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Providing the appropriate quantity and quality of food needed for both the mother’s
well-being and the healthy development of the offspring is crucial during pregnancy.
However, the macro- and micronutrient intake also impacts the body’s regulatory
supersystems of the mother, such as the immune, endocrine, and nervous systems,
which ultimately influence the overall development of the offspring. Of particular
importance is the association between unhealthy maternal diet and neurodevelopmental
disorders in the offspring. Epidemiological studies have linked neurodevelopmental
disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and
schizophrenia, to maternal immune activation (MIA) during gestation. While the
deleterious consequences of diet-induced MIA on offspring neurodevelopment are
increasingly revealed, neuroinflammation is emerging as a key underlying mechanism.
In this review, we compile the evidence available on how the mother and offspring
are both impacted by maternal dietary imbalance. We specifically explore the
various inflammatory and anti-inflammatory effects of dietary components and discuss
how changes in inflammatory status can prime the offspring brain development
toward neurodevelopmental disorders. Lastly, we discuss research evidence on the
mechanisms that sustain the relationship between maternal dietary imbalance and
offspring brain development, involving altered neuroinflammatory status in the offspring,
as well as genetic to cellular programming notably of microglia, and the evidence that
the gut microbiome may act as a key mediator.

Keywords: maternal diet, nutrient imbalance, inflammation, genetic programming, microglia, gut microbiome,
neurodevelopmental disorders, schizophrenia

INTRODUCTION

Nutrition is of course essential to the maintenance of life, but it is particularly fundamental
at the onset of life during the antenatal and early life periods of growth and development of
organs and systems. Although diet holds great importance for proper development, macronutrients
(carbohydrates, proteins, fats) and micronutrients (vitamins, minerals) are often consumed
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by pregnant and/or lactating mothers in inadequate proportions
(Garcia−Casal et al., 2018). Across the world, ∼39 million
pregnant women are estimated to be obese [body mass index
(BMI) over 30] or overweight (BMI: between 25 and 30)
due to poor nutrition (Chen et al., 2018), ∼32 million
of pregnant women are anemic, ∼19 million of pregnant
women suffer from vitamin A deficiency, while millions of
pregnant women suffer from iron, folate, zinc, and/or iodine
intake deficiency (Garcia−Casal et al., 2018). Malnutrition
includes maternal undernutrition and nutrient deficiency but
also excess of some key nutrients, like carbohydrates and
fats, that often lead to maternal overweight and obesity
(World Health Organization [WHO], 2020).

It is not surprising that maternal diet can profoundly impact
fetal and early postnatal development of a mother’s progeny
(Garcia−Casal et al., 2018). Indeed, malnutrition during in
utero and early life, notably due to inappropriate quantity and
quality of nutrients consumed by the mothers, can affect the
offspring’s growth, metabolism, immune function, brain, and
cognitive development (Ahmed et al., 2012; Godfrey et al.,
2017; Chen et al., 2018). In this review, we address this
worldwide issue associated with maternal diet by focusing on
its potential long-term impact on neurodevelopment in the
progeny. We strive to provide an up-to-date view of adequate
nutrition during pregnancy and its effect on mothers and their
offspring. Furthermore, we provide insights into diet-induced
inflammatory status, microbiome as well as genetic/epigenetic
changes, and their association to neurodevelopmental disorders
as potential underlying mechanisms.

MATERNAL DIET IN PREGNANCY

Even prior to conception, diet plays an important role in enabling
implantation of the embryo and placentation of the future
mother. Women planning for pregnancy require an increased
intake of folate equal to 400 µg/day, often ingested as dietary
supplement (Parisi et al., 2014), prior to conception until the 12th
week of pregnancy (Plecas et al., 2014). During pregnancy, several
suggested essential nutritional requirements (i.e., carbohydrates,
fats, proteins, vitamins—A, B, and C—and minerals—iodine,
iron, magnesium, selenium, zinc) almost double (see Table 1)
(Katamay et al., 2007; Ares Segura et al., 2016; Kominiarek and
Rajan, 2016; Mousa et al., 2019). This increased need mainly
occurs in the second and third trimesters of gestation, i.e.,
the main period of fetal growth (Nnam, 2015). Then, after
pregnancy, the nutrient requirements for breastfeeding mothers
also differ from those in non-pregnant state; increasing for some
nutrients (i.e., vitamins—A, B2, B5, B6, B8, B12, C, and E—
and minerals—selenium and zinc) while decreasing for others
(i.e., proteins, vitamins—B3 and B9—and minerals—iodine, iron,
and magnesium) (Katamay et al., 2007; Ares Segura et al., 2016;
Kominiarek and Rajan, 2016; Mousa et al., 2019).

Increased intake of macronutrients (fats, carbohydrates,
and proteins) and micronutrients (vitamins and minerals)
is generally recommended in the nutritional guidelines for
pregnant women. In addition, guidelines exist about excluding

TABLE 1 | Selected macro- and micronutrients recommended daily consumption
for non-pregnant, pregnant, and breastfeeding women (Katamay et al., 2007; Ares
Segura et al., 2016; Kominiarek and Rajan, 2016; Mousa et al., 2019).

Nutrients Recommended intake

Non-pregnant Pregnant Breastfeeding

Macronutrients

Carbohydrates (g/day) 130 175 N/A

Fats and fatty acids

n-6 α-Linolenic acid (g/day) 12 13 N/A

n-3 Linoleic acid (g/day) 1.1 1.4 N/A

Proteins (g/day) 46–50 60–71 62–65

Micronutrients

Vitamins

Water-soluble

B1 (thiamin) (mg/day) 1.1 1.4 1.4

B2 (riboflavin) (mg/day) 1.1 1.4 1.6

B3 (niacin) (mg/day) 14 18 17

B5 (pantothenate) (mg/day) 5 6 7

B6 (mg/day) 1.3 1.9 2.0

B8 (biotin) (µg/day) 30 30 35

B9 (folate) (µg/day) 400 600 500

B12 (cobalamin) (µg/day) 2.4 2.6 2.8

C (mg/day) 75 85 120

Fat-soluble

A (µg/day) 700 770 1300

D (µg/day) 5 5–15 5–15

E (mg/day) 15 15 19

K (µg/day) 90 90 90

Minerals

Calcium (mg/day) 1,000 1,000 1,000

Iodine (µg/day) 150 220–250 190

Iron (mg/day) 18 27–60 9–27

Magnesium (mg/day) 310-320 350–360 310–320

Phosphorous (mg/day) 700 700 700

Selenium (µg/day) 55 60 70

Sodium (mg/day) <2,000 <2,000 <2,000

Zinc (mg/day) 8 11 12

N/A, not available. Increased recommended intake are highlighted in bold.

certain food sources that may contain teratogens (substances
that are known to have damaging effects on the embryo),
unsafe bacteria (e.g., certain dairy or fish products), as well as
avoiding alcohol and caffeine (200 mg/day) consumption (Plecas
et al., 2014; Martin et al., 2016) and lowering salt (or sodium
chloride) intake (Katamay et al., 2007). The so-called dietary
supplements are also recommended when dietary consumption
alone does not fulfill nutrient requirements, such as in women
following a vegetarian/vegan diet, living in cold climates or with
malabsorption disorders (Kominiarek and Rajan, 2016).

As we will further detail, overall, maternal diet is critical for
the progeny’s proper development and maturation. Inadequate
supply of macro- and micronutrients may cause a broad range of
adverse outcomes for the fetus, ranging from premature birth and
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neurodevelopmental defects (neural tube, cognitive, and motor)
to death (Nnam, 2015; Martin et al., 2016).

Maternal Supplements
To support the dietary intake of pregnant or nurturing women,
supplements are often recommended in nutritional guidelines,
especially when the necessary nutrients cannot be fully obtained
from their diet (Kominiarek and Rajan, 2016). The extent to
which these supplements confer beneficial effects varies with
the specific nutrients. For instance, calcium supplementation
studies show reduced preeclampsia and preterm delivery in
higher risk group of pregnant women without improving
outcomes for the newborn (Hofmeyr et al., 2018). Similarly, zinc
supplements had a small positive effect on decreasing preterm
births (Donangelo and King, 2012). In contrast, supplementation
trials with n-3-long chain poly-unsaturated fatty acids (PUFAs)
during pregnancy and lactation revealed improved general
cognitive score of 2–5 years old children, without significant and
specific improvement reported on cognition, language, or motor
development (Gould et al., 2013). For vitamin B9 supplement,
studies suggest a beneficial effect mainly in decreasing risk
of birth defects (Maria De-Regil et al., 2010). Vitamin B12
supplementation helps normalize maternal cholesterol plasma
levels, as well as lipid metabolism in the offspring (Khaire et al.,
2015b). Still, additional unbiased studies with bigger sample
sizes are needed to determine the real beneficial effects of
supplementation for certain nutrients such as iodine (Harding
et al., 2017). Supplementations of iron and vitamin C, which can
assist with iron absorption, are routinely recommended during
pregnancy due to a twofold increase in need and the common
occurrence of anemia during pregnancy (Kominiarek and Rajan,
2016). However, in the case of vitamin C supplementation, no
significant effect has been observed on pregnancy complications
(i.e., intrauterine growth restriction, preeclampsia, preterm labor,
stillbirth) (Rumbold et al., 2015). Cosupplementation has been
proven beneficial in certain cases, notably the cosupplementation
of magnesium, zinc, and vitamin D was shown to decrease
inflammation and oxidative stress in women with gestational
diabetes (Jamilian et al., 2019).

