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Brain pericytes reside on the abluminal surface of capillaries, and their processes cover

∼90% of the length of the capillary bed. These cells were first described almost 150 years

ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental

scrutiny in recent years, but their physiological roles remain uncertain and little is known

of the complement of signaling elements that they employ to carry out their functions.

In this review, we synthesize functional data with single-cell RNAseq screens to explore

the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand

pericytes of the brain, with the aim of providing a framework for deeper explorations of the

molecular mechanisms that govern pericyte physiology. We argue that their complement

of channels and receptors ideally positions capillary pericytes to play a central role in

adapting blood flow to meet the challenge of satisfying neuronal energy requirements

from deep within the capillary bed, by enabling dynamic regulation of their membrane

potential to influence the electrical output of the cell. In particular, we outline how

genetic and functional evidence suggest an important role for Gs-coupled GPCRs and

ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model

for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles,

and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes

that counterbalance this. We underscore critical questions that need to be addressed to

further advance our understanding of the signaling topology of capillary pericytes, and

how this contributes to their physiological roles and their dysfunction in disease.

Keywords: pericytes, ion channels, GPCRs (G protein coupled receptors), neurovascular coupling (NVC), cerebral

blood flow (CBF), KATP channels, brain metabolism

INTRODUCTION

A combination of autonomic signaling (Cipolla et al., 2004; Hamel, 2006) and intrinsic pressure
sensing and metabolic autoregulatory mechanisms (Bayliss, 1902; Paulson et al., 1990) drives
continual adjustments in global and local blood flow in the brain. Importantly, as the brain lacks
substantial energy stores it must be able to rapidly adapt local blood flow to fluctuating neuronal
metabolic needs to provide adequate oxygen and glucose delivery. This is achieved through the on-
demand process of functional hyperemia (FH), where increases in neural activity—which can span
orders of magnitude in milliseconds—are met with an increase in local blood flow within seconds.
This call-and-response phenomenon is underlain by a complex range of stratified mechanisms,
collectively termed neurovascular coupling (NVC), which have inbuilt redundancy to ensure the
fidelity of the blood flow response.
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Significant inroads toward a full understanding of these NVC
mechanisms have beenmade in recent years (Iadecola, 2017), and
in particular ion channel and GPCR signaling networks within
and between the cells of the neurovascular unit [NVU; neurons,
astrocytes, smooth muscle cells (SMCs), endothelial cells (ECs),
and pericytes] are emerging as major contributors (Longden
et al., 2016). However, capillary pericytes represent a relative
blind spot in our knowledge, and our understanding of their
involvement in brain blood flow control is less well-developed
than that for other cells of the NVU. Accordingly, the purpose of
this review is to survey the signaling toolkit that mesh and thin-
strand pericytes may employ to contribute to the control of blood
flow throughout the brain. To this end, we leverage data from
recent brain single-cell RNAseq (scRNAseq) screens (He et al.,
2018; Vanlandewijck et al., 2018; Zeisel et al., 2018) to profile
the expression of ion channels (Table 1) and GPCRs (Table 2) in
brain capillary pericytes which, when synthesized with functional
results, may aid in delineating their physiological roles.

An important caveat with this approach is that mRNA
expression does not necessarily predict protein levels (Liu
et al., 2016), and we thus stress that it is essential that the
hypotheses generated by transcriptomic data be subject to
further experimental scrutiny. Accordingly, while the following
discussion is based on robust mRNA expression data, we
highlight where there is question of whether gene expression
translates into functional channels or receptors. A second
putative caveat relates to the quality of the scRNAseq data.
Specifically, it is important to ask if low-level mRNA counts
reflect true and physiologically meaningful expression or artifacts
such as contamination of the pericyte transcriptomes by mRNA
from other cell types. Pericytes in particular are sensitive
to endothelial contamination because of the tight physical
association between these two cell types. With these caveats in
mind, to arrive at a list of genes with reasonable likelihood
of pericyte expression we first selected genes detected at
levels >1 average count per cell in the 1,088 adult brain
pericytes present in the Vanlandewijck et al. dataset (http://
betsholtzlab.org/VascularSingleCells/database.html; He et al.,
2018; Vanlandewijck et al., 2018) and compared this to their
expression in the Zeisel dataset (http://mousebrain.org; Zeisel
et al., 2018). In the latter, three pericyte clusters are provided
(PER1, PER2, PER3) of which PER1 and PER2 are endothelial
cell contaminated, whereas PER3 appears pure. After manually
checking for signs of contamination by comparing the expression
level in pericytes with expression in other brain cell types, we
selected the following criteria as qualifying: (i) expression in>3%
of the pericytes in the Vanlandewijck dataset and; (ii) detectable
expression (>0) in the Zeisel et al. PER3 dataset (Figure 1).

Below, we focus our discussion on the ion channels and
GPCRs that are likely to be most pertinent to blood flow control.
We center our discussion on studies using acute and in vivo
preparations, as cultured pericytes may exhibit phenotypic drift
which confounds interpretation. Accordingly, we note instances
in which we refer to cultured pericytes. We begin by briefly
reviewing the key features of the brain vasculature and pericytes
before exploring their ion channel and GPCR complement
in detail.

THE VASCULAR NETWORK OF THE BRAIN

Fundamental Angioarchitecture
From pial arteries on the brains surface, penetrating arterioles
branch orthogonally and dive into the parenchyma (Duvernoy
et al., 1981; Cipolla, 2009; Figure 2). Arteries and arterioles are
composed of a lumen lined by electrically-coupled cobblestone–
morphology ECs (Haas and Duling, 1997) that directly interface
with the blood. These ECs are surrounded by a fenestrated
internal elastic lamina (IEL), composed mainly of elastin and
collagen (Schwartz et al., 1981), through which they extend
projections to directly contact overlying contractile smooth
muscle cells (SMCs) (Aydin et al., 1991).

As the penetrating arteriole extends deeper into the tissue,
further vessels sprout from its length at regular intervals (Blinder
et al., 2013). These initial branch points are sites of precapillary
sphincters which are regulated over short time scales to control
blood flowing into the capillary bed (Grubb et al., 2020). From
this point, extensive ramification of the vascular bed greatly
expands the surface area of the network, facilitating efficient
exchange of nutrients and waste to rapidly satisfy the intense
metabolic requirements of every neuron. The capillary bed—
consisting of capillary ECs (cECs; Garcia and Longden, 2020)
and overlying pericytes (see below) embedded in the basement
membrane (a dense network of glycoproteins, collagens and
secreted factors; Pozzi et al., 2017)—is incredibly dense, and
each microliter of cortex holds approximately 1m of blood
vessels (Shih et al., 2015). Of these, around 90% by volume are
capillaries (Gould et al., 2017). Accordingly, ECs are estimated
to comprise around 30% of the non-neuronal cell mass in the
gray matter, forming a network of 20–25 billion ECs throughout
the entire human brain (von Bartheld et al., 2016). This places
cECs in close apposition with all neurons, with each neuronal
cell body lying within ∼15µm of a vessel (Tsai et al., 2009).
Red blood cells (RBCs) traverse this network, releasing oxygen
to diffuse down its concentration gradient into the tissue, while
glucose is transported by ECs from the blood plasma into the
parenchyma. After negotiating the capillary bed, oxygen-depleted
RBCs eventually reach a vertically-oriented venule, which drain
to veins at the cortical surface on the path back to the heart.

Mural Cell Properties Transition Gradually
With Increasing Branch Order
As the vascular bed ramifies from the penetrating arteriole, there
is gradation in the morphology and functional characteristics of
the mural cells associated with vessels. The first 3–4 branches
of the vascular network (1st to 4th order) originating from the
penetrating arteriole constitute a “transitional zone” (Ratelade
et al., 2020). These vessels are covered by cells expressing high
levels of α-smooth muscle actin (α-SMA) with ovoid cell bodies
and multiple broad processes that almost completely ensheathe
the underlying vessel (Grant et al., 2019; Figure 3A). Given that
the identity of these cells is unresolved, and that they have been
referred to as both pericytes (Peppiatt et al., 2006; Hall et al., 2014;
Attwell et al., 2016; Grant et al., 2019) and SMCs (Hill et al., 2015;
Grutzendler and Nedergaard, 2019), we refer to these cells here
as “contractile mural cells” and to the segments of the vasculature
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TABLE 1 | Ion channels expressed by CNS capillary pericytes.

Channel

protein

Gene mRNA

average

counts/cell*

Ion selectivity Endogenous

activators and key

modulators

Key properties Key references

Kir6.1 Kcnj8 1670.21 K+ ATP:ADP, UDP,

Gq/Gs signaling

Weakly rectifying; Forms

KATP channel with SUR2 to

mediate

metabolism-electrical

coupling

Ishizaki et al., 2009

Kir2.2 Kcnj12 31.01 K+ K+,

hyperpolarization

Strongly rectifying;

Propagation of

hyperpolarizing signals

Matsushita and Puro, 2006;

Longden and Nelson, 2015;

Longden et al., 2017

Depolarization

Negative feedback

regulation of Vm;

Kv currents have been

reported in peripheral

pericytes

Nelson and Quayle, 1995;

von Beckerath et al., 2000;

Quignard et al., 2003

Kv1.2 Kcna2 1.25 K+

Kv2.1 Kcnb1 4.11 K+

Kv6.1 Kcng1 8.75 K+

Kv7.4 Kcnq4 7.7 K+

Kv7.5 Kcnq5 1.48 K+

Kv9.1 Kcns1 1.66 K+

Kv9.3 Kcns3 3.21 K+

K2P3.1 Kcnk3 9.8 K+ pH Activation in response to

moderate rise in pH

Duprat et al., 1997

KNa1.2 Kcnt2 5.87 K+ Intracellular Na+,

Cl−
Maintaining resting Vm;

Sensitive to cell volume

changes; Inactivated by

ADP and ATP

Bhattacharjee et al., 2003;

Tejada et al., 2014

KCa2.3 Kcnn3 1.81 K+ Intracellular Ca2+ Hyperpolarization in

response to Ca2+ elevation;

Taylor et al., 2003; Adelman

et al., 2012

TRPC1 Trpc1 16.04 Na+, K+, Ca2+ n.da Store-operated Ca2+ entry

in association with STIM1

and Orai1

Huang et al., 2006; Cheng

et al., 2008

TRPC3 Trpc3 266.99 pCa2+/pNa+: 1.6

Na+, K+, Ca2+
Gq signaling, DAG Facilitates Ca2+ entry;

Depolarizes Vm

Xi et al., 2009; Kochukov

et al., 2014

TRPC4 Trpc4 67.83 pCa2+/pNa+:

1.1-7.7

Na+, K+, Ca2+

Gi/o/Gq signaling Activated by Gi/o-GPCR

signaling

Albert, 2011; Jeon et al.,

2012

TRPC6 Trpc6 5.94 pCa2+/pNa+: 5

Na+, K+, Ca2+
Gq signaling,

arachidonic acid,

lysophosphatidylcholine,

20-HETE

Mechanosensation; Ca2+

influx through TRPC6 can

sensitize IP3R to cause

Ca2+ release

Gonzales et al., 2014

TRPM3 Trpm3 1.04 pCa2+/pNa+: 1.6

Na+, K+, Ca2+,

Mg2+**

Sphingosine,

sphinganine,

NN-dimethyl-D-

erythrosphingosine,

pregnenolone sulfate

Steroid signaling;

Lipid signaling;

Mechanosensation

Grimm et al., 2005; Wagner

et al., 2008

TRPM4 Trpm4 21.32 Na+, K+ PIP2, intracellular

Ca2+
Permeable to monovalent

cations; Depolarizes Vm in

response to Ca2+ elevations

Gonzales et al., 2014

TRPM7 Trpm7 104.35 pCa2+/pNa+: 0.34

Na+, K+, Ca2+,

Mg2+

PIP2 Mg2+ homeostasis; Can

modulate store-operated

Ca2+ entry;

pH sensitive;

Schlingmann et al., 2007;

Souza Bomfim et al., 2020

TRPML1 Mcoln1 39.53 Na+, K+, Ca2+,

Mg2+
Phosphatidyl (3,5)

inositol

bisphosphate

Lysosomal ion homeostasis Venkatachalam et al., 2015

TRPP1 Pkd2 117.24 Na+, K+, Ca2+ Intracellular Ca2+ Large Ca2+ conductance;

Mechanosensation in

association with PKD1

Sharif-Naeini et al., 2009;

Narayanan et al., 2013

(Continued)
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TABLE 1 | Continued

Channel

protein

Gene mRNA

average

counts/cell*

Ion selectivity Endogenous

activators and key

modulators

Key properties Key references

TRPP3 Pkd2l2 1.3 pCa2+/pNa+: 4-4.3

Na+, K+, Ca2+,

Mg2+

n.d pH sensitive Inada et al., 2008

TRPV2 Trpv2 98.6 pCa2+/pNa+:

0.9-2.9

Na+, K+, Ca2+,

Mg2+

n.d Mechanosensitive - detects

cell swelling/stretch

Perálvarez-Marín et al.,

2013

IP3R1 Itpr1 209.62 Ca2+

IP3, cytosolic Ca2+

Mediate Ca2+ release from

endoplasmic reticulum

upon binding of IP3;

Participate in many

intracellular Ca2+ signaling

processes

Foskett et al., 2007;

Berridge, 2016

IP3R2 Itpr2 250.43 Ca2+

IP3R3 Itpr3 1.73 Ca2+

Cav1.2 Cacna1c 99.46

Ca2+ Depolarization

Ca2+ entry in response to

depolarization or at resting;

Vm; L-type Ca2+ currents

recorded in retinal pericytes
Sakagami et al., 1999;

Perez-Reyes, 2003

Cav1.3 Cacna1d 2.48

Cav2.1 Cacna1a 1.05

Cav3.1 Cacna1g 1.73

Cav3.2 Cacna1h 42.59

Orai1 Orai1 22.88
Ca2+ ER Ca2+ depletion

Store operated Ca2+

entry channels;

Associate with STIM1 to

permit Ca2+ entry upon

store depletion

Prakriya and Lewis, 2015Orai3 Orai3 99.94

CaCC

(TMEM16A)

Ano1 329.91 Cl− Intracellular Ca2+ Membrane depolarization in

response to increased

Ca2+; CaCC currents

reported in retinal and

peripheral pericytes

Sakagami et al., 1999;

Hashitani et al., 2018

ClC-2 Clcn2 19.95 Cl− Hyperpolarization,

arachidonic acid

Repolarization of Vm;

Sensitive to intracellular ATP

and ADP

Nilius and Droogmans,

2003; Stölting et al., 2013;

Bi et al., 2014

ASIC2 Asic2 4.52 pNa+/pCa2+: 20

pNa+/pK+: 10

Na+, K+, Ca2+

Extracellular H+ Activated by extracellular

acidification

Gannon et al., 2008;

Sherwood et al., 2012

Nav1.2 Scn2a 3.02 Na+
Depolarization

Na+ influx in response to

membrane depolarization;

Nav1.3 is expressed in

peripheral pericytes

Yu and Catterall, 2003; Lee-

Kwon et al., 2007Nav1.3 Scn3a 1.53 Na+

P2X1 P2rx1 10.53
Na+, K+, Ca2+ ATP Local ATP sensors Khakh et al., 2001

P2X4 P2rx4 23.6

Piezo1 Piezo1 2.09 Na+, K+, Ca2+,

Mg2+
Mechanically

activated

Senses and couples shear

stress with cation entry

Coste et al., 2010; Li et al.,

2014

TPC1 Tpcn1 36.44
Na+, K+, Ca2+

Phosphatidyl

(3,5) inositol

bisphosphate

Located on

endosomal/lysosomal

membranes;

NAADP-induced

Ca2+ release

Calcraft et al., 2009;

Pitt et al., 2016

TPC2 Tpcn2 6.01

Naming conventions used throughout conform to those outlined in the IUPHAR/BPS Guide to Pharmacology (Armstrong et al., 2020). Permeability ratios are noted in bold where

appropriate. Abbreviations not used elsewhere: NAADP, nicotinic acid adenine dinucleotide phosphate.
an.d., no data.

*Data from He et al. (2018) and Vanlandewijck et al. (2018), expressed as average counts per cell annotated as a brain pericyte. Cells were isolated from adult mice of either sex aged

10–19 weeks.

**Permeability for short-pore sequence isoform TRPM3α2.

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 601324

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Hariharan et al. CNS Pericyte Ion Channels and GPCRs

TABLE 2 | G protein coupled receptors expressed by CNS capillary pericytes.

Receptor Gene mRNA

average

counts/cell*

Principal

G-protein**

GPCR

sub-class

Endogenous

agonists

Signal transduction

effects; roles

Key references

Adenosine receptors

A1 receptor Adora1 1.96 Gi/o A Adenosine ↓ cAMP;

Arterial vasoconstriction

Borea et al., 2018

A2A receptor Adora2a 85.45 Gs ↑ cAMP;

Arterial vasorelaxation

A2B receptor Adora2b 6.52 Gs ↑ cAMP;

Arterial vasorelaxation

Adrenoceptors

α1A-adrenoreceptor Adra1a 1.44 Gq A Epinephrine >

norepinephrine

↑ IP3/DAG;

Arterial vasoconstriction

Hieble and Ruffolo, 1997;

Guimarães and Moura,

2001; Muszkat et al., 2005;

Silva and Zanesco, 2010;

de Oliveira et al., 2019

α1B-adrenoreceptor Adra1b 1.29 Gq

α2A-adrenoreceptor Adra2a 1.73 Gi/o ↓ cAMP;

Arterial vasoconstrictionα2B-adrenoreceptor Adra2b 2.03 Gi/o

β2-adrenoreceptor Adrb2 1.65 Gs ↑ cAMP;

Vasodilation

Calcitonin

receptor-like

receptor

Calcrl 37.46 Gs B CGRP >

Adrenomedullin

Non-functional alone,

requires a RAMP.

