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How neurons in the eye feed signals back to photoreceptors to optimize sensitivity to
patterns of light appears to be mediated by one or more unconventional mechanisms.
Via these mechanisms, horizontal cells control photoreceptor synaptic gain and enhance
key aspects of temporal and spatial center-surround receptive field antagonism. After the
transduction of light energy into an electrical signal in photoreceptors, the next key task
in visual processing is the transmission of an optimized signal to the follower neurons in
the retina. For this to happen, the release of the excitatory neurotransmitter glutamate
from photoreceptors is carefully regulated via horizontal cell feedback, which acts as
a thermostat to keep the synaptic transmission in an optimal range during changes to
light patterns and intensities. Novel findings of a recently described model that casts a
classical neurotransmitter system together with ion transport mechanisms to adjust the
alkaline milieu outside the synapse are reviewed. This novel inter-neuronal messaging
system carries feedback signals using two separate, but interwoven regulated systems.
The complex interplay between these two signaling modalities, creating synaptic
modulation-at-a-distance, has obscured it’s being defined. The foundations of our
understanding of the feedback mechanism from horizontal cells to photoreceptors
have been long established: Horizontal cells have broad receptive fields, suitable for
providing surround inhibition, their membrane potential, a function of stimulus intensity
and size, regulates inhibition of photoreceptor voltage-gated Ca2+ channels, and strong
artificial pH buffering eliminates this action. This review compares and contrasts models
of how these foundations are linked, focusing on a recent report in mammals that
shows tonic horizontal cell release of GABA activating Cl− and HCO−

3 permeable
GABA autoreceptors. The membrane potential of horizontal cells provides the driving
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force for GABAR-mediated HCO−3 efflux, alkalinizing the cleft when horizontal cells are
hyperpolarized by light or adding to their depolarization in darkness and contributing to
cleft acidification via NHE-mediated H+ efflux. This model challenges interpretations of
earlier studies that were considered to rule out a role for GABA in feedback to cones.

Keywords: GABA receptor, horizontal cell, inhbitory feedback, photoreceptors, pH, center-surround inhibition, rho
subunit, bicarbonate

WHAT IS FEEDBACK TO
PHOTORECEPTORS?

Output signaling from photoreceptors takes place at synaptic
complexes comprising the photoreceptor terminal, horizontal
cell synaptic processes, and bipolar cell dendrites, where
visual information transfer and processing is initiated
(Thoreson and Mangel, 2012). Here, essential aspects of
visual processing, including center-surround antagonistic
receptive field formation, color opponency, and sensitivity to
spatiotemporal change, rely on lateral inhibitory feedback to
photoreceptors by horizontal cells (Baylor et al., 1971; Mangel,
1991; Burkhardt, 1993; Dacey et al., 2000; Twig et al., 2003).
This feedback was recently characterized as ‘‘The Case of the
Missing Neurotransmitter’’ (Kramer and Davenport, 2015),
emphasizing that the mechanisms proposed to underlie this
feedback neurotransmission are not simple, fully characterized,
agreed upon, or well understood (Thoreson and Mangel, 2012).

The known common targets of horizontal cell feedback
reported in virtually all vertebrate species are the voltage-
gated Ca2+ (CaV) channels in the photoreceptor synaptic
terminal (Verweij et al., 1996, 2003; Hirasawa and Kaneko,
2003; Vessey et al., 2005; Cadetti and Thoreson, 2006).
These channels are necessary for photoreceptors to release
neurotransmitters in the same manner that CaV channels are
necessary for release in most other neurons, where presynaptic
depolarization activates CaV channels, and this increases
calcium influx that facilitates the release of neurotransmitter.
However, photoreceptors hyperpolarize in response to light,
meaning that during a light stimulus, the CaV channels become
less activated, glutamate release decreases, and postsynaptic
horizontal cells hyperpolarize. Since the horizontal cells extend
lateral processes broadly, they receive input from a large number
of photoreceptors, and they hyperpolarize strongly to a spatially
large light stimulus but produce only a small hyperpolarization
to a small spot of light.

Partial inhibition of cone CaV channel activation is the base
functional state in darkness. To appreciate how the inhibition
changes in response to patterned light stimulation, we describe
the steps in the photoreceptor response to light, including CaV
channel disinhibition during the response to a large spatial
stimulus. In response to a brief, small spot of light, the cone
hyperpolarizes, as seen in Figure 1. This is due to the light-
induced closure of cGMP-gated channels in the photoreceptor
outer segment, resulting in a reduction of the depolarization
produced by those non-selective cation channels, allowing the
standing K+ channel currents (IKx) to hyperpolarize the cell,
typically from about −40 mV to as much as −60 mV. However,

in response to a large spot of light, an identical hyperpolarization
occurs initially but this is followed by inhibitory feedback
from strongly hyperpolarized horizontal cells that produce a
delayed depolarizing phase in the cone response. Confusing as
it may seem, this depolarization is what was originally referred
to as inhibitory feedback (since it was an inhibition of the
hyperpolarizing response to light), but we currently recognize
that the underlying mechanism is a disinhibition of the cone
CaV channels.

In this review, we discuss feedback in terms of the mechanism
at the level of the photoreceptor CaV channels, and we refer
to the terms ‘‘inhibition’’ and ‘‘disinhibition’’ in the context
of horizontal cell modulation of photoreceptor voltage-gated
CaV channels. For example, inhibition of cone CaV channels
occurs when horizontal cells are depolarized during steady-state
conditions of darkness or low light. In earlier reports, before
the role of cone CaV channels in feedback was established by
Verweij et al. (1996), ‘‘inhibitory feedback’’ was (and remains in
many reports) terminology referring not to cone CaV channels
but to the delayed depolarization that occurs in response to
added surround illumination, which reduces (or ‘‘inhibits’’) the

FIGURE 1 | Center-surround antagonism in a cone photoreceptor due to
feedback. The voltage response of a turtle cone to a small spot of light
(70 µm diameter) and the response to a large spot (600 µm diameter) follow
identical hyperpolarizing trajectories at the onset, but diverge during recovery.
Both responses are plotted relative to the dark resting membrane potential of
about −40 mV. The large spot response undergoes a pronounced inhibitory
phase starting about 100 ms post-stimulus, becoming relatively more
depolarized more quickly than the small spot response. The large spot
recruited the receptive field surround of the cone via the large broad field of a
horizontal cell, which feedback to the cone antagonizing the center response.
Figure modified from Baylor et al. (1971).
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hyperpolarizing response to focal stimulation of a cone with light
(Figure 1). However, we now appreciate that since surround
illumination produces strong horizontal cell hyperpolarization,
this phenomenon observed in the cone membrane potential is
caused by a de facto disinhibition of the cone CaV channels.

There is evidence for several feedback mechanisms, the
most prominent of which include neurotransmitter-mediated
signaling via GABA (or another/additional transmitter),
interstitial current-induced external voltage changes, or
‘‘ephaptic coupling,’’ and pH-mediated surface charge screening
effects. While similar descriptions of feedback from horizontal
cells to photoreceptors have been reported in the retinas of
non-mammalian vertebrates, the fewer reports in mammalian
species have to account for significant underlying mechanistic
differences from non-mammalian species (Thoreson and
Mangel, 2012; Liu et al., 2013). These differences between
mammalian and non-mammalian species are important to note,
as they have previously complicated attempts to understand
this synaptic feedback circuit (Wu, 2010; Thoreson and Mangel,
2012; Liu et al., 2013; Kramer and Davenport, 2015).

MECHANISMS OF FEEDBACK TO
PHOTORECEPTORS

GABA
The early detection of GABA in horizontal cells (Lam et al.,
1978) propelled investigation into how horizontal cell release of
GABA would mediate feedback. At the time, models presumed a
simple inhibitory neural action and it seemed safe to assume that
horizontal cells would release GABA when they are depolarized
and that the released GABAwould bind to presumptive GABARs
on photoreceptors, increasing Cl− conductance, leading to
photoreceptor hyperpolarization. Even then such a mechanism
for GABA was difficult to reconcile since, as a starting point,
either the hyperpolarized horizontal cell had to release a
transmitter that produced a sign-inverting depolarization in the
cone associated with a conductance increase, or the horizontal
cell had to release a neurotransmitter that decreased conductance
in cones in the dark, and when reduced by light, this led to
increased cone conductance (Baylor et al., 1971). Later reports
continued to support a role for horizontal cell release of GABA
(Cueva et al., 2002; Hirano et al., 2005, 2016; Guo et al.,
2010). In mammalian retinas, compelling evidence suggests that
horizontal cells release GABA in a depolarization-dependent,
vesicular manner (Hirano et al., 2016; Grove et al., 2019). In
mammals, GABA and the GABA synthetic enzyme, L-glutamate
decarboxylase (GAD) are localized to horizontal cells (Schnitzer
and Rusoff, 1984; Wässle and Chun, 1989; Grünert and Wässle,
1990; Vardi et al., 1994; Guo et al., 2010; Schubert et al., 2010;
Deniz et al., 2011) and VGAT, V-ATPase, multiple SNARE, and
vesicle proteins, and CaV channels mediating vesicular release are
localized to horizontal cell dendritic tips and axonal terminals
(Dowling and Boycott, 1966; Brandon and Lam, 1983; Linberg
and Fisher, 1988; Peters et al., 1991; Catsicas et al., 1992; Ueda
et al., 1992; Löhrke and Hofmann, 1994; Grabs et al., 1996;
Greenlee et al., 2001; Rivera et al., 2001; Cueva et al., 2002;

Hirano et al., 2005, 2007, 2011; Schubert et al., 2006; Lee and
Brecha, 2010; Liu et al., 2013). Furthermore, vesicle membrane
fusion and recycling in horizontal cells is depolarization—and
Ca2+-dependent (Takamori et al., 2000; Vuong et al., 2011), and
the deletion of VGAT from horizontal cells abolishes horizontal
cell inhibitory feedback to photoreceptor CaV channels (Hirano
et al., 2016). This evidence leads to the conclusion that
depolarization-mediated, Ca2+-dependent GABA release could
mediate horizontal cell signaling. However, due to several
additional observations, including the low concentration of
vesicles in horizontal cells synaptic terminals, and the persistent
GABA presence around horizontal cell synaptic endings, it
has been suggested that GABA release could be continuous,
increasing with depolarization, but slowly and with limited
uptake and degradation in the synaptic cleft (Grove et al., 2019).

