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The Possible Role of MOPr-DOPr
Heteromers and Ilts Regulatory
Protein RTP4 at Sensory Neurons in
Relation to Pain Perception

Wakako Fujita*

Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Heteromers between mu opioid receptor (MOPr) and delta opioid receptor (DOPY) (i.e.,
MOPr-DOPr heteromer) have been found to be expressed in different brain regions,
in the spinal cord, and in dorsal root ganglia. Recent studies on this heteromer reveal
its important pathophysiological function in pain regulation including neuropathic pain;
this suggests a role as a novel therapeutic target in chronic pain management. In
addition, receptor transporter protein 4 (RTP4) has been shown to be involved in
the intracellular maturation of the MOPr-DOPr heteromers. RTP4 appears to have
unique distribution in vivo being highly expressed in sensory neurons and also
macrophages; the latter are effector cells of the innate immune system that phagocytose
foreign substances and secrete both pro-inflammatory and antimicrobial mediators;
this suggests a possible contribution of RTP4 to neuronal immune-related pathological
conditions such as neuropathic pain. Although RTP4 could be considered as an
important therapeutic target in the management of pain via MOPr-DOPr heteromer, a
few reports have supported this. This review will summarize the possible role or functions
of the MOPr-DOPr heteromer and its regulatory molecule RTP4 in pain modulation at
Sensory neurons.
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INTRODUCTION

In the nervous system including central and peripheral neurons, G-protein coupled receptors
(GPCRs) play important roles in the signal transduction by neurotransmitters. For example,
opioid receptors are widely distributed along the pain pathways and play a role in pain
attenuation. Over the last decade studies have shown that heteromerization of GPCRs alters
their pharmacological characteristics or their function (Gomes et al., 2016). That is, heteromers
exhibit novel pharmacology, such as altered ligand-binding properties, G-protein coupling, and
trafficking, that differs from that of homomers. Several groups including ours have focused on
the physiological role of heteromerization between mu opioid receptors (MOPr) and delta opioid
receptors (DOPr) and found that it may be involved in mechanisms modulating antinociceptive
tolerance to morphine (He et al, 2011; Fujita et al, 2019). Thus early studies showed that
DOPr antagonists decreased tolerance to the analgesic effects of morphine, a MOPr agonist
(Abdelhamid and Takemori, 1991; Schiller, 2010), increased morphine-mediated antinociception
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(Gomes et al., 2004), and animals lacking DOPr or the gene-
encoding preprotachykinin A do not exhibit morphine tolerance
(Zhu et al,, 1999; Guan et al, 2005). This was followed by
studies by several groups that detected the presence of MOPr-
DOPr heteromers and characterized their properties [reviewed
in Rozenfeld and Devi (2011), Gomes et al. (2016), Ugur et al.
(2018), Zhang et al. (2020)]. One of the studies showed that the
MOPr-DOPr heteromer is constitutively associated with beta-
arrestin, and treatment with DAMGO alone (a MOPr agonist)
leads to sustained MAPK phosphorylation (characteristic of
beta-arrestin-mediated phosphorylation), while a combination
of DAMGO and TIPP{ (a DOPr antagonist) leads to a rapid
and transient increase (characteristic of G protein-mediated
signaling) as seen in cells expressing only MOPr (Rozenfeld
and Devi, 2007). This signaling switch from G-protein (for
MOPr) to beta-arrestin (for MOPr-DOPr heteromer) results in
the cytoplasmic retention of MAPK and differential activation
of downstream transcription factors (Rozenfeld and Devi,
2007). Interestingly, mice lacking beta-arrestin2 exhibit increased
and prolonged morphine-induced antinociception (Bohn et al,,
1999) and do not develop the antinociceptive tolerance to
morphine (Bohn et al., 2000). The constitutive association of
the MOPr-DOPr heteromer with beta-arrestin together with
observations that chronic morphine exposure upregulates MOPr-
DOPr heteromers in brain regions involved in pain signaling
(e.g., rostroventral medulla and nucleus accumbens) (Gupta
et al, 2010). Pierre et al. suggest the possibility that these
heteromers play a pivotal role in the regulation of pain and
antinociceptive tolerance by showing the co-localization of
MOPr and DOPr after chronic morphine treatment (Pierre
et al,, 2019). Ligands targeting the MOPr-DOPr heteromer
have been reported. These include bivalent ligand that contains
MOPr agonist and DOPr antagonist pharmacophores separated
by a spacer arm (MDAN series) and a small molecule
ligand, CYM51010, that exhibit potent antinociception with
reduced antinociceptive tolerance or dependence comparing to
morphine (Daniels et al, 2005, Gomes et al, 2013; Fujita,
2020). Together these studies suggest that the MOPr-DOPr
heteromer could be of therapeutic significance as a target for
pain management.