Likely colocalizes with

RAMP2 to form AM1

receptors in pericytes

Poyner et al., 2002

Chemerin receptor 1 Cmklr1 3.49 Gi/o A Resolvin E1 >

Chemerin

↓ cAMP; Vasoconstrictor

with a role in inflammation

De Henau et al., 2016;

Kennedy et al., 2016

Chemokine receptors

CCR9 Ccr9 25.5 Gi/o A CCL25 ↑ Ca2+;

Activation of adaptive

immune response;

Leukocyte recruitment

Watts et al., 2013; Mazzotti

et al., 2017

CXCR4 Cxcr4 1.44 Gi/o CXCL12

CCRL2 Ccrl2 85.53 n.da CCL19 Anchors and presents

chemerin to

Cmklr1-expressing cells

Endothelin receptors

ETA receptor Ednra 236.01 Gq A Endothelin-1 >

endothelin-2 >

endothelin-3

Vasoconstriction in SMCs;

Extracellular matrix

production and

inflammation

Patel et al., 2014; Maguire

and Davenport, 2015;

Urtatiz and Van

Raamsdonk, 2016

ETB receptor Ednrb 20.99 Gs, Gi/o, Gq ↑ IP3/DAG/PLA2/PLD;

Vasodilation in ECs,

vasoconstriction in SMCs

FFA2 receptor Ffar2 6.47 Gq A Free fatty acids ↑ IP3/DAG;

Roles in metabolism and

inflammation

Li et al., 2018

GIP receptor Gipr 8.48 Gs B Gastric inhibitory

polypeptide

↑ cAMP;

Increases blood flow in

adipose microvessels

Asmar et al., 2019

GPER Gper1 716.19 Gi/o A 17β-estradiol Diverse genomic and

non-genomic roles;

Vasodilation, likely via

secondary Gs coupling

Prossnitz and Arterburn,

2015; Evans et al., 2016

Kisspeptin receptor Kiss1r 1.93 Gq A Kisspeptin-

10,−13,−14,−54,−52

↑ IP3/DAG;

Vasoconstrictor, inhibits

angiogenesis

Sawyer et al., 2011;

Cvetković et al., 2013

(Continued)
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TABLE 2 | Continued

Receptor Gene mRNA

average

counts/cell*

Principal

G-protein**

GPCR

sub-class

Endogenous

agonists

Signal transduction

effects; roles

Key references

Leukotriene receptors

CysLT1 Cysltr1 9 Gq A LTD4 > LTC4 > LTE4

LTC4 > LTD4 > LTE4

↑ IP3/DAG;

Vascular permeability, SMC

contraction, immune cell

activation

Zhang et al., 2006;

Woszczek et al., 2007;

Thiriet, 2013
CysLT2 Cysltr2 35.81 Gq

Lysophospholipid receptors

LPA1 Lpar1 8.29 Gi/o, Gq,

G12/13

A LPA ↓ cAMP;

↑IP3/DAG and PLA2;

Vasoconstrictor

Means and Brown, 2009;

Cheng et al., 2012; Aoki

et al., 2016; Pébay and

Wong, 2017; Masago et al.,

2018
LPA6 Lpar6 19.76 G12/13 A LPA ↑ cAMP;

↑ IP3/DAG;

BBB permeability

S1P1 S1pr1 5.88 Gi/o A S1P >

sphingosylphosphoryl-

choline >

LPA

↓ cAMP;

↑ IP3/DAG and PLD;

Leukocyte recruitment,

↓ vascular permeability

S1P2 S1pr2 20.32 Gi/o, Gq,

G12/13

A S1P >

sphingosylphosphoryl-

choline

↑ cAMP;

↑ IP3/DAG;

↓ chemotaxis, ↑ vascular

permeability

S1P3 S1pr3 936.18 Gi/o, Gq,

G12/13

A S1P >

sphingosylphosphoryl-

choline

↓ cAMP;

↑ IP3/DAG;

Vasoconstriction via SMCs,

vasorelaxation via ECs;

Angiogenesis

Metabotropic glutamate receptors

mGlu3 receptor Grm3 206.24 Gi/o C Glutamate > NAAG ↓ cAMP;

Inhibits glial non-vesicular

glutamate release and

neuronal synaptic plasticity

Wroblewska et al., 1998;

Harrison et al., 2008;

Palazzo et al., 2016; Yudin

and Rohacs, 2018

mGlu7 receptor Grm7 94.26 Gi/o C Glutamate >

L-serine-O-phosphate

↓ cAMP;

Low glutamate affinity,

auto-inhibition of glutamate

release

NOP receptor Oprl1 12.02 Gi/o A Nociceptin/orphanin

FQ

↓ cAMP;

Bradycardia, hypotension

upon systemic

administration of agonist

Kapusta et al., 2002

PAC1 receptor Adcyap1r1 35.51 Gs, Gq B PACAP-27 =

PACAP-38 > VIP, PHI,

PHM, PHV

↑ cAMP;

Potent vasodilator

May et al., 2010; Koide

et al., 2014

PAR1 F2r 141.17 Gi/o, Gq,

G12/13

A Thrombin activated

protein C, MMP1,

MMP13

Haematopoietic

development, vascular

development, peripheral

vasodilation, hypotension,

bradycardia

Cheung et al., 1998; Yue

et al., 2012

PTH1 receptor Pth1r 226.03 Gs B PTH = PTHrP-1, TIP39 ↑ cAMP; Systemic mineral

homeostasis

Mahon, 2012

Prostanoid receptors

DP2 receptor Ptgdr2 2 Gi/o A PGD2 > PGF2α >

PGE2 > PGI2,

thromboxane A2 PGD3,

PGJ2

↓ cAMP;

Vasodilation, role in

angiogenesis

Praticò and Dogné, 2005;

Kaczynski et al., 2016;

Longden et al., 2019;

Upchurch and Leitinger,

2019; Ozen et al., 2020

EP1 receptor Ptger1 10.87 Gq A PGE2 > PGE1 >

PGF2α > PGI2 > PGD2

> thromboxane A2

↑ IP3/DAG;

Role in NVC

EP3 receptor Ptger3 5.74 Gi/o A PGE2 > PGE1 >

PGF2α > PGI2 > PGD2

> thromboxane A2

↓ cAMP

(Continued)
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TABLE 2 | Continued

Receptor Gene mRNA

average

counts/cell*

Principal

G-protein**

GPCR

sub-class

Endogenous

agonists

Signal transduction

effects; roles

Key references

FP receptor Ptgfr 13.26 Gq A PGF2α > PGD2 >

PGE2, PGI2 >

thromboxane A2

↑ IP3/DAG;

Angiogenesis, matrix

remodeling

IP receptor Ptgir 2.7 Gs A PGI2 > PGE1 > PGD2,

PGF2α > thromboxane

A2

PGE2

↑ cAMP;

Released from ECs, drives

vasodilation, angiogenesis

TP receptor Tbxa2r 282.65 Gq A Thromboxane A2 =

PGH2 > PGD2, PGE2,

PGF2α, PGI2,

↑ IP3/DAG; vasoconstriction

Purinergic receptors

P2Y12 receptor P2ry12 3.56 Gi/o A ADP > ATP ↓ cAMP;

Platelet aggregation;

Microglial migration;

Vasoconstriction

Sasaki et al., 2003;

Wihlborg et al., 2004

P2Y14 receptor P2ry14 1291.7 Gi/o A UDP = UDP-glucose >

UDP-galactose >

UDP-glucoronic acid >

UDP-N-acetyl-

glucosamine

↓ cAMP;

inflammatory/immune

responses

Harden et al., 2010

V1A receptor Avpr1a 1.08 Gq A Vasopressin > oxytocin ↑ IP3/DAG;

Vasoconstriction

Yang et al., 2010

Y1 receptor Npy1r 39.94 Gi/o A Neuropeptide Y =

peptide YY >

pancreatic polypeptide

↓ cAMP;

Inhibits glutamatergic

neurotransmission; Vascular

remodeling;

Vasoconstriction

Crnkovic et al., 2014;

Huang and Thathiah, 2015

Adhesion receptors

CELSR2 Celsr2 1.03 n.d Adhesion Orphan ↑ Ca2+;

CamKII and Jun kinase

activity

Shima et al., 2007; Cortijo

et al., 2012; Sugimura et al.,

2012

Frizzled receptors

FZD1 Fzd1 4.86 Canonical Wnt

signaling

Frizzled Wnt-1, Wnt-2, Wnt-3A,

Wnt-5A, Wnt-7B

Pericyte motility and polarity

during angiogenesis

Nichols et al., 2013;

Dijksterhuis et al., 2014;

Kilander et al., 2014; Yuan

et al., 2015; Corda and

Sala, 2017; Henno et al.,

2017; Hot et al., 2017;

Zimmerli, 2018; Kozielewicz

et al., 2020

FZD3 Fzd3 14.53 Gs Frizzled Wnt-2, Wnt-3A,

Wnt-5A

Decoy receptor, dampens

Wg signaling

FZD6 Fzd6 129.87 Gi/o, Gq/11 Frizzled Wnt-3A, Wnt-4,

Wnt-5A, Wnt-5B,

Wnt-7A

Cell proliferation,

differentiation and polarity

FZD7 Fzd7 3.72 Gs, Gi/o,

Canonical Wnt

signaling

Frizzled Wnt-3, Wnt-3A,

Wnt-5A, Wnt-7A

Pericyte motility and polarity

during angiogenesis

FZD8 Fzd8 4.83 Putative

Canonical Wnt

signaling

Frizzled Wnt-2, Wnt-3A,

Wnt-9B

n.d

FZD10 Fzd10 1.36 Canonical Wnt

signaling

Frizzled Wnt7A, Wnt-7B Putative role in CNS

angiogenesis

SMO Smo 19.64 Gi/o, G12/13 Frizzled Constitutively active;

oxysterols?

Angiogenesis, remodeling,

proliferation and NO release

in ECs

(Continued)
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TABLE 2 | Continued

Receptor Gene mRNA

average

counts/cell*

Principal

G-protein**

GPCR

sub-class

Endogenous

agonists

Signal transduction

effects; roles

Key references

Orphan receptors

GPR4 Gpr4 85.06 Gs, Gi/o, Gq,

G12/13

A H+ ↑ cAMP

↑ IP3/DAG

Pro-inflammatory in ECs

Tobo et al., 2007; Li et al.,

2015; Weiß et al., 2017;

Carvalho et al., 2020

GPR19 Gpr19 15.87 Gs A H+ ↑ cAMP;

Pro-inflammatory in ECs

GPR20 Gpr20 4.93 n.d A n.d n.d

GPR157 Gpr157 1.18 n.d None n.d n.d

GPR182 Gpr182 17.83 n.d A Adrenomedullin n.d

GPRC5B Gprc5b 1.04 n.d C n.d Regulation of vascular SMC

tone

GPRC5C Gprc5c 385.48 G12/13 C n.d Reinforces β-catenin and

Wnt signaling

LGR4 Lgr4 10.67 Non-classical A R-spondin1-4 Implicated role in lipid

metabolism

OPN3 Opn3 1.59 n.d A n.d n.d

TPRA1 Tpra1 52.7 Gi/o 7TM N/A n.d Singh et al., 2015

The GABAB subunit GABAB1 is also expressed by pericytes, but is not included here due to the apparent absence of GABAB2, required for functional receptors. Abbreviations not used

elsewhere: LPA, lysophosphatidic acid; MMP, matrix metalloproteinase; NAAG, N-acetylaspartylglutamate; PHI, peptide histidine-isoleucine; PHM, peptide histidine-methionine; PHV,

peptide histidine-valine; PLD, phospholipase D; TIP39, Tuberoinfundibular peptide of 39 residues; VIP, vasoactive intestinal peptide.
an.d, no data.

*Data from He et al. (2018) and Vanlandewijck et al. (2018), expressed as average counts per cell annotated as a brain pericyte. Cells were isolated from adult mice of either sex aged

10–19 weeks.

**We note here the principal transduction G-protein, although many receptors are promiscuous and couple to secondary transduction pathways. Frizzled receptors canonically couple

to Wnt signaling but may also interact with a rage of G proteins. Where there is no clear primary pathway, we list all possibilities. Readers are referred to Alexander et al. (2019) for further

details.

that they cover as “vessels.” Expression of α-SMA permits these
cells to rapidly regulate the diameter of the underlying vessel and
therefore blood flow. Indeed, multiple studies have illustrated the
importance of contractile mural cells in mediating dilation (of
∼10–30%) in response to neuronal stimulation (Hill et al., 2015;
Mishra et al., 2016; Kisler et al., 2017; Cai et al., 2018; Rungta et al.,
2018).

Beyond this point in the vasculature, mural cells do not
express high levels of α-SMA, although one recent study
suggested that retinal mural cells retain expression of a low
level of this protein (Alarcon-Martinez et al., 2018) and they
do express very low levels of the Acta2 gene in the brain (He
et al., 2018; Vanlandewijck et al., 2018). As a result, these cells are
not equipped to regulate vessel diameter over abrupt time scales,
but there is clear evidence that they may contract slowly under
certain circumstances (reducing the diameter of the underlying
vessel by up to ∼25%; Fernández-Klett et al., 2010; Gonzales
et al., 2020). Thus, we consider the relatively static diameter
vessels downstream of the α-SMA terminus (which typically
occurs between the 1st and 4th order branch in immunostaining
experiments; Grant et al., 2019) to be capillaries. The identity of
mural cells on these so-defined capillaries is unambiguous, and
there is consensus that these cells are pericytes.

The pericytes residing on capillaries display at least two
distinct morphologies: (i) Immediately adjacent to the α-SMA
terminus, pericytes take on a mesh-like appearance, and are thus

known as “mesh pericytes” (Figure 3B); (ii) beyond these are
cells that project long, thin processes along the vasculature, and
accordingly these are referred to as “thin-strand pericytes” (Grant
et al., 2019; Figures 3C,D).

CELLULAR ANATOMY OF MESH AND
THIN-STRAND PERICYTES

Despite differing morphologies (Figure 3), mesh and thin-
strand pericytes are indistinguishable at the level of single-
cell transcriptomics, possibly due to the fact that mesh
pericytes represent only a small fraction of capillary pericytes
(Chasseigneaux et al., 2018). Pericyte cell bodies have a highly
stereotyped shape, appearing as a large ovoid that protrudes
from the wall of the capillary, which is often referred to as a
“bump-on-a-log” (Grant et al., 2019). Mesh pericytes are few
in number relative to thin-strand pericytes and have fewer,
shorter longitudinal processes (their primary trunks averaging
40µm in length; Hartmann et al., 2015) that cover ∼70% of
the underlying capillary. This contrasts with upstream contractile
mural cells which cover 95% of the underlying vessel (Grant
et al., 2019). Thin-strand pericytes extend long, thin, strand-like
processes that are ∼1.5µm in diameter and cover on average
around 250µm in total capillary distance, in some instances
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FIGURE 1 | Overview of gene qualification process for pericyte ion channels and GPCRs and other genes of interest. An initial filter of 1 average count/cell was

applied to exclude genes with extremely low expression. (A) Heatmap of expression of the remaining genes throughout the neurovascular unit. A small subset of these

genes were highly enriched in pericytes (top left), while many showed higher expression in other cell types. To filter out potential contamination, genes that were

expressed in <3% of pericytes, and were absent from the PER3 cluster of Zeisel et al. (2018) were excluded. (B) Relationship between pericyte-specificity of

expression and fraction of pericytes expressing each gene considered. Genes represented by green circles were excluded according to the above criteria. (C) High

resolution view of genes with a <0.1 expression ratio in pericytes, that were expressed in fewer than 10% of pericytes, corresponding to the bottom left corner in (B).

Genes represented by green circles were excluded from further consideration as potential contamination.

exceeding 300µm (Berthiaume et al., 2018). Together, the thin-
strand pericyte cell body and its processes cover between one
third (Mathiisen et al., 2010) and one half (Grant et al., 2019) of
the abluminal surface area of the endothelium. A typical thin-
strand process has a stable “non-terminal core” of ∼50µm in
length that bifurcates into slightly shorter, dynamic terminal
processes that may extend or retract up to 20µm over the course
of days to weeks (Berthiaume et al., 2018). At their terminal
ends, thin-strand processes appear to come into close proximity
with those of neighboring pericytes (Berthiaume et al., 2018),
possibly allowing for direct contact between adjacent pericytes,

although this awaits direct experimental confirmation. Changes
in the length of processes of one cell appear to evoke opposite
changes in the length of adjacent pericyte processes, preventing
the formation of substantial gaps (Berthiaume et al., 2018).