Although the intake of supplements seems to have beneficial
effects for the most part, a majority of the studies investigating the
effects of supplements have overlooked demographic and lifestyle
factors (e.g., maternal age, ethnicity, comorbidities, physical
activity) that may interact in producing the reported pregnancy
outcomes. Therefore, the results of these studies should be
considered and interpreted with caution, and future investigation
should consider demographic and lifestyle factors, together with
other potential factors influencing supplements absorption and
outcomes (e.g., dose, food source, and method of absorption).

Maternal Adaptation in Pregnancy
Several strategies are in place within the future mother’s organism
to ensure an optimal nutrition and development of the progeny
(see Figure 1A). As metabolism changes during pregnancy
from an anabolic (building up) to a largely catabolic (breaking
down) state (King, 2000), nutrient absorption by the mother’s
intestine is increased, while their excretion from the mother’s

kidneys and gastrointestinal tract is altered (Zhang et al.,
2013; Plecas et al., 2014). In addition to these metabolic changes,
nutrients are redirected to the placenta and mammary glands,
as well as mostly transferred to the developing fetus (Nnam,
2015). To accommodate this increased requirement of blood flow
for nutrient and oxygen delivery to the placenta (Plecas et al.,
2014; Nnam, 2015), the mother’s blood volume also increases
by 35–40%, representing an expansion of 45–50% of the plasma
volume and 15–20% of the erythrocyte population (Nnam, 2015).

The placenta itself is critical to nutrient transfer from the
mother to the fetus, where most nutrients cross by diffusion,
while other nutrients require facilitated diffusion or active
transport through the placenta (McArdle et al., 2008; Desforges
and Sibley, 2009; Plecas et al., 2014; Lewis et al., 2018). Nutrients,
then, enable cellular growth, migration, differentiation, and fetal
development, where amino acids, the building blocks of proteins,
are particularly of utmost importance (Desforges and Sibley,
2009; Plecas et al., 2014) and where glucose provides about 75%
of the fetus energy needs (Plecas et al., 2014).

Absorption and the Gut Microbiome
Another important adaptation that takes place in pregnancy
pertains to the microorganisms that live in our intestines and help
process our dietary intake (see Figure 1A). The gut microbiome
is critical for both the harvest and storage of energy sources
(reviewed in Krajmalnik-Brown et al., 2012). While energy
demands mainly increase during the latter part of pregnancy,
adjustments begin to already take place early in pregnancy
(King, 2000).

Although pregnancy is a physiological state, many of the
body’s metabolic and immune adaptations resemble those of
dysfunctional states in non-pregnant individuals with metabolic
syndrome, such as increased energy harvest, adiposity, and
decreased insulin and leptin sensitivity (Koren et al., 2012; Gohir
et al., 2015b). These changes may prove necessary to provide
for the high-energy demands of fetal growth during the third
trimester and milk production during breastfeeding after birth.
Moreover, there is some evidence that contributing to these
adaptations are concomitant changes in the gut microbiome
(Collado et al., 2008; Gohir et al., 2015b). Pregnancy-associated
changes include a general increase in the amount of bacteria
living in the gut, although phyla diversity is reduced (Collado
et al., 2008). In addition, Firmicutes and Bacteroidetes, the two
normally predominant phyla (90%) of the gut microbiome
(reviewed in Ley et al., 2006; Rinninella et al., 2019) do
not appear to undergo important alterations with pregnancy
(Collado et al., 2008). However, the Proteobacteria phylum and
Actinobacteria phylum (mainly Bifidobacterium spp.), which
are respectively associated to increased inflammatory status,
and immune stimulation and metabolic function, are increased
from the first to the third trimesters (Collado et al., 2008;
Rinninella et al., 2019).

Changes in the gut microbiome are important to consider
because to meet the body’s needs, 10–30% of energy intake is
harvested in the large intestine where undigested carbohydrates
and proteins are further processed (fermented). With the help
of the resident microbes, this fermentation process results
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FIGURE 1 | Potential dietary-mediated factors altered by the pregnant mother’s diet and putative changes and mechanism occurring in the progeny. (A) Balanced
diet influences on nutrient absorption and transport, as well as fetal growth and development in pregnant women. Their gut microbiome can also influence mental
health state of the pregnant women. (B) In the offspring, diet can influence genetic programming (i.e., placental and genome-wide), neuroinflammation (i.e.,
microglia, cytokines, and blood–brain barrier leakiness), and gut microbiome endotoxicity, which in turn causes adverse neurodevelopmental outcomes such as
ASD, ADHD, cretinism, intellectual disabilities, and schizophrenia. ♂, male; ♀, female; ASD, autism spectrum disorder; ADHD, attention-deficit-hyperactivity disorder;
DNMT1, DNA (cytosine-5)-methyltransferase 1; LPS, lipopolysaccharide.

in the production of monosaccharides and short-chain fatty
acids (SCFA): primarily acetate, propionate, and butyrate in
a 3:1:1 proportion (Macfarlane and Macfarlane, 2003). These
metabolites have somewhat ambiguous functions, contributing

to lipogenesis (monosaccharides) that can ultimately lead to
the increase in adipose tissue and insulin resistance. This is
in part due to an increase of circulating free-fatty acids and
the proinflammatory cytokine production associated to some
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types of adipose tissue expansion and SCFAs propionate and
butyrate (Krajmalnik-Brown et al., 2012; Gohir et al., 2015a;
Jiang et al., 2019).

However, SCFAs appear to also be an important source of fuel,
because of the ease with which they are absorbed through the gut
by non-ionic diffusion (Kamp and Hamilton, 2006), dependent
on the pH, with slight acidity, presumed from bacterial metabolic
activity (Schönfeld and Wojtczak, 2016). SCFAs then travel via
the bloodstream to the liver where they are metabolized also with
relative ease not requiring protein binding, transportation, and
transmembrane translocation (reviewed in detail in Schönfeld
and Wojtczak, 2016). Importantly, SCFAs are not stored as
adipose tissue and appear to stimulate energy expenditure as they
modulate the liver’s metabolism of carbohydrates and lipids by
inhibiting glucose production, glycolysis, thus contributing to
prevent hyperglycemia and promoting fat oxidation (Wu et al.,
2005; Gao et al., 2009). In addition, SCFAs also regulate gut
satiety hormones glucagon-like peptide-1 (GLP-1) and peptide
YY (PYY) and because SCFAs can cross the blood–brain barrier,
they can further have direct effects in the brain and they are
known to centrally stimulate another satiety hormone: leptin
(Canfora et al., 2015). Lastly, SCFAs appear to have beneficial
immune regulatory properties, increasing the anti-inflammatory
functions of regulatory T cells in the colon (Smith et al., 2013).

In the context of pregnancy, while more research is required,
all of these features of SCFAs are thought to be favorable, with
high-fiber diets leading to high quantities of acetate in production
and having a protective effect against asthma in the offspring
(Thorburn et al., 2015). The gut microbiome is further involved
in synthesis and absorption of micronutrients like vitamins and
amino acids (Rodríguez-Concepción and Boronat, 2002; Bäckhed
et al., 2005; Gill et al., 2006, latter reference for supplementary
detailed tables). This finding proposes an additional mechanism
by which altered microbiome could impact pregnancy (Gohir
et al., 2015a), since there is already an increased urine excretion
of water-soluble micronutrients (Ladipo, 2000) like vitamins B6,
B12, folate (B9), and thiamin (B1), which are crucial for fetal
development (Jans et al., 2015).

The gut microbiome increases macronutrient absorption and
synthesis, which helps in building energy stores and regulates
the immune system. Since pregnancy is for the most part
anabolic, this is not inherently negative except when there
is overconsumption of macronutrients, for instance of fats,
which we will detail in section “Gut Microbiome-Mediated
Endotoxicity,” and which appears to alter microbial communities
in a way that impacts general metabolism and micronutrient
synthesis even when fatty diets are consumed prior to conception
(Gohir et al., 2015a). Notably, some metabolites that are produced
by the gut microbiome can play a beneficial role in the body’s
regulation of inflammation thus protecting the fetus.

Mental Health and the Gut Microbiome
Psychosocial adaptation is another big aspect of pregnancy and
that can be linked to diet and the gut microbiome. An altered
gut microbiome can also affect pregnancy in another important
way: through its effect on maternal mental health (see Figure 1A).
It is increasingly recognized that the gut commensal bacteria

have both direct and indirect effects on cognition and behavior.
In a landmark paper, germ-free mice, which are born to a
sterile environment and are thus not colonized by bacteria,
were shown to have an inadequate development of their stress
response through the hypothalamus-pituitary-adrenal axis, hence
altering anxiety-like behavior (Sudo, 2014). The alterations were
reversed when the mice were colonized by specific strains of
“good” gut bacteria early during development but not if the
intervention was done in adulthood (Sudo et al., 2004). Some
animal models of depression show that microbiome is altered
and in healthy human volunteers, probiotics have been shown
to alleviate distress (Cryan and Dinan, 2012), and others have
shown that consumption of foods that are rich in fat and/or
carbohydrate alleviate anxiety (Wurtman and Wurtman, 1995;
Hurley et al., 2005; Teegarden and Bale, 2008). The reality is that
both anxiety and depression during pregnancy and in postpartum
stages are common and can lead to adverse outcomes often
encompassing preterm birth and low birth weight (reviewed
in Dunkel Schetter and Tanner, 2012) as well as behavioral
alterations during childhood (reviewed in Rees et al., 2019).
Less understood is the degree to which general socioeconomic
situation (Stringhini et al., 2010) and chronic stress contribute to
the suboptimal management of pregnancy and diet (reviewed in
Monk et al., 2013), which in turn, could underlie immunological
and endocrine alterations, as well as anxiety and depression
affecting the fetus and the maternal behaviors postpartum
(Dunkel Schetter and Tanner, 2012). Notwithstanding, we know
that the gut microbiome is critically involved in modulating the
stress and immune response, which are important features of
both anxiety and depressive disorders (reviewed in Morris et al.,
2017; Peirce and Alviña, 2019).

