchronous
release, the contribution of other synaptotagmins as well as the
Na™/Ca?" exchanger (NCX) which determine the rate of Ca?"
extrusion is needed to be determined in future investigation.
Goaillard et al. summarized the roles of dendrite geometry in
the output of action potentials and transmitter release. The
authors overviewed the examples of “non-canonical polarity
neurons” and even axon-less neurons. They also discussed the
case of dorsal root ganglion neurons as an example of unipolar
neurons. The diversity of axonal and dendritic roles in shaping
neuronal output is of importance for the understanding of
neuronal functions.

Several studies also illustrate novel experimental methods to
overcome the limitation of previous approaches. Emmenegger
et al. provided a nice and concise overview of the methods
for studying the propagation of action potential along the
axons, i.e., subcellular patch-clamping from the axon, genetically
encoded voltage imaging, and CMOS technology-based high-
density microelectrode arrays (HD-MEAs). With high temporal
resolution and spatial information obtained by recordings
with HD-MEAs covering the entire course of axon arbors
of cultured hippocampal neurons, the authors focused on
fundamental studies on action potential propagation. Bullmann
et al. introduced a novel approach for high-throughput
scanning of axonal arbors and mapping of axonal delays
using cultured cortex neurons grown on HD-MEAs. With a
high temporal and spatial resolution of HD-MEA recordings
of axonal spikes, they provided the evaluation of axon
segmentation and enabled high-throughput functional mapping
of axon arbors. Rama et al. adopted simultaneous imaging of
presynaptic Ca>* entry and glutamate release at the hippocampal
mossy fiber boutons using biolistic transfection of glutamate
sensor SF-iGluSnFR and introduction of Ca?* indicator Cal-
590 in granule cells from organotypic hippocampal cultures.
This technique offers a unique opportunity to evaluate the
relationship between presynaptic Ca** and glutamate release
across multiple release sites within the individual presynaptic
terminals. With this multiplexed imaging, they demonstrated
the evidence for the existence of distinct release sites of
glutamate at the mossy fiber synapse. Nagendran and Taylor
investigated the intrinsic injury mechanisms following axotomy.
Using cultured hippocampal neurons grown on microfluidic
chambers, they revealed that Na® influx and reversal of
NCX induce dendritic spine loss. The authors also report
that Ca?" release from the axonal endoplasmic reticulum
(ER) plays a critical role in trans-synaptic hyperexcitability
following axotomy.

This Research Topic also highlighted the advantage of
modeling approach due to the limitation of the experimental
approach in axon physiology. Since the information based on
the experimental findings is limited for quantitative evaluation,
a simulation approach based on a simple assumption might
help in testing the quantitative validity of the hypothesis.
Using computer modeling, Zbili and Debanne addressed the
contribution of myelination on length constant of analog-
digital facilitations (ADFs), a graded modulation of transmitter
release due to subthreshold depolarization of axonal membranes.
This study demonstrated that myelination enhances the axonal
length constant thus suggesting a possible functional significance
of ADFs in myelinated axons. An important notion is that
the enhanced spatial extent of ADFs with myelination may
enhance the contribution of ADFs in fine-tuning of neuronal
information processing. An advantage of the modeling approach
was further highlighted by the review by Kamiya which
focused on the mechanism underlying afterdepolarization that
follows axonal action potentials. Using a realistic model
of hippocampal mossy fibers in combination with a direct
recording from the axon terminals, the author clearly shows
the substantial contribution of a capacitive component in
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axonal afterdepolarization. This study also suggests that voltage-
dependent K* and Na™ conductance play a critical role in
shaping time course of afterdepolarization lasting for several
tens of ms. Holland et al. discussed alternative solutions for the
famous Hodgkin-Huxley (HH) model of the action potential
that entirely lies on the electrical nature of the nerve impulse
propagating along the axon. Non-electrical factors such as the
mechanical and/or thermal changes are taking into account
for an attempt to propose a unified model that takes into
account the mechanical wave by the pressure pulse of axoplasm
and represents the process of nerve impulse propagation
accurately. This paper gave insight into the fundamental
understanding of the neve impulse propagating axon. Daur
et al. addressed the interaction of different spike initiation
sites of proximal and distal axons of the unmyelinated motor
axon of the lobster with the simultaneous recordings from
the two sites of the same axons. The author points to the
fact that centrally generated bursts occurring in the proximal
axons and peripheral “ectopic” spike initiation from distal axon
show mutually suppressive influence. Although the functional
significance of ectopically generated action potentials is not
fully understood, this implies that they play an important role
in shaping the output of the neuronal network. It is also
noteworthy that these rules can be generalized to understanding
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As overviewed above, this Research Topics illustrated the
current state of knowledge on axon neurobiology, of fundamental
importance for the bottom-up approach in the understanding
of brain functions. It is also obvious that our continuing
efforts to understand axon function will require a combination
of cutting edge optical techniques for imaging fine structures
with super-resolution technologies (Chéreau et al., 2017), direct
electrophysiological recordings from the axon (Kawaguchi and
Sakaba, 2015), optogenetic tools (Kim et al, 2017), calcium
imaging (Hanemaaijer et al, 2020; Zbili et al, 2020), and
computer modeling analysis (Goethals and Brette, 2020).
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