These processes are for the most part prevented from making
direct contact with the underlying endothelium by the basement
membrane. However, electron microscopy has revealed that—
similar to the IEL of arteries and arterioles—the capillary
basement membrane is dotted with many fenestrations, with an
average area of 1.5 µm2, ranging from 100 to 450 nm in diameter
(Carlson, 1989; Figure 3D). In arteries, similar fenestrations are
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FIGURE 2 | An overview of brain angioarchitecture. (A) Cross-section of one brain hemisphere illustrating macroscopic vascular architecture. The carotid artery joins

the circle of Willis at the base of the brain, then gives rise to major pial arteries which course over the brain surface, from which multiple penetrating arterioles arise and

dive into the tissue. (B) Close up view of the components of the vascular network approximating the area in the boxed region in A showing the interconnected

organization of pial arteries, penetrating arterioles, the dense capillary network, and venules. The vessel labeling system we use takes the penetrating arteriole as the

0-order vessel and primary reference point, and vessels are numbered sequentially with regard to this. Vessel number automatically increases each time a vessel

branches and thus, after vessel n branches, the daughter branches—regardless of diameter or orientation—are labeled vessel n + 1. (C) Illustration approximating the

boxed region in (B), showing the cellular elements that make up the arteriolar side of the brain vasculature. Arteries and arterioles consist of SMCs surrounding ECs,

which are in direct contact with the blood. The first 3–4 vessels emanating from the penetrating arteriole are a transitional zone and are covered with contractile mural

cells that are positive for α-SMA and can change diameter abruptly. Immediately after the α-actin terminus are capillaries covered by mesh pericytes, following which

are capillaries where thin-strand pericytes reside. The cross-section at right shows a section through an artery/arteriole and illustrates the presence of the internal

elastic lamina (IEL) which separates ECs and SMCs. Occasional fenestrations dot the IEL, through which ECs and SMCs make direct contact via myoendothelial

projections (MEPs, circular inset). These are sites of gap junctions (GJs) permitting chemical and electrical cell-cell communication.

the sites of myoendothelial junctions, optimized for EC-SMC
communication by the presence of a number of key enzymes,
ion channels, and gap junction (GJ) proteins (Straub et al.,
2014). In the capillary bed, these fenestrations are the site of
“peg-socket” interdigitations where either the pericyte or the EC
sends a projection to make contact with the adjacent cell (Tilton
et al., 1979; Cuevas et al., 1984; Armulik et al., 2005). These
contact points are thought to be the sites of GJ communication
between the two cell types (see Box 1), and may be the location
of key signaling events, such as local calcium (Ca2+) or cyclic
adenosine monophosphate (cAMP) elevations. Moreover, they
may be sites of macromolecular signaling complex assembly,
containing ion channels, and GPCRs positioned to facilitate
cell-cell communication.

ION CHANNEL EXPRESSION IN BRAIN
CAPILLARY PERICYTES

A cursory review of the brain capillary pericyte ion channel
expression data provided by He et al. (2018) and Vanlandewijck
et al. (2018) reveals that potassium (K+) channels are
the dominant ion channel species in pericytes. Remarkably,
this is due to the adenosine triphosphate (ATP)-sensitive
K+ (KATP) channel inward rectifier (Kir) subunit, Kir6.1,
accounting for nearly half of the total ion channel gene
expression in these cells. Transient receptor potential (TRP),
Ca2+, and chloride (Cl−) channels make up the remaining

half, along with lower expression of a handful of other
channel subunits including two-pore channels (TPCs), voltage-
gated sodium (Na+; Nav) channels, P2X receptors, acid
sensing ion channels (ASICs), and Piezo1 (Table 1 and
Figure 4).

PERICYTE K+ CHANNELS

Focusing initially on the K+ channel superfamily, capillary
pericytes express Kir, two-pore domain (K2P), voltage-gated
(Kv), Na+-activated (KNa), and Ca2+-activated (KCa) K+

channel genes.

Kir-Family Channels May Enable Pericyte
Metabolism-Electrical Coupling and
Facilitate Rapid, Long-Range Electrical
Signaling
Kir channels have the defining biophysical property of inward
rectification, preferentially conducting large currents into the
cell at voltages negative to the K+ equilibrium potential (EK),
the magnitude of which depend on the electrochemical gradient
for K+ [i.e., the difference between Vm and EK] (Katz, 1949;
Hibino et al., 2010). At potentials positive to EK some degree
of rectification occurs, ranging from strong—in which almost
no current passes from the interior of the cell to the exterior—
to weak, in which rectification is only seen at very positive
potentials. Accordingly, Kir channels can be classified by their
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FIGURE 3 | Cytoarchitecture and microenvironment of pericytes. (A) Mural

cells with a ‘bump-on-a-log’ cell body, with multiple contractile processes that

(Continued)

FIGURE 3 | almost completely encase the underlying vessel. 6,000x, rat

mammary gland vasculature. Reproduced with permission from Fujiwara and

Uehara (1984). (B) A 4,400x magnification scanning electron micrograph of a

putative mesh pericyte of the rat mammary gland. Multiple sparse processes

enwrap the underlying capillary. Reproduced with permission from Fujiwara

and Uehara (1984). (C) A thin-strand pericyte atop a rat retinal capillary,

extending fine processes away from the ovoid cell body. Adapted with

permission from Sakagami et al. (1999). Scale bar: 10µm. (D) Illustration of a

thin-strand pericyte. The bulk of the volume of the cell body is occupied by the

nucleus. The pericyte is prevented from making direct contact with the

underlying EC by the basement membrane, shown in the SEM at bottom left,

reproduced with permission from Carlson (1989). Multiple small fenestrations

are seen in this structure, allowing for pericyte and endothelial projections to

make direct contact with one another, forming so-called ‘peg-socket

junctions’ which are also sites of gap junction formation. At bottom right

electron micrographs depicting a peg-socket junction (left) and a

pericyte-endothelial gap junction (right) are shown, reproduced with

permission from Díaz-Flores et al. (2009) and Carlson (1989). Abbreviations in

micrographs: EC, endothelial cell; N, nerve; P, pericyte.

degree of rectification as strongly-rectifying (Kir2.x, Kir3.x),
intermediately-rectifying (Kir4.x) or weakly-rectifying (Kir1.1,
Kir6.x, Kir7.x). Alternatively, this group of channels can be
classified according to function into classic (Kir2.x), G-protein
sensitive (Kir3.x), KATP (Kir6.x), or K+ transport (Kir1.x, Kir4.x,
Kir5.x, Kir7.x) channels (Hibino et al., 2010). Of the Kir

channel family, capillary pericytes express extremely high levels
of Kir6.1—far exceeding that of any other ion channel gene
expressed by brain pericytes—and to a lesser extent Kir2.2
(Bondjers et al., 2006; He et al., 2018; Vanlandewijck et al.,
2018).

As Kir6.1 is a component of KATP channels, this suggests
that the two key roles of these channels—providing membrane
hyperpolarization and coupling metabolism to membrane
electrical activity—could be major contributors to pericyte
physiology. Functional KATP channels are hetero-octameric
assemblies of four two-transmembrane spanning pore–forming
Kir6.x subunits (either Kir6.1 or Kir6.2, encoded by Kcnj8
and Kcnj11, respectively), each associated with a regulatory
17-transmembrane spanning ATP-binding cassette subfamily
sulfonylurea subunit (SUR1 or SUR2, respectively encoded by
Abcc8 and Abcc9—the latter of which is also highly expressed
in brain pericytes; Figure 5A; Seino and Miki, 2003; Li et al.,
2017). SURs are required for membrane trafficking of the channel
(Burke et al., 2008) and impart sensitivity to KATP agonists and
antagonists and intracellular nucleotides. Alternative splicing
yields a number of SUR2 variants with SUR2A and SUR2B as the
major forms, differing by just 42 amino acids in their C-terminal
domains (Seino and Miki, 2003). Thus, the available expression
data suggest that KATP channels native to brain pericytes are
composed of Kir6.1 and SUR2—often referred to as the “vascular”
form of KATP–and indicates that these are expressed much more
highly in pericytes than they are in cerebral SMCs and ECs
(Figure 4C).

K+ currents through KATP channels are weakly rectifying
at potentials very positive to EK–the result of voltage-
dependent intracellular magnesium (Mg2+) block (Findlay,
1987). The defining biophysical feature of KATP channels
is that open probability (Po) decreases with increasing

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 601324

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Hariharan et al. CNS Pericyte Ion Channels and GPCRs

BOX 1 | Potential gap junction con�gurations between capillary pericytes

and cECs.

According to expression data (He et al., 2018; Vanlandewijck et al., 2018),

pericytes predominantly express mRNA for connexin (Cx)37 and Cx45,

along with much lower expression of Cx26 and Cx43. Capillary ECs, on

the other hand, robustly express Cx43 and Cx45, with low levels of Cx37,

whereas Cx26 is undetectable (see Figure). Electron microscopy has been

used to visualize putative GJ sites between pericytes and ECs at peg-

socket interdigitations. In contrast, similar sites between the processes of

neighboring pericytes have yet to be clearly demonstrated. Nonetheless, a

recent dye transfer study (Kovacs-Oller et al., 2020), has shown that the

cells of the capillary bed form a syncytium. Accordingly, two configurations

for cell-cell communication can be postulated: (i) Pericyte-EC GJs alone

permit bidirectional transfer of intracellular materials and charge between

cells of the capillary wall; (ii) both pericyte-EC GJs and pericyte-pericyte GJs

permit intercellular communication along two parallel, closely adjacent paths.

The latter configuration would provide redundancy in the event of cell-cell

communication failing in one cell type.

GJs are homo- or hetero-dodecameric assemblies of Cx subunits (Koval

et al., 2014), formed from two hexameric hemichannels that dock to yield

intercellular channels. GJs can be homotypic, with both hemichannels

composed of the same Cx isoform(s), or heterotypic, with each hemichannel

consisting of a distinct assembly of 6 Cx subunits. Moreover, a given

hemichannel may be homomeric (composed Cx monomers of the same

isoform) or heteromeric (consisting of multiple Cx isoforms), a property that

depends on the propensity of the locally expressed Cxs to co-assemble.

These complexities yield channels with distinct attributes, which may further

oligomerize into large GJ plaques with discrete population characteristics.

Considering pericyte connexins in isolation, α-class Cxs 37 and 45 are not

known to assemble into heteromers, but both of these will heteromerize with

the much more modestly expressed α Cx43. The β Cx26, on the other hand,

is not compatible with α Cx isoforms. Thus, the available data suggest that

the typical pericyte hemichannel is most likely to be a homomeric assembly

of Cx37 or Cx45, with perhaps a low level of heteromerization involving Cx43.

Similarly, the EC-expressed Cx43 will form heteromers with Cx37 and Cx45,

but again the latter are not compatible with one another. Thus, the possibility

of heteromerization appears to be higher for ECs. In terms of heterotypic

compatibility in the formation of GJs, Cx37, Cx43, and Cx45 are known to

readily assemble together, whereas Cx26 hemichannels will not dock with

any of these.

Taken together, this complexity underscores the great deal of further work

needed to firmly establish the nature and properties of GJs in the capillary wall.

intracellular ATP levels, with ATP stabilizing the closed state
of the channel (Enkvetchakul and Nichols, 2003). Thus,
when cellular ATP demands are low and free cytosolic
ATP is high, the channel is closed. In contrast, when
cell activity increases or metabolism drops, the ADP:ATP
ratio rises and the channel may open to hyperpolarize
the membrane (Quayle et al., 1997). Consistent with
these channels being saturated by ATP to keep them
closed under resting conditions, the KATP channel blocker
glibenclamide has no effects on resting CBF but levcromakalim,
a KATP channel opener, increases global CBF by 14%
(Al-Karagholi et al., 2020).

Nucleotide regulation of KATP channels is complex and has
been best characterized for Kir6.2/SUR1-containing channels,
which we review briefly here. Intracellular nucleotides are sensed
by an array of sites throughout the channel complex: ATP
has been shown to bind to an inhibitory site of the Kir6.2
subunit (Tucker et al., 1997; Tanabe et al., 2000) with just one
of four subunits of the channel needing to bind ATP to effect
closure (Markworth et al., 2000). The SUR1 subunit has two
nucleotide binding domains (Li et al., 2017), where Mg2+-bound
adenosine diphosphate (MgADP) occupancy increases channel
activity (Tung and Kurachi, 1991; Gribble et al., 1997; Shyng
et al., 1997). MgATP also has a stimulatory effect here, likely
through hydrolysis to MgADP, although this is normally masked
by the much more potent inhibitory effect of free ATP (Gribble
et al., 1998; Proks et al., 2010). Thus, as might be expected,
increasing intracellular Mg2+ antagonizes the inhibitory effect
of free ATP (Gribble et al., 1998). Conversely, in the absence
of Mg2+, ADP may have an inhibitory effect (Findlay, 1988).
Comparatively less is known about the fine details of nucleotide
regulation of Kir6.1/SUR2B channels, which have a smaller
conductance than their Kir6.2-containing counterparts (∼15–30
pS for Kir6.1/SUR2B-containing channels vs. ∼50–90 pS for the
Kir6.2/SUR2A form, for example; Hibino et al., 2010). However,
it is clear that the presence of a nucleotide diphosphate andMg2+

is a requirement for channel activity, and that these channels are
also sensitive to ATP inhibition (Kajioka et al., 1991; Kovacs and
Nelson, 1991; Beech et al., 1993; Kamouchi and Kitamura, 1994;
Nelson and Quayle, 1995; Zhang and Bolton, 1996; Yamada et al.,
1997).

One of the consequences of the nucleotide sensitivity of KATP

channels is that they may act as sensors of the metabolic state of
the cell and transduce changes in this parameter into adjustments
of membrane voltage. This is perhaps best characterized in
pancreatic β cells, where KATP channels composed of Kir6.2
and SUR1 subunits couple glucose concentration with insulin
secretion (Tarasov et al., 2004). Here, elevated glucose leads
to an increase in intracellular ATP due to increased glucose
metabolism. This closes KATP channels, which depolarizes the
cell and drives Ca2+-mediated insulin secretion through the
activation of L-type voltage-dependent Ca2+ channels (VDCCs;
MacDonald et al., 2005). Conversely, if glucose concentrations
decrease the channel opens, hyperpolarizing the membrane to
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FIGURE 4 | Overview of CNS pericyte ion channel and GPCR expression. (A) Relative abundance of mRNA for all ion channel subunits meeting our inclusion criteria.

The size of each segment represents the relative expression of the underlying gene. Channels are clustered on the basis of the ion species that the corresponding

(Continued)
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FIGURE 4 | functional channel conducts (denoted by shading of the same color) and are then grouped by family/subfamily. K+ channels are the predominant ion

channel class due to extremely high expression of Kcnj8 which forms the pore of vascular KATP channels. The non-selective TRP channels are the next highest

expressed, followed by Ca2+ channels, Cl− channels, and lower expression of other channels. (B) Relative expression of pericyte GPCRs. Here, receptors are

organized by ligand sensitivity or class. (C) Expression of the KATP channel genes Kcnj8 and Abcc9 throughout the brain vasculature. Pericytes express both genes at

much higher levels than arterial SMCs or ECs. However, venous SMCs also express high levels of KATP channel-forming genes.

prevent insulin release. In an analogous situation, KATP channels
composed of Kir6.2 and SUR1 are involved in glucose sensing and
glucagon secretion in the ventromedial hypothalamic neurons of
the hypothalamus (Miki et al., 2001).

Like many other channels (Hille et al., 2015; Dickson
and Hille, 2019), KATP channels containing Kir6.2 pore-
forming subunits are also influenced by the concentration
of intracellular phosphoinositides, such as phosphoinositol-
4,5-bisphosphate (PIP2; Fan and Makielski, 1997). In Kir6.2-
containing channels, ATP and PIP2 compete for residues on
overlapping binding sites on the pore forming subunit, each
subtly altering channel conformation to stabilize closed or
open states, respectively (Enkvetchakul and Nichols, 2003),
with PIP2 additionally uncoupling the pore-forming subunit
from its SUR companion (Li et al., 2017). Exposure of these
KATP channels to PIP2 decreases ATP affinity (K0.5) in excess
of two orders of magnitude from ∼10µM to ∼3.5mM, and
furthermore in the absence of ATP increases channel Po (Shyng
and Nichols, 1998). As the abundance of PIP2 thus regulates
Po, this raises the possibility that cell signaling that impinges
upon PIP2 levels may subsequently affect channel activity.
Kir6.1/SUR2B channels, in contrast, appear to have a much
higher affinity for PIP2 than Kir6.2 channels. Accordingly, PIP2
is thought to bind so tightly here as to be saturating, and
thus physiological fluctuations of this phospholipid do not
influence channel activity (Quinn et al., 2003; Harraz et al.,
2020). However, a number of intracellular signaling pathways
have been established to dramatically influence vascular KATP

activity. Indeed, phosphorylation by protein kinase C (PKC),
lying downstream of DAG, decreases the Po of Kir6.1/SUR2B
channels (Bonev and Nelson, 1996; Shi et al., 2008b) and in
stark contrast, protein kinase A (PKA), which is stimulated as
a result of Gs-coupled GPCR engagement, phosphorylates KATP

to increase Po (Kleppisch and Nelson, 1995; Bonev and Nelson,
1996; Quinn et al., 2004; Shi et al., 2007, 2008a).

Accordingly, there appear to be two major possible avenues
through which vascular KATP channels could be engaged
in pericytes:

i) Changes in metabolism may couple KATP channel activity to
membrane hyperpolarization.
It is possible that brain pericyte KATP channels act as sensors of
the metabolic state of the cell and adjust membrane potential
in response to perturbations in energy supply. Notably, the
expression of the glucose transporter GLUT1 is incredibly
high in astrocytes and brain ECs compared to pericytes,
which express much lower levels of GLUTs 1, 3 and 4 (He
et al., 2018; Vanlandewijck et al., 2018). Therefore, while
astrocytes and capillary endothelial cells are well equipped
for glucose import, the comparatively lower expression of

GLUTs in the pericytes situated between them could make
them more sensitive to subtle changes in glucose levels, such
as local depletions that occur during neural activity (Hu
and Wilson, 1997; Paulson et al., 2010; Li and Freeman,
2015; Pearson-Leary and McNay, 2016). Such decreases in
glucose could impact pericyte metabolism, increasing the
ADP:ATP ratio to open KATP channels and hyperpolarize
the membrane.