SPECIFIC NUTRIENT IMBALANCE AND
INFLAMMATION

Macronutrients
Inappropriate availability of macronutrients—in deficiency or
excess—can have long-term effects on the development of
several body systems of the progeny (e.g., metabolic, circulatory,
pulmonary). Protein is a macronutrient that when insufficiently
consumed can lead to severe developmental consequences,
including intrauterine growth restriction, impaired brain growth,
and neurocognitive deficits (Monk et al., 2013). Meeting adequate
protein requirements during pregnancy is most important during
the second and third trimesters, when growth and development
of both maternal and fetal tissues is accelerated (Kominiarek
and Rajan, 2016). Studies on rodent adult offspring have
demonstrated that low protein intake during pregnancy led
to macrostructural changes of the brain such as decreased
cerebrovascular density (see Table 2) (Bennis-Taleb et al., 1999).
However, carbohydrate and fat consumption has become a
pressing nutritional focus as worldwide, millions of pregnant
women in developed countries suffer from obesity or overweight
(Chen et al., 2018) mainly due to excessive carbohydrate and
fat intake (Bleich et al., 2008). Critically, some of its negative
consequences are tied to inflammation (Bolton and Bilbo, 2014;
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TABLE 2 | Maternal and fetal outcomes of essential nutrient imbalance.

Nutrients Imbalance Outcomes References

Mother Fetus/child

Proteins ↓ N/A Brain structural changes
↓ cerebrovasculature

Bennis-Taleb et al., 1999

Carbohydrates ↑ ↓ hypertension
↓ adverse outcomes

↓ adverse outcomes Gabbe and Quilligan, 1977; Kattah and Garovic,
2013; Sanjarimoghaddam et al., 2019

↓ or ↑↑↑ Metabolic disruptions Metabolic disruptions, death, stillbirth Koski et al., 1986; Yamashita et al., 2000

Fatty acids
(n-6/n-3)

↓ n-3 ↑ postpartum depression N/A Horvath et al., 2007; Kim et al., 2017;
Hoge et al., 2019

↑ n-3 ↓ preterm delivery in high-risk
pregnancy

N/A

↑↓ n-6/n-3 N/A Altered neurodevelopment

Fats (saturated
and
unsaturated)

↑ Obesity, overweight, diabetes,
restricted intrauterine growth,
preeclampsia, C-section

Stillbirth, metabolic disorders, altered
behaviors (anxiety, cognitive, social,
motor)

Bilbo and Tsang, 2010; Sullivan et al., 2010,
2015; Tozuka et al., 2010; Peleg-Raibstein et al.,
2012; Sasaki et al., 2013; Bolton and Bilbo,
2014; Castanon et al., 2015; Grissom et al.,
2015; Tarrade et al., 2015; Graf et al., 2016; Ohta
et al., 2017; Montalvo-Martínez et al., 2018;
Thompson et al., 2018; Winther et al., 2018;
Cordner et al., 2019; Smith et al., 2019

Ketone bodies ↑ Mortality, morbidities in the long
term (cardiac, gastrointestinal,
renal complications)

Growth alteration, altered behaviors
(anxiety, ADHD, cognition, depression)

Rizzo et al., 1991; Sussman et al., 2013, 2015;
von Geijer and Ekelund, 2015; Kanikarla-Marie
and Jain, 2016; Nnodum et al., 2019

Vitamin A ↓ Night blindness, anemia,
↓ immune responses

Death, delayed growth, fetal
malformations

Sommer and Davidson, 2002; Spiegler et al.,
2012; Bastos Maia et al., 2019

↑ Miscarriage Fetal malformations

Vitamin B9
(folate)

↓ Miscarriage, restricted intrauterine
growth, preeclampsia

Fetal malformations Fekete et al., 2012

Vitamin B12
(cobalamin)

↓ Preterm delivery Anemia, fetal malformations, and
altered behaviors (cognitive, motor)

Pepper and Black, 2011; Rogne et al., 2017;
Sayar et al., 2020

Vitamin D and
calcium

↓ Implantation failure, placental
insufficiency, diabetes, miscarriage,
preterm delivery, preeclampsia,
C-section, poor immune
response/tolerance

Fetal malformation, metabolic disorders
(diabetes, hypertension, stroke,
coronary artery disease), atopic
disorders (asthma, eczema, hay fever),
CNS disorders (ASD, multiple sclerosis,
schizophrenia)

Merewood et al., 2009; Shin et al., 2010; Heyden
and Wimalawansa, 2018

Sodium
chloride (salt)

↑ Hypertension, restricted intrauterine
growth, placental abruption,
preeclampsia, comorbidities
(cardiovascular, renal, hepatic CNS
disorders)

Death, growth delay, cardiovascular,
renal, CNS disorders (ASD, ADHD,
schizophrenia)

Kattah and Garovic, 2013; Kleinewietfeld et al.,
2013; Mao et al., 2013; Ha, 2014; Choe et al.,
2015; Seravalli et al., 2016; Stocher et al., 2018;
Afroz and Alviña, 2019; Faraco et al., 2019; Riise
et al., 2019; Lahti-Pulkkinen et al., 2020

Iodine ↓ Hypothyroidism Death, growth delay, cretinism,
hypothyroidism, goiter

Skeaff, 2011; Kominiarek and Rajan, 2016;
Pearce et al., 2016

↑ Iodine-induced hypothyroidism,
hyperthyroidism

N/A Pearce et al., 2016

Iron ↓ Anemia, placenta hypertrophy,
inflammation, poor milk quality

Death, anemia, growth delay, metabolic
disorders (obesity, high blood pressure),
altered neurodevelopment
(neurotransmitter metabolism,
neurotransmission, myelination), altered
behaviors (cognitive, motor, emotive,
psychology)

O’Connor et al., 1988; Huang et al., 2001;
Gambling et al., 2002, 2004; Lozoff and
Georgieff, 2006; Alwan and Hamamy, 2015;
Means, 2020

Zinc ↓ Preterm delivery, prolonged labor,
hypertension, increased risk of
infection

Death, fetal malformations, growth
delay, seizure, altered behaviors
(anxiety, hypotonia, ADHD, social
deficits)

Donangelo and King, 2012; Roohani et al., 2013;
Grabrucker et al., 2014, 2016; Sauer and
Grabrucker, 2019

↓, reduced; ↑, increased; ↑↓, imbalance; ↑↑↑, excessive; ASD, autism spectrum disorders; ADHD, attention-deficit-hyperactivity disorders; C-section, cesarean section;
CNS, central nervous system; N/A, not available.
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Buyken et al., 2014; Castanon et al., 2015; Ludwig et al., 2018;
Montalvo-Martínez et al., 2018).

Carbohydrates and Fats
Carbohydrates are involved in several important bodily
processes, including energy supply, glycemia control, insulin
metabolism, cholesterol and triglyceride metabolism (Slavin and
Carlson, 2014; Holesh et al., 2020), as well as maintenance of the
gut microbiome’s health and diversity (Turnbaugh and Gordon,
2009). They are mainly found in whole-grain foods (Plecas et al.,
2014) and also in fruits, vegetables, and milk products (Slavin
and Carlson, 2014; Holesh et al., 2020). Carbohydrates are
classified into three main categories: sugars (i.e., simple sugars
like mono- or disaccharides and complex sugars like oligo- and
polysaccharides), starches (i.e., complex polysaccharides made
of several glucose molecules produced by plants), and fibers
(i.e., non-digestible complex carbohydrates) (Slavin and Carlson,
2014; Holesh et al., 2020). Carbohydrates act as the main energy
source for maintaining pregnancy and lactating processes, the
offspring’s growth and development (Plecas et al., 2014; Martin
et al., 2016), as well as milk production (Ares Segura et al., 2016;
Martin et al., 2016) (see Table 2).

The type of carbohydrate has been shown to determine
different inflammatory properties. In fact, meta-analysis looking
at high-sensitivity C-reactive protein (CRP) and interleukin
(IL)-6, which are inflammatory signals of the immune system,
in human participant from countries across the world, have
revealed a significant correlation between fiber intake and an
anti-inflammatory effect, whereas whole grain was associated
with an increase of inflammatory markers (Buyken et al., 2014).

Dietary recommendations for global fat intake, both saturated
and unsaturated, are mainly addressed to non-pregnant women.
While dietary recommendations have been made for certain
essential fatty acids, α-linolenic acid (n-6 PUFA) and linoleic acid
(n-3 PUFA) in particular, which are needed more in pregnancy
(see Table 1) (Mousa et al., 2019), special considerations need to
be taken in terms to quantity, as well as type of fats consumed
during pregnancy.