The existence of many similar features of feedback in
mammalian and non-mammalian vertebrates suggests
conservation of mechanisms but may serve as false flags
when making comparisons, and there are critical differences
concerning GABA. (1) Non-mammalian vertebrates have not
been proven to have a GABA vesicular release mechanism
in horizontal cells similar to that in mammals. Instead, early
discoveries in several non-mammalian vertebrates concluded
that reversed GABA-uptake transporters in horizontal cells
mediate the release of GABA (Schwartz, 1982, 1987, 2002;
Yazulla and Kleinschmidt, 1983; Ayoub and Lam, 1984).
Mammalian horizontal cells do not have GABA-uptake
transporters (GATs; Johnson et al., 1996; Guo et al., 2009, 2010),
so they do not emulate this mechanism of action. (2) While
non-mammalian vertebrates also appear to have GABA in some
of their horizontal cells, many have been reported to not contain
GABA and some may employ different neurotransmitters. This
said, there are important similarities. Both types of vertebrates
have GABA receptors on their horizontal cells and both have
elevated chloride equilibrium potentials (around −30 mV).
These similarities suggest that vertebrates may employ the same
GABA-pH hybrid mechanism, albeit with a different means of
GABA release, the details of which are discussed extensively in
the body of this review.

In non-mammalian species, horizontal cell release of GABA
appears to directly hyperpolarize photoreceptors (Skrzypek and
Werblin, 1983; Tachibana and Kaneko, 1986; Wu, 1991, 1994;
Tatsukawa et al., 2005; Endeman et al., 2012). In contrast, a direct
action of GABA on photoreceptors has not been unequivocally
established in mammals. Many physiological recordings in the
normal mammalian retina do not show a direct action of
GABAergic agents on cones (Verweij et al., 2003; Crook et al.,
2009; Kemmler et al., 2014; Szikra et al., 2014; Grove et al.,
2019), but there is evidence for GABAR subunit expression by
mammalian photoreceptors (Greferath et al., 1993; Grigorenko
and Yeh, 1994; Picaud et al., 1998; Vardi et al., 1998; Chaffiol
et al., 2017). However, in cultured retinal explants (and possibly
in rd1 mice lacking rods), cones may be reprogrammed and
respond to GABA application (Picaud et al., 1998; Pattnaik et al.,
2000), and one report indicates GABA activation of TPMPA-
insensitive GABAR Cl− channels in wild-type mouse cones
(Deniz et al., 2019). Further complicating the functional role
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for photoreceptor Cl− flux, during surround light stimulation
that hyperpolarizes horizontal cells, the resulting disinhibition
of CaV channels in cones in fish (Verweij et al., 1996) and
macaque (Verweij et al., 2003) is accompanied by an increase
in Ca2+-activated Cl− conductance. These events are not easily
reconcilable with a direct ionotropic GABA action in cones
and would be more confidently considered to be due to a
reduction of Cl− conductance during reduced GABA release by
horizontal cells.

An additional long-standing controversial issue was that
GABA release by depolarized horizontal cells directly mediating
feedback to cones required an atypical mechanism. Baylor
et al. (1971) suggested that the inhibition of the light
response defied any known neurotransmitter mechanism.
Horizontal cell hyperpolarization leads to cone depolarization,
which is associated with a conductance increase. A solution,
reviewed here, is that horizontal cell feedback signaling is
mediated by GABA acting indirectly on photoreceptors. This is
supported by findings that GABA acts autaptically on horizontal
cells, whose depolarization and membrane properties result
in pH-regulated inhibition of photoreceptor CaV channels
(Liu et al., 2013; Grove et al., 2019).

Since horizontal cell feedback affects cone synaptic output
to bipolar cells, horizontal cell influences carry through to
these cells. Also, horizontal cells appear to inhibit directly the
dendrites of many types of bipolar cells. Horizontal cell signaling
mediated by GABA to bipolar cells is consistent with GABARs on
bipolar cell dendrites (Vardi et al., 1992; Enz et al., 1996; Wässle
et al., 1998; Haverkamp and Wässle, 2000; Haverkamp et al.,
2000; Hoon et al., 2015), although which bipolar cell types and
their complement of dendritic GABAR subtypes are unknown
(Chaffiol et al., 2017). Different [Cl−]i levels in bipolar cell
dendrites, maintained by two types of chloride co-transporters
(KCC2 and NKCC; Vardi et al., 2000; Vu et al., 2000) could
account for a direct inhibitory and excitatory effect caused by
GABA released by horizontal cells at ON- and OFF-bipolar
cells (Miller and Dacheux, 1983; Satoh et al., 2001; Varela
et al., 2005; Duebel et al., 2006). Both feedback via cones and
direct feedforward signaling pathways have a strong influence on
bipolar cell responsiveness and all downstream neurons in the
retina and visual system.

Ephaptic Coupling and the Role of
Hemichannels
The unique, enveloping structural constraints of this synapse,
where horizontal cell synaptic endings invaginate rod and cone
presynaptic terminals led to the proposal of the ‘‘electric feedback
model’’ as the mechanism of feedback (Byzov, 1977; Byzov et al.,
1977; Byzov and Shura-Bura, 1986). This model was based on
the fact that current flow through a resistive medium (here,
the tortuous extracellular paths through which current flows
to enter glutamate receptor channels in the synaptic endings),
constitutes a resistance, which according to Ohm’s law creates
a voltage drop at the horizontal cell synaptic tips. The result is
a net negative extracellular voltage in the synaptic cleft relative
to ground (0 mV). By producing an external negative potential
here, outside the cone membrane at the synaptic release site,

the electric field across the membrane of the adjacent cone
is reduced, affecting equivalent to depolarization of the cone
membrane that increases the activation of the photoreceptor
CaV channels responsible for glutamate release (Taylor and
Morgans, 1998; Nachman-Clewner et al., 1999; Morgans, 2001).
The physics of this model is solid, but there is a lack of
certainty of the amplitude of the external voltage drop, and more
troubling for the model, when the horizontal cell glutamate-
activated postsynaptic current is reduced during a strong light
stimulus, hyperpolarizing the cell, interstitial current flow to the
synapse is reduced, and feedback modulation is diminished or
even vanishes.

Decades later, Kamermans et al. (2001) solved this
dilemma, upgrading Byzov’s model (Byzov, 1977; Byzov
et al., 1977; Byzov and Shura-Bura, 1986) by incorporating
the finding that hemichannels, each half of a gap junction
channel and composed of connexin26, had been identified
at the tips of fish horizontal cell dendrites deep within the
invagination (Janssen-Bienhold et al., 2001a,b). This clever
improvement circumvented the perceived problems caused
by the closure of glutamate-gated channels by invoking the
presence of ion channels that were not gated by glutamate
and that would reliably produce the interstitial current
flow required for continuous extracellular non-zero voltage
modulation. According to this new hemichannel hypothesis,
surround illumination that causes strong horizontal cell
hyperpolarization and greater inward current through
hemichannels in their synaptic endings (Kamermans et al.,
2001; Fahrenfort et al., 2005), producing a voltage drop
in the synaptic cleft. While interstitial voltage cannot be
reliably measured, this action is revealed in voltage-clamped
cones during surround illumination, acting as a shift in the
activation curve of the cone CaV channel current to more
positive potentials (Verweij et al., 1996, 2003) increasing
glutamate release, this being the feedback that opposes the
cone hyperpolarization.

Hemichannels at the photoreceptor synapse were found
in goldfish, zebrafish, and turtles on the membranes of the
lateral processes of horizontal cell tips, deep within the
synaptic terminal (Kamermans et al., 2001; Pottek et al., 2003;
Klaassen et al., 2011). Pharmacological blockade of hemichannels
with carbenoxolone blocked feedback-mediated responses in
non-mammalian cones and horizontal cells (Kamermans et al.,
2001). According to the model, by blocking hemichannels,
carbenoxolone restores the suppression of cone CaV channels
through an apparent rightward shift of the activation curve,
reducing the amount of glutamate is released. It should be
noted that while carbenoxolone has been widely used as a
functional probe for gap junctions, this diagnostic tool depends
entirely on the specificity of its actions, and there are reports
it can act on multiple targets. In addition to blocking gap
junctions, carbenoxolone has been shown to suppress action
potentials, decrease input resistance, block CaV channels, block
postsynaptic NMDA receptors, and reduce inhibitory synaptic
currents through a direct effect on GABARs (Rekling et al.,
2000; Rouach et al., 2003; Vessey et al., 2004; Tovar et al.,
2009; Beaumont andMaccaferri, 2011; Connors, 2012). Thus, the
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effects of carbenoxolone do not constitute conclusive evidence
that gap junctions are involved, especially when GABARs and
CaV channels are involved.