However, as glucose can be transmitted via gap junctions
(Rouach et al., 2008) it is possible that pericyte glucose
needs are instead satisfied directly by the underlying ECs,
enabling them to continually maintain a high level of
cytosolic ATP. This latter possibility, coupled with evidence
that metabolic regulation of vascular KATP channels in
arteriolar SMCs requires either anoxia or extreme ATP
consumption (Quayle et al., 2006)—circumstances of
energetic compromise that are unlikely to be seen under
physiological conditions (Quayle et al., 1997)—suggests
that KATP metabolism-electrical coupling may be primarily
relevant in pathological situations (e.g., stroke). In this context,
metabo-electrical coupling may represent a last-ditch effort to
stimulate blood flow and therefore replenish O2 and glucose to
regions in deep metabolic crisis. Further studies are needed to
understand metabolic contributions to the control of pericyte
KATP channels.

ii) Molecules that stimulate Gs signaling may engage pericyte
KATP channels.
Pericytes express a broad repertoire of receptors that couple
to the Gs signaling pathway, including those for purines,
polyadenylate cyclase activating peptide (PACAP), parathyroid
hormone (PTH) and prostaglandins (discussed in detail
below, see Table 2). The release of these molecules into
the paravascular space during neuronal activity could thus
engage Gs signaling in local pericytes, culminating in the
phosphorylation of KATP and channel opening. Indeed, in
the retina (often used as a model of the NVU; see Box 2)
the inhibitory neurotransmitter and metabolic byproduct
adenosine hyperpolarizes the rat retinal pericyte membrane
potential by ∼30mV through KATP channel engagement
resulting from A1 and A2a adenosine receptor activation
(Li and Puro, 2001), likely through engagement of cAMP
and PKA.

What would be the physiological consequence of such
profound membrane hyperpolarization in pericytes? It has been
proposed that KATP-generated hyperpolarization of pericytes
in the retinal vasculature could be transmitted over long
distances to close VDCCs in the mural cells of upstream
vessels, thereby causing vasorelaxation and an increase in
blood flow (Ishizaki et al., 2009). Such a mechanism could
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FIGURE 5 | Structural topology of K+ channels expressed by pericytes. (A) Vascular KATP channels are octamers consisting of four 17-transmembrane SUR2

subunits associated with four 2-transmembrane pore-forming Kir6.1 subunits. (B) Kir2.2 channels consist of homo or heteromeric assemblies of four

2-transmembrane subunits. (C) Kv channels are composed of four 6-transmembrane alpha subunits with a positively charged voltage sensor at S4 which transduces

changes in Vm into conformational alterations. (D) K2P channels are tetramers of two-pore domain four-transmembrane subunits. (E) KNa channels have a

6-transmembrane structure that lacks a voltage sensor, with multiple regulatory sites in the long intracellular COOH-terminus including two RCK domains, an ATP

binding site, and a PDZ domain. (F) KCa2.3 channels consist of four 6-transmembrane domains which lack a voltage-sensor at S4. The COOH-terminus of each is

associated with a calmodulin monomer, which imparts Ca2+ sensitivity to the channel.
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BOX 2 | A brief comparison of retinal and brain vasculatures.

The retinal vasculature consists of two vascular beds—the outer layer of retinal photoreceptors is nourished by the choroidal vasculature, and the multilayered inner

retinal vasculature provides oxygen and nutrients to the inner cell layers. The latter has a tightly regulated blood-retinal barrier, akin to the BBB, which pericytes

help to maintain (Trost et al., 2016). Vascular density in the cerebral cortex varies according to the metabolic demand of the brain region it supplies (e.g., white vs.

gray matter), whereas in the retina, capillary density tends to be greater in the center of the tissue and decreases toward the periphery (Patton et al., 2005). Both

retinal and cerebral vascular cells have identical embryological origins: pericytes and SMCs derive from neuroectodermal neural crest cells and ECs derive from

mesodermal hemangioblasts (Kurz, 2009; Dyer and Patterson, 2010). Structurally, the cortical and inner retinal vascular beds share a similar overall architecture,

with a post-arteriolar transitional zone of 3–4 branches that are covered by contractile mural cells, leading to thin strand pericyte-covered deep capillaries (Ratelade

et al., 2020). A distinction between these vascular beds is that the retinal vasculature is highly organized into two parallel plexi (Ramos et al., 2013), whereas cerebral

capillaries form more elaborate three-dimensional geometries (Blinder et al., 2013). These structural differences could dictate differences in the flow of blood through

each circulation and may necessitate distinctions in the signaling mechanisms that are utilized to direct blood flow through either bed. However, the vasculatures in

both retina and cortex respond similarly to neuronal activity with elevations in blood flow (Newman, 2013), and similar mechanisms underpinning these responses

appear to be at play in either bed. K+, PGE2, and EETs, for example, have been implicated in control of blood flow in both circulations (Newman, 2013; Longden

et al., 2017; Gonzales et al., 2020). Recent studies have also indicated the utility of non-invasive examinations of the retinal vasculature as a marker for detecting

cerebrovascular diseases, due to a similar susceptibility of both circulations to vascular risk factors such as hypertension or diabetes (Patton et al., 2005; van de

Kreeke et al., 2018; McGrory et al., 2019; Querques et al., 2019). Data on gene expression in vascular cells of the retina are currently lacking, but would provide a

useful standpoint for deeper comparisons of the similarities and differences between these vascular beds.

Studies on retinal pericytes (Li and Puro, 2001; Kawamura et al., 2002, 2003; Wu et al., 2003; Matsushita and Puro, 2006), on cerebral pericytes (Peppiatt et al.,

2006; Fernández-Klett et al., 2010; Hill et al., 2015; Rungta et al., 2018), or both (Gonzales et al., 2020; Kovacs-Oller et al., 2020) have thus informed our current

understanding of blood flow control and pericyte physiology. Although it is clear that a high degree of similarity exists between these vascular beds, the possibility of

yet-to-be-identified differences between these networks should be borne in mind when attempting to draw generalizations from data from both vascular beds. To

this end, we note explicitly where data on pericytes in this review were drawn from studies performed in retina.

be enabled by transmission of hyperpolarizing signals either
between pericytes themselves, or between pericytes and ECs.
Indeed, hyperpolarizations transmitted to cECs are predicted
to engage Kir2.1 channels, which we have recently shown to
rapidly propagate hyperpolarizing signals over long distances
through the brain endothelium to upstream arterioles, causing
their dilation and an increase in blood flow (Longden andNelson,
2015; Longden et al., 2017). A similar mechanism involving both
KATP and Kir2.1 channels has also recently been shown to be
critical for control of blood flow in the heart (Zhao et al., 2020).
In the brain, connexin (Cx)37, and Cx45 are highly expressed
in pericytes (He et al., 2018; Vanlandewijck et al., 2018; see
Box 1), and thus these likely form cell-cell GJs that facilitate
long-range transmission of KATP-mediated electrical signals
(Figure 6).

Kir2 channels are activated not only by membrane
hyperpolarization, but also by external K+, which is an important
mediator of NVC (Filosa et al., 2006; Longden and Nelson, 2015;
Longden et al., 2017). Neurons or astrocytes release K+ into
the perivascular space during NVC, and its concentration can
reach ∼10mM during concerted activity (Orkand et al., 1966;
Newman, 1986; Ballanyi et al., 1996; Kofuji and Newman, 2004).
Interestingly, Kir2.2 channels are expressed in pericytes (Table 1
and Figure 5B) and Kir currents with the expected biophysical
characteristics and sensitivity to micromolar barium (Ba2+)
have been reported in cultured retinal and heart pericytes (von
Beckerath et al., 2000; Quignard et al., 2003), and retinal and
kidney pericytes from microvessels (Cao et al., 2006; Matsushita
and Puro, 2006). Strong rectification in Kir2 channels results
from intracellular polyamine and Mg2+ block of the channel
pore at depolarized membrane potentials, limiting outward
current. This block is relieved by elevating external K+ to levels
that are typically seen during neuronal activity, initiating rapid
and self-perpetuating hyperpolarization that drives Vm toward

EK (Longden and Nelson, 2015). Thus, pericyte Kir2.2 channels
could contribute to transmitted hyperpolarizations in several
ways. On one hand, K+ elevations resulting from neural activity
may directly activate Kir2.2 channels on pericytes (Figure 6).
Alternatively, engagement of pericyte KATP channels could
cause a K+ or hyperpolarization-mediated recruitment of Kir2.2
channels, which would serve to amplify hyperpolarization.
Kir2.2 channels could then propagate hyperpolarizing signals
from capillary pericytes to upstream vessels by means of
pericyte-pericyte communication through their thin-strand
processes or by passing hyperpolarization to neighboring ECs
via pericyte-endothelial GJs. PIP2 is also central to Kir2 channel
function (D’Avanzo et al., 2010; Hansen et al., 2011), and its
depletion via GqPCR signaling has recently been shown to
play an important role in regulating Kir2.1 channel activity in
cECs (Harraz et al., 2018). Accordingly, signaling processes that
influence PIP2 levels are anticipated to factor in to Kir2.2 channel
activity in pericytes.

Collectively, genetic and functional data to date argue for an
important role of KATP and Kir2.2 channels in regulating pericyte
electrical activity, and we thus propose that the activity of these
channels plays a central role in the control of capillary blood flow
(Figure 6).

Voltage-Gated K+ (Kv) Channels Provide
Graded Opposition to Membrane
Depolarization
Kv channels are formed by 4 identical subunits that surround a
central pore. Each subunit is composed of six transmembrane
segments (S1–S6) of which four form the voltage sensor domain
(S1–S4) with several regularly spaced positively-charged amino
acids in the S4 helix playing a central role in transducing
voltage into conformational changes that gate the channel. The
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FIGURE 6 | Predicted capillary pericyte-EC interactions to control local blood flow. Neuronal activity drives the release of K+ and GsPCR agonists. Top inset: These

are predicted to engage pericyte Kir2.2 and their cognate GPCRs, respectively. GsPCR activity activates KATP channels, the hyperpolarization by which may feed

forward to evoke further Kir2.2 activity (a sufficient fall in ATP:ADP would also engage KATP channels). The hyperpolarization generated by these channels may then be

passed via gap junctions to cECs (bottom right inset) or possibly to adjacent pericytes, though direct pericyte-pericyte gap junctions have not been observed to date.

In cECs, the incoming hyperpolarization will engage Kir2.1 channels to amplify hyperpolarization to a sufficient level to pass to adjacent cECs and pericytes.

Hyperpolarization-mediated activation of Kir2.1 and Kir2.2 in these cells will rapidly regenerate the current so that it can be passed to the next cell, and so on

upstream to the arteriole. Upon arrival at the arteriole and its first few offshoots, hyperpolarization will be passed via GJs at MEPs to SMCs and to contractile mural

cells, which will close VDCCs, leading to a fall in intracellular Ca2+, relaxation of their actin-myosin contractile machinery, vasodilation, and an increase in blood flow.

remaining two transmembrane regions line the K+-selective pore
(S5–S6; Figure 5C; Jiang et al., 2003; Chen et al., 2010).

In order of mRNA abundance, cerebral pericytes express
modest to low levels of genes encoding: Kv6.1, Kv7.4, Kv2.1,
Kv9.3, Kv9.1, Kv7.5, and Kv1.2, in the absence of Kv beta subunits
(Table 1). Outward K+ currents attributable to Kv channels
have been measured in these cells, for example in guinea pig
cochlear stria vascularis and cultured bovine retinal pericytes
(von Beckerath et al., 2000; Quignard et al., 2003; Liu et al.,
2018). Kv channels are crucial for negative feedback regulation
of Vm, their Po and unitary currents increasing with membrane

depolarization to provide a counterbalancing hyperpolarizing
influence (Nelson and Quayle, 1995; Koide et al., 2018). Their
activity can also be modulated by a range of intracellular
signaling cascades that engage varied effectors such as PKC, c-
SRC or Rho-kinase (which inhibit Kv channels) or cAMP-PKA
and cyclic guanosine monophosphate(cGMP)-protein kinase G
(PKG) signaling pathways (which promote channel activity)
(Jackson, 2018). Of note, nitric oxide (NO) can exert major
signaling effects via soluble guanylate cyclase (sGC) and cGMP-
PKG in pericytes (Denninger and Marletta, 1999). As adjacent
cECs are a major source of local NO (Longden et al., 2019), its
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elevation may be sufficient to engage pericyte PKG signaling to
promote activity of KV and other PKG-sensitive channels.

Cerebral arteriolar SMCs are each estimated to express∼3,000
Kv channels/cell (Dabertrand et al., 2015) composed principally
of Kv1.2 and Kv1.5 (Straub et al., 2009) with activation initially
detectable above −40mV and increasing e-fold per 11-13mV,
exhibiting half-activation between approximately −10 and 0mV
(Robertson and Nelson, 1994; Straub et al., 2009). These
channels also exhibit substantial steady-state inactivation over
the physiological voltage range (Robertson and Nelson, 1994).
Kv currents with similar characteristics have been described in
cultured retinal pericytes (Quignard et al., 2003), whereas the
half-maximal activation of Kv channels recorded in cultured
coronary pericytes is substantially more negative at −40.9mV,
along with a steeper voltage-dependence of activation (e-fold
per 4.6mV) and only modest inactivation at physiological
membrane potentials (von Beckerath et al., 2000). Thus, Kv

current characteristics in pericytes appear to be regionally
dependent, likely a result of differential expression and assembly
of distinct Kv isoforms. Direct characterization of Kv currents
in native brain pericytes is therefore critical to furthering our
understanding of their role in the control of pericyte Vm, where
these channels are anticipated to provide negative feedback to
limit depolarization effected by the activity of depolarizing ion
channels in pericytes, such as those of the TRP family.

K2P3.1 Channels Provide a Background K+

Conductance and May Impart pH
Sensitivity
K2P channels contribute to maintenance of resting membrane
potential due to steady outward K+ “leak” at potentials positive
to EK. They comprise a family of 15 members, and are composed
of two identical subunits, each with four transmembrane
domains with two pore-forming loops making up a central K+-
conducting pore (Figure 5D; Miller and Long, 2012; Lolicato
et al., 2014). K2P3.1, also known as the two-pore domain
weakly inwardly-rectifying K+ channel (TWIK)-related acid-
sensitive K+ (TASK)-1 channel (Duprat et al., 1997), is the
only K2P isoform expressed in capillary pericytes, and is also
expressed in cerebral SMCs (He et al., 2018; Vanlandewijck et al.,
2018). In SMCs, its steady current contributes to maintaining
a relatively negative Vm by counterbalancing depolarizing
influences (Gurney et al., 2003).

Perhaps the most well-studied characteristic of TASK-1 is
its sensitivity to pH within the range of ∼6.5–8. Acidic pH
inhibits channel activity while alkaline pH increases it, with
half-maximal activation occurring at pH 7.4 and ∼90% of
maximal TASK-1 current recorded at pH 7.7 (Duprat et al., 1997).
Synchronous neuronal activity can cause rapid changes in pH.
For example, alkalization in extracellular pH has been observed
in the hippocampus, cerebellum and some cortical areas, by up
to 0.2 units (Chesler and Kaila, 1992; Makani and Chesler, 2010).
Thus, it is possible that in addition to setting resting Vm, K2P3.1
imparts sensitivity to pericytes in these regions to such shifts,
which could hyperpolarize Vm to modulate blood flow through
the mechanisms described above.

Na+- and Ca2+-Activated K+ Channels Are
Expressed at Low Levels in Pericytes
Capillary pericytes also express low levels of genes encoding the
Na+-activated KNa1.2 channel and the Ca2+-activated KCa2.3
channel (Table 1). KNa1.2 channels (Figure 5E) are sensitive to
intracellular Na+ and Cl−, and are dramatically stimulated by cell
swelling and inhibited by a decrease in cell volume (Bhattacharjee
et al., 2003; Tejada et al., 2014). Thus, they could impart
sensitivity to pericyte volume changes, and may respond to
fluctuations in intracellular ion concentrations ormetabolic state.

KCa2.3 (also known as SK3) belongs to the family of small-
conductance Ca2+-activated K+ (SK) channels that share overall
transmembrane topology with Kv channels, yet lack a functional
voltage-sensor at S4 (Figure 5F; Adelman et al., 2012). Each
subunit in the tetrameric channel is associated with a calmodulin
(CaM) monomer via a CaM binding domain in the C-terminal
region. Ca2+ binding to CaM induces a conformational change
which leads to rapid channel opening, with an EC50 for Ca2+

of 300–500 nM (Ledoux et al., 2006; Adelman et al., 2012). If
functional SK channels in native pericytes are confirmed, they
are expected to facilitate coupling between Ca2+ elevations and
membrane hyperpolarization.

PERICYTE TRP CHANNELS

The TRP channel family mediates cellular responses to a wide
range of stimuli (Clapham, 2003). These are non-selective cation
channels that depolarize the membrane upon activation and, in
many cases, conduct significant amounts of Ca2+. In mammals
there are six subfamilies of TRP channels encoded by 28 genes, 11
of which are expressed by capillary pericytes. These are canonical
(TRPC1, TRPC3, TRPC4, TRPC6), melastatin (TRPM3, TRPM4,
TRPM7), mucolipin (TRPML1), poly-cystin (TRPP1, TRPP3),
and vanilloid (TRPV2) channels (Earley and Brayden, 2010; He
et al., 2018; Vanlandewijck et al., 2018). Functional TRP channels
are tetramers of subunits with a common six transmembrane
structure, which can assemble into homomeric or heteromeric
functional channels. Their tendency to heteromerize, generally
with closely related members, can give rise to channels
with unique sensing capabilities and biophysical properties
(Venkatachalam andMontell, 2007). Overall, subfamilymembers
share ∼35% amino acid sequence homology, with the majority
of this diversity arising from differences in their cytoplasmic
domains (Figure 7; Clapham, 2003; Nilius and Owsianik, 2011).
While they have been traditionally described as “non-selective,”
the pattern of ion selectivity for different cations varies between
subfamilies (Hill-Eubanks et al., 2014; see Table 1).