Diets with high levels of fats (regardless of their saturation
state) can induce maternal overweight or obesity and diabetes,
notably by sustaining a proinflammatory state, as demonstrated
in diverse animal models of maternal high-fat diet (mHFD)
(Bolton and Bilbo, 2014; Castanon et al., 2015; Montalvo-
Martínez et al., 2018). Beyond the increased fat mass, rodent
models have also revealed an inflammatory state associated to
mHFD (e.g., increase of cytokines IL-2, IL-4, IL-6) (Castanon
et al., 2015; Graf et al., 2016; Bordeleau et al., 2020; Kretschmer
et al., 2020). Indeed, in vitro experiments confirmed that IL-6 can
promote apoptosis of endothelial cells, thus impairing placental
vasculature and leading to intrauterine growth restriction in vivo
in a mHFD mouse model (Kretschmer et al., 2020). Moreover,
mHFD can also lead to behavioral changes in the mothers
inducing increased anxiety-like behaviors (Thompson et al.,
2018), which can negatively impact offspring’s maternal care
(Reck et al., 2018) (further detailed in Table 2). Prospective
longitudinal study on pregnant women revealed that under
stressful-perceived situations, women tend to consume more

proinflammatory diet, such as a diet high in fats (Lindsay et al.,
2018). Considering that more than three quarters of pregnant
women experience low to moderate mood during gestation
(Woods et al., 2010), high fat consumption during pregnancy
may be more prevalent than we conceive.

One essential type of fat, especially required during pregnancy
and breastfeeding, is the so-called PUFAs. In the maternal diet,
omega 3 (n-3) PUFAs are found in fish oil or linseed oil, where
fish source of n-3 PUFA is notably more efficient at providing
necessary PUFAs to the progeny’s brain (Fernandes et al., 2012).
PUFAs are formed by an acyl chain of at least 18 carbons with
one acid (–COOH) end and one methyl (–CH3) end (Fernandes
et al., 2012). Essential PUFAs include n-3 PUFAs linoleic acid
and omega 6 (n-6) PUFAs α-linolenic acid. These two PUFAs can
synthetize other PUFAs of the same unsaturation class (n-3 or n-
6, indicating the position of the first double bound, C = C, on the
chain). Since n-3 and n-6 compete for the enzymes desaturases
and elongases, dietary intake of linoleic acid and α-linolenic
acid influences their conversion rate (Taha et al., 2014; Bentsen,
2017). During the third trimester of pregnancy up to the first
2 years after birth in humans, arachidonic acid (n-6 PUFAs) and
docosahexaenoic acid (n-3 PUFAs) are the most abundant PUFAs
measured in the brain (Hadley et al., 2016). During this time,
PUFAs have been shown to contribute to brain growth (Hadley
et al., 2016), neurogenesis (Kawakita et al., 2006; Tokuda et al.,
2014), synaptic plasticity, and neuronal wiring in animal and
clinical human studies (Owens and Innis, 1999; Hamazaki et al.,
2005; Darios and Davletov, 2006). Of note, n-6 PUFA is less
reliant on dietary intake than n-3 PUFA (Taha et al., 2014).

n-3 PUFAs, like docosahexaenoic acid, can directly interact
with transcription factors involved in inflammatory processes—
nuclear factor-κB (NFκB) or peroxisome proliferator-activated
receptor γ (PPARγ)—and thus, modulate the maternal and
placental inflammatory status. Although the specific underlying
mechanism remains under investigation, it was postulated that
n-3 PUFAs might act on lipid mediators and help maintain
placental functions during pregnancy through their anti-
inflammatory properties (Akerele and Cheema, 2016; Lewis
et al., 2018). Supplemental intake of docosahexaenoic acid in
male mouse fed with a diet high in fats was also shown to
soothe hypothalamic high-fat diet (HFD)-induced inflammation
by decreasing suppressor of cytokine signaling 3 (SOCS3)
signaling and promoting the Janus kinase (JAK)/protein kinase
B (Akt) pathway. Other than its action on inflammation, n-3
PUFAs taken in this context helped to normalize the metabolic
energy-balance (Cheng et al., 2020). However, imbalance of
PUFAs such as excess of n-3 PUFAs, may inhibit the production
of crucial proinflammatory cytokines during gestation (Akerele
and Cheema, 2016). Cyclooxygenases and lipoxygenases can
convert PUFAs into short-lived hormones—eicosanoids—that
possess inflammatory properties (e.g., prostaglandins,
thromboxanes, lipoxins, and leukotrienes). In animal model
and human studies, n-6 PUFAs-derived eicosanoids have
been commonly described as proinflammatory, however, they
can also contribute to inflammatory resolution, while n-3-
derived eicosanoids are anti-inflammatory (Phillis et al., 2006;
Calder, 2009; Innes and Calder, 2018). High dietary intake of
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n-6 PUFAs has been long believed to be linked to heightened
inflammation but, enhanced inflammation was not consistently
observed in different human studies (Innes and Calder, 2018).
Excessive consumption of fats and/or sugar, a hypercaloric diet,
can also promote a proinflammatory status in the pregnant
woman or nurturing mother (Montalvo-Martínez et al., 2018).

Another important contribution of dietary fats during
pregnancy is in the production of ketone bodies. Fatty
acids can be broken down in the liver into ketone
bodies—3-hydroxybutyrate and acetoacetate—(Paoli et al.,
2013; Paoli, 2014), which are distributed throughout the body
as a metabolic substrate, i.e., as fuel instead of glucose. With
their metabolic changes during gestation and lactation, including
reduced insulin sensitivity, women usually have an elevated
level of circulating ketones (Paterson et al., 1967; Nnodum
et al., 2019). Ketone bodies pass freely through the placenta or
mother’s milk, and they provide supplemental energy to the
developing fetus. For the developing central nervous system
(CNS), ketones not only can act as an energy source but also
be used in lipogenesis as a lipid precursor. Moreover, ketones
can modulate CNS functions, notably by partaking in adenosine
triphosphate (ATP) synthesis and carbon pathway (Edmond
et al., 1985; Williamson, 1985; Bronisz et al., 2018). While ketones
possess important roles for fetal and neonate development, the
consumption of a ketogenic diet and its implication during
pregnancy is complex and it remains largely unclear whether it is
beneficial or detrimental.

Ketogenic High-Fat Diet
One HFD that gained a lot of popularity in the past years is the
ketogenic diet, initially used for its anticonvulsant and protective
effects in neurodevelopmental disorders (Yudkoff et al., 2007).
With ketone-induced metabolic changes, ketogenic diet have
been suggested to alleviate symptoms or features when consumed
by individuals with neurologic or neuropsychiatric disorders
like autism spectrum disorder (ASD), epilepsy, or schizophrenia
(Yudkoff et al., 2007; Kraft and Westman, 2009; Gano et al.,
2014; Ruskin et al., 2017a,b). In addition, it is also known
for its relatively rapid effects in reducing weight (e.g., obesity),
inflammation, and metabolic alterations (Ludwig, 2020). Over
the years, variations of ketogenic diets have been proposed
(Shilpa and Mohan, 2018) but typically it involves 80–90%
of the calories coming from lipids (high-fat/low-carbohydrate,
moderate proteins). Upon 3–4 days of fasting or ketogenic diet
intake, there is an increased production of ketone bodies and
metabolism shifts from glycolysis to ketosis in several organs
including the brain (Yudkoff et al., 2007). Mild ketosis is a
physiological process that is known to be induced in fasting,
lactation, shortly after exercising or muscular activity (Dashti
et al., 2004). In fact, mild ketosis was a “normal” metabolic-
state preagriculture, and it is still observed in some populations
(e.g., Inuit in the Artic, First Nation groups in Canada) (Ludwig
et al., 2018). Of note, ketosis is different from ketoacidosis, which
can occur in pathological conditions such as uncontrolled type
1 diabetes, where a lack of insulin prevents most organs from
using the available glucose, this leads to ketone bodies being
produced in excess of 20 mmol/L while the body attempts to

eliminate excess glucose via urine, causing a lowering of the pH
of the blood and dehydration with potentially fatal consequences
(Mullins et al., 2011; Paoli, 2014).

While ketogenic diet improves insulin sensitivity in non-
pregnant individuals (Dashti et al., 2004), it was suggested that
ketogenic diet might not be as beneficial for pregnant women
and their progeny (see Table 2) (von Geijer and Ekelund, 2015;
Kanikarla-Marie and Jain, 2016; Nnodum et al., 2019). Indeed,
the outcome of a ketogenic diet on the offspring is complex; it
may also differ according to the type of fats consumed, which
change the gut microbiome: high proportions of saturated and
monounsaturated fats appear to have a negative impact on
its diversity while high polyunsaturated does not (Paoli et al.,
2019; Wolters et al., 2019). This can then impact metabolic
and inflammatory status and underlying health conditions
(e.g., overweight, diabetes, neurological, neuropsychiatric) of
both the mother and the developing fetus.

In contrast to a conventional HFD, ketogenic HFD has been
proposed to induce more of an anti-inflammatory profile in non-
pregnant individuals. In fact, ketogenic diets have reported a
decrease in cellular stress by reducing reactive oxygen species
production and enhancing antioxidant activities, as well as
elevating circulating levels of PUFAs through the increased
activity of fatty acids oxidation (Gano et al., 2014). In the context
of maternal immune activation (MIA), a postnatal ketogenic diet
in the offspring demonstrates a protective effect (Ruskin et al.,
2017b); however, it remains to be investigated if this protective
effect on the postnatal brain is due to anti-inflammatory and
metabolic modulation by the ketones and/or acting via the gut
microbiome (Ang et al., 2020).