The hemichannel model was bolstered by comparing
normal and genetically modified zebrafish that lack connexin
hemichannels in horizontal cells (Klaassen et al., 2011).
Feedback was reduced in the mutants, supporting the
hemichannel role in feedback from horizontal cells to cones.
Intracellular recordings in horizontal cells showed color-
opponent responses were diminished and the mutant fish
also showed decreased contrast sensitivity in behavioral tests,
expanding the reach of the model to the functional level in
visual processing.

The role of hemichannels in horizontal cell feedback in
zebrafish was further expanded to include pH effects at the
synapse. In addition to connexin hemichannels mediating rapid
feedback actions, pannexin hemichannels are implicated in
ATP release, which induces extracellular acidification through
hydrolysis of ATP by endonucleotidases in the cleft (Kurtenbach
et al., 2014; Vroman et al., 2014). Pannexin/ATP-mediated
feedback is a CaV channel inhibiting mechanism occurring
with depolarization of the horizontal cell, while connexin-
mediated feedback produces disinhibition when horizontal cells
are hyperpolarized.

Physics sets the time course of hemichannel mediated
ephaptic feedback, and it must occur instantly in response to
changes in current flow in the glutamate-gated or hemichannel
conductances, which for both depends on the horizontal cell
membrane potential, regulated primarily by changes in glutamate
levels in the cleft. The speed of feedback signaling has been
used as a diagnostic tool, but it remains difficult to discriminate
between models due to the layering of their actions.

As is the case with GABA, there are many differences
between mammalian and non-mammalian retinas concerning
hemichannels. Connexin hemichannels are not found in
mammalian (rodent) horizontal cell tips. Analysis of pannexins

inmouse horizontal cells shows sparse localization away from the
invaginating tips of the horizontal cells (Kranz et al., 2013).

Photoreceptor Synapse Modulation by pH
Over many decades an appreciation has emerged that
extracellular pH (pHo) fluctuates in healthy brain tissues.
Assessment of pH homeostasis in the vertebrate retina showed
significant disparities from the earlier conception that pHo was
one of the best-regulated homeostatic variables necessary for
brain function (Yamamoto et al., 1992; Dmitriev and Mangel,
2004; Dmitriev et al., 2016). Not only did retinal measurements
of pHo reveal values far from the pH 7.4 seen in the vasculature,
but pHo in the retina changed dramatically, depending on light
stimulation, showing that the dynamic nature of pHo in tissue
with high energy consumption exceeds those in other nervous
and somatic tissues. In the retina, pHo is most acidic in the
dark within the outer nuclear layer (ONL—composed of the cell
bodies of rod and cone photoreceptors; Figure 2), with Müller
cell processes. At the level of the retinal pigmented epithelium
(RPE), pH increases, approaching that of the blood (pH 7.4)
owing to the proximity of the choroidal supply. At the nerve
fiber (NF) layer and ganglion cell (GC) bodies, pH also increases,
presumably due to the voluminous and unimpeded buffering
capacity provided by the aqueous humor, to a value near 7.2.
What is more profound about this spatial disparity, is that under
light-adapted conditions, the bulk pH increases at all layers
across the retina, and the point of greatest change is the ONL,
where the mitochondria of rods and cones are maximally active
in the dark, and reduced in bright light, nearly completely in the
case of rods at least, when they are hyperpolarized.

This spatiotemporal pattern of pHo reflects energy use by
the cells. For example, in mouse rods, to maintain tonic
depolarization, a high energy demand exists for the removal
of Na+ entering through CNG channels and Na+/(Ca2++K+)-
exchangers of the outer segment, and replenishment of K+ that
effluxes via these and voltage-gated Kx channels of the inner

FIGURE 2 | Near the photoreceptor layer, there is a notable light vs. dark difference in bulk pHo in the outer retina. In the darkness, when rod and cone
photoreceptors are maximally depolarized for an extended period, the pH becomes more acidic. Figure adapted from Yamamoto et al. (1992).
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segment, and pumping of Ca2+ from the synaptic terminal.
ATP use in mouse rods is increased by a factor of 5 in
the dark compared to bright light, with most of this due to
increased Na+/K+-ATPase and Ca2+-ATPase activity (Krizaj and
Copenhagen, 2002; Okawa et al., 2008). In general, when neurons
are depolarized their ion channels are more frequently open
(except some inward rectifier K and HCN channels) and their
metabolic activity increases to maintain concentration gradients
for Na+, K+, Ca2+, and other ions. The active transport of
these ions by the Na+/K+-ATPase and plasma membrane Ca2+-
ATPase is acknowledged to be the largest energy expenditure
for neurons (Ames et al., 1992; Niven and Laughlin, 2008).
At excitatory synapses where Na+ influx and K+ efflux can
be protracted, and especially so in the present case where
second-order neurons such as horizontal cells are in a tonically
depolarized state during low illumination due to the continuous
release of glutamate from photoreceptors, the energy cost of
active ion transport to maintain transmembrane ion gradients
are high (Wong-Riley, 2010). Thus, the energy requirements
of the retina are higher in the dark than in the light, and in
producing ATP, the neurons extrude H+ prodigiously, making
pHo low (Ames et al., 1992). It has long been appreciated
that the high metabolic requirements and their dependence on
illumination contribute to the sustained, low bulk pH in the
outer retina in the dark and its increase during illumination
(Borgula et al., 1989; Oakley and Wen, 1989; Yamamoto et al.,
1992). Given this backdrop of pHo in the outer retina, it is
noteworthy that an additional mechanism underlying feedback
inhibition involves the regulation of pHo in the photoreceptor
synaptic cleft (Thoreson and Mangel, 2012; Vroman et al., 2014;
Wang et al., 2014; Beckwith-Cohen et al., 2019). Changes in
pHo provide powerful modulation of voltage-gated ion channels
due to membrane surface charge effects. This biophysical action
occurs due to protons interacting with the fixed negative surface
charge of the bilayer andmembrane proteins, altering the electric
field sensed by the voltage-sensors of ion channel proteins
present in the membrane, leading in the present case to reduced
photoreceptor CaV activation (Hille, 1968; Barnes and Bui, 1991;
Barnes et al., 1993). Increased pH buffering of the retina with
Hepes suppresses feedback and concentrations as low as 10 mM
are enough to reversibly block it (Barnes et al., 1993; Hirasawa
and Kaneko, 2003; Vessey et al., 2005; Cadetti and Thoreson,
2006; Davenport et al., 2008; Thoreson et al., 2008; Fahrenfort
et al., 2009; Liu et al., 2013).

Shifts in synaptic cleft pH modulate the voltage dependence
of photoreceptor CaV channel activation and this regulates
glutamate release from photoreceptors (Barnes et al., 1993;
Cadetti and Thoreson, 2006; Babai and Thoreson, 2009). This
clear and simple relationship demonstrates how activity-driven
changes in pH in the synaptic cleft can affect synaptic regulation
(Figure 3). Whether adaptations to the expression of Na+/H+

exchangers (NHEs), HCO−3 transporters (NBCs, AEs, NCBEs,
and NDCBEs), V-ATPases, monocarboxylic acid transporters
(MCTs) and carbonic anhydrase (CA; Soto et al., 2018), have
occurred in the outer retina to mitigate or potentiate the
contribution of acidification to this feedback mechanism is
not known.

FIGURE 3 | Extreme pH sensitivity of synaptic transmission from
photoreceptors to horizontal cells. Light responses to 500 ms bright light
steps measured in a salamander horizontal cell under voltage-clamp were
fully blocked at pH 6.94, to the same extent as in the presence of CaV

channel 100 µM Cd2+ at pH 7.6. Zero current is shown by the dashed line.
As pH was increased to 7.31, 7.60, and 7.83, the postsynaptic, light-induced
glutamate-gated current changes were produced by the hyperpolarizing cone
light responses (in the figure, the short up-going currents aligned with light
stimulus timing bar) and rod response (slower and longer upward deflections)
become larger. This is due to the turnoff by the light of the increased
glutamate release in the dark. The exponentially increasing response
amplitudes at increasing pH levels were shown to be due to surface charge
screening effects on the voltage-gated CaV channels in presynaptic
photoreceptors. Figure modified from Barnes et al. (1993).

As a final introductory remark, we highlight the remarkably
potent effects that extracellular pH has on CaV channel activation
and gating, which is shared in all tissues and all species (Barnes
et al., 1993; Neumaier et al., 2015). Changes in extracellular
pH produce changes in the voltage-dependent activation of ion
channels, due to the change in proton concentration causing
differing degrees of proton adsorption to the fixed negative
surface charge of the lipid bilayer proteins and binding to
exposed ion channel protein amino acid side groups. The
extreme proximity of protons to the surface of the cell membrane
alters the electric field sensed by the ion channel voltage sensors,
in effect adjusting their activation point at a given membrane
potential (Barnes et al., 1993). Increased positive surface charge
adsorption, as produced by decreased pHo (i.e., increased
[H+]o) alters the electric field in the membrane acting upon
the channel voltage sensor moves, producing the same action
that a more negative membrane potential does, i.e., decreasing
the probability of channel opening and moving the measured
half-maximal activation voltage to more positive potentials. The
relation between the pH and activation midpoint shift is on
the order of a 1 pH unit decrease causing a 10 mV negative
shift of V 1

2
(Barnes et al., 1993). This means that a greater

degree of membrane depolarization is required to activate ion
channels under increasingly acidic extracellular pH’s. This is
how synaptic cleft pH alterations at the photoreceptor output
synapse can potently alter the postsynaptic signals in horizontal
and bipolar cells.