Broadly speaking, TRP channels are major downstream
effectors for GPCR signaling (Clapham, 2003; Veldhuis et al.,
2015), with particular second messenger systems both activating
or sensitizing some TRP channels, and decreasing the activity
of others. TRPC channels are Ca2+ permeable and typically
activated by plasmalemmal GPCRs or tyrosine kinase receptors
that activate PLC isoforms (Albert, 2011). TRPC3/6 channels
are directly activated by DAG, which is liberated by Gq

signaling, and inhibited by PIP2, which decreases during Gq
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FIGURE 7 | Structural overview of the TRP families expressed in CNS capillary pericytes, adapted with permission from Clapham (2003). All TRP channels share a

common and typical 6-transmembrane structure with profoundly varying intracellular N- and C-terminal domains, the major features of which are illustrated. CC,

coiled-coil domain.

activity (Hofmann et al., 1999; Albert, 2011). The activation
mechanisms of TRPC4 are less clear, whereas TRPC1-containing
channels are unresponsive to DAG and are instead gated by
PIP2 in a PKC-dependent manner (Hofmann et al., 1999;
Albert, 2011), although heteromultimerization with TRPC3 can
convey DAG sensitivity (Lintschinger et al., 2000). TRPC3 is
the most robustly expressed TRP channel in capillary pericytes
(Table 1) and is thus likely to be engaged during GqPCR-
DAG signaling. This channel permits robust Ca2+ entry,
although it has relatively low selectivity for Ca2+ over Na+

(pCa2+:pNa+ ∼1.5; Pedersen et al., 2005). At the arteriolar
level, TRPC3 has been implicated in mediating vasodilation
through elevations of EC Ca2+ leading to KCa2.3 activation
(Kochukov et al., 2014), whereas its activation in SMCs
mediates arteriolar constriction through a mechanism involving
an IP3R-activated (sarcoplasmic reticulum (SR) Ca2+ release

independent) TRPC3-dependent Na+ current that depolarizes
Vm and activates VDCCs (Xi et al., 2009). Similar couplings
may occur in capillary pericytes, likely depending on the
macromolecular organization of TRPC3 with other local
signaling elements.

Members of the TRPC subfamily, in particular TRPC1, have
also been suggested to participate in store-operated Ca2+ entry
(SOCE)—an event activated by the depletion of endoplasmic
reticulum (ER) Ca2+ stores that depends on Orai1 and the
ER-Ca2+ status sensing protein stromal interaction molecule 1
(STIM1; Huang et al., 2006; Soboloff et al., 2006; Cheng et al.,
2008, 2013). Capillary pericytes express STIM1 and Orai1 and 3
(Table 1), and thus a functional interaction between TRPC1 and
these proteins could be important for SOCE in pericytes. Recent
work also shows TRPM7 activation, although not essential, can
positively modulate SOCE (Souza Bomfim et al., 2020).
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The melastatin channel TRPM4 is unique in its exclusive
permeability to monovalent cations. Na+ currents through
TRPM4 are voltage-dependent and activated by intracellular
Ca2+ (EC50 ∼20µM) with the Ca2+ sensitivity of the channel
regulated by multiple factors including cytosolic ATP, PKC-
dependent phosphorylation and calmodulin (Nilius et al., 2005;
Ullrich et al., 2005). In cerebral SMCs, membrane stretch
indirectly activates TRPM4 (and TRPC6) current through
angiotensin II AT1 receptor activation and a resultant IP3-
mediated Ca2+ elevation (Gonzales et al., 2014). Pericytes also
express the AT1 receptor, and thus a similar mechanism may
be present in capillary pericytes which could contribute to the
mild, slow constrictions these cells are capable of Fernández-
Klett et al. (2010). In contrast to the monovalent conductance
of TRPM4, the closely related TRPM3 and TRPM7 channels are
also permeable to Ca2+ andMg2+ (Pedersen et al., 2005). TRPM3
is activated by cell swelling, the neurosteroid pregnenolone
sulfate, and the metabolite D-erythro-sphingosine and related
sphingosine analogs and thus may impart sensitivity to steroid
and lipid signals to pericytes (Grimm et al., 2005; Wagner
et al., 2008). As pericytes also robustly express the S1P3 receptor
(discussed below), it is likely that TRPM3 and S1P3 respond
in concert to locally released lipids, such as those released
constitutively by ECs and RBCs (Selim et al., 2011; Ksiazek et al.,
2015). TRPM7, in contrast, is ubiquitously expressed and plays a
major role in Mg2+ homeostasis (Schlingmann et al., 2007).

Functional TRPP1 channels (encoded by the Pkd2 gene) have
a large conductance and conduct a significant amount of Ca2+

(Earley and Brayden, 2015). This channel has been implicated in
mechanosensation when expressed alongside polycystic kidney
disease (PKD)1 (Giamarchi and Delmas, 2007; Sharif-Naeini
et al., 2009; Narayanan et al., 2013). As PKD1 is also present
in pericytes, these channels may aid in the detection of local
mechanical forces, such as paravascular fluid shear from the
glymphatic system (Mestre et al., 2018), or those imparted
through the very thin endothelium by changes in blood
flow during neuronal activity, or through subtle changes in
diameter of the underlying capillary. Similarly, the vanilloid
family member TRPV2, also expressed in SMCs throughout
the vasculature (Muraki et al., 2003), has been suggested to
play a role in mechanosensation-evoked Ca2+ entry (Perálvarez-
Marín et al., 2013). Continuing this theme, mechanosensory
contributions have also been reported for TRPC1, TRPC6, and
TRPM4 (Yin and Kuebler, 2010). Combined with the fact that
pericytes also express Piezo1 (see below), this represents a broad
mechanosensing repertoire, suggesting that pericytes may be
exquisitely sensitive to a range of mechanical perturbations. The
resultant Ca2+ elevation and depolarizing currents through the
activity of these channels could couple to a number of processes,
including driving further Ca2+ release from stores, and activation
of VDCCs, KCa2.3 channels, or Ca2+-activated Cl− channels
(CaCCs; discussed below). As recent work demonstrates that
pericytes can subtly influence tone throughout the capillary
bed (Fernández-Klett et al., 2010), mechanosensing and Ca2+-
mediated mechanisms may play an important role in influencing
this process.

PERICYTE Ca2+ CHANNELS

The overall expression level of Ca2+ channels is similar to that
of TRP channels in pericytes, composed of message for IP3R
subtypes and a range of VDCCs.

IP3Rs Permit a Versatile Range of Ca2+

Signaling Behaviors in Response to
Extracellular Signals
The vast majority of intracellular Ca2+ signals arise from either
Ca2+ influx across the plasmalemma, or release from the SR/ER
via IP3Rs or ryanodine receptors (RyRs). IP3Rs are enormous
proteins (∼1.3 MDa) formed by four IP3R subunits. Three
subunit isoforms—IP3R1-3—exist, which are able to homo- or
heterotetramize. Each individual subunit has six transmembrane
segments: The fifth and sixth segments form a central ion-
conducting pore that is connected via a linker to the peripheral
bundle formed by transmembrane domains 1-4. The large
cytoplasmic N-terminal domain contains the IP3 binding site and
a putative Ca2+ sensor region, and binding of IP3 and Ca2+ leads
to conformational changes which are transmitted to the pore to
gate the channel (Figure 8; Fan et al., 2015; Baker et al., 2017;
Hamada et al., 2017). IP3R subtypes share ∼70% homology and
differ in their affinity for IP3, with IP3R2 being more sensitive
than IP3R1, and both of these subtypes being more sensitive than
IP3R3 (Tu et al., 2005; Iwai et al., 2007). Brain capillary pericytes
express the genes encoding IP3Rs 1 and 2 robustly, and a much
lower level of IP3R3, whereas RyRs are not appreciably expressed
by these cells (He et al., 2018; Vanlandewijck et al., 2018;
Table 1).

As described briefly above, GqPCRs activating phospholipase
Cβ (PLCβ) (Fisher et al., 2020), or receptor tyrosine kinases
(RTKs) activating PLCγ, can mediate the formation of IP3 and
DAG from PIP2. IP3 then binds to IP3Rs on the ER membrane,
leading to Ca2+ release from the ER lumen (where Ca2+ is
maintained between 100 and 800µM; Burdakov et al., 2005)
down its electrochemical gradient into the cytosol (<100 nM
basal Ca2+; Berridge, 2016). IP3 and Ca2+ act as co-agonists
at IP3Rs (Bezprozvanny et al., 1991; Finch et al., 1991; Foskett
et al., 2007) and channels display a biphasic sensitivity to Ca2+,
resulting in a characteristic bell-shaped concentration-response
curve. In the presence of very low IP3 levels, IP3Rs are extremely
sensitive to Ca2+ inhibition. However, a small increase in IP3
concentration (to∼100 nM) profoundly reduces the sensitivity of
the channel to Ca2+ inhibition, permitting dramatic increases in
activity (Iino, 1990; Bezprozvanny et al., 1991; Finch et al., 1991;
Foskett et al., 2007).

The resultant release of stored Ca2+ can take on a broad range
of spatiotemporal profiles, which depend on many factors. To
name just a few, these include the concentration of local IP3 and
Ca2+, ER Ca2+ load, the type, and number of IP3Rs expressed,
their splice variation, whether they are homomers or heteromers,
and the topology of the local microenvironment. Such intricacies
provide the versatility to potentially generate a huge variety of
Ca2+ signals that encode information through their amplitudes,
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FIGURE 8 | Structural topology of Ca2+ channels expressed by pericytes. (A) The general structure of Cav channels consists of a single 24-transmembrane α subunit

which is a repeat of a 6-transmembrane motif with an embedded voltage sensor connected by intracellular loops. This is accompanied by associated β, γ, and α2δ

subunits. (B) IP3Rs consist of a tetrameric assembly of 6- transmembrane subunits with a large N-terminal domain that contains the IP3 binding site.

durations, frequencies, and spatial characteristics (Bootman and
Bultynck, 2020). Despite these inherent complexities, a range of
stereotyped IP3R-mediated Ca2+ signals typically emerge. These
range from the opening of single IP3R (termed a “blip”), to the
coordinated, weakly cooperative openings of a cluster of around
6 IP3Rs within a release site (a “puff”), to finally—with sufficient
IP3–a long-range regenerative Ca2+ “wave” arising due to the
recruitment of successive sites through the process of Ca2+-
induced Ca2+ release (CICR) (Berridge et al., 2000; Smith and
Parker, 2009; Lock and Parker, 2020).

Store-mediated Ca2+ release has been observed in pericytes
in a range of contexts. For example, pericytes of the ureter
display long-duration IP3R-mediated Ca2+ transients in response
to the GqPCR agonists endothelin-1 and arginine vasopressin.
These signals are suppressed by elevations of Ca2+ in adjacent
cECs, which are suggested to inhibit IP3R activity through a
NO-dependent mechanism (Borysova et al., 2013). Spontaneous
ER Ca2+ release-dependent Ca2+ transients have also been
observed in suburothelial capillary pericytes, which activate
CaCCs to depolarize the membrane, subsequently recruiting
VDCCs (Hashitani et al., 2018).

In the brain, recent studies have revealed that capillary
pericytes generate microdomain Ca2+ oscillations under ambient

conditions, and that neural activity evoked by odor leads to
a transient cessation of these signals and a decrease in basal
Ca2+, which correlates with an increase in RBC velocity (Hill
et al., 2015; Rungta et al., 2018). However, it is worthy of note
that a decrease was not observed in similar experiments in
which whisker stimulation was used to drive activity (Hill et al.,
2015), suggesting the possibility of heterogeneity in the Ca2+

signaling machinery deployed by pericytes in different regions of
the cortex. The specific ion channels and broader mechanisms
that underlie these ambient signals have not yet been delineated,
but IP3Rs are obvious potential candidates. Elucidation of the
mechanistic basis and roles of these Ca2+ signals in brain
capillaries is critical, and awaits further experimentation.

Voltage-Dependent Ca2+ Channels Directly
Link Vm to Ca2+ Entry
VDCCs are composed of four to five distinct subunits (α1,
β, α2δ, and γ; Figure 7). The α1 subunits are pore forming
and responsible for the pharmacological diversity of different
VDCC subtypes. These are associated with an intracellular β

subunit, a disulphide-linked α2δ subunit, and in some cases
a transmembrane γ subunit, each of which regulate surface
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expression and tune the biophysical properties of the channel
(Catterall et al., 2005). The large α1 subunit is organized into
four homologous domains, each comprising six transmembrane
segments (S1-S6) with intracellular N- and C- termini. Similar to
Kv channels, the S4 segment of each of these domains comprises
the voltage sensor and the S5-S6 regions form the ion conducting
pore (Catterall et al., 2005). Capillary pericytes express genes
encoding the α subunits for L-type (Cav1.2, Cav1.3), P/Q-type
(Cav2.1), and T-type (Cav3.1, Cav3.2) channels and thus we
briefly review the salient properties of these here. They also
express low levels of several genes encoding β and α2δ auxiliary
subunits (He et al., 2018; Vanlandewijck et al., 2018).

As with Kv channels, VDCC activity depends on membrane
potential: Po steeply increases with depolarization, balanced by
multiple feedback mechanisms that act to limit Ca2+ entry at
depolarized potentials. Prominent among these are voltage- and
Ca2+-dependent inactivation. Voltage-dependent inactivation
(VDI) is inherent to the α1 subunit but is modulated by
the ancillary β subunit and others, whereas Ca2+-dependent
inactivation (CDI) is conferred by a CaM monomer associated
with the α1 carboxy tail (Peterson et al., 1999; An and Zamponi,
2005; Dick et al., 2008; Tadross and Yue, 2010; Tadross et al.,
2010). Regulation is additionally complicated by the panoply of
alternative splice variants that can be expressed, which impact
the biophysical properties of the functional channel, including
sensitivity to CDI and VDI.

L-type channels are widely expressed, including in the heart,
in skeletal and smooth muscle, and in neurons (Zamponi
et al., 2015). Cav1.2 and Cav1.3 have distinct biophysical and
pharmacological differences (Lipscombe et al., 2004)—Cav1.3
channels open and close on faster timescales than Cav1.2
(Helton et al., 2005), and are less sensitive to inhibition by
dihydropyridines (Xu and Lipscombe, 2001). A C-terminal
modulatory (CTM) domain can structurally interfere with CaM
binding to decrease Po and reduce CDI, an effect that is more
pronounced in Cav1.3 than Cav1.2 (Striessnig et al., 2014).
Moreover, in alternatively spliced Cav1.3 channels, the absence of
a CTMdomain can shift the voltage of half-maximal activation by
∼+10mV by decreasing the slope factor of the activation curve
without any effects on activation threshold (Singh et al., 2008). At
physiological extracellular Ca2+ levels, the activation threshold
of Cav1.3 is much more negative (-55mV) than Cav1.2 (-25 to
−30mV) (Xu and Lipscombe, 2001). Thus, at pericyte resting Vm

of around−45mV, as measured in the retina (Zhang et al., 2011),
Cav1.3 channels could be active and contribute to Ca2+ entry.

In addition to voltage- and Ca2+-dependent inhibition, L-
type VDCC activity is heavily regulated by GPCR signaling.
Prominent among these, Gs-cAMP-PKA signaling has long
been known to play an important role in stimulating channel
activity, and has been studied extensively in the heart. Here, it
was recently shown that the target of PKA phosphorylation is
not the core channel itself, as mutation of all PKA consensus
phosphorylation sites to alanine resulted in channels that
retained PKA regulation. Rather, PKA acts via the small G protein
Rad, a constitutive inhibitor of VDCCs. Phosphorylation of
Rad relieves its interaction with β subunits, and allows channel
activity (Liu et al., 2020). Further regulation of L-type channels by

PKC, stimulated by DAG liberated as a result of GqPCR activity,
is also a possibility, with both inhibitory and potentiating effects
having been observed (Kamp and Hell, 2000).

P- and Q-type currents are both attributable to Cav2.1, with
the β subunit accompanying the pore-forming subunit thought
to account for their differences (Zamponi et al., 2015). These
channels have been best characterized in the nerve terminals
and dendrites of neurons where they couple Ca2+ entry with
neurotransmitter release (Zamponi et al., 2015) and also play a
role in coupling Ca2+ entry to gene transcription via engagement
of CaM kinase II (Wheeler et al., 2012). They open in response
to similar depolarization levels as Cav1.2 channels, with an
activation threshold of approximately −40mV (Adams et al.,
2009). Upon repetitive/tetanic stimulation, as occurs during
neuronal activity, CaM can bind to two adjacent sites on
the Cav2.1 α1 subunit to mediate an initial Ca2+-dependent
facilitation (CDF) of P/Q-type current, followed by progressive
CDI, with a relatively slow (30 s−1min) recovery from this
(Lee et al., 1999, 2000). While CDI of Cav2.1 requires a global
Ca2+ increase, CDF can be promoted by Ca2+ entry through
an individual Cav2.1 channel and results in an enhancement of
channel Po, enabling stimulation-evoked increases in amplitude
and duration of Ca2+ currents (Chaudhuri et al., 2007). Slow
and fast modes of Cav2.1 gating have been proposed. The
slow mode exhibits longer mean closed times and latency to
first opening, slower kinetics of inactivation, and necessitates
larger depolarizations to open the channel. Inactivation also
occurs at more depolarized potentials in the slow compared
to fast mode (Luvisetto et al., 2004). The type of β subunit
modulates the prevalence of these modes, with fast and slow
gating mediated by β3a and β4a subunits, respectively (Luvisetto
et al., 2004), the latter of which is expressed more robustly by
brain pericytes (He et al., 2018; Vanlandewijck et al., 2018).
Cav2.1 channels are inhibited by GPCR activity through several
distinct mechanisms—direct binding of the G protein βγ dimer
can augment VDI, while voltage-independent mechanisms such
as phosphorylation, depletion of essential lipids, and trafficking
mechanisms also play important roles (Zamponi and Currie,
2013).