Micronutrients
Other important considerations during pregnancy pertain to
deficiency in micronutrients such as vitamin A (Garcia−Casal
et al., 2018), vitamin B9, vitamin B12, vitamin D, calcium, iodine,
iron, or zinc, among others (Blumfield et al., 2013; Visentin
et al., 2016; Garcia−Casal et al., 2018). Maternal imbalance or
inappropriate intake can lead to detrimental outcomes for both
the mother’s pregnancy (e.g., preeclampsia, intrauterine growth
restriction) and the offspring’s development (e.g., stillbirth,
growth delay, risk of developing disorders detailed in Table 2
for each nutrient). Among those essential micronutrients,
several share inflammatory properties, which, in the context of
pregnancy, could contribute to the detrimental outcomes on both
pregnancy and progeny.

Vitamin A
Vitamin A is an essential nutrient found in food from animal
sources like dairy products, liver, and fish oil, as well as in
food from vegetal sources (e.g., fruits, leaves, tubers). Vitamin A
from vegetal sources is poorly absorbed, however, compared with
animal sources (Bastos Maia et al., 2019). Vitamin A is involved in
several physiological functions through its active oxidized forms:
retinaldehyde and retinoic acid. Retinaldehyde is involved in
visual function, whereas retinoic acid can act as ligand for the
nuclear retinoic acid receptor and regulate the transcription
of genes involved in reproduction, development, growth, and
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immunity. During pregnancy, vitamin A and its derived products
are needed by the mother for placental maintenance and by the
embryo for the formation and development of various organs
(i.e., hearth, eye, kidney, lung, limbs, spinal cord, and brain).
The placenta stores vitamin A that mobilizes to the fetus during
prenatal development. This storing process ensures an adequate
delivery of retinoids in cases of maternal insufficient intake to
protect the developing fetus (reviewed in Spiegler et al., 2012).

Vitamin A through its metabolized active form, retinoic
acid, can modulate immune homeostasis by binding to retinoic
acid and retinoid receptors, which then acts as and interacts
with transcription factors (Spiegler et al., 2012; Oliveira et al.,
2018). As such, retinoic acid can modulate inflammatory
processes—including infiltration of immune cells, production of
cytokines [e.g., IL-1β, IL-4, IL-6, IL-10, IL-12, IL-18, interferon
(IFN)-γ, transforming growth factor beta (TGF-β), tumor
necrosis factor (TNF)-α], and other inflammatory mediators
[NFκB, NOD-like receptor family pyrin domain-containing
protein 3 (NLRP3)]—in a variety of tissues (Kang et al., 2000;
Wang et al., 2007; Oliveira et al., 2018; Elshal et al., 2019; Alatshan
et al., 2020). Thus, dietary intake of vitamin A can influence
inflammatory response. For instance, in the context of dermatitis,
low vitamin A exacerbates its severity partially through an
increase of T cell release of immunoglobulins (i.e., IgG1, IgE) and
cytokines (i.e., IL-4, IL-13) (Yang et al., 2020).

Other than immune mediators, vitamin A can modulate the
integrity of the intestinal barrier by promoting expression of tight
junction proteins (i.e., claudin-1, occludin, zonula occludens-1)
(He et al., 2020). By doing so, it may modulate trafficking
of metabolites coming from the diet or produced by the gut
microbiome. In pregnancy, this could imply that vitamin A can
influence maternal and fetal outcomes directly on the immune
system or indirectly through the gut-immune axis.

Surprisingly, in a recent study on ulcerative colitis, it
was demonstrated that increased levels of retinoic acid are
associated with higher levels of proinflammatory cytokines (i.e.,
IL-17, INF-γ) and lower levels of anti-inflammatory cytokines
(i.e., IL-10) in the intestinal mucosa of patients. It was postulated
by the authors that in the presence of inflammation, retinoic
acid maintains inflammation by upregulating proinflammatory
molecules (Rampal et al., 2020). Therefore, it seems that the role
of vitamin A during inflammatory processes is complex and may
be modulated by the diet and interacts with the inflammatory
state of the person, whether it is a chronic inflammatory disorder
or an immune-privileged state like pregnancy.

Essential Vitamin B
Vitamin B9 or folate is a water-soluble B vitamin found in
green-colored vegetables and citrus fruits. Its synthetic form—
folic acid—is most stable when used in supplements (Kominiarek
and Rajan, 2016). Folate itself is involved in the synthesis of
DNA, RNA, and some amino acids (Fekete et al., 2012; Stamm
and Houghton, 2013; Kominiarek and Rajan, 2016) as well as
methylation reactions (Stamm and Houghton, 2013). Therefore,
folate is important during periods of placentation, implantation
of the embryo, embryogenesis, and fetal growth (Maria De-Regil
et al., 2010; Parisi et al., 2014; Kominiarek and Rajan, 2016).

During embryogenesis and fetal growth, the need for folate is
highly increased reaching 600 mg/day (from 400 mg/day in
non-pregnant women) (Kominiarek and Rajan, 2016).

Vitamin B12 or cobalamin acts as a cofactor with folate
in DNA methylation (Pepper and Black, 2011; Khaire et al.,
2015a,b). Cobalamin is also involved in lipid metabolism (Khaire
et al., 2015a,b). B12 deficiency during pregnancy can arise in
cases of women with vegetarian or vegan diets, as well as women
with intestinal diseases that result in a malabsorption condition
(Rogne et al., 2017).

Vitamin B insufficiency has been associated with higher
levels of neuroinflammation and oxidative stress, while
supplementation of vitamin B reduces oxidative stress
and inflammation by increasing oxidative metabolism that
may promote energy storage and developmental processes
(Ford et al., 2018).

Vitamin D and Calcium
Vitamin D and calcium are closely related in terms of their
metabolism. Obtained either through dietary consumption or
mostly synthetized by the skin in contact with sunlight, the active
form of vitamin D promotes calcium absorption (Curtis et al.,
2014; Kominiarek and Rajan, 2016). Dietary sources of vitamin
D include eggs and fish or commonly supplemented juices
and milks (Kominiarek and Rajan, 2016). Proper absorption
of both vitamin D and calcium are critical to bone growth
and calcification (Curtis et al., 2014; Kominiarek and Rajan,
2016), immune and inflammatory functions, as well as cellular
differentiation (Kominiarek and Rajan, 2016). In the embryo, the
vitamin D and calcium needs increase during the main periods of
skeleton formation and calcification, which start at the beginning
of the embryonic stage (formation of a cartilaginous skeleton)
and end during the last trimester of pregnancy (ossification of
the skeleton) (Curtis et al., 2014). Pregnant women with vegan or
vegetarian dietary habits as well as woman living in cold climate
(Kominiarek and Rajan, 2016; Zhou et al., 2017) or with darker
skin have a higher risk of vitamin D and calcium deficiency
(Kominiarek and Rajan, 2016).

Vitamin D possesses a key role in the suppression
of inflammation. Indeed, ex vivo placental experiments
demonstrated that treatment with different forms of vitamin
D, 25OHD3, or 1,25(OH)2D3, attenuates lipopolysaccharide
(LPS)-induced inflammation (Liu et al., 2011). Vitamin D can
also modulate proliferation, differentiation, survival, maturation,
and cytokine release of several immune cells including dendritic
cells, macrophages, T cells, and B cells (Guillot et al., 2010).

On the contrary, depletion of vitamin D receptor or
hydroxylase Cyp27b1 exacerbates inflammatory mediator levels
(Liu et al., 2011). Low intake of vitamin D additionally
promotes a proinflammatory status, due to the reduced vitamin
D-induced inhibitory action on the adaptive immune response
and inflammation (Shin et al., 2010).

Salt
Salt or sodium chloride is easily obtained in western diet with
processed food often enriched in salt (Ha, 2014). However,
excessive consumption of sodium chloride can cause renal

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 January 2021 | Volume 14 | Article 612705

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-612705 January 15, 2021 Time: 13:12 # 10

Bordeleau et al. Neurodevelopmental Impact of Maternal Diet

(Ha, 2014), cardiac diseases, including hypertension (Ha, 2014;
Choe et al., 2015), CNS disorders (Kleinewietfeld et al., 2013;
Faraco et al., 2019), and inflammation (Kleinewietfeld et al.,
2013). In vitro studies helped to clarify the inflammatory
properties of salt. For instance, sodium chloride-hypertonic stress
can act as a chemoattractant to immune cells like macrophages,
thus modulating their migration and mobility (Müller et al.,
2013). Human and mouse macrophages treated ex vivo
with high concentration of salt possessed a proinflammatory
signature, both at the gene and protein levels, which was
exacerbated following immune challenges induced by LPS
(Zhang et al., 2015).

In in vivo studies in rodent models and humans, elevated
consumption of salt was shown to promote immune activities
of macrophages (Zhang et al., 2015; Guo et al., 2018), T cells
(Guo et al., 2018) and dendritic cells (Xiao et al., 2020), which in
turn exacerbated the onset of immune diseases (e.g., colitis, lupus
erythematosus, lung injury) (Zhang et al., 2015; Guo et al., 2018;
Xiao et al., 2020).

In maternal adipose tissue, high-salt diet increases the
expression level of inflammatory molecules [e.g., IL-1β,
TNF-α, cluster differentiation (Cd) 68] in mice (Reynolds et al.,
2014). In another independent study in mice, elevation of
inflammatory gene expression was also reported in macrophages
from the lungs [i.e., C-X-C chemokine ligand 1 (Cxcl1), Il6,
inducible nitric oxide synthase (iNOS)] and kidneys (i.e.,
iNOS), but not from the brain or adipose tissue (Zhang
et al., 2015). Controversially, immunosuppression properties
of high-salt diet—such as inhibition of IFN-γ/JAK/signal
transducer and activator of transcription (STAT) pathway—was
recently reported in mouse kidney cells (Arai et al., 2017).
It thus seems that salt inflammatory properties may vary
depending on the cell type studied. Current knowledge into
the maternal-fetal effect of high-salt diet during pregnancy and
lactation limits our capacity to assess the extent of salt-induced
inflammatory changes in the context of maternal diet as well as
neurodevelopmental disorders.