Although not much is known about the mechanisms that
regulate the biosynthesis and maturation of MOPr-DOPr
heteromers, a receptor chaperone protein called receptor
transporter protein 4 (RTP4), appears to play a key role in
endogenous MOPr-DOPr heteromerization and in increasing
MOPr-DOPr levels following long-term MOPr stimulation
(Fujita et al, 2019). Furthermore, only 4 publications have
reported the RTP4 interaction with GPCRs, among which 2
with MOPr-DOPr heteromer (Behrens et al., 2006; Decaillot
et al., 2008; Mainland and Matsunami, 2012; Fujita et al., 2019).
In these reports, as described above, the role of RTP4 as an
endogenous chaperone molecule in regulation of MOPr-DOPr
heteromers under physiological condition or under chronic
morphine treatment has been clearly demonstrated (Decaillot
et al., 2008; Fujita et al., 2019). Other 2 publications reported
the role of RTP4 in regulation of taste receptors (Behrens
et al,, 2006; Mainland and Matsunami, 2012). They speculate

that binding of RTP4 could expose an existing targeting motif
within the receptor or mask an intracellular retention signal,
while a detailed study on the mechanism by which the plasma
membrane localization of taste receptors is regulated and on
the exact roles of RTP4 will be necessary to understand how
the function of receptors is achieved in vivo (Behrens et al.,
2006). Furthermore, besides serving as a chaperone protein
for the transport of GPCRs (Behrens et al, 2006; Decaillot
et al, 2008; Gifford et al., 2008), RTP4 has been shown
to have other physiological roles. That is, RTP4 seems to
be an important marker in various cancers, is involved in
hypertension and regulated by interferon as described and
discussed by Fujita et al. (2019).

Interestingly, recent studies reveal that RTP4 expression is
induced upon immune stimulation in vitro (Schoggins et al.,
2011; Hoyo-Becerra et al., 2015; Nair et al., 2017; Dang et al,,
2018); this suggests an effect on neuronal immune-related
pathological states including neuropathic pain. In this review, we
outline the possible role of the MOPr-DOPr heteromer and RTP4
in pain with an emphasis on neuropathic pain.

THE DISTRIBUTION OF MOPr-DOPr
HETEROMER IN THE CENTRAL AND
PERIPHERAL NEURONS - THE
POSSIBLE IMPLICATIONS TO THE
INHIBITION OF PAIN PERCEPTION