Accommodating these foundations, a newmodel based on the
specific properties of horizontal cells in the mammalian retina,
including the now-established release of GABA by horizontal
cells (Hirano et al., 2016; Grove et al., 2019), demonstrated
that horizontal cell-released GABA acts back, autaptically, on
horizontal cell GABA receptors, and due to their intrinsic
permeability to [HCO−3 ], facilitates its efflux, which modulates
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photoreceptor transmitter release via pH changes in the synaptic
cleft (Liu et al., 2013; Grove et al., 2019). Also, especially
given the richness of investigations in non-mammalian species
(Byzov and Shura-Bura, 1986; Verweij et al., 1996; Kamermans
et al., 2001; Vessey et al., 2005; Jackman et al., 2011; Klaassen
et al., 2011; Kramer and Davenport, 2015) there may be
other pathways by which horizontal cells affect photoreceptors
(Kemmler et al., 2014).

CaV CHANNELS IN MAMMALIAN CONES
ARE TONICALLY MODULATED IN A GABA-
AND pH-DEPENDENT MANNER

The targets of horizontal cell feedback in photoreceptors are
the voltage-gated CaV channels that mediate glutamate release
from the presynaptic terminals (Verweij et al., 1996, 2003;
Hirasawa and Kaneko, 2003; Vessey et al., 2005; Cadetti and
Thoreson, 2006; Montgelard et al., 2008; Thoreson et al., 2008).
While different mechanisms of feedback may dominate: (1) in
specific species; (2) under different conditions of ambient
illumination; and (3) over distinct temporal domains, here we
will examine mechanisms operating under mesopic conditions
using mammalian (rodent) retinas under this steady-state
lighting condition (Grove et al., 2019). Due to earlier work
showing a role for GABA in feedback, and with vesicular
GABA release by horizontal cells being perhaps the most

obvious difference between mammalian and non-mammalian
horizontal cells, we review evidence for the role of GABA in the
inhibition of mammalian photoreceptor CaV channel activation.
The component actions reviewed below allow dissection of
the sequential mechanisms underlying features of feedback by
probing the steady-state response of cones and horizontal cells,
under constant conditions of illumination, as a baseline to
identify mechanisms underlying feedback.

First, to what extent are GABARs involved in the steady-state
inhibition of cone CaV channels? The CaV channel currents of
cones patch-clamped in retinal slices were found to be increased
by about 60% in mice, 40% in rats, and 25% in guinea pigs when
the non-competitive ionotropic GABAR antagonist picrotoxin
was superfused at 100 µM. Figure 4 shows these results from
rat retina, with the amplitude of CaV channel currents increased
in the raw current traces, in response to voltage command
steps, as well as in the current-voltage (I–V) relations made
from these currents under the two conditions. When the I–V
relations were divided by the driving force for Ca2+ and fit
with a Boltzmann function to define the CaV channel activation
curves, it was found that the half-maximal activation voltage
shifted in mice, rats, and guinea pigs to a ∼5 mV more negative
voltage. A shift of the channel activation curve to more negative
potentials in picrotoxin represents the disinhibition of cone
CaV channel currents as channel open probability increases
at physiological membrane potentials. These results imply that

FIGURE 4 | CaV channels in mammalian cone photoreceptors are maintained in a pH-mediated, tonically inhibited state by GABA receptor activation. (A) The
GABAAR antagonist picrotoxin increased calcium current amplitude in cones, maintained in mesopic conditions. Sample current traces and I–V relations of a rat
cone before (solid line, filled circles), during (dashed line, triangles), and after (dotted line, open circles) application of 100 µM picrotoxin to the retinal slice. (B) The
CaV channel activation curve for the cell underwent a leftward shift in the half-maximal activation voltage in picrotoxin (midpoint = −41 mV) vs. control
(midpoint = −37 mV). (C) Same experimental protocol as above applied while clamping superfusate pH to 7.4 with 10 mM Hepes. I–V relation in Hepes alone is
shown (solid line, circles) and then with picrotoxin (dashed line, triangles). Washout superimposes (dotted line, open circles). (D) Hepes eliminated the effect of
picrotoxin on CaV channel activation (midpoint = −39 mV). Figure modified from Grove et al. (2019).
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there is tonic GABA inhibition of cone CaV channels under
mesopic conditions in these species.

The observation that horizontal cells inhibit photoreceptor
output by shifting their CaV channel activation curves is
consistent with earlier proposals (Verweij et al., 1996, 2003;
Kamermans et al., 2001). The vital distinction is that these data
show an unappreciated role for the transmitter GABA as well.
The classical role of GABA in feedback, as shown through the
antagonism by picrotoxin observed in fish cones (Endeman et al.,
2012) involves direct activation of GABARs on cones, which
is not an action seen in Figure 4, where no change in steady-
state conductance of a Cl− current was noted. Picrotoxin blocks
the ion channel pore of ionotropic GABAA receptors (Ashiya
et al., 1995), as well as glycine receptors (Johnston, 2014), and
does not affect CaV channels per se. It did not decrease standing
cone conductance that would have been present if GABA had
been activating photoreceptor Cl− channels. No difference was
observed in cone membrane conductance measured between
−80 and −50 mV with and without picrotoxin in mice, rats,
or guinea pigs, suggesting that the absence of a tonic, direct
GABAergic input onto GABARs expressed in photoreceptors
(Grove et al., 2019).

It bears mentioning that the results obtained in the fish retina
were obtained using transient light flashes in a dark-adapted
state, not the steady state mesopic conditions in Figure 4.
The fact that the component action shown here is occluded
when interstitial pH is clamped with the pH buffer Hepes
(Figure 4), is interpreted as picrotoxin changing pH to modulate
photoreceptor CaV channels. The pH sensitivity of horizontal
cell feedback and photoreceptor CaV channels (Hirasawa and
Kaneko, 2003; Vessey et al., 2005; Cadetti and Thoreson, 2006;
Thoreson et al., 2008; Vroman et al., 2014; Warren et al., 2016a),
together with reports inmammals regarding the actions of GABA
antagonists in the rat (Liu et al., 2013), guinea pig, mouse (Grove
et al., 2019) and macaque (Verweij et al., 2003), connect this
action of GABA to the change of cleft pH.

Earlier suggestions that Hepes stifles feedback by acidifying
the cytoplasm of all local neurons, and that due to that, the true
mechanism of feedback cannot be sustained (Fahrenfort et al.,
2009). This argument failed when results of numerous other
pH-buffers (Davenport et al., 2008), as well as increased [HCO−3 ]
(Vessey et al., 2005), were found to have the same effects on
feedback, but without cytoplasmic acidification. A more recent
theory that cleft pH changes are due instead to hydrolysis of
ATP released via pannexin hemichannels (Vroman et al., 2014;
Cenedese et al., 2017), is consistent with the effect of Hepes,
however, the theory is mute in mammals since pannexins are
not present at horizontal cell endings in the synaptic invagination
(Kranz et al., 2013).

WHAT TYPE OF GABA RECEPTORS ARE
RESPONSIBLE FOR THIS
UNCONVENTIONAL EFFECT?

GABA receptors containing ρ-subunits (a.k.a. GABACRs) appear
to play the central role in the modulation of the cone CaV

channel currents. The ρ-subunit-containing GABAR inhibitor
TPMPA, the GABAAR inhibitor gabazine, and the glycine
receptor inhibitor strychnine were tested for their ability to
produce CaV channel activation curve shifts in cones, and only
TPMPA produced activation shifts. This result identified ρ-
subunit-containing GABA receptors as the mediators of this
action of GABA. Figure 5 shows that the superfusion of
guinea pig retinal slice with the ρ-subunit-containing GABA
receptor antagonist TPMPA increased the cone Ca channel
current amplitude. This was accompanied by a negative shift
of the CaV channel activation curve with V 1

2
decreasing

by about 10 mV. TPMPA had a similar action on mouse
cones, shifting the activation curve negative by about 6 mV.
Neither gabazine nor strychnine produced activation curve shifts
in rodents.

Similar to the effects of picrotoxin discussed in Figure 4,
TPMPA, gabazine, and strychnine did not produce conductance
decreases in cones between −90 and −60 mV, a zone well away
from the CaV channel activation range, suggesting that GABARs
are not functional in cones under the recording conditions
used here.

WHERE ARE THESE
ρ-SUBUNIT-CONTAINING GABARs
LOCATED?

The pharmacological results in Figure 5 indicated a role for
GABA receptors containing ρ-subunits in feedback. ρ-subunit-
containing GABA receptors are not found in mammalian cones
but these GABARs have been identified in horizontal cells
with GABA-mediated responses reported in fish, salamander,
rat, guinea pig, and mouse horizontal cells (Wu and Dowling,
1980; Kamermans and Werblin, 1992; Dong et al., 1994;
Takahashi et al., 1995; Verweij et al., 1998; Yang et al., 1999;
Bormann, 2000; Feigenspan and Weiler, 2004; Liu et al., 2013;
Grove et al., 2019).