Minerals: Iodine, Iron, and Zinc
Together with iron and zinc, iodine is one of the minerals
most commonly found deficient in the diet of pregnant
women (Garcia−Casal et al., 2018). Iodine is a critical element
of thyroid hormone synthesis found in seafood products
as well as fortified iodized salt (Kominiarek and Rajan,
2016; Pearce et al., 2016). Thyroid hormones are important
for fetal and newborn neurodevelopment by modulating
cellular migration and differentiation, synaptogenesis,
as well as myelination (Bernal, 2007). Maternal iodine
consumption is thus critical for the fetus until its own
thyroid begins producing thyroid hormones, around the
second trimester, and even at this stage the fetal storage
is limited until birth (Skeaff, 2011). Iodine can also act as
an antioxidant (Aceves et al., 2013). On the other hand,
excessive intake of iodine increases the risk of developing
autoimmune thyroid disease (Luo et al., 2014), meaning that the
inflammatory properties of iodine may be more complex and
need further study.

Iron is important for blood cell’s ability to transport oxygen
around the body. It can be found in food as two distinct forms:
heme—hemoglobin and myoglobin found in meat and fish—
and non-heme—obtained from cereals, fruits, and vegetables
(Abbaspour et al., 2014). Nutrients can modulate its absorption;
while vitamin C promotes iron absorption, milk and tea inhibit
its absorption (Kominiarek and Rajan, 2016). With the increase
in blood volume as well as iron-dependent developmental
mechanisms during pregnancy (Nnam, 2015), iron intake is key
(Means, 2020). Failing to meet the iron needs can cause, in the
pregnant woman, inflammation (Gambling et al., 2002) among
other detrimental outcomes on pregnancy (O’Connor et al., 1988;
Huang et al., 2001; Means, 2020).

Iron intake can modulate inflammatory processes, and
when intake of iron is insufficient, animal models (e.g.,
rodent, fish) have demonstrated that it causes a reduction
of anti-inflammatory cytokines (e.g., IL-4, IL-10, IL-11, IL-15,
TGF-β) and mediators [e.g., inhibitor of NFκB (IκB) α], as
well as upregulation of proinflammatory cytokines (e.g., IL-1β,
IL-8, IL-12, IL-17, IFN-γ) and other mediators [e.g., NFκB, IκB
kinase (IKK) α/β, eukaryotic translation initiation factor 4E-
binding protein 1 (4E-BP)] in the periphery (e.g., gut, placenta)
(Gambling et al., 2002; Guo et al., 2019). Therefore, iron intake
can modulate inflammatory states of pregnant or breastfeeding
women. Iron deficiency is the most common nutrient deficiency
(Stoltzfus, 2003). Further assessment particularly during the
early life period, including pregnancy and childhood (McCann
et al., 2020; Means, 2020) is thus warranted, considering
that the severity of iron deficiency may be time sensitive
(Gambling et al., 2004).

Zinc is found in red meat, seafood, and grains (Saper
and Rash, 2009). Proteins generally promote zinc absorption
and bioavailability (Roohani et al., 2013). Zinc-dependent
enzymes, factors, or transporters are necessary for a broad
range of cellular processes during division, differentiation, and
function (Donangelo and King, 2012). Zinc is thus crucial to
embryogenesis, fetal growth, and development, as well as milk
production (Donangelo and King, 2012; Roohani et al., 2013).
Zinc is also an essential mineral for intestinal microbiome
flora health. In a mouse model and clinical human studies,
zinc deficiency during pregnancy was shown to alter the
composition of the intestinal microbiome and gut permeability
(Sauer and Grabrucker, 2019), as well as promote systemic
inflammation (Wang et al., 2015) and neuroinflammation (Sauer
and Grabrucker, 2019). It was suggested that alteration of the
gut-brain axis may directly contribute to increasing inflammatory
signaling upon zinc deficiency (Sauer and Grabrucker, 2019).

Zinc can act as an inflammatory regulator. Indeed, zinc ions
can inhibit signal transduction (e.g., NFκB, IFN-λ3), which in
turn prevents cytokine production [e.g., IL-1β, IL-6, monocyte
chemoattractant protein 1 (MCP-1), TNF-α] (Jarosz et al.,
2017; Read et al., 2017; Olechnowicz et al., 2018). Zinc closely
regulates zinc-dependent proteins, including A20 zinc finger
protein, metalloproteinase (MMP)2, MMP9, and PPAR-α, that
can contribute to inflammatory processes (Jarosz et al., 2017;
Olechnowicz et al., 2018). Zinc is also critical for membrane
barrier maintenance and function, where a lack of zinc can
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damage the membrane barrier (e.g., epidermal, gastrointestinal,
pulmonary) hence permitting the entry of pathogens or toxins
into the bloodstream. Moreover, zinc promotes cellular adhesion
and migration (Jarosz et al., 2017). It is a key nutrient to
inflammatory processes and contributes to the maintenance of
immune cell homeostasis in steady-state and during pathogen-
induced immune challenge (Gao et al., 2018). During pregnancy,
low zinc levels increase inflammation as demonstrated by the
enhanced expression of IL-6 and astrogliosis in the brain of
pregnant mice fed with a zinc-deficient diet for 5 weeks prior
to pregnancy and throughout gestation (Sauer and Grabrucker,
2019). This inflammation might also be involved in the
development of autistic-like behavior in the offspring (Sauer
and Grabrucker, 2019), including increased anxiety, impaired
social behaviors (Grabrucker et al., 2014, 2016), attention-deficit-
hyperactivity disorder (ADHD), hypotonia, and increased risk of
seizure in later life (Grabrucker et al., 2014).

IMPLICATION FOR PREGNANCY AND
THE PROGENY

Together, several nutrients can directly or indirectly influence
the immune system, thus potentially disturbing pregnancy and
fetal development when taken in inadequate quantity or balance.
Moreover, pregnancy represents a unique immunological
paradox; the maternal immune system tolerates the fetus
and circulating fetal antigens, while fetal trophoblast (from
the outer layer of the blastocyst or embryo) invades into the
maternal uterus to coordinate nutrient delivery. To allow for
proper immune tolerance, several mechanisms occur within
the placenta: immunosuppression by paracrine signaling,
circulation of fetal cells into the maternal circulatory system,
secretion of immunosuppressing molecules by trophoblast and
low antigen presentation by trophoblasts. Disturbance of the
immune tolerance process provokes obstetric complications
for the mother and developmental alterations for the progeny
(Hsiao and Patterson, 2012).

Furthermore, MIA is a well-known and characterized
risk factor of neurodevelopmental disorders like ASD and
schizophrenia (Mattei et al., 2014; Fernández de Cossío et al.,
2017b; Beversdorf et al., 2018; Bilbo et al., 2018; Prins et al., 2018;
Bordeleau et al., 2019). This inflammatory-mediated mechanism
is likely behind part of the detrimental effects of an inadequate
maternal diet on the offspring.

Maternal Diet and Its Link to
Neurodevelopmental Disorders
Genome-wide association studies and linkage studies have
shown that the genetic architecture of many neurodevelopmental
disorders comprises hundreds of genes affected, but each
contributing only small effects to the overall phenotype or
alternatively a single genetic mutation with large effects leading to
very rare genetic syndromes (Sullivan et al., 2012). These genetic
studies have often found common genetic vulnerability across
diagnostically different neurodevelopment and neuropsychiatric
disorders with convergent disruption of biochemical pathways

that sustain synaptic and immune homeostasis (Garbett et al.,
2008; Neale et al., 2012; Banerjee et al., 2014; Estes and McAllister,
2015). These pathways can, however, also be disrupted by
a number of environmental factors that have now been
linked to neurodevelopmental disorders. Some factors include
gestational diabetes, maternal age and obesity, autoimmunity,
and infection, with the common denominator between these
factors being inflammatory processes during pregnancy (Estes
and McAllister, 2015). The mother’ immune activation during
pregnancy appears to be an important risk factor for the
neurodevelopmental alterations observed in the progeny that
later manifest as behavioral disorders (Boksa, 2010; Knuesel et al.,
2014; Ziats et al., 2015).

Pregnancy requires a tight regulation of the maternal immune
system: it must allow the implantation and growth of a partially
foreign body (the fetus), while simultaneously protecting it
against pathogens to ensure the conservation of species (Mor
and Cardenas, 2010; Racicot et al., 2014). Diet, even before
conception, can affect pregnancy and alter the inflammatory
status of the mother during pregnancy, conferring greater
risk to the fetus beyond intrauterine developmental stage and
throughout the progeny’s developmental process. Deficiencies in
micronutrients have previously been reported to have adverse
outcomes for neurodevelopment. Among them, folate and
vitamin B12 are important for DNA methylation, and their
deficits were associated to neural tube defects (Molloy et al.,
2008). In a meta-analysis examining how nutrition impacts on
ASD, ADHD, and intellectual disability, folic acid and vitamin
supplementation in the mother during gestation was inversely
associated to neurodevelopmental disorders, particularly when
supplementation occurred during early pregnancy (Li et al.,
2019). Zinc is also important for neuronal development (Anjos
et al., 2013) and iodine deficiency has long been known to
cause cretinism, a developmental condition that has associated
intellectual disability and is preventable (Cao et al., 1994).
Notably, deficiency in dietary factors have also been linked
to schizophrenia, as shown in three epidemiological studies
focusing on specific periods of famine and reviewed in detail in
association to other studies on deficient vitamin D, folate, and
iron that is associated with an increased risk for this disorder
(McGrath et al., 2011). Together, maternal diet has risen as an
important risk factor for neurodevelopmental disorders, such as
ASD, ADHD, and schizophrenia.