By using a selective antibody targeting the MOPr-DOPr
heteromer, Gupta et al. (2010) revealed its expression in several
brain regions including cortex, hippocampus, hypothalamus,
nucleus accumbens, prefrontal cortex, pons, striatum, and
ventral tegmental area (Gupta et al, 2010). In addition,
double-knockin animals expressing MOPr fused to the red
fluorescent mcherry protein (MOPr-mcherry) and DOPr fused
to the green fluorescent protein (DOPr-eGFP), Erbs et al.
(2015) showed that both receptors are co-expressed in selective
brain regions including the lateral hypothalamus and the
rostroventral medulla, the main nucleus of the trapezoid
body, the hippocampus, and the pons in agreement with
the findings by Gupta et al. (2010). Moreover, studies with
the double-knockin mice show that dependence to morphine
leads to alterations in MOPr-DOPr heteromer expression in
brain regions (Pierre et al., 2019). Interestingly, co-localization
of MOPr-mcherry and DOPr-eGFP fluorescent signals were
observed in GABAergic interneurons that control the firing
rate of glutamatergic neurons; this suggests an involvement
of MOPr-DOPr heteromers in the regulation of pain. This
is supported by the co-expression of the two receptors in
the high throughput nociceptive pathways that include the
rostral ventral medulla, lateral parabrachial nucleus, spinal
cord, and dorsal root ganglion (DRG) neurons, the pseudo-
bipolar neurons, with a peripheral branch that innervates
their target organ and a central branch that carries the
somatosensory information to the spinal cord (Erbs et al,
2015). In situ hybridization, single-cell PCR, electrophysiology,
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with RTP4 (B).
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FIGURE 1 | The topological information for RTP4 (A) and the schematic interaction between RTP4 and MOPr-DOPr heteromers (B). The data was obtained via
UniProt data base (uniprot.org). RTP4 (249 amino acids) has a single predicted transmembrane domain (228th to 248th amino acids) located near the C-terminal
end. It is considered that the N-terminal end is intracellular (1st to 227th amino acids) and the C-terminal end (249th amino acid) is extracellular, with no signal
peptide (UniProt,https://www.uniprot.org/uniprot/Q9ER80) (A). Decaillot et al. (2008) have suggested that the interaction between RTP4 and MOPr-DOPr heteromer
occurs in the cytoplasmic region since the region within the MOPr cytoplasmic C-terminal 29 amino acid residues (i.e., 370-398 aa) was necessary for interaction

379-398 amino acids

and immunostaining studies also provide evidence for the
coexistence of functional DOPr and MOPr in a subpopulation
of small-diameter peptidergic DRG neurons (Wang et al,
2010; Guerrero-Alba et al, 2018). Finally, a pharmacologic
study provided evidence that MOPr and DOPr colocalize on a
functionally important population of TrkA positive peptidergic
nociceptors (Joseph and Levine, 2010).

Recently studies have started to elucidate the therapeutic
potential for MOPr-DOPr heteromers. A study by Fujita et al.
(2014) suggested that MOPr-DOPr heteromer in enteric neurons
as a therapeutic target for the treatment of diarrhea-predominant
irritable bowel syndrome (Fujita et al., 2014). The study found
that eluxadoline, an orally active mixed MOPr agonist DOPr
antagonist, exhibits an anti-diarrheal effect, and in vitro studies
revealed that the signaling profile of eluxadoline that can be
partly blocked by MOPr-DOPr heteromer-selective antibodies.
Moreover, the study reported that eluxadoline can block castor
oil-induced diarrhea in wild type mice and this is attenuated
in DOPr knockout (DOPr~/~) mice indicating the involvement
of DOPr probably through MOPr-DOPr heteromerization in
the in vivo effects of eluxadoline (Fujita et al., 2014). This
suggests that the actions of eluxadoline could, at least in
part, be due to targeting of MOPr-DOPr heteromers in the
gut. Another study by Tiwari et al. (2020) suggested that
MOPr-DOPr heteromer as a potential therapeutic target for

the treatment of neuropathic pain. The authors observed
significant upregulation of MOPr-DOPr heteromer expression
in uninjured L4 DRG neurons after L5 spinal nerve ligation
(SNL) in rats. Furthermore, they found that the MOPr-DOPr
heteromer targeting ligand, CYM51010, significantly inhibited
mechanical and heat hypersensitivity in this pain model (Tiwari
et al., 2020). These results suggest that the spinal nerve
injury increases MOPr-DOPr heteromer levels in uninjured
DRG neurons, and that the heteromer may be a potential
therapeutic target for relieving neuropathic pain in sensory
neurons. However, further studies are needed to characterize
in detail the contribution of MOPr-DOPr heteromer to the
modulation of pain perception.