T-type (Cav3.1 and Cav3.2) channels are activated at more
negative potentials, around −60mV, with rapid gating kinetics
and small single channel amplitudes (Iftinca and Zamponi, 2009;
Rossier, 2016). At membrane potentials of−65 to−55mV, these
channels exhibit window currents in which the channels open
but do not inactivate completely, permitting ongoing Ca2+ entry
(Perez-Reyes, 2003). These channels can be modulated by the
activity of a broad range of GPCRs, including those with Gα

subunits that couple to PKA, PKC, and PKG, along with direct
effects of Gβγ subunits (Iftinca and Zamponi, 2009).

Both L- and T-type VDCCs are expressed in cerebral SMCs
(Hill-Eubanks et al., 2011; Harraz and Welsh, 2013; Harraz
et al., 2014). Here, L-type channels provide Ca2+ for contraction
(Nelson et al., 1990), whereas T-type channels provide negative
feedback by coupling Ca2+ entry to RyR activity. Subsequent
Ca2+ release via RyRs in turn activates large-conductance Ca2+-
activated K+ (BK) channels to hyperpolarize the membrane
(Harraz and Welsh, 2013; Harraz et al., 2014). T- and P/Q-type
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channel currents have not yet been observed in native pericytes,
but L-type VDCC currents have been measured in the retina
(Sakagami et al., 1999). Variance in the magnitude of L-type
VDCC Ca2+ currents across the microvascular network has
functional consequences for the degree of Ca2+ entry via these
channels (Matsushita et al., 2010; Burdyga and Borysova, 2014).
In the retina, L-type VDCC currents are 7.5-fold higher in
SMCs as compared to capillary pericytes, suggesting that Vm

changes influence intracellular Ca2+ levels to a greater degree
at the level of arterioles (Matsushita et al., 2010). Indeed,
extracellular K+ at 10mM (a concentration that evokes Kir-
mediated hyperpolarization) and 97.5mM (which depolarizes
the membrane to drive VDCC activity) significantly decreased
and increased intracellular Ca2+ in arteriolar SMCs, respectively,
but had only a marginal effect on capillary pericyte Ca2+

(Matsushita et al., 2010). Thorough characterization of native
brain capillary pericyte VDCC currents and their densities is
needed to advance our understanding of the contribution of these
channels to pericyte Ca2+ handling.

PERICYTE Cl− CHANNELS

Cl− channels are found in the plasma membrane and that
of intracellular organelles and have been implicated in the
regulation of cell excitability and volume, acidification of
intracellular organelles, control of muscle tone, and synaptic
transmission (Jentsch et al., 1999; Nilius and Droogmans, 2003).
While they are permeable to other anions (such as iodide,
bromide, or nitrate), they are referred to as Cl− channels since
this is the most abundant permeating anion species (Jentsch
et al., 2002). Capillary pericytes express the CaCC formerly
known as TMEM16A or anoctamin (Ano)1, and several members
of the voltage-dependent chloride channel (ClC) family—ClC-
2,−3,−4,−6, and−7 (He et al., 2018; Vanlandewijck et al., 2018).
The latter four of these are Cl−/H+ antiporters and are not
considered further here. Capillary pericytes also express other
anoctamins that have been implicated in lipid scrambling: Ano4
and Ano6, as well as the poorly understood Ano10 (He et al.,
2018; Vanlandewijck et al., 2018). Reports indicate that Ano6
may act as a Ca2+-activated Cl− and non-selective cation channel
with scramblase activity (Suzuki et al., 2010; Yang et al., 2012;
Grubb et al., 2013) and Ano4 was recently shown to be a Ca2+-
dependent non-specific cation channel with similar scrambling
capabilities (Reichhart et al., 2019).

CaCC Channels Couple Intracellular Ca2+

Increases to Depolarizing Cl− Efflux
The CaCC TMEM16A is a homodimer of two pores and ten
transmembrane domains, cytosolic N- and C-termini, and an
extracellular domain (Dang et al., 2017; Paulino et al., 2017).
Ca2+ binding to a transmembrane region of the pore induces
a conformational rearrangement that gates the channel and
leads to Cl− permeation, generating a current that is outwardly
rectifying with a slope conductance of ∼8 pS (Yang et al., 2008;
Xiao et al., 2011; Paulino et al., 2017). Ca2+ and voltage gating are
closely coupled, with a stretch of 8 amino acids controlling both

Ca2+ sensitivity and voltage-dependence of the channel (Xiao
et al., 2011). Indeed, a remarkable feature of this channel is the
voltage-dependence of Ca2+ sensitivity, with an EC50 of 2.6µM
at −60mV and 400 nM at +60mV. At physiological voltages,
the channel is maximally activated by around 10µM intracellular
Ca2+ but concentrations exceeding this lower activation. Strong
depolarization (above ∼100mV), in contrast, opens the channel
even in the absence of Ca2+, despite the lack of a classic voltage
sensor in the CaCC structure (Yang et al., 2008; Xiao et al., 2011).
The kinetics of activation are slow at positive potentials, but are
sharpened by an elevation of Ca2+, and at negative potentials
channels display deactivation (Nilius and Droogmans, 2003).
This interplay between Vm and intracellular Ca2+ makes the
CaCC an attractive candidate for regulation of Vm in response
to elevations intracellular Ca2+.

Since CaCC is sensitive to micromolar-range intracellular
Ca2+ at typical resting potentials, it seems plausible that it
is stimulated by local Ca2+ elevations (as opposed to global
increases) such as those occurring through nearby TRPs, VDCCs,
Orai channels, or IP3Rs. In keeping with this notion, cerebral
SMC CaCCs are activated by TRPC6-mediated Ca2+ entry
which drives vasoconstriction (Wang et al., 2016). Coupling
of IP3R activity to CaCCs has also been reported in response
to purinergic receptor activation, wherein CaCC-containing
membrane domains are closely localized with ER regions via
a physical linkage between this protein and IP3R1, facilitating
exclusive communication between the two and exposing the
CaCC to high Ca2+ concentrations during its release from the
ER (Jin et al., 2013; Cabrita et al., 2017).

Underscoring their important role in the vasculature, targeted
disruption of CaCCs from contractile vascular SMCs, mural
cells and pericytes lowers systemic blood pressure (Heinze
et al., 2014), whereas conversely CaCC overexpression drives
hypertension (Wang et al., 2015). In vascular SMCs, the driving
force for depolarizing Cl− currents comes from Cl−/HCO3−

exchange and Na+/K+/Cl− cotransport which enable high
intracellular Cl− concentrations (30–50mM; Owen, 1984;
Chipperfield and Harper, 2000; Kitamura and Yamazaki, 2001).
Capillary pericytes in the brain expressmRNA for genes encoding
two of the SLC4 family Cl−/HCO3− exchangers (Slc4a2, Slc4a3)
and the NKCC1 Na+/K+/Cl− cotransporter (Slc12a2) (He et al.,
2018; Vanlandewijck et al., 2018), which raise the potential for
similarly high intracellular Cl− concentrations. ECl with 30–
50mM intracellular Cl− and 133mM extracellular Cl− (Longden
et al., 2016) is between approximately −35 and −25 mV—more
positive than resting Vm of pericytes (∼-45mV, as measured in
the retina; Zhang et al., 2011), therefore under these conditions
activation of CaCC would cause Cl− efflux and membrane
depolarization, as seen in SMCs (Kitamura and Yamazaki, 2001;
Bulley and Jaggar, 2014). While direct evidence for CaCCs
in cortical capillary pericytes is currently lacking, in bladder
pericytes ER Ca2+ release activates CaCCs and the resulting
depolarization propagates to upstream SMCs of pre-capillary
arterioles via gap junctions, where they depolarize the membrane
to activate L-type VDCCs (Hashitani et al., 2018). In the pericytes
of descending vasa recta, angiotensin II causes cytoplasmic Ca2+

oscillations that activate CaCC channels and depolarize Vm to
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approximately −30mV (Zhang et al., 2008; Lin et al., 2010).
CaCC current and membrane depolarization have also been
recorded in retinal pericytes, where CaCC activation depends
on unidentified non-selective cation channels (Sakagami et al.,
1999) and can be evoked by GqPCR stimulation with endothelin
(Kawamura et al., 2002). Thus, CaCCs in brain pericytes are
predicted to depolarize Vm by coupling to a number of potential
Ca2+ sources, including IP3Rs and TRP channels.

ClC Channels May Repolarize the
Membrane Following Electrical Signaling
ClCs are double-barreled homodimeric channels with one ion
conduction pore per monomer (Dutzler et al., 2002). Each
subunit is made up of 18 α-helices which display an interesting
internal anti-parallel architecture, and many of these helices
are shortened and tilted which permits disparate parts of the
polypeptide to come together to form the Cl− selectivity filter
of the pore (Dutzler et al., 2002). The C-terminus also contains
two cystathione-β-synthase domains, which regulate gating by
binding ATP and ADP to decelerate the kinetics of activation
and deactivation (Estévez et al., 2004; Stölting et al., 2013).
ClC-2 has a unitary conductance of 2-3 pS and displays strong
inward rectification. A remarkable biophysical characteristic of
this channel is its slow hyperpolarization-mediated activation at
potentials negative to around−40mV, giving rise to currents that
are only very slowly inactivating (Nilius and Droogmans, 2003;
Bi et al., 2014). In addition to its hyperpolarization activation,
it is sensitive to changes in cell volume and extracellular pH
and is also activated by PKA (Nilius and Droogmans, 2003; Bi
et al., 2014). As we have suggested previously for hyperpolarizing
electrical signals generated in cECs, ClC-2 is an attractive
candidate for mediating membrane repolarization (Garcia and
Longden, 2020), in that its slow activation kinetics would enable
Kir-mediated electrical signals to be generated and sent upstream
before ClC-2 mediated Cl− current fully develops to repolarize
the membrane. Accordingly, ClC-2 may fulfill a similar role in
pericytes to initiate membrane repolarization in the wake of
electrical signals generated by KATP and Kir channels.

FURTHER CHANNELS IN PERICYTES

Capillary pericytes express an array of other ion channels,
including the ubiquitous two-pore channels (TPCs), voltage-
gated Na+ (Nav) channels, P2X receptors, and acid-sensing ion
channels (ASICs; Table 1 and Figure 4). Due to their lower
expression and dearth of functional data in capillary pericytes,
detailed discussion of these channels is beyond the scope of this
review, although we touch briefly upon the function of Piezo1
channels and P2X receptors.

P2X Receptors
The ubiquitous purine ATP has received attention as a putative
gliotransmitter (Pelligrino et al., 2011) and acts as an endogenous
agonist at P2Y GPCRs and the cation-selective ionotropic P2X
receptors, permeable to Na+, K+, and Ca2+ (Khakh et al., 2001).

P2X receptors are trimmers consisting of intracellular N- and C-
termini, a large extracellular domain containing the ATP binding
site, and two transmembrane segments that line an integral ion
pore (Kawate et al., 2009). Capillary pericytes express mRNA for
P2X1 and P2X4 receptors (Table 1), which have a pCa2+/pNa+ of
∼5 and 4.2, respectively (Khakh et al., 2001). Thus, pericyte P2X
receptors could function as sensors transducing ATP released
into the local environment into Ca2+ elevations. Several studies
have also suggested P2X7 receptors are functionally expressed
in cultured human and freshly isolated rat retinal pericytes
(Kawamura et al., 2003; Sugiyama et al., 2005; Platania et al.,
2017), though it should be noted that our expression data do
not unambiguously support the expression of this P2X isoform
in CNS pericytes.

Piezo1
Piezo1 is a large (2,521 amino acids in humans)mechanosensitive
cation channel, with three identical subunits, thought to have
38 transmembrane segments, that form a central ion conduction
pore with surrounding peripheral domains shaped like propeller
blades (Coste et al., 2010; Zhao et al., 2016, 2018; Wu et al.,
2017). Functional channels have a single channel conductance of
29 pS and a current that rapidly activates and then decays on a
millisecond timescale (Coste et al., 2010, 2015; Zhao et al., 2018).
In ECs, piezo1 can be activated by fluid shear stress, and has been
implicated in blood flow regulation, vascular development and
remodeling, and permeability (Li et al., 2014; Ranade et al., 2014;
Friedrich et al., 2019). Piezo1 may play similar roles in capillary
pericytes to mechanosensitive TRP channels in detecting
changes in blood flow, vessel diameter, or paravascular fluid
shear stress.

A BIRDS-EYE VIEW OF PERICYTE
G-PROTEIN COUPLED RECEPTORS

Pericytes express a huge variety of GPCRs (Table 2 and
Figure 4) enabling them to transduce a vast array of extracellular
stimuli into intracellular responses. As outlined above, many of
the signaling pathways triggered by GPCR signaling impinge
upon ion channel activity and thus regulate pericyte Vm and
intracellular Ca2+.

Assessment of the general characteristics of the list of GPCRs
expressed by pericytes is revealing. The majority of pericyte
GPCRs primarily interact with Gi/o α subunits. This is closely
followed by Gq-coupled GPCRs, then those that are Gs-coupled,
and the remainder couple primarily to G12/13. Perhaps tellingly,
expression of the Gnas gene, encoding the Gs α subunit, is ∼5
times higher than those collectively encoding Gq/11 α subunits,
more than double that of Gi/o α subunit genes, and more than 12
times in excess of G12/13 genes (He et al., 2018; Vanlandewijck
et al., 2018). Thus, while a wider variety of pericyte receptors
may couple to depolarizing, Ca2+-elevating processes, it appears
that hyperpolarizing Gs signaling may be a favored intracellular
transduction pathway.
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Around 12% of the receptor subtypes expressed by pericytes
are promiscuous/pleiotropic in their G-protein coupling, the
degree of which will depend on the expression levels of
the signaling elements involved and their local densities and
organization within GPCR signaling platforms. One such
example is the highly-expressed A2A adenosine receptor which
couples primarily to Gs, but also interacts with Gq and others
(Olah, 1997; Fresco et al., 2004). Such promiscuity could
represent an inbuilt feedback mechanism to prevent Vm being
locked at hyperpolarized potentials by K+ channel activity,
by facilitating recruitment of additional transduction pathways
to promote repolarization. In contrast, the promiscuity in
signaling exhibited among receptors that couple to Gq, Gi/o, and
G12/13 would serve to reinforce depolarization. For example, the
highly expressed S1P3 and PAR1 receptors frequently exhibit
coupling to not just Gi/o, but also to both Gq and G12/13 α

subunits (Tobo et al., 2007; Means and Brown, 2009; Yue et al.,
2012).

At the time of writing, a significant portion of GPCRs
expressed by pericytes (Table 2) remain orphan receptors with
little functional data available. Strikingly, one such orphan,
GPRC5C, is the 4th most robustly expressed GPCR in these
cells. Given this lack of data, we omit this group from
further discussion.

G-PROTEIN COUPLED RECEPTOR
STRUCTURE AND SUBCLASSES

The GPCR family represents the largest family of mammalian
proteins (Lagerström and Schiöth, 2008; Katritch et al.,
2014) sharing a common 7-transmembrane topology with
an extracellular N-terminus and intracellular C-terminus. G-
protein heterotrimers are organized into four principal categories
based on the similarity of function and homology in their
α subunits: Gs, Gi/o, Gq/11, and G12/13 (Simon et al., 1991;
Dupré et al., 2009). Broadly, the roles of these Gα subunits are
to stimulate/inhibit production of cAMP by adenylate cyclase
(AC; Gs and Gi/o, respectively), to activate PLC (Gq/11), and
to activate Rho guanine nucleotide exchange factors (GEFs)
(G12/13) (Hanlon and Andrew, 2015). The Gβγ subunit also
activates downstream signaling elements and plays a role in
GPCR mediated intracellular signaling (Dupré et al., 2009).
Below, we outline how signaling through these pathways may
modulate the activity of pericyte ion channel activity and
consequently Vm and Ca2+ signaling, and we explore what the
GPCRs expressed by pericytes might be able to tell us about
NVC mechanisms.

PKA AS A Gs- AND Gi/o-CONTROLLED
MODULATOR OF ION CHANNEL
FUNCTION

In pericytes, Gs stimulation and subsequent PKA engagement is
likely to drive phosphorylation of a number of ion channel targets

including KATP, a range of TRP channels, VDCCs, and IP3Rs—
modulating their activity and thus Vm and cellular behavior
(Figure 9). GsPCR activation leads to association of the Gαs
subunit with a cleft in the C2 domain of AC, catalyzing the
conversion of ATP to cAMP (Sadana and Dessauer, 2009). cAMP
then activates PKA by binding to its two regulatory subunits,
inducing the dissociation of two catalytic subunits, enabling their
subsequent phosphorylation of downstream targets (Sassone-
Corsi, 2012). In contrast, Gi/o activation inhibits AC, opposing
GsPCR activity. Here, Gαi/o binds to the C1 domain of AC to
inhibit enzymatic activity, although this is limited to the AC-I,
-V, and -VI isoforms (Sadana and Dessauer, 2009).