Protein is a macronutrient that has long been associated with
impairing brain growth and thus having broad neurocognitive
effects (Monk et al., 2013). Another macronutrient: fat, is
also known to have important effects on neurodevelopment as
components of omega-6 and omega-3 fatty acids (PUFAs) are
necessary parts of neural cell membranes, and supplementation
during pregnancy in controlled human trials showed better
neurocognitive performance in the children (Helland et al.,
2003), although supplementation with PUFAs was inconclusive
in a meta-analysis looking at nutrition impacts on ASD,
ADHD, and intellectual disability (Li et al., 2019). Equally
important is the evidence in mice showing that diets high
in saturated fat have deleterious consequences on brain
development, including decreased hippocampal size (Niculescu
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and Lupu, 2009). Importantly, studies revealed an increase in
the inflammatory profile in obese/overweight pregnant women,
particularly consistent is the increase of proinflammatory
cytokine IL-6 and CRP (Pantham et al., 2015) and another recent
meta-analysis revealed an increased risk for ASD conferred
by overweight and obesity during pregnancy (Li et al., 2016).
Another meta-analysis looking at population-based studies on
the outcome of maternal weight in pregnancy also revealed
increased risk of adult offspring to develop schizophrenia when
the mother was obese or had a high BMI during early and late
stages of pregnancy (Khandaker et al., 2012).

As with the genetic architecture, all of the individual
components of nutritional imbalance can cumulatively
contribute to a higher risk of neurodevelopmental disorders.
A poor diet during pregancy generally lacks several of the
micronutrients discussed as essential for neurodevelopment and
for adequately regulating the immune system, as previously
described in section “Specific Nutrient Imbalance and
Inflammation,” while it can simultaneously include an excess
of macronutrients, as is the case of “Western diets” that have
an inflammatory effect or lead to inflammatory states like
overweight and obesity.

Potential Mechanism Behind
Pathological Neurodevelopment
Genetic Programming in the Progeny
During development, the epigenome landscape is fully
remodeled, therefore creating a time window during which
adverse environmental exposure, including maternal diet
imbalance, can trigger long-lasting changes on the actively
differentiating cells of the offspring (Tarrade et al., 2015).
This phenomenon occurring during prenatal and postnatal
developmental stages is a process known as genetic programming
of the cellular genome, transcriptome, or epigenome (Langley-
Evans, 2009). Covalent modification of the chromatin as well
as expression of microRNA can participate to fetal genetic or
epigenetic programming, which can occur through adaptation
mechanisms within the placenta or the developing fetus
(Langley-Evans, 2009; Tarrade et al., 2015) (see Figure 1B).

The placenta directly contributes to intrauterine embryonic
programming. Upon exposure to nutrient imbalance, the
placenta adapts to help meet the needs of the growing and
developing fetus. Adaptation and programming of the placenta
involves alteration of the placental genome, transcriptome,
and epigenome (Cox et al., 2015; Wilson et al., 2018) when
exposed to various environmental factors, including inadequate
maternal diet (Tarrade et al., 2015). Placental adaptation seems
to occur in a sex-dependent manner (Rosenfeld, 2015). Male
placentas are more dependent on the mother’s diet even if
the nutrient transfer of their placentas is more efficient, because
they possess lower storage capacities than female placentas
(Eriksson et al., 2010). On the contrary, female placentas
are more sensitive to the maternal environment leading to
improved adaptation and lower burden on fetal development
(Clifton et al., 2001; Rosenfeld, 2015). For instance, in a
mHFD mouse model, placental DNA of female offspring

becomes globally hypomethylated at “imprinted” genes involved
in cellular, metabolic, and physiological functions (whose
expression is determined by the parent and differently expressed
depending on whether it was inherited from the mother
or the father). In contrast, the placenta of male offspring
showed lower methylation levels at steady-state. Together,
these findings suggest placental adaptive capacities of offspring
exposed to mHFD (Gallou-Kabani et al., 2010). Maternal diet
can therefore modulate genetic programming of the placenta
early on during development, and it can also influence the
inflammatory profile of the placenta thus modifying its function
through several mechanisms, rendering the progeny sensitive to
neurodevelopmental alterations (Goeden et al., 2016).

In the offspring, maternal nutritional intake has directly
been linked to modification of the epigenome landscape,
i.e., expression of epigenetic regulators. Although research
is expanding on the matter, limited knowledge remains.
Nevertheless, a growing body of evidence has been accumulated
on the link between maternal dietary consumption of vitamins
or fats that highlight the genomic or epigenomic role of
maternal nutrients in the offspring. Vitamin B, for instance,
directly contributes to methionine synthesis (e.g., involved in
DNA, polyamines, amino acids, phospholipids synthesis), which
together with ATP forms a methyl group during the one carbon
metabolic pathway. Low maternal levels of vitamins B can
hence decrease methylation activity and directly contribute to
the epigenetic remodeling of the progeny and alter genetic
expression (Pepper and Black, 2011; Richmond and Joubert,
2017). Maternal vitamin D has also been associated with DNA
methylation in the offspring germline and liver cells, which
become hypomethylated in cases of maternal deficiency (Xue
et al., 2016). However, these effects are subtle (Xue et al., 2016)
and it remains plausible that epigenome-wide studies will reveal
more drastic or important effects of vitamin D on the offspring’s
epigenome signature.

More than the effect of specific nutrients, types of dietary
patterns have also been suggested to modulate the offspring’s
genetic programming. Mediterranean diet—enriched in fish,
fruits, and vegetables, and with an increased intake of mono-
unsaturated fatty acids (MUFAs)—decreased the risk of child
maladaptive and atypical behaviors like ASD, anxiety, and
depression in humans (House et al., 2018). This positive
behavioral outcome of Mediterranean diet on the offspring
was linked to methylation changes of imprinted regions SEGC
endonuclease/paternally expressed gene (PEG) 10 in male and
female offspring, as well as maternally expressed gene (MEG) 3
and insulin-like growth factor 2 (IGF2) in male offspring (House
et al., 2018). Dietary supplementation with PUFAs from algal
source during pregnancy similarly increased IGF2-imprinted
methylation (Lee et al., 2014). Other than imprinting on
genes expressed paternally or maternally, fatty acids have
been proposed to modulate the epigenome of genes involved
in the biosynthesis of PUFAs like fatty acid desaturase 1/2
(Mennitti et al., 2015). Genome-wide studies on the blood of
preadolescents with regard to their dietary intake demonstrated
a significant correlation between methylation and total fat intake
or ratio of MUFAs and PUFAs over total consumption of fats
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(Voisin et al., 2015). This suggests that in pregnant and nurturing
women, fat intake and balance—including type of fats and
proportions of other nutrients—may promote epigenetic changes
within their progeny. Similarly, diet enriched in saturated and
unsaturated fats has been linked to epigenetic changes in the
offspring at the periphery (e.g., adipose tissue, heart, liver)
(Attig et al., 2013; Keleher et al., 2018; Zhang et al., 2019)
and in the CNS (Glendining and Jasoni, 2019). In the brain,
mHFD animal model also demonstrated by ChIP-qPCR on the
offspring hippocampus that mHFD leads to increased histone
3 K9 acetylation in males as well as decreased methylation of
the histone K9 in females (Glendining and Jasoni, 2019). In
another study by Grissom et al. (2015), mHFD was associated
with the overexpression of epigenome modulator protein, DNA
methyltransferase 1 (DNMT1), in the prefrontal cortex of
the offspring. Moreover, mHFD mouse model investigating
programming effect of mHFD on the offspring prior to
pregnancy has demonstrated that hypertrophy and inflammation
of adipose tissue, as well as overexpression of genes involved
in fat deposition could only be prevented by long-term diet
intervention prior to pregnancy (Summerfield et al., 2018),
suggesting that offspring programming by the diet is a long-
lasting mechanism. Strikingly, as we discussed in section
“Carbohydrates and Fats,” imbalance of fatty acids as well as
mHFD possesses inflammatory properties that seem to coincide
with genetic reprogramming.

Limited information is available regarding the specific
mechanisms of genetic programming, and how inflammation and
epigenetic may be linked together; is the genetic reprogramming
influenced by the inflammatory properties of the diet or are
the two processes independent of each other? As genetic
programming effects of maternal diet can partake in the
development of neurodevelopmental disorders in the offspring,
it is thus important to understand how inflammation and genes
may interact together in the pathogenesis to comprehend how we
could guide pregnant woman dietary consumption and limit their
detrimental effects.