Concerning data supporting a role for this subset of GABARs
in modulating cone CaV channels, using immunohistochemical
approaches, Grove et al. (2019) showed that antibodies against
ρ-subunit-containing GABARs are expressed not in cones but
rather in horizontal cells, and specifically in the cells’ synaptic
endings where they would be localized close to the synaptic
cleft (Figure 6). Super-resolution confocal images of retinal
sections indicated co-localization of GABAR ρ2 subunits (and
ρ1 subunits, not shown) with the horizontal cell marker calbindin
in horizontal cell processes at synapses with both rods and
cones(Grove et al., 2019). The structures show elements typical
of electron microscopic images of horizontal cell invagination
of photoreceptors and no evidence for ρ-subunit-containing
GABARs in rods and cones. GABARs containing ρ-subunits
have a high affinity for GABA and are non-desensitizing
(Farrant andKaila, 2007), consistent reports of a GABA-activated
conductance in mammalian horizontal cells (Feigenspan and
Weiler, 2004; Liu et al., 2013). The GABARs recently found in
mouse cones (Deniz et al., 2019) do not include the ρ subunit-
containing type shown here.
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FIGURE 5 | GABA receptors containing ρ-subunits mediate the modulation of cone CaV currents. Effects of GABAR blockers on Ca channel currents in cones in
guinea pig retinal slices. (A,B) The ρ-subunit-containing GABAR antagonist TPMPA (50 µM) shifted CaV activation in guinea pig cones to more negative voltages, in
this case by 10 mV. (C,D) The GABAAR antagonist gabazine (10 µM) did not affect CaV activation. (E) Summary of the effects of TPMPA, gabazine, and the GlyR
antagonist strychnine (100 µM) on CaV channel activation (5–7 cones). In each pair the filled bar (on left) is control and the gray bar (on right) shows the change in the
presence of the blocker. Figure modified from Grove et al. (2019).

THE CELLS THAT RELEASE THE GABA
RESPOND TO IT: AN AUTAPTIC
MECHANISM

When currents in voltage-clamped horizontal cells, identified by
their fluorescence in the Cx57-tdTomato mouse line (Hirano
et al., 2016), were compared before and during the superfusion
of TPMPA, the ρ-subunit-containing GABAR antagonist, a
voltage-independent current reversing near the Cl− equilibrium
potential, was the only difference (Figure 7). The I–V relation
obtained by subtracting the currents measured in TPMPA from

those in control isolates the TPMPA-sensitive current, with
a reversal potential near −70 mV. The recordings had to be
performed in the presence of CNQX and Hepes to eliminate
input from cones and possible effects of feedback. This mostly
linear current component (notwithstanding the ‘‘bump’’ at
−40 and −30 mV), being the current blocked by TPMPA, is
by definition a ρ-subunit-containing GABAR current, revealed a
tonic GABA-activated Cl− current in the mouse horizontal cell.

The existence of a tonic GABA-activated current, that can be
blocked with TPMPA over a broad range of potentials suggests
that under the recording conditions used, GABA is tonically
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FIGURE 6 | Horizontal cells express ρ-subunit-containing GABA receptors in their synaptic endings in the mouse retina. (A) Immunolocalization of the ρ2 subunit
(blue). (B) Horizontal cell marker, calbindin immunoreactivity (red). (C) Merged image shows that expression of ρ2 subunits is limited to the tips of horizontal cell
synaptic endings that invaginate rod and cone photoreceptor terminals (Insets show magnified images in Panel (A), upper left, of a single cone pedicle; lower right,
3-rod spherules). Figure modified from Grove et al. (2019).

FIGURE 7 | An autaptic mechanism: horizontal cells release GABA and respond to it via ρ-subunit-containing GABARs, and feedback to cones depends upon it.
(A) Patch-clamp recording of Cx57-tdTomato labeled mouse horizontal cells in a slice bathed in CNQX (50 µM) and Hepes buffer (10 mM, pH 7.4) to isolate it from
feedback and cone input. Whole-cell currents were elicited in horizontal cells with voltage steps, in control and in TPMPA (50 µM). Averaged I–V relations of
steady-state TPMPA-subtracted currents showed a linear component reversing near −70 mV. Linear fitting excluded values near −40 and −30 mV. Gray shading
shows the standard deviation of 5 horizontal cell recordings. (B) Same experiment and protocol as in panel (A) but recorded from Cx57-VGAT KO mouse horizontal
cells that lack VGAT, which have synaptic vesicles devoid of GABA (Hirano et al., 2016). The mouse horizontal cells lacking VGAT were unaffected by TPMPA,
suggesting that the tonic GABA levels in the wild-type are due to horizontal cell release and autaptic reception. (C) Recording of cone CaV channel currents in a
wild-type mouse, showing current in control and in presence of TPMPA, with I–V relations. (D) Activation curves showed that the CaV channel activation midpoint
shifted negative by about 5 mV in presence of TPMPA. Same experimental protocol as in panel (C) but in a Cx57-VGAT KO mouse cone, showing that the I–V
relations (E) and the activation midpoints (F) were unaffected by TPMPA in cones when horizontal cells were unable to release GABA. Figure modified from Grove
et al. (2019).

present in the synaptic cleft. This could arise from GABA
being tonically released, even from modestly hyperpolarized
horizontal cells, released from other GABAergic cells, or not
being effectively removed from the synaptic cleft. As stated
earlier, mammalian horizontal cells do not express GABA-uptake
transporters, so there appears to be no localized removal
mechanism in the protected synaptic cleft other than diffusion
from the invagination followed by uptake by Müller cells
(Bringmann et al., 2013). To test whether the tonic presence of
GABA in the synaptic cleft is a result of horizontal cell release,
horizontal cells incapable of expressing the vesicular GABA
transporter, VGAT, were recorded from in Cx57-VGAT-KO

mouse retinas (Hirano et al., 2016). In horizontal cells of
this mouse line, the only retinal cell type expressing Cx57,
the GABA transporter that loads synaptic vesicles with GABA
is selectively deleted, rendering them incapable of releasing
GABA. Matching the recording protocol used in Figure 7A but
recording in VGAT-KO animals, TPMPA no longer caused any
change in horizontal cell currents (Figure 7B). Horizontal cells
in VGAT-KO mice exhibited normal expression of ρ-subunit
containing GABARs in horizontal cells, so the fact that in the
Cx57-VGAT-KOmice there was no TPMPA-sensitive current to
be blocked means that in the control retinas, the horizontal cells
respond autaptically to the GABA they release.
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Returning to the outward current bump between −40 and
−30 mV in Figure 7A, it is difficult to identify the source of this
but it is possible since this is the range of voltages that peak CaV
channel activation occurs in horizontal cells (Liu et al., 2016), that
the bump reflects TPMPA block of extra GABAR Cl− current
arising from increased GABA release at those potentials. An
increase of the horizontal cell CaV current due to alkalinization in
the synaptic cleft, similar to that seen in cone CaV current when
TPMPA is added (Figure 7C), could induce additional GABA
release by the horizontal cell.

THE TONIC, AUTAPTIC GABAR CURRENT
IN HORIZONTAL CELLS IS REQUIRED FOR
FEEDBACK TO CONES

Do the actions of TPMPA on cone CaV channels depend on
the release of GABA from horizontal cells, which are the same
cells that respond to it? Using the same Cx57-VGAT KO mice
in which horizontal cell GABA release was eliminated, it was
shown that the cone CaV currents, that underwent negative shifts
in their activation midpoint in response to TPMPA in wild-type
mice (Figures 7C,D), showed no change in their CaV channel
activation in Cx57-VGAT-KO mice (Figures 7E,F). Since there
is no evidence that there are functional ρ-subunit containing
GABARs in cones or that those GABARs directly modulate CaV
channel gating, the observed CaV channel activation curve shifts
in cones were interpreted to be caused by GABA, released by
horizontal cells and acting locally on horizontal cells via TPMPA-
sensitive GABARs. However, this means that an additional
‘‘messenger’’ appears required to carry the signal from horizontal
cells to the cone membrane where it affects cone CaV currents.

THE EFFECTS OF pH AND GABA MERGE
THROUGH A CONCERTED BIOPHYSICAL
MECHANISM

The anion pore of GABA-activated channels is 20–60% as
permeable to HCO−3 as it is to Cl− (Bormann et al., 1987;
Kaila and Voipio, 1987; Fatima-Shad and Barry, 1993; Hubner
and Holthoff, 2013). A PHCO3/PCl of 0.29 was measured in rat
horizontal cell GABAR channels (Liu et al., 2013). With internal
and external HCO−3 concentrations both being in the 10–25 mM
range, the considerable flux of this ion through GABAR channels
has been shown to change extracellular pH in many brain areas
(Bormann et al., 1987; Kaila and Voipio, 1987). This is how the
pH sensitivity of the cone CaV channel activation is linked to
GABA, being mediated by the flux of the two common permeant
anions of GABA-activated channels, Cl−, and HCO−3 , across
the horizontal cell membrane in accounting for GABA-mediated
inhibition and disinhibition of cone CaV channels, in the
GABA-pH model (Liu et al., 2013; Grove et al., 2019).

The foundation of the GABA-pH hybrid model includes the
following concerted biophysical mechanisms: (1) GABA acting
on horizontal cell GABARs autaptically and tonically (Gilbertson
et al., 1991; Kamermans and Werblin, 1992; Feigenspan and
Weiler, 2004; Liu et al., 2013; Grove et al., 2019); (2) these

GABARs mediating the efflux of the permeant anion HCO−3 ;
and (3) the subsequent buffering of cleft pH, modulating
photoreceptor transmitter release via surface charge effects on
presynaptic cone CaV channels (Barnes et al., 1993; Vessey
et al., 2005; Cadetti and Thoreson, 2006; Grove et al., 2019).
The sign and magnitude of the contribution of the GABAR
channel to cleft pH depend on the driving force on HCO−3 ,
which is itself a pH-dependent function of the equilibrium
potential for HCO−3 (E−HCO3), a value typically in the range of
−10 to −20 mV (Roos and Boron, 1981), and the horizontal cell
membrane potential.

Together, these concerted factors imply that, given a tonic
presence of GABA in the synaptic cleft, disinhibition of cone
CaV channels would be greatest when horizontal cell membrane
potentials were most negative, thus producing more HCO−3
efflux due to the strengthened driving force. Whether reduced
HCO−3 efflux at more positive horizontal cell voltages would be
able to do the opposite, i.e., permit inhibition of photoreceptor
CaV channels, due to the reduced alkalinizing influence, and
otherwise allow acidifying influences to dominate, are questions
addressed in the final section of this review.