Gs-cAMP-PKA Signaling Augments
Hyperpolarizing K+ Currents in Pericytes
Kir channels are likely key determinants of pericyte Vm, and
as noted previously KATP channel activity is bidirectionally
modulated by cAMP levels. At tonic, low concentrations
of cAMP, PKA increases vascular KATP channel activity
by phosphorylating multiple sites on the pore-forming and
regulatory subunits (Quinn et al., 2004; Shi et al., 2007, 2008b).
At higher concentrations, cAMP conversely inhibits KATP

channel activity in a Ca2+-dependent manner via engagement
of the ubiquitous exchange protein activated by cAMP (Epac)-
1 (Purves et al., 2009). PKA is preferentially activated by
cAMP over Epac1, exhibiting a 30-fold lower EC50 (∼1 vs.
30µM; Purves et al., 2009). Accordingly, it seems that Gs

activity will preferentially favor membrane hyperpolarization
through KATP engagement. Consistent with this, activation of
Gs-coupled adenosine receptors leads to a dramatic increase in
retinal pericyte K+ currents (Li and Puro, 2001). High-level
accumulation of cAMP might in turn be expected to act as an
inbuilt concentration-based feedback mechanism to inhibit the
channel through Epac1 engagement.

In addition to such concentration-dependent regulation
of channel activity, spatial considerations are important in
determining the functional outcome of cAMP elevations. The
assembly of ACs and phosphodiesterases into membrane-
bound scaffolds organized around A-kinase anchoring proteins
(AKAPs) has been suggested to facilitate the generation of
microdomains of cAMP (Arora et al., 2013; Lefkimmiatis
and Zaccolo, 2014). Such compartmentalization may facilitate
specific, local adjustment of, for example, KATP channel activity
in a select part of the cell (e.g., a thin-strand process or around
a peg-socket junction in the case of pericytes) without impacting
ion channels in other regions.

Complementary to the activation by PKA that KATP channels
exhibit, Kir2.2 is also positively regulated by PKA (Zitron
et al., 2004). Moreover, several Kv isoforms expressed by
pericytes exhibit PKA sensitivity, in that the activity of
Kv7.4/7.5 heteromers or Kv7.5 homomers is potentiated by PKA
activation (Mani et al., 2016). Kv2.1 membrane trafficking is
also controlled by a PKA-dependent mechanism (Wu et al.,
2015). Collectively, these data suggest a key stimulatory role
for Gs-cAMP-PKA signaling in the regulation of pericyte K+
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FIGURE 9 | Potential Gs- and Gi/o-coupled GPCR–ion channel interactions in capillary pericytes. GsPCR activation promotes (green) adenylate cyclase (AC) activity,

whereas Gi/oPCR activation inhibits (red) AC. AC in turn generates cAMP from ATP, which stimulates PKA activity. PKA interacts with a broad range of ion channels. In

pericytes, its activity is expected to couple to plasma membrane K+ and VDCC activity, with mixed effects on TRP channel activity. K+ channel hyperpolarization will

oppose VDCC activity and thus the overall effect of Gs stimulation is membrane hyperpolarization.
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channels, along with potential negative feedback mechanisms to
prevent over-activation.

Gs-Mediated Reduction of TRP Channel
Activity Complements K+ Channel
Engagement
TRP channels are extensively regulated by Gs activity, and in
contrast to K+ channels this typically leads to a decrease in
activity. Focusing on the TRP isoforms expressed by pericytes,
TRPC3, TRPC4, TRPC6, and TRPML1 are all inhibited by PKA
phosphorylation (Vergarajauregui et al., 2008; Nishioka et al.,
2011; Sung et al., 2011). In contrast, TRPM4 exhibits activation
as a result of Gs stimulation in an Epac1-and IP3R-mediated
Ca2+ release-dependent manner (Mironov and Skorova, 2011),
and TRPM7 can also be potentiated by PKA (Takezawa et al.,
2004). Phosphorylation of TRPP1 by PKA also increases channel
Po (Cantero del Rocío et al., 2015).

Thus, regulation of TRP channels via PKA is complex but it
appears that this will to lean toward PKA-dependent inhibition of
currents in pericytes. This reinforces the notion that engagement
of PKA will shift the balance of ion channel activity to favor
membrane hyperpolarization via K+ channel activity, while
reducing Na+ and Ca2+ influx via TRP channels.

Gs Activation May Promote Increases in
Intracellular Ca2+

As noted, augmentation of Cav1.2 is primarily dependent on
PKA phosphorylation of Rad to relieve channel inhibition
(Liu et al., 2020). PKA phosphoregulation of Cav1.2 is also
dependent on the AKAP isoform present in the macromolecular
environment of the channel: AKAP15 permits sensitization
of the channel whereas calcineurin associated with AKAP79
suppresses PKA-mediated increases in Cav1.2 activity via
dephosphorylation (Fuller et al., 2014). scRNAseq data (He et al.,
2018; Vanlandewijck et al., 2018) indicate that pericytes express
AKAP79 at low levels whilst expressing high levels of AKAP15,
suggesting Gs-stimulation in pericytes will favor increases in
Cav1.2 channel activity. Along similar lines, an increase in
PKA activity induces sensitization of Cav1.3 (Mahapatra et al.,
2012), and Cav3.1 currents are augmented in a cAMP/PKA-
dependent manner (Li et al., 2012). Moreover, the current of
Cav3.2 is increased by cAMP, an effect that depends upon
AKAP79/150, and its gene expression is also up-regulated by
Gs-signaling, suggesting a mechanism for long term T-type
VDCC regulation (Liu et al., 2010; Sekiguchi and Kawabata,
2013). Accordingly, PKA activity should increase VDCC channel
activity but, due to its voltage-dependence, in the broader
context of the pericyte ion channel repertoire this must be
weighed against simultaneous increases in activity of multiple K+

channels which will hyperpolarize Vm and keep VDCCs closed.
IP3Rs also possess phosphorylation sites for PKA (Ferris

et al., 1991a; Vanderheyden et al., 2009) and can also be directly
influenced by cAMP (Tovey et al., 2010), allowing for direct
crosstalk between cAMP and Ca2+ release pathways. Indeed,
phosphorylation by PKA induces an increase in sensitivity of
the receptor for IP3, promoting IP3-induced Ca2+ release, while

Epac1 activation also potentiates Ca2+ release (Vanderheyden
et al., 2009; Mironov and Skorova, 2011).

Drawing all of these threads together, the complement of PKA
targets and their relative expression levels in pericytes suggests
that the Gs-coupled receptors here likely primarily transduce
stimuli into Vm hyperpolarization, but may in some cases also
elevate intracellular Ca2+ via release from stores.

The Gs Receptor Complement of Pericytes
Suggest a Range of Potential Mediators for
the Regulation of Blood Flow
Pericytes express a range of receptors that couple to Gs–of
particular note are the adenosine A2A receptor, the PACAP
receptor, PAC1, the prostacyclin IP receptor and the PTH-
type 1 receptor (PTHR1). The expression of these suggests the
possibility that their endogenous agonists could be released
onto pericytes during neuronal activity to evoke membrane
hyperpolarization and electrical signaling to increase blood flow
(Figure 6).

The vasodilatory effects of adenosine, an abundant metabolic
byproduct, have long been appreciated (Drury and Szent-
Györgyi, 1929). In the brain, adenosine is released into the
extracellular space by widely-expressed nucleoside transporters,
or more commonly accumulates through the extracellular
catabolism of ATP by ectonucleotidases (Cunha, 2016). Recent
in vivo work showing a reliable correlation between extracellular
adenosine accumulation and rapid increases in local O2 suggest
that adenosine is capable of acting as a neurovascular coupling
mediator (Wang and Venton, 2017), and clear links have been
established between sensory stimulation, adenosine receptor
engagement, and increases in cerebral blood flow (Ko et al.,
1990; Dirnagl et al., 1994). The precise cellular and molecular
mechanisms underlying this linkage remain to be determined,
and actions through pericyte adenosine receptors are a strong
candidate for mediating these effects.

Considering prostanoids also, blockade of Gs-coupled IP
receptors impairs neuronal activity-evoked vasodilation (Lacroix
et al., 2015), which suggests a role for the classic vasodilator
prostacyclin—produced in the same metabolic pathway as
PGE2—in NVC. This possibility remains little explored, but the
expression of IP receptors in pericytes provides a potential target
for capillary endothelium-generated prostacyclin.

PACAP is a 27- or 38-amino acid neuropeptide that is an
extremely potent vasodilatory agent (Koide et al., 2014). PACAP
polypeptides are produced throughout the brain where they act
as neurotransmitters and also have neurotrophic effects. These
peptides are released by both neurons and astrocytes during
activity and thus PACAP accumulation in the paravascular
space could feasibly activate pericyte Gs-coupled PAC1 receptors
(Johnson et al., 2020), warranting further exploration of their
potential involvement in NVC.

Finally, PTHR1 binds the endocrine ligand PTH and
the paracrine ligand PTH-related protein-1 (PTHrP-
1) (Vilardaga et al., 2011). Intriguingly, PTH binding to
PTHR1 triggers sustained and prolonged cAMP production
by retaining the intact ligand-receptor complex even after
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endocytosis (Ferrandon et al., 2009). This could have important
implications for pericyte Gs signaling if PTH is released during
neuronal activity.

Gi/o-Coupled P2Y14 Receptor Signaling
May Impart Sensitivity to Local Metabolic
Substrate Availability
The purinergic family P2Y14 receptor is the most robustly
expressed GPCR in pericytes. This receptor signals through Gi/o

and is activated by uridine diphosphate (UDP) and nucleotide
sugars—most potently by UDP-glucose (Harden et al., 2010).
UDP-glucose is synthesized from glucose and acts as a glucose
donor in the synthesis of glycogen, which is present at modest
levels in the brain (Leloir et al., 1959; Breckenridge and Crawford,
1960; Öz et al., 2015). This and related nucleotide sugars also act
as donors for glycosylation in the ER lumen and Golgi apparatus
(Berninsone and Hirschberg, 1998), and as a consequence these
molecules are thought to be released under basal and simulated
conditions from a broad range of cells, primarily through
vesicular transport accompanying glycoconjugate delivery to the
cell membrane (Harden et al., 2010; Lazarowski, 2012). The
released nucleotide sugars have been hypothesized to act in
an autocrine or paracrine manner on local P2Y14 receptors
(Lazarowski and Harden, 2015), and as the hydrolyzation of
UDP-glucose is three times slower than that of ATP, this has
been suggested to result in long-duration signaling (Lazarowski,
2006). As its synthesis is dependent on glucose, we speculate that
UDP-glucose signaling through P2Y14 may function to notify
pericytes of local energy substrate availability: in conditions of
ample glucose, UDP-glucose maintains activity of P2Y14, which
through Gi/o signaling would counterbalance cAMP generation
and prevent PKA activation of KATP and other K+ channels. In
the event that glucose levels fall, such as during neuronal activity
(Hu andWilson, 1997; Paulson et al., 2010; Li and Freeman, 2015;
Pearson-Leary and McNay, 2016) or in situations of metabolic
stress, the loss of this negative feedback could be relieved, leading
to cAMP elevations and engagement of KATP and other K+

channels to increase blood flow and replenish local glucose.

mGluR3 and mGluR7 May Impart Glutamate
Sensing Capabilities to Pericytes
The Gi/o-coupled metabotropic glutamate receptors mGluR3

and mGluR7 are both localized in presynaptic terminals of
GABAergic and glutamatergic synapses, and mGluR3 is also
found in glia (Harrison et al., 2008; Palazzo et al., 2016). Like
other mGluRs, these receptors contain a large N-terminal venus
flytrap domain with a glutamate binding site that dimerizes
with that of neighboring mGluRs. mGluR7 has a comparatively
low affinity for glutamate and is thus activated only by its
accumulation at high extracellular concentrations, but is also
activated by elevations of intracellular Ca2+ through CaM
interactions with its C-terminal tail. In neurons activity of
these receptors exerts a hyperpolarizing influence that depresses
synaptic activity through the lowering of cAMP, activation of
G protein-coupled Kir (GIRK) channels and the inhibition of
VDCCs (Niswender and Conn, 2010). Pericytes do not express

GIRKs, but they do express a range of VDCCs (Table 1). Thus,
although the physiological roles of mGluRs in pericytes remain to
be ascertained, their expression here implies that any glutamate
elevations in the vicinity of pericytes could drive cAMP inhibition
via mGluR3 and mGluR7 activation, and a reduction in Ca2+

entry via VDCCs.

PKC TARGETS: Gq-DEPENDENT
MODULATION OF PERICYTE ION
CHANNELS

Activation of the Gq α subunit stimulates phospholipase
C (PLC), which mediates the conversion of membrane
phospholipids to DAG and IP3, inducing PKC activation and
Ca2+ release, respectively, which may affect a broad range of ion
channels (Figure 10). We focus below on the ramifications of
PKC signaling.

Gq-DAG-PKC Signaling Will Promote
Depolarizing Currents in Pericytes
Activated PKC phosphorylates a diverse range of ion channels
and is thus capable of exerting considerable influence on Vm.
PKCs are divided into three subfamilies depending on their
activation requirements: conventional PKCs require DAG, Ca2+

and a phospholipid for activation; novel PKCs require DAG but
are independent of Ca2+; atypical PKCs require neither of these
(Newton, 2010). CNS capillary pericytes express PKC isoforms
from each of these subfamilies (Table 3).

All three IP3R isoforms can be phosphorylated by PKC.
PKC phosphorylation of IP3R1 is potentiated by prior
phosphorylation by PKA and increases Ca2+ release (Ferris
et al., 1991a,b; Vermassen et al., 2004; Vanderheyden et al.,
2009). In contrast, IP3R2 and IP3R3 are each inhibited by
Ca2+-sensitive, conventional PKCs (Arguin et al., 2007; Caron
et al., 2007).

Kir channels are also extensively regulated by PKC, where
phosphorylation inhibits Kir6.1-containing KATP channels,
contrasting starkly with the stimulatory effects of PKA. This
phosphorylation is graded—multiple serine residues (ser-
354,−379,−385,−397, and−397 in the Kir6.1 C-terminal
domain) can be phosphorylated, and the degree of inhibition
is proportional to the number of these sites that receive a
phosphoryl group from PKC (Shi et al., 2008b). In pericytes this
graded response to PKC for the highly expressed KATP channel
could provide a means to fine tune activity, by permitting the
degree of local Gq signaling to oppose the stimulatory effects or
PKA or ATP depletion. PKC also regulates the membrane density
of Kir6.1, in that the PKCε isoform induces internalization of
the receptor in a caveolin-dependent manner (Jiao et al.,
2008), providing another avenue to decrease KATP channel
activity. Likewise, Kir2.2 has multiple sites that inhibit channel
current upon phosphorylation by PKC, but the graded PKC
phosphorylation observed for Kir6.1 is absent (Kim et al., 2015;
Scherer et al., 2016).

TRP channels are subject to complex regulation by Gq

activity, with important roles for DAG, detailed above, and
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FIGURE 10 | Potential GqPCR-ion channel interactions in capillary pericytes. GqPCR activation engages PLC, leading to the hydrolysis of PIP2 into IP3 and DAG. IP3

evokes Ca2+ release from the ER via resident IP3Rs, which may engage CaCCs and KCa channels. DAG stimulates PKC which has mixed effects on the TRP

channels expressed by pericytes, promotes VDCC activity, and inhibits KATP, Kir, and Kv channels. The net effect of engagement of GqPCRs is thus membrane

depolarization and intracellular Ca2+ elevation.
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TABLE 3 | Expression of PKC isoforms in brain capillary pericytes, and their modes of activation and regulation.

PKC isoform Gene name Average

counts/cell

(annotated as

a pericyte)

Class Ca2+ activation DAG activation Phospholipid

activation

Regulation by

arachidonic

acid

PKC-α Prkca 6.57 Conventional Yes Yes Yes +

PKC-β1 Prkcb
17.45

Conventional Yes Yes Yes +

PKC-β2 Prkcb Conventional Yes Yes Yes +

PKC-γ Prkcg 13.19 Conventional Yes Yes Yes +

PKC-δ Prkcd 5.93 Novel No Yes No –

PKC-ε Prkce 6.65 Novel No Yes No Insensitive

PKC-η Prkch 1.25 Novel No Yes No +

PKC-θ Prkcq 0.04 Novel No Yes No Insensitive

PKC-ι Prkci 22.30 Atypical Insensitive Insensitive Yes Insensitive

PKC-ζ Prkcz 0.06 Atypical Insensitive Insensitive Yes Insensitive

mRNA average counts per cell were mined from He et al. (2018) and Vanlandewijck et al. (2018). For regulation by arachidonic acid, “+” denotes an increase in enzymatic activity, while

“–” represents a decrease in enzymatic activity.

PKC. TRPC3 and TRPC6 in particular are inhibited by PKC
despite activation by other elements of the Gq signaling cascade
(Bousquet et al., 2010; Earley and Brayden, 2015), and TRPC1
is in contrast activated by PKC (Xiao et al., 2017). TRPM4 can
be phosphorylated by PKC to sensitize the receptor to Ca2+

(Nilius et al., 2005), which augments Na+ entry in response to
subsequent local Ca2+ elevations.