THE ROLE OF RECEPTOR
TRANSPORTER PROTEIN 4 (RTP4) IN
THE REGULATION OF MOPr-DOPr
HETEROMERIZATION

The function and the maturation of GPCRs (and their
heteromers) is known to be affected and regulated by receptor
chaperone proteins (Ritter and Hall, 2009; Williams and Devi,
2010). Since the receptors must be properly folded after
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Hypothesis: the possible role of MOPr-DOPr heteromer and RTP4 in the pain system
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FIGURE 2 | Schematic illustration of pain sensitization and the possible involvement of MOPr-DOPr heteromers and RTP4 in the regulation of pain sensation
(Hypothesis). The peripheral nerve injury will stimulate peripheral immune response cells like macrophages that can produce type | IFN. RTP4 could be upregulated
following the IFNARs/TNFRs activation in DRG neurons and thus induce the upregulation of MOPr-DOPr heteromer at the cell surface membrane (as a part of
compensatory mechanisms occurring during neuropathic pain). Although the critical role for RTP4 and the MOPr-DOPr heteromer in pain sensitization at the spinal
cord and the central nervous system is still not clear, the MOPr-DOPr heteromer and RTP4 could be a potent therapeutic target for pain treatment.

Spinal cord

translation and, in most cases, transported to the plasma
membrane to achieve functional activity, chaperones facilitating
their transport significantly affect receptor function. Early
studies with mammalian odorant receptors or taste receptors
showed that receptor transporter protein family members
(i.e., REEPs/RTPs) enhance receptor expression at the plasma
membrane (Saito et al., 2004; Ritter and Hall, 2009). The
analysis of RTP expression in mouse brain (Allen Brain
Atlas)' reveals that RTP4 is the most abundant subtype of
the RTP family (RTP1-4) in the brain. RTP4 is known to
promote cell-surface expression of a group of GPCRs involved
in mediation of pain relief, bitter taste sense, or sense of
smell (Saito et al.,, 2004; Behrens et al., 2006; Decaillot et al.,
2008). RTP4 (249 amino acids) has a single transmembrane
domain (228th to 248th amino acids) located near the
C-terminal end. The N-terminal end is considered to be
intracellular (1st to 227th amino acids) and the C-terminal
end (249th amino acid) extracellular with no signal peptide
(UniProt)* (Figure 1A).

In the case of MOPr-DOPr heteromers, studies reported
the requirement of RTP4 for efficient cell surface expression
(Decaillot et al., 2008; Fujita et al., 2019) since in its absence

Uhttps://mouse.brain-map.org/experiment/show/68444738
Zhttps://www.uniprot.org/uniprot/QIER80

a significant portion of the heteromer localized to the Golgi
apparatus without being transported to the cell surface. On
the other hand, the heterologous expression of RTP4 enhanced
cell surface MOPr-DOPr heteromer localization (Decaillot et al.,
2008); this was due to protection of the heteromer from
ubiquitination and proteasomal degradation during folding
and maturation. Although the details have not as yet been
elucidated, the interaction between RTP4 and the MOPr-DOPr
heteromer occurs via the cytoplasmic region of MOPr since
cytoplasmic C-terminal 29 amino acid residues (i.e., 370-398
amino acids) of this receptor were necessary for interaction
with RTP4 (Decaillot et al., 2008; Figure 1B). Interestingly,
long-term MOPr stimulation by DAMGO enhanced the cell
surface MOPr-DOPr heteromer expression; this was reversed
by RTP4 siRNA (Fujita et al, 2019). More importantly,
long-term treatment with DAMGO upregulates RTP4 levels.
Upregulation in RTP4 levels and MOPr-DOPr heteromers is
also seen in mice hypothalamus following chronic treatment
with morphine that leads to antinociceptive tolerance (Fujita
et al., 2019). While these studies show an important role for
RTP4 in regulating cell surface expression of the MOPr-DOPr
heteromer (Figure 2), it is still not clear if this chaperone
remains associated with the heteromer at the plasma membrane
and whether it modulates ligand binding to and signaling
by the heteromer.
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POSSIBLE PHYSIOLOGICAL ROLE OF
RTP4 IN PAIN PERCEPTION - THE
INVOLVEMENT OF CYTOKINE
MEDIATED RTP4 UPREGULATION AND
MOPr-DOPr HETEROMER FORMATION
IN SENSORY NEURONS