HORIZONTAL CELL DEPOLARIZATION
INHIBITS PHOTORECEPTORS

While HCO−3 efflux from horizontal cells during
hyperpolarization accounts for the disinhibition of
photoreceptor CaV channels caused by increased alkalinity,
do horizontal cell depolarization produce inward flux of
HCO−3 or reduce the outward driving force on HCO−3 efflux
sufficiently to account for the inhibition of photoreceptor
CaV channels? The outward rectification provided by BK
channels (Sun et al., 2017), which activate steeply positive to
−30 mV, prevents horizontal cell depolarization positive to
E−HCO3, a value typically in the range of −15 to −20 mV for
cells (Bolton and Vaughan-Jones, 1977). This means that an
inward flux of bicarbonate would not occur under normal
physiological conditions. But the reduced outward driving
force on HCO−3 when the horizontal cell is depolarized,
as occurs maximally in the dark, would lead to less pH
buffering of the synaptic cleft and set the stage for acidifying
influences to play an inhibitory role. What are those acidifying
influences and how does activation of GABARs enhance
this process?

First, the activation of GABARs themselves contributes to
the depolarization of horizontal cells. The GABAR agonist
muscimol elicited currents reversing near −28 mV during
recordings in mouse horizontal cells made with the gramicidin
perforated patch technique, which preserves physiological
intracellular chloride levels (Figure 8; Grove et al., 2019).
This reversal potential of GABAR-activated currents suggested
that ECl of the horizontal cell is much more positive than
is typical for mature neurons, and has been previously
observed for horizontal cells (Miller and Dacheux, 1983;
Djamgoz and Laming, 1987; Kamermans and Werblin, 1992).
Current-clamp recordings confirm that depolarization caused
by GABAR activation contributes to positive membrane
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FIGURE 8 | The GABA-agonist muscimol activates depolarizing currents in
horizontal cells. Recordings of tdTomato-labeled mouse horizontal cells in
slices produced currents in response to the voltage steps that were larger in
the presence of 100 µM muscimol. Subtracting the control currents from
those in muscimol produced a linear current-voltage relation reversing at
−28 mV (I–V relation averaged from five horizontal cells; dotted line is a linear
fit of mean subtracted currents, gray region indicates standard deviations).
Gramicidin-perforated patch-clamp recording keeps intracellular [Cl−] intact,
suggesting horizontal cells have a very elevated [Cl−] equilibrium potential as
other studies have shown. Figure modified from Grove et al. (2019).

potentials in horizontal cells (Grove et al., 2019). Thus, GABAR
activation depolarizes these cells, decreasing HCO−3 efflux,
and this action could increase the acidifying influences on
cleft pH.

Relatively positive equilibrium potential for Cl− is produced
in neurons by Na+/K+/Cl− cotransporters (NKCC), that
move Cl− into cells electroneutrally using the Na+ and K+

gradients (Russell, 2000; Achilles et al., 2007). A specific
subtype, NKCC1 (Slc12a2), has been previously identified
in mammalian horizontal cells (Vardi et al., 2000) and
would make any chloride conductance have a depolarizing
effect. This depolarizing action of muscimol in horizontal
cells (Figure 8) was shown to be due to a 7 mV positive
shift of the CaV current activation curve (Figure 9; Grove
et al., 2019). This outcome is consistent with the negative
shifts of the cone CaV current activation curve produced by
GABAR antagonists in Figures 4, 5, 7. When NKCC1 was
blocked with bumetanide (Morita et al., 1999), the sign of
muscimol’s cone Ca channel modulation was changed from
inhibition to disinhibition. In the presence of bumetanide
(50 µM), muscimol shifted the CaV current activation
curve midpoint slightly negative (about 2 mV). This modest
disinhibitory action induced by bumetanide could follow
from the block of NKCC1 in horizontal cells, which would
reduce intracellular [Cl−] to sufficiently low levels that
GABAR activation no longer depolarizes them and might
even produce hyperpolarization.

The disinhibitory action that followed the block of the inward
Cl−transporter in horizontal cells suggests that the removal of
the depolarizing influence of GABA allowed other actions, such
as increased HCO−3 efflux, to become dominant and alkalinize
the synaptic cleft, leading to the pH-dependent disinhibition of
cone CaV channels. With tonic, the autaptic release of GABA
by horizontal cells appearing to inhibit cone CaV channels in a

manner due in part to its depolarizing effect on horizontal cells,
the question remaining was what other cleft acidifying processes
are initiated or increased when horizontal cells depolarize.

BLOCK OF NHEs PRODUCES CLEFT
ALKALINIZATION UNDERLYING
DISINHIBITION OF CONE CaV CHANNELS

NHEs were implicated in feedback inhibition of photoreceptors
in non-mammalian vertebrates (Warren et al., 2016a). This
acid extruder is electroneutral, meaning that it has no intrinsic
voltage sensitivity and is not affected by membrane potential
directly. However, NHEs are more active when neurons are
depolarized due to their increased ion channel activity and
the metabolic activity associated with ion pumping to restore
gradients. Concomitant with this major influence, NHEs are
sensitive to intracellular pH (pHi) and internal calcium levels
and both of these stimuli increase with depolarization (Aronson
et al., 1982; Madshus, 1988; Bertrand et al., 1994; Ma and
Haddad, 1997; Koster et al., 2011). Increased NHE activity in
mammalian horizontal cells is associated with horizontal cell
modulation of cone CaV channels (Warren et al., 2016a; Grove
et al., 2019). Using the same mesopic light-adapted retinal slices,
the selective NHE blocker cariporide (10 µM), by itself, shifted
mouse cone CaV channel activation curves negative by about
6 mV, disinhibition consistent with the block of NHEs that had
had an acidifying effect on the synaptic cleft (Figures 10A,B).
The sign and magnitude of this effect are close to that seen in
Figures 4, 5 where the GABAR antagonist TPMPA was used by
itself. Figures 10C,D show that the addition of TPMPA (50 µM)
to the cariporide treated slice produced no shift of the CaV
channel activation curve. Nearly identical results were reported
using another blocker of NHEs, amiloride (30 µM), suggesting
that the inhibitory effects of GABARs on cone CaV channel
activation is due to conditions that NHE activity produced
(Grove et al., 2019).

Figure 1 confirms that cone CaV channels are inhibited under
steady-state mesopic conditions due to elevated NHE activity.
The Block of NHEs leads to alkalinization of cleft pH, altering
CaV channel gating like GABAR block with picrotoxin and
TPMPA, shown in Figures 4, 5. However, an earlier report
showed that GABA increased rat photoreceptor CaV currents
under bright light, conditions under which horizontal cell
membrane potential would be very negative (Liu et al., 2016),
suggesting that GABA may therefore have alkalinizing effects
when horizontal cells are hyperpolarized.

GABARs AND THE HORIZONTAL CELL
MEMBRANE POTENTIAL: INHIBITION
WITH DEPOLARIZATION, DISINHIBITION
WITH HYPERPOLARIZATION

The polarity of cone CaV channel modulation depends on the
horizontal cell membrane potential.

Recordings of the modulation of CaV channels in cones
from retinas adapted to mesopic illumination and maintained
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FIGURE 9 | The NKCC blocker bumetanide eliminates the muscimol-induced activation curve shift of cone CaV channels. (A) I–V relations with smaller CaV channel
currents were produced in the presence of muscimol, which is accounted for by the strong rightward shift of the CaV channel activation curve midpoint (B).
(C) Same experimental paradigm as above but slices superfused with bumetanide for 30 min. CaV channel currents in the absence and presence of muscimol
produced I–V relations and activation curves having only a slight leftward activation midpoint shift with muscimol in bumetanide-treated retinas (D). Figure modified
from Grove et al. (2019).

in low light conditions showed that horizontal cells were
in a relatively depolarized state (Grove et al., 2019). This
is a well-known consequence of the release of glutamate by
photoreceptors in low light. Horizontal cells are depolarized
by glutamate, which is released in a graded manner by
photoreceptors maximally in darkness. Horizontal cells rest
under this condition at membrane potentials as high as
−30 mV. It is broadly appreciated that reducing glutamatergic
transmission with intense illumination or with glutamate
receptor antagonists, horizontal cells hyperpolarize to levels
near −60 mV (Hirasawa and Kaneko, 2003). When they
are depolarized, horizontal cells inhibit photoreceptor CaV
channels, and when they are hyperpolarized, they produce
disinhibition of those channels (Thoreson et al., 2008). During
recordings from cones in low light conditions with mesopic
adaptation, as seen in Figures 9, 11A,B, muscimol (100 µM)
application produced inhibition, a 6 mV rightward shift of
the CaV channel activation curve (Grove et al., 2019). When
retinas were superfused with CNQX (50 µM), which shifted
cone CaV activation leftward 6 mV by itself, the effect of
added muscimol application produced an 11 mV leftward
shift in the cone CaV channel activation midpoint, a strong
disinhibitory influence on the cone (Figures 11C,D). This
result, summarized in Figure 11E, confirms earlier reports
that photoreceptor CaV channel activation depends directly
on horizontal cell membrane potential (Hirasawa and Kaneko,
2003; Cadetti and Thoreson, 2006; Babai and Thoreson,
2009; Grove et al., 2019), and that GABAR-mediated cone
inhibition and disinhibition are functions of the horizontal cell

membrane potential (Liu et al., 2013). This implies that the
sign of GABA’s tonic influence on feedback depends on the
immediate (light-dependent) polarization of the horizontal cell
membrane potential.