Cav1.2 currents are enhanced by phosphorylation at Ser1928
by PKC isoforms from each subfamily (PKCα, PKCε, and PKCζ),
permitting a broad range of conditions to regulate VDCC
activity (Yang et al., 2005). As pericytes express members of all
three subfamilies of PKC, regulation of Cav1.2 activity may be
similarly robust in these cells. Cav1.2 surface expression is also
increased within minutes of Gq stimulation via a PKC-dependent
increase in channel trafficking to the plasmamembrane (Raifman
et al., 2017). In contrast, Cav1.3 is negatively regulated by both
conventional and atypical PKC isoforms (PKCβ2 and the PKCε,
respectively), both of which are expressed in CNS pericytes
(Table 3). As for T-type channels, Cav3.1 activity is stimulated by
PKC phosphorylation, independently of trafficking (Park et al.,
2006), and Cav3.2 is negatively regulated by Ca2+-independent
PKCη phosphorylation (Zhang Y. et al., 2018), although PKCη is
absent in pericytes.

PKCα also activates CaCCs to promote Cl− efflux, where
phosphorylation shifts the EC50 of intracellular Ca2+ from 349
to 63 nM for channel activation at−80mV (Dutta et al., 2016).

Pulling these threads together, it seems that PKC activation as
a result of Gq activity in pericytes will contrast with the effects of
Gs-cAMP-PKA signaling by enhancing activity of depolarizing
ion channels such as VDCCs, TRP channels, and CaCCs while
inhibiting hyperpolarizing channels such as KATP and Kir.
Given that Gq activity also induces the release of Ca2+ from
intracellular stores via IP3Rs, Ca2+-sensitive PKC activation may
act as a further amplification loop to increase the signal:noise
ratio of Gq signaling and promote Ca2+ accumulation
and depolarization.

Thromboxane and ETA Receptors Are
Gq-Coupled Mediators of SMC
Constriction That Are Robustly Expressed
by Capillary Pericytes
The Gq-coupled thromboxane (TP) receptor is well-known to
induce vasoconstriction by SMCs (Dorn and Becker, 1993) and
contractile mural cells of 1st−4th order vessels (Mishra et al.,
2016). The TP receptor’s endogenous agonists include a range
of eicosanoid lipids that are generated from arachidonic acid
(AA), which is initially mobilized from membrane phospholipid
pools by the action of Ca2+-dependent phospholipase A2

(PLA2; Balsinde et al., 2002). Subsequently, cyclooxygenase or
prostaglandin H2 (PGH2) synthase enzymes convert AA to
PGH2, a potent agonist of the TP receptor. Further processing of
PGH2 yields thromboxane-A2 (TxA2), a still more potent agonist
(Bos et al., 2004; Woodward et al., 2011). Alternatively, AA can
be shuttled down a cytochrome P450 ω-hydroxylase pathway to
generate the TP agonist 20-HETE (Miyata and Roman, 2005).
The contractile influence of 20-HETE has been suggested to play
a major role in determining the diameter of cerebral arterioles
and thus controlling brain blood flow (Attwell et al., 2010), and
the activation of TP receptors has also been suggested to cause
mild, slow contractions of capillary pericytes (Fernández-Klett
et al., 2010). It is unknown whether pericyte TP receptors are
basally active to produce this effect in vivo, but subtle changes
in capillary diameter induced by this process could regulate local
blood flow over the long term, dependent on the local levels of
these agonists.

The ETA receptor shares broad similarities with the TP
receptor. Its principal transduction pathway is also Gq—although
coupling to other G proteins such as G12/13 has been noted—
and similar to the TP receptor, its activation evokes robust
SMC contractions (Sokolovsky, 1995; Horinouchi et al., 2013;
Davenport et al., 2016). The agonist of the ETA receptor,
Endothelin-1, is constitutively released by ECs, SMCs, neurons
and astrocytes (Russell and Davenport, 1999; Thorin and Webb,
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2010; Freeman et al., 2014). In culture, release of endothelin-1
fromECs has been noted to drive changes in pericytemorphology
through reorganization of F-actin and intermediate filaments
(Dehouck et al., 1997), suggesting that ECs could regulate their
coverage by pericyte processes through ETA signaling. In the
context of Alzheimer’s disease, aberrant ETA signaling caused
by amyloid β accumulation results in capillary constriction by
overlying pericytes which may limit oxygen and glucose delivery
to the parenchyma (Nortley et al., 2019).

As described above, signaling through these receptors is
expected to oppose Gs-cAMP-PKA signaling while promoting
membrane depolarization and elevation of Ca2+.

Crosstalk and Control of G Protein
Signaling Pathways
The preceding discussion illustrates that many channels
expressed by pericytes are differentially regulated by PKA and
PKC phosphorylation, and thus their activity will depend in part
on the balance of activity between these pathways. Crosstalk
between these pathways also occurs at the level of effectors, in
addition to ultimate phosphorylation targets. For example, the
Gq and Gi/o pathways oppose the Gs pathway at the level of AC,
which can be Ca2+ sensitive and modulated by PKC, dependent
on isoform (Chern, 2000). Indeed, the most highly expressed
AC isoform in brain pericytes is ACVI (Table 4), which is
regulated by PKC, Gi/o, Ca2+, and Gβγ (Chern, 2000; Sadana
and Dessauer, 2009). This regulation is mirrored for Gs acting
on the Gq pathway, where PKA can directly inhibit the activity
of PLC via phosphorylation (Nalli et al., 2014). Accordingly, Gs-
and Gq-coupled receptors functionally oppose one another at
multiple levels of their transduction pathways, which will help
push the membrane potential toward either hyperpolarization or
depolarization, respectively.

Another layer of control is provided by regulators of GPCR
signaling (RGS)—small proteins that regulate the duration and
intensity of GPCR signaling by driving GTPase activity of the
Gα subunit and accelerating the hydrolysis of GTP, thereby

TABLE 4 | Expression of isoforms of adenylate cyclase (AC) by CNS pericytes.

AC isoform Gene name Average counts/cell

(annotated as a pericyte)

AC-I Adcy1 0.79

AC-II Adcy2 0.31

AC-III Adcy3 15.18

AC-IV Adcy4 11.33

AC-V Adcy5 8.27

AC-VI Adcy6 89.98

AC-VII Adcy7 1.34

AC-VIII Adcy8 0.05

AC-IX Adcy9 55.32

AC-X Adcy10 0.34

mRNA average counts per cell were mined from He et al. (2018) and Vanlandewijck et al.

(2018).

inactivating their target (Ross and Wilkie, 2000; Kach et al.,
2012). Capillary pericytes express high levels of RGS4 and 5
(Bondjers et al., 2003; He et al., 2018; Vanlandewijck et al.,
2018) that act as GTPase activating proteins for Gi/o and Gq/11

subunits, while seemingly sparing Gs (Berman et al., 1996;
Watson et al., 1996; Hepler et al., 1997; Huang et al., 1997; Cho
et al., 2003; Gunaje et al., 2011). Intriguingly, RGS4 is known
to be phosphorylated by PKA and PKG, which stimulate its
activity, accelerating the deactivation of Gq/11 and inhibiting
the hydrolysis of phosphoinositide to IP3 (Huang et al., 2007).
Therefore, RGS engagement in pericytes may complement and
amplify the hyperpolarizing effects of Gs signaling by stifling the
depolarizing influences of Gi/o and Gq/11.

RhoA TARGETS: G12/13-SIGNALING

Capillary pericytes express several G12/13-coupled receptors,
including a range of lysophospholipid receptors with important
roles in lipid signaling, the promiscuous protease activated
receptor PAR1, and several orphan receptors (Table 2). G12/13

activation couples to a number of interacting partners including
cadherins, AKAPs, non-receptor tyrosine kinases and protein
phosphatases, though its interaction with Ras homolog family
member A (RhoA) is the best characterized (Worzfeld et al.,
2008). In SMCs, RhoA engagement of its downstream effector
Rho-associated kinase is known to contribute to a range of
receptor-mediated contractile responses (Swärd et al., 2003).

RhoA is also frequently observed to be activated downstream
of ion channel engagement, including TRPC6 and TRPM7
channels (Canales et al., 2019) and VDCCs (Fernández-Tenorio
et al., 2011). RhoA modulating ion channel activity is less
frequently reported, but RhoA may indirectly modulate Vm on
slow time scales by promoting the endocytosis and translocation
of channels such as Kv1.2, IP3Rs, and TRPC1 (Mehta et al.,
2003; Mayor and Pagano, 2007; Stirling et al., 2009) and possibly
KATP channels (Foster and Coetzee, 2015). Effects of RhoA on
Kir2.1 channel activity have also been reported, although the
mechanistic details of this interaction have not been fully clarified
(Jones, 2003).

Gβγ SIGNALING AND PERICYTE
FUNCTION

Initially, the Gβγ subunit was viewed as a negative regulator
of the Gα subunit, serving to increase signal:noise ratio and
specificity of signaling by preventing aberrant Gα activity in
the absence of an agonist, but has since been found to be
an active effector in its own right (Dupré et al., 2009), and
may play important roles in pericyte physiology. Gβγ interacts
with a range of canonical effectors (for example PLCβ, AC,
GIRKs; Chern, 2000; Smrcka, 2008) along with a growing list
of non-canonical effectors such as mitochondrial ATP synthase,
a range of nuclear transcription factors, cytoskeletal regulators
involved in motility, and constituents of the extracellular signal
regulated kinase (ERK) pathway. These interactions implicate
Gβγ in signaling roles as diverse as regulation of transcriptional
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activity, modulation of mRNA processing, control of nuclear
import/export, cell motility, and oxidative phosphorylation
(Khan et al., 2016). In addition to regulation of AC VI (Sadana
and Dessauer, 2009)—the most highly expressed pericyte AC
isoform (Table 4)—Gβγ signaling may also exert direct effects on
pericyte Vm through activation of Kv7.4 (Stott et al., 2015). In
contrast Cav2.1, Cav3.2, and TRPM3 can be inhibited through
Gβγ-dependent mechanisms (Hu et al., 2009; Zamponi and
Currie, 2013; Alkhatib et al., 2019).

PERICYTE GPCRs THAT COUPLE TO
MULTIPLE G PROTEINS

The previously discussed GPCRs are largely selective in their
G protein coupling, allowing for precise intracellular signaling
in response to a range of stimuli. However, many GPCRs
that are highly expressed in pericytes are capable of signaling
through multiple G proteins. This may represent pleiotropy—
physiological activation of different G proteins in response to
differing signals—or promiscuity, i.e., engaging in non-preferred
G protein interactions due to high levels of receptor expression
or excessive stimulation (Maudsley et al., 2005). Here, we review
examples of highly-expressed pericyte GPCRs with a tendency to
couple to multiple G proteins.

S1P Receptors
Sphingosine-1-phosphate (S1P) is a lipid mediator formed
through the action of ceramidase on lipids of the plasma
membrane (Ksiazek et al., 2015). S1P is constitutively released
by erythrocytes and its plasma concentration strongly correlates
with hematocrit (Selim et al., 2011; Ksiazek et al., 2015). The
transporter-mediated release of S1P from ECs has also been
documented (Kerage et al., 2014) along with the export of the
enzyme that catalyzes its formation, sphingosine kinase (Ancellin
et al., 2002). This leads to S1P signaling in the vasculature,
which is particularly important for maintenance of the BBB
(Janiurek et al., 2019), vasoconstriction (Salomone et al., 2010),
angiogenesis, and regulation of vascular tone at the level of
arterioles (Kerage et al., 2014).

Pericytes are ideally positioned to sense the release of S1P from
local ECs. The actions of S1P are mediated through a family of
receptors that act through Gi/o, Gq, and G12/13 signaling, with
S1P2 and the robustly expressed S1P3 coupling to each of these
(Means and Brown, 2009). Accordingly, S1P sensed by pericytes
is expected to promote PLC engagement, Ca2+ elevations, a
fall in cAMP, and depolarization, but further information as
to the physiological roles of signaling through these receptors
awaits experimental attention. As pericytes are critical for the
maintenance of blood-brain barrier tightness (Armulik et al.,
2010), it is possible that S1P signaling contributes to this process.
S1P signaling also strengthens contact between ECs and pericytes
in culture through a mechanism involving the trafficking and
activation of the adhesion molecule N-cadherin by ECs (Paik
et al., 2004), and it is thus possible that this is mirrored in
pericytes to contribute to this interaction and maintain peg-
socket junctions.

PAR1 May Regulate Pericyte Thin-Strand
Processes
Protease-activated receptor (PAR) 1 is a member of the
PAR family and is stimulated by external proteases such as
thrombin and trypsin. The proteolytic action of these enzymes
on the extracellular domain of the receptor reveal an N-
terminal tethered ligand sequence, exposure of which results in
irreversible activity of the receptor that is halted only by its
internalization (Soh et al., 2010). PARs are broadly expressed
in the neurovascular unit, found in neurons, glia, ECs and
SMCs, as well as pericytes. PAR1 couples to Gq, Gi/o, and
G12/13, and while the release or activation of agonists for these
receptors is typically associated with injury or inflammatory
responses (Ma and Dorling, 2012; Yue et al., 2012), they have also
been implicated in cell proliferation and differentiation, synaptic
plasticity (Noorbakhsh et al., 2003), and driving vasodilation
(Villari et al., 2017). Interestingly, thrombin signaling regulates
morphology of fine processes in astrocytes through RhoA, and
similar effects have been noted in neurons (Noorbakhsh et al.,
2003). In line with this, it is possible that PAR1 signaling regulates
the dynamics of pericyte process extension and retraction on
capillaries (Berthiaume et al., 2018).

FRIZZLED AND ADHESION GPCRs IN
PERICYTES

Finally, pericytes also express a range of members of the
frizzled family of GPCRs. These are receptors for Wnt
proteins, and G-protein coupling is of less importance in this
group. Instead, canonical frizzled signaling occurs through the
β-catenin pathway (MacDonald et al., 2009), but G protein
coupling through signaling platforms assembled around the
FZD-associated phosphoprotein Disheveled is also possible. The
latter facilitates activation of Gq- and Gi/o-proteins to produce
Ca2+ elevations and PKC engagement (Schulte, 2010; Kilander
et al., 2014). Further research is required to infer the functional
implications of pericyte expression of frizzled receptors, but
developmental and homeostatic roles seem likely, as these are
major aspects of Wnt signaling (Yang, 2012). Low levels of the
adhesion class cadherin EGF lag seven pass receptors (CELSR)2
are also seen in pericytes.

CONTROL OF PERICYTE Vm BY PERICYTE
ION CHANNELS AND
GPCRs—CONCLUSIONS AND FUTURE
PERSPECTIVES

The ion channels and GPCRs expressed by capillary pericytes
represent a toolkit for the dynamic control of pericyte
membrane potential and function. Among a panoply of roles
for these signaling elements, the robust expression of genes
encoding K+ channels and GsPCRs and their second messenger
components implies an important role for pericyte membrane
hyperpolarization, which we suggest contributes to long-range
electrical signaling to control blood flow (Figure 6). Importantly,
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disturbances in blood flow and the processes that regulate it
are increasingly appreciated to play a key role in a variety
of pathological conditions. These include dementias such as
Alzheimer’s disease (AD) (Alsop et al., 2000; Iadecola, 2004;
Nicolakakis and Hamel, 2011; Iturria-Medina et al., 2016), small
vessel disease of the brain (Dabertrand et al., 2015; Capone et al.,
2016; Huneau et al., 2018), psychological conditions such as
schizophrenia (Mathew et al., 1988; Zhu et al., 2017) and chronic
stress (Longden et al., 2014; Han et al., 2019), plus diabetes (Mogi
and Horiuchi, 2011; Vetri et al., 2012), hypertension (Girouard
and Iadecola, 2006; Capone et al., 2012), and stroke (Girouard
and Iadecola, 2006; Koide et al., 2012; Balbi et al., 2017), and
pericytes appear to be exceptionally sensitive to pathological
perturbations (Winkler et al., 2011).

The ion channels and GPCRs that are highly expressed by
brain pericytes thus have the potential to be pharmacological
targets for vascular disorders, metabolic diseases, and
neurodegenerative and neurological disorders (wherein for
example KATP channels, IP3Rs, VDCCs, TRP channels, and
GPCRs such as A2A and ETA receptors have been implicated, to
name but a few; Hübner and Jentsch, 2002; Jacobson and Gao,
2006; Nilius et al., 2007; Ohkita et al., 2012; Aziz et al., 2014;
Mikoshiba, 2015). Thus, furthering our understanding of the
mechanisms through which pericytes contribute to blood flow
control in the brain is a critical step in the search for ways in
which to prevent decline or restore function in these disease
contexts. The data we have discussed underscore that we are at
an early stage in our understanding of how pericyte ion channels
and GPCRs contribute to these functions, and warrant further
studies to reveal novel mechanisms and therapeutic targets.

In the future, it will be important to determine the precise
effects of both hyperpolarization and depolarization on pericyte
functional outputs, for which optogenetic technologies or

traditional electrophysiological approaches (Zhang et al.,
2011) can be leveraged. At a deeper level, questions regarding
the organization of pericyte ion channels and GPCRs await
exploration—are these organized into macromolecular
signaling complexes to facilitate privileged communication
between complementary molecular players? Are these elements
concentrated at sites to optimize cell-cell communication, such
as peg-socket junctions, or distributed more broadly throughout
the cell? What are the mechanisms that modulate the fidelity and
gain of signaling (control of gene expression, protein trafficking,
cell surface expression levels, and so on) and how are these
affected in cerebrovascular disorders? The present survey of
pericyte ion channels and GPCRs provides a map that can be
used to guide these deeper explorations.
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