The database of the mouse brain® provides important
information about RTP4 gene expression in various types
of neurons (including central and peripheral) and non-neuronal
cells. Taking into account the excitatory neurons and inhibitory
neurons in brain regions including cortex, hippocampus,
midbrain, hindbrain, thalamus, hypothalamus, telencephalon,
amygdala, pallidum, septal nucleus, and spinal cord, RTP4
is highly expressed in DRG neurons (both peptidergic and
non-peptidergic), sympathetic (cholinergic and noradrenergic),
enteric (nitrergic and cholinergic), and noradrenergic muscle
neurons. Interestingly, a Gene Expression Omnibus (GEO)*
DataSets revealed an increase in RTP4 gene expression in L4
and L5 DRG neurons (both contralateral and ipsilateral) 28 days
post-surgery in a rat model of L5 SNL neuropathic pain. This
suggests a possible physiological role for RTP4 as a regulatory
molecule for pain perception at sensory neurons, since other
study also reported an increase of MOPr-DOPr heteromer
formation at the cell surface of the DRG neurons in neuropathic
pain animals (Tiwari et al., 2020; Figure 2). Thus, upregulation
of RTP4 and MOPr-DOPr heteromer levels may be a part of
compensatory mechanisms occurring during neuropathic pain.
More experimental studies are needed to confirm this and well as
the mechanisms involved in this process.

A possible mechanism for the upregulation of RTP4 in
DRG neurons during neuropathic pain could involve “interferon
(IEN).” This is because the RTP4 gene can be upregulated by
type I IFN (IFN-a, IFN-B, IFN -¢, IFN-k, IFN-w, IFEN-8, IFN-g,
and IFN-1) leading to RTP4 being referred to as “IFN stimulated
gene” (Schoggins et al., 2011; Hoyo-Becerra et al., 2015; Nair et al.,
2017; Dang et al., 2018). Peripheral immune responding cell such
as plasmacytoid dendritic cells or macrophages and the central
glial cells like astrocytes or microglia have been identified as
main producers of type I IFNs after viral infection, and the IFNs
have been shown to affect neuronal survival, neurite outgrowth
leading to modulation of the glutamatergic neurotransmission
under some pathological conditions including multiple sclerosis
and Alzheimer’s disease (reviewed in Blank and Prinz, 2017).
Interestingly, type I IEN has been reported as one of the mediators
of pain (Barragan-Iglesias et al., 2020; Figure 2). Type I IFN can
activate their specific receptors (IFNRs, i.e., IFNAR1, IFNAR?2)
resulting in downstream activation of cellular signaling and
a variety of physiological responses including pain regulation.
Thus, Barragan-Iglesias et al. (2020) found that type I IFNs such
as IFN-a and IFN-B will act directly on nociceptors in DRG
neurons, where IFNARs are expressed, to activate JAK/STAT
signaling pathways leading to increased phosphorylation of

3http://mousebrain.org/genesearch.html
“https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM63118

mitogen activated protein kinase and of eukaryotic initiation
factor 4E to promote pain hypersensitivity. They hypothesized
that this mechanism may be involved in the development of pain
evoked by viral infections such as HIV or herpes virus. Also,
TNF-a could be one of the additional regulatory molecules of
RTP4 at the periphery since it has been reported to mediate
the upregulation of RTP4 expression as a neuroinflammatory
signals (Intlekofer et al., 2019). As it is well known, macrophages
can release TNF-a (Roy et al., 1998; Eisenstein, 2019), thus it
is speculated that several inflammatory cytokines including IFN
and TNF-a will be released by peripheral immune responding
cells and thus may lead to upregulation of the RTP4 in sensory
neuronal cells. Since these cytokines positively regulate the
development of neuropathic pain (Leung and Cahill, 2010),
the upregulation of RTP4 and thus increase of MOPr-DOPr
heteromer levels may be a part of compensatory mechanisms
occurring during neuropathic pain as described above.