NHEs never mediate H+ influx (Löscher et al., 2013) and
therefore do not account for alkalization of the synaptic
cleft in a hyperpolarized horizontal cell treated with CNQX.
The CaV current disinhibition in cones seen in CNQX
is due to horizontal cell GABAR-mediated HCO−3 efflux,
which increases with horizontal cell hyperpolarization. GABAR
activation with muscimol also failed to inhibit cone CaV
channels in the presence of the NKCC1 blocker bumetanide and
the NHE blockers amiloride and cariporide. These individual
component effects support the conclusion that GABAR-
mediated inhibition of cone CaV channels depends on horizontal
cell depolarization and that this is outweighed by disinhibitory
actions during hyperpolarization.

DISCUSSION AND CONCLUSIONS

This review integrates the guiding concepts about feedback
that have emerged over the past half-century with findings
from a recent report to describe a novel solution for how
synaptic feedback occurs in mammalian retinas. To aid the
comparison of this new GABA-pH hybrid model with earlier
reports, Figure 12 summarizes the key membrane properties
of photoreceptors and horizontal cells at the synaptic cleft
that are central to the model. The central foundational tenet
of the feedback mechanism is well-established in mammalian
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FIGURE 10 | Alkalinization of the extracellular space produced by blocking Na+/H+ exchangers (NHEs), disinhibited cone CaV and occluded disinhibition by
TPMPA. Recording of CaV currents in a mouse cone. (A) I–V relations show larger currents in the presence of cariporide (dashed line, open triangles) relative to
control (solid line, filled circles). (B) The cone CaV activation curve shifts to a more negative potential following cariporide application (dashed line, open triangles). (C)
In the same mouse cone bathed continuously with cariporide, I–V relations showed no effect of TPMPA on CaV current (dashed line, inverted triangles). (D) TPMPA
failed to shift the CaV activation curve to more negative potentials (dashed line, inverted triangles).

and non-mammalian vertebrates, namely, that horizontal
cell depolarization inhibits photoreceptor voltage-gated CaV
channels (Verweij et al., 1996). Two mechanisms for this channel
modulation have been proposed, and both likely apply broadly,
albeit with varying impacts upon the feedback process in
different species. First, as described above, the electric feedback
model (Byzov and Shura-Bura, 1986) and the hemichannel-
mediated ephaptic coupling (Kamermans et al., 2001) posit
that extracellular current flow into the synaptic invagination,
terminating at the glutamate receptors and/or hemichannels at
the tips of horizontal cell processes, changes the extracellular
voltage, and this alters the photoreceptor CaV channel activation
by changing the membrane electric field that governs channel
gating. While compelling evidence for these actions comes
from investigations in fish, none is available for connexion
hemichannels at mammalian horizontal cell synaptic tips.
Second, a host of reports show that feedback from horizontal cells
is mediated by pH shifts within the synaptic cleft (Hirasawa and

Kaneko, 2003; Vessey et al., 2005; Cadetti and Thoreson, 2006;
Wang et al., 2014). Before this recent report (Grove et al., 2019),
no convincing model of what drives the pH shifts as a function
of horizontal cell membrane potential has emerged in mammals.
The role of pannexin hemichannels in changing pHo has been
supported in zebrafish and invokes the efflux of ATP from
horizontal cells through hemichannels followed by hydrolytic
generation of phosphates capable of buffering pH (Vroman et al.,
2014). The presence of pannexins is supported in fish (Cenedese
et al., 2017), but the evidence does not support their appropriate
localization in mammalian horizontal cells (Kranz et al., 2013).
Although not considered a component of inhibitory feedback,
the effect on CaV channel activation of a sudden pH reduction
in the synaptic cleft was described during fast depolarization-
induced vesicle fusion in photoreceptors, where the acidic vesicle
contents are released to produce rapid and transient inhibition
of the CaV channels responsible for the vesicle fusion (DeVries,
2001). Such an action, essentially due to a quick infusion of a
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FIGURE 11 | The sign of GABA’s influence on feedback is dependent on the horizontal cell membrane potential. CaV currents in cones are inhibited or disinhibited
by muscimol depending on whether CNQX is present to block glutamatergic input to horizontal cells. (A) I–V relations show smaller cone CaV currents during
muscimol superfusion in the absence of CNQX, due to CaV channel activation curve shifting 7 mV positive (B) during muscimol application. (C) In the presence of
CNQX, which hyperpolarizes cones, muscimol shifted activation curve V 1

2
to a more negative voltage (D), leading to larger currents at all membrane potentials.

(E) Changes to cone CaV channel activation curve midpoint caused by muscimol with or without the presence of CNQX show that the effect of muscimol depends
on horizontal cell membrane potential as controlled by glutamate. Figure modified from Grove et al. (2019).

bolus of protons, is fundamentally different than the continuous
flow of protons via NHEs, or the continuously modulated efflux
of the buffer HCO−3 described in this report.

Another mechanism involving the efflux of a pH buffer
from horizontal cells, the GABA-pH model reviewed here
in the mammalian retina, is more complex and implicates
GABA in mediating the pH shifts. GABA that activates C1−

and HCO−3 permeable GABAR autoreceptors are released
tonically (Gilbertson et al., 1991; Kamermans andWerblin, 1992;
Feigenspan and Weiler, 2004; Liu et al., 2013). In keeping with
the tenet of feedback, i.e., that it is driven by the membrane
potential of the horizontal cell, hyperpolarization is responsible
for the tonic GABAR-mediated HCO−3 efflux that alkalinizes
the synaptic cleft. It depends on the driving force on HCO−3 ,

which is a function of the equilibrium potential for HCO−3
(EHCO3

−; typically in the range of −15 to −20 mV) and the
membrane potential of horizontal cells. This means that cone
CaV channel disinhibition is greatest in the most negative
range of horizontal cell membrane potentials, such as during
stimulation with bright light. In contrast, the −30 mV reversal
potential of GABAR can add to depolarization of the cell in a
manner that increases cleft acidification, which is amplified by
the non-linear H+ efflux via NHEs responding to intracellular
metabolically driven acidification.

The results reported in Grove et al. (2019) and reviewed here
are consistent with some features of the alternative hypotheses
already presented in the literature. Often this is the case due
to identities, or similarities, in the step-wise mechanisms, in
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FIGURE 12 | Membrane mechanisms identified in the GABA-pH hybrid
model of feedback that have roles in modulating the pH of the mammalian
photoreceptor synaptic cleft. Standing as the foundation of the feedback
mechanism are voltage-gated CaV1.4 channels in photoreceptors that
ultimately regulate glutamate release. Notwithstanding ephaptic-coupled
voltage changes of the cleft, never identified in mammalian retinas, regulation
of the CaV channels by surface charge screening due to cleft pH changes has
proven to be a powerful modulator of glutamate release. Contributors to cleft
pH implicated in the current review include: (1) tonic autaptic release and
reception of GABA by horizontal cells (only mammalian horizontal cells appear
to release GABA via a vesicular mechanism, but an alternate mechanism,
reversed GABA uptake, operates in many vertebrates). (2) While GABA
release is controlled by horizontal cell CaV channels, evidence indicates that
significant GABA levels are tonically present in the cleft, under light and
dark-adapted conditions, and only change via membrane potential on longer
time scales. (3) Tonic activation of ρ subunit containing GABARs provides
HCO−

3 efflux, whose amplitude is regulated by the driving force determined by
the horizontal cell membrane potential, which is influenced strongly by
photoreceptor glutamate release onto horizontal cell AMPARs, and the
equilibrium potential for HCO−

3 . (4) HCO−

3 efflux and depolarization-modulated
proton extrusion via NHEs compete to change cleft pH. These steps result in
the regulation of cone glutamate release in a manner dependent on horizontal
cell Vm and this underlies the surround inhibition and regulation of synaptic
strength, the hallmarks of horizontal cell feedback to cones.

non-mammalian and mammalian retinas. For example, whereas
vesicular GABA release and its autaptic reception by horizontal
cells is a key event in the GABA-pH model reviewed here, in
fish and non-mammalian vertebrate retinas, the vesicular release
seems to be replaced by reversed GAT-mediated uptake (Marc
et al., 1978; Schwartz, 2002), which mammalian horizontal cells
lack (Blanks and Roffler-Tarlov, 1982; Pow et al., 1996). The
HCO−3 permeability of the GABARs should be biophysically
conserved in all GABARs, requiring no species-specific claim.
The pH-dependence of feedback is reported throughout studies
in vertebrate retinas, and any change to the retinal environment
that alters pH buffering or changes the pH is well-recognized
as being capable of modulating the voltage-dependence of
photoreceptor CaV channel activation. Hepes (and other pH
buffers) block feedback in all models, suggesting a broadly
consistent mechanism, albeit mediated by different mechanisms
(pH buffering by HCO−3 in mammals vs. ATP hydrolysis in fish),
but given a cytoplasm-acidifying alibi in the case of hemichannel
ephaptic feedback (Vroman et al., 2014). The model reported
in Grove et al. (2019) might not extend to all non-mammalian

vertebrate species as some horizontal cell subtypes do not stain
for GABA.

Feedback is considered to consist of several components
(Warren et al., 2016b; Cenedese et al., 2017) that would function
over different timescales. Analysis of the data of Grove et al.
(2019) suggest three components, the slowest being the ‘‘tonic’’
presence of GABA in the OPL, which is expected to change on
a scale of 10–100 min as the presence of GABA persists in the
OPL. This component blends into the temporal range of andmay
be considered a part of, broader mechanisms of light and dark
adaptation. A second, slow component is the depolarization-
induced metabolic acidification of the OPL, operating on a scale
of 10–100 s; and the GABA-pH model has a third and very fast
component that involves membrane potential driven HCO−3 flux
in GABAR channels, presumably in the millisecond range. Most
of the experiments reviewed from Grove et al. (2019) studied
feedback actions that involve all three components, with only the
first and slowest generally held constant given the mesopic light-
adapted conditions.