In the context of pain, the immune system and the activation
of peripheral macrophages or of central microglia, of resident
macrophage cells of the central nervous system, have been closely
related to the development of neuropathic or inflammatory
pain (Kiguchi et al, 2017; Xu et al, 2020). At the injured
tissue, macrophage cells or microglia will be activated leading
to induction of a variety of pro-inflammatory factors that
directly or indirectly sensitize pain-processing neurons in the
spinal dorsal horn, DRG, and in brain regions (e.g., cortex,
thalamus, amygdala, and hypothalamus) in various models
of neuropathic pain including nerve damage, diabetes, and
chemotherapy models (Kiguchi et al., 2017; Xu et al.,, 2020).
According to the database Bio GPS’, the gene expression
of RTP4 is highly detected in macrophages compared to
neurons indicating a possible physiological role of RTP4 in
regulation of immune responses and the development of
pain, although a direct role of RTP4 in the activation or
accumulation of macrophages or microglia in tissues should
be investigated.

Although RTP4 was initially characterized as a GPCR
chaperone protein as described above (Saito et al, 2004;
Behrens et al., 2006; Mainland and Matsunami, 2012), more
recent publications clearly revealed its significant role in
regulation of immune responses such as IFN-related antiviral
immunity (Schoggins et al, 2011; Nair et al., 2017; Dang
et al., 2018; Zarei Ghobadi et al., 2019; He et al., 2020).
Thus, it is suggested that RTP4 could be induced by type
I IFNs and work as a negative regulator of interferons
pathways. Moreover, a recent paper demonstrated that RTP4
knockout (RTP4~/~) mice showed a higher production of
type I IFN (He et al., 2020), suggesting an important role of
RTP4 in positive regulation of the immune responses, which
could be explored for disease treatment and management.
Taken together, RTP4 is thought to be involved in either
negative or positive regulation of IFN responses, and thus
it is possible that RTP4 could be involved in the pain
regulatory system.

“http://biogps.org/#goto=welcome
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SUMMARY AND PERSPECTIVE

In this review, we summarized and hypothesized the important
role of MOPr-DOPr heteromers in pain perception that is
associated with neuropathic pain. Further, we suggest a possible
role for RTP4, a chaperone protein of MOPr-DOPr heteromers,
in pain. Although more studies are needed that show a
direct contribution of MOPr-DOPr heteromers and RTP4 in
neuropathic pain models, their important roles were suggested
by several findings as follows.

1. MORr-DOPr heteromer and RTP4 appear to be found in
DRG sensory neurons. 2. MOPr-DOPr heteromer is upregulated
in the uninjured DRG by nerve injury. 3. RTP4 is a positive
regulator of MOPr-DOPr heteromers in neuronal cells. 4. In
DRG neurons, RTP4 can be upregulated by the nerve injury
at the contralateral and the ipsilateral sites. 5. RTP4 has been
shown to be upregulated by type I IFNs or TNF-a. 5. RTP4 is
highly expressed in immune-related cells like macrophages that
are known to produce cytokines including type I IFNs or TNF-
a and to contribute to the development of neuropathic pain
or pain sensation.

From these findings, we speculate that RTP4 may be a
key molecule in the development of pain via modulating
of MOPr-DOPr heteromer expression in neurons and
thus this could be a potent therapeutic target for pain
treatment. Although, the role of RTP4 in macrophages
or microglia is not clear, it could contribute to the
neuronal pain perception by activating the macrophages
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