The speed of feedback is a very important issue and
it has been argued effectively that there are fast and slow
components in zebrafish. In zebrafish, the fast component
is accounted for by the virtually instantaneous hemichannel-
mediated ephaptic coupling, and the much slower component
is caused by pannexin-mediated ATP release and resultant
pH buffering action (Cenedese et al., 2017). In zebrafish, it
has been suggested that GABA could also play a modulatory
role in feedback, acting at the photoreceptor membrane, and
switching feedback off during dark adaptation (Klaassen et al.,
2011). Whereas the GABA-mediated modulation of feedback
via cone GABARs is considered in zebrafish to be much slower
than either of these (Klaassen et al., 2011), the GABA-pH
model assigns GABA concentration as being essentially tonic,
a condition that might be due to a low vesicular release rate
(although still calcium-mediated) and the lack of uptake or
degradation within the synaptic invagination (Grove et al.,
2019). The existence of a constant HCO−3 semi-permeable
membrane allows the pH-influencing effect in the cleft to
be the fast component of feedback in this model, albeit it
is somewhat slower than the truly instantaneous ephaptic
coupling. It may be under-appreciated that the GABA-pH
hybrid model attributes the tonic presence of GABA in the
outer retina, experimentally confirmed in many of the figures
in this review, as a gate for the presence of feedback. Once
given this tonic GABA presence, changes to cleft pH are
temporally linked to the speed of membrane potential change,
as changes in horizontal cell membrane potential immediately
change the driving force on HCO−3 , followed by ion flux but not
channel gating.

Some features of the different models are less amenable to
interspecies conservation, a good example being the requirement
for hemichannels in ephaptic feedback and their absence in
mammalian retinas, suggesting that there is not hemichannel
mediated feedback in mammalian retinas. This does not exclude
AMPARs playing the traditional electric feedback role (Byzov
and Shura-Bura, 1986). However, Warren et al. (2016b) carefully
determined the instrument delay-corrected feedback timescales

Frontiers in Cellular Neuroscience | www.frontiersin.org 16 November 2020 | Volume 14 | Article 595064

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Barnes et al. Feedback to Mammalian Cone Photoreceptors

in salamander retina, finding the fastest time constant of
feedback to be 9–13 and 116–216 ms for the slower component.
A ∼10 ms time constant is much slower than what is expected
for an instantaneous ephaptic voltage change, discounting the
traditional electric feedback by AMPARs (Byzov and Shura-
Bura, 1986; Kamermans et al., 2001), but not a fast ion
diffusion model.

Dark-induced Acidification and Non-linear
Proton Extrusion
The origin of dark-induced acidification in the OPL (Figure 2)
lies with: (1) the sustained, depolarized state of photoreceptors,
OFF-bipolar cells and horizontal cells in the dark; (2) their
metabolic requirements to maintain ionic gradients under these
conditions; and (3) the reactions by whichmitochondria generate
ATP. The metabolic demand arises principally from pumping
ions by Na+/K+-ATPases, which utilize 1 ATP for every 3 Na+

pumped out in exchange for 2 K+ brought into the cell
(Stahl, 1986), and to a lesser degree to cytosolic Ca+ extrusion
by Ca2+-ATPases. The chemiosmotic theory holds that the
synthesis of each ATP catalyzed by the H+-ATP synthase is
coupled to the translocation of three to five protons depending
on the type of synthase, from the internal mitochondrial
compartment to the cytoplasm (Petersen et al., 2012) and,
to maintain cytoplasmic pH, protons are extruded to the
extracellular space principally via NHEs, producing extracellular
acidification. When NHEs were blocked with cariporide or
amiloride, inhibitory feedback was lost and there was no further
regulation by TPMPA (Figure 10), providing evidence that NHE
extrusion of protons into the extracellular space contributes
significantly to extracellular acidification at the synaptic cleft
(Warren et al., 2016a; Grove et al., 2019). This finding that
horizontal cell GABAR-mediated cleft acidification is dependent
on NHE proton extrusion supports a role for depolarization-
mediated production and extrusion of protons in horizontal
cell feedback. Although electroneutral, activation of the H+-
extruder NHE is itself exponentially related to pHi (Aronson
et al., 1982) and NHE increases outward proton flux steeply
due to its sensitivity to intracellular calcium and pHi (Aronson
et al., 1982; Madshus, 1988; Bertrand et al., 1994; Ma and
Haddad, 1997; Koster et al., 2011). This causes perisynaptic
NHE H+ efflux to increase exponentially with horizontal
cell depolarization.

It is likely that, in low low-light conditions, depolarized
photoreceptors, OFF bipolar cells, and horizontal cells contribute
to this tonic acidifying influence that inhibits photoreceptor CaV
channels. Since the role of the horizontal cell is to modulate
photoreceptor output, horizontal cells limit this acidification by
also introducing a pH buffer to the cleft pH as a function of
their membrane potential. Cleft pH can rapidly increase during
horizontal cell hyperpolarization due to voltage-driven efflux of
HCO−3 via tonically active GABARs.

GABA Was Previously and Erroneously
Rejected as the Feedback Transmitter
Voltage clamp recordings of inward current induced by ‘‘pure’’
surround illumination upon the already standing spot response

in mammals (Verweij et al., 2003) presents an outstanding
example of the unintuitive nature of the actions underlying
the GABA-pH hybrid model. In these experiments, a cone
was stimulated with a small spot of light but was voltage-
clamped at −40 mV, well within the activation range of cone
Cav, allowing glutamate release. The horizontal cell synaptic
tips responding to the glutamate would be depolarized in these
experiments. According to the GABA-pH hybrid model, GABA
should decrease pHo under these conditions. This is indeed what
was found to occur; superfusion of GABA decreased feedback,
while picrotoxin increased it. Surround-evoked inward currents
persisted in picrotoxin and GABA, albeit with magnitudes that
follow the shifted Cav activation curves shown here in cones
voltage-clamped at −40 mV, and treated with picrotoxin and
muscimol. Verweij et al.’s (2003) results do rule out a role for
GABA if interpreted in the context that the GABARs would
be on cones, not horizontal cells. The direct action of GABARs
at the cone would have led to a block of surround-induced
inward current changes when they applied either picrotoxin
or GABA. Instead, the result presented is consistent with the
autaptic GABA-pH feedback mechanism. Such an action is
not predicted by any other of the existing models proposed
for feedback and appears to reflect the full extent of the
actions of feedback from horizontal cells to voltage-clamped
cones, underscoring the differences seen in non-mammalian
vertebrates, where cones express GABARs (Wu, 1991; Endeman
et al., 2012).

The inconsistent effects of picrotoxin on horizontal cell
feedback have been an additional confound in some earlier
feedback models testing GABA as a potential transmitter.
Studies that failed to find an effect with picrotoxin may have
suffered from a late-emerging oversight. Due to the addition
of a methionine residue in some species’ ρ2 subunits, their
GABARs may be less sensitive to picrotoxin block (Zhang
et al., 1995; Greka et al., 1998). The observation of GABAergic
effects at relatively high concentrations of picrotoxin compared
against those using standard concentrations of the selective
ρ-subunit-containing GABAR antagonist TPMPA (50 µM),
alongside mouse ρ2 GABAR immunostaining (Grove et al.,
2019), suggest that studies testing the effects of picrotoxin using
low concentrations could be compromised.

GABA and pH Linked Actions Throughout
the Brain
Changes in extracellular acidity in response to GABAergic
activity have been described throughout the brain (Chesler,
2003; Farrant and Kaila, 2007; Ruusuvuori and Kaila, 2014).
These are fundamentally similar to the GABA- and pH-mediated
signaling in horizontal cell feedback but differ in detail.
Most are mechanisms that share pH changing properties
that affect synaptic acidification at GABA and glycinergic
synapses elsewhere in the brain. In comparison, the GABA
and pH-mediated effects in the horizontal cell to photoreceptor
feedback represent a new form of synaptic inhibition in a graded
potential network, and related pH-mediated modulations of
synaptic interactions have been described in the CNS in action
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potential-dependent neurotransmission (Chesler, 2003; Farrant
and Kaila, 2007; Ruusuvuori and Kaila, 2014).

In the olfactory bulb, signal processing requirements
differ greatly from those in the eye. Synapses formed by
olfactory receptors with periglomerular interneurons utilize
GABAergic presynaptic feedback to modulate presynaptic Ca
channels, albeit in a different manner than at photoreceptor
synapses (McGann, 2013). This presynaptic inhibition has
several roles, including the regulation of synaptic gain,
and the generation of odorant filters that could sharpen
olfactory discrimination. In the retina, inhibitory feedback to
photoreceptors by horizontal cells functions to sharpen special
contrast differences and to tune the response frequencies sensed
by downstream retinal neurons, in a manner that sharpens
temporal sensitivity.

The mechanisms reviewed here presented as changes to
voltage-clamped CaV currents in cones and probed via the
net effects of pharmacological manipulations, provide insight
into steady-state levels of feedback. While all interventions that
modulate the activation of the CaV current are not necessarily
related to feedback from horizontal cells to photoreceptors,
the dissection of steady-state conditions that effect feedback

clarify in a stepwise manner the pathway that accounts
for feedback. To fully appreciate this synaptic mechanism,
all of these aspects should be considered simultaneously.
A greater understanding of this novel feedback mechanism
will be achieved with further testing using non-steady-state
light conditions.
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