Neuroinflammation: Microglia and Blood Barrier
As previously discussed, nutrients can influence inflammatory
processes in the mother, which in turn can promote inflammation
in the progeny. Indeed, animal models of mHFD have described
changes of inflammatory mediators (e.g., CD11b, IL-6, NFκB,
TLR4) in the brain across the lifespan: neonate (Bilbo and
Tsang, 2010; Graf et al., 2016), juvenile (Bilbo and Tsang,
2010), adolescent (Sasaki et al., 2014; Winther et al., 2018;
Bordeleau et al., 2020), and adult (Bilbo and Tsang, 2010;
Sasaki et al., 2013) stages. These changes in gene expression
seem to occur differently between ages, sexes, and brain
regions. Similarly, upon exposure to a maternal low n-3
PUFA diet, offspring’s brain transcriptomic signature revealed
increased expression of transcript cluster associated to innate
immune response and inflammation in n-3 PUFA-deficient mice
(Madore et al., 2019). Moreover, both mHFD and maternal
low n-3 PUFA studies reported changes in microglial density,
morphology, mRNA/protein expression, or functions associated
with brain development alterations, commonly observed in

neuropsychiatric disorders (Bilbo and Tsang, 2010; Rey et al.,
2018; Madore et al., 2019; Bordeleau et al., 2020). Although the
impact of maternal nutrients other than fats and sugar has not
been studied yet in the context of neuroinflammation changes
in the offspring, it should be expected that their inflammatory
effects in the mother have a ripple effect in the brain of
the offspring, contributing to neurodevelopmental alterations.
Moreover, microglia—the main immune cells of the CNS—
are highly specialized in detecting and deploying inflammatory
signals, which are especially sensitive to the inflammatory status
during pregnancy that could modulate their physiological roles
in brain development (Schwarz and Bilbo, 2012; Tay et al., 2018)
(see Figure 1B).

Indeed, microglia are key immunocompetent cells
that produce and respond to inflammatory cues. During
neurodevelopment, these cues can influence microglial role
and lead to changes in their modulation of neuronal network
wiring and maturation (Tremblay et al., 2010; Paolicelli et al.,
2011; Mallya et al., 2019), myelination (Bennett and Barres,
2017; Hagemeyer et al., 2017; Wlodarczyk et al., 2017), and
of neurovascular development and maturation (Arnold and
Betsholtz, 2013; Lacoste and Gu, 2015), throughout embryonic,
fetal, juvenile, and adolescent neurodevelopment. Additionally,
microglia undergo different stages of maturation during brain
development, and this appears to be programmed in utero
and dependent on maternal gut microbiota and inflammatory
status of the mother (Matcovitch-Natan et al., 2016). Therefore,
exposure to inflammatory-modulating environmental factors
can modify microglial developmental roles and thus profoundly
impact the offspring’s brain development.

Simultaneous to brain development, the offspring
cerebrovascular system is developing and maturing from
embryonic to adolescent stages (Arnold and Betsholtz, 2013).
In the brain, several immune cues such as Notch, TNF-α,
vascular endothelial growth factor (VEGF), and Wnt5a/11,
released in part by microglia, contribute to neurovascular
development and maturation (Arnold and Betsholtz, 2013;
Lacoste and Gu, 2015). Peripheral and local inflammatory
signals within the CNS can disturb its proper neurodevelopment,
thus impacting neurovascular organization and function
(Pearson-Leary et al., 2017; Van Dyken and Lacoste, 2018).
In turn, this can impact on neuronal network function
and plasticity (Sloan et al., 2010; Andreone et al., 2015;
Lacoste and Gu, 2015) and render the offspring vulnerable
to stress (Menard et al., 2017; Pearson-Leary et al., 2017).
In fact, Menard et al. (2017) demonstrated that peripheral
administration of cytokine IL-6 alone in steady-state was
sufficient to induce neurovascular remodeling leading to
increased permeability of the blood–brain barrier. Similarly,
several other inflammatory mediators produced or modulated
by maternal diet discussed above (see section “Specific Nutrient
Imbalance and Inflammation”) could result in functional
and organizational changes in the brain of the offspring (see
Figure 1B). Although no intensive work has really been
done on the matter, a leaky or dysfunctional blood–brain
barrier could lead respectively to the recruitment of peripheral
immune cells that could infiltrate and modulate the offspring’s
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neurodevelopment or to an inefficient transfer of adequate
nutrients and energy to the CNS.

Gut Microbiome-Mediated Endotoxicity
Linked to its effects on inflammatory states and barrier
permeability, HFD is well documented to have an important
effect on the gut microbiome. In male mice, HFD alters gut
microbiome within 4 weeks (Cani et al., 2008). Specifically,
there are decreases for Bifidobacterium spp. and Bacteroides-
related bacteria, as well as Eubacterium rectale–Blautia coccoides
in mice (Cani, 2012), although a reduction in Bacteroidetes
levels and an increase in Firmicutes and Proteobacteria were
previously identified in the context of HFD, with or without
inducing obesity (Hildebrandt et al., 2009; Ravussin et al., 2012).
In addition, HFD can lead to metabolic endotoxemia (Cani et al.,
2007), i.e., a sustained low-grade increase in circulating levels
of LPS (a component of the outer membrane of Gram-negative
bacteria), a lipoprotein acting as an inflammatory agent. While
LPS has a physiological variation that peaks after feeding (Cani
et al., 2008), persistent low-grade inflammation was observed
after a mere 4 weeks of HFD consumption in adult mice
(Cani et al., 2012).

The abnormal levels of LPS that infiltrate into the bloodstream
after HFD appear to be due to a leaky gut–blood barrier. Indeed,
when LPS levels were maintained abnormally high, there was
a decrease in genetic expression of gut barrier tight-junction
proteins zonula occludens-1 and occludin (Cani et al., 2012), but
when treated with antibiotics, there was no disruption to the
intestinal barrier, proposing therefore a role for gut microbiota in
maintaining its integrity (Cani et al., 2008). Other forms of gut
microbiota modulation through the use of pre- and probiotics
have been shown to improve the integrity of the gut barrier
and prevent metabolic endotoxemia in obese mice (Cani et al.,
2009). In pregnancy, the issue of metabolic endotoxemia could
be problematic for two main reasons: (1) it was associated
with obesity, metabolic syndrome, and type 2 diabetes, all of
which are pregnancy risk factors for the offspring, and (2)
increased LPS in the bloodstream during pregnancy (even small
but constant increases) amounts to an activation of the maternal
immune system, which is known to have adverse consequences
for the offspring.

Studies in pregnant women revealed that higher pregnancy
BMI is linked to altered microbiome composition, with increase
of bacteroides and staphylococcus, associated with excessive
weight gain during pregnancy (Collado et al., 2008). In rats,
bacterial population ratios change over the course of pregnancy
and the alterations are exacerbated with the consumption of a
HFD, regardless of whether it is accompanied by weight increase
(Mann et al., 2017). Importantly, in a systematic review by
Nelson et al. (2010), pre-pregnancy BMI was linearly associated
to most adverse pregnancy outcomes and complications such as
hypertension, preeclampsia and glucose intolerance/gestational
diabetes. Not only is the greater BMI linked to metabolic
alterations of fat and glucose pathways (Hellmuth et al., 2017),
but obese women are observed to have increased circulating
levels of the inflammatory mediator IL-6 (Ramsay et al., 2002;
Basu et al., 2011) that appear to be linked to increased amounts

of circulating endotoxins including LPS (Basu et al., 2011).
Another group showed that overweight pregnant women had
increased barrier permeability that was associated with higher
blood concentrations of LPS (Mokkala et al., 2017). In addition,
Laitinen et al. (2009) elegantly demonstrated in a cohort
of normoglycemic pregnant woman that changes in glucose
metabolism due to pregnancy could be improved by changing
the gut microbiome via probiotics, with positive effects lasting
past 12 months postpartum. This is congruent with experimental
work showing that even in genetically obese mice (i.e., Ob/Ob
and Db/Db mice), the use of prebiotics delayed and improved
glycemic alterations in steady-state adulthood (Fernández de
Cossío et al., 2017a; Song et al., 2019).

Together, the body of literature suggests that pregnancy
itself produces microbiome, metabolic and peripheral immune
changes in the mother that are similar to those observed in
overweight and obese persons and which are associated to
cardiovascular and glucose homeostasis issues via an augmented
inflammatory status. The microbiome alterations are exaggerated
further in the case of overweight or obesity before and during
pregnancy. The gut microbiome can directly contribute to
sustaining inflammatory processes in the mother, which in turn,
can compromise offspring development, notably by acting on
microglia (Castillo-Ruiz et al., 2018; Thion et al., 2018). Still,
future investigation is indispensable to understand the molecular
and cellular pathway linking maternal diet-gut microbiome to the
offspring’s neurodevelopment.

Perspectives and Concluding Remarks
In our day-to-day life, disadvantaged socioeconomic status
as well as limited access to nutritious food are linked
to the development of metabolic disorders associated with
malnutrition, including overweight and obesity in pregnancy
(Bleich et al., 2008; Martin et al., 2016). A growing body of
evidence demonstrates the importance of an adequate quality
and quantity of nutrients during pregnancy for the progeny’s
development. As we discussed in this review, inadequate
nutrient intake can create a systemic imbalance in the
mother, compromising the developmental environment, thereby
inducing an inflammatory state and/or a malabsorptive status.
Under these conditions, the offspring might have an increased
risk of developing neurodevelopmental disorders, which may be
revealed with the occurrence of other environmental challenges
later in life. As such, neurodevelopmental disorders have long
been believed to mainly originate from genetic predisposition
that upon exposure to certain environmental conditions lead
to the expression of pathological behaviors. Maternal diet can
exacerbate genetic vulnerability when it is deficient in essential
nutrients or is grossly unbalanced; however, it can also directly
influence fetal genetic programming and expression, and it has
been shown to contribute to inflammation in both the mother
and progeny with regulatory effects on brain development. As
an influencing factor or part of the etiology, maternal diet is
an actionable environmental contributor to brain pathology.
Therefore, it may be a corner stone in setting the developmental
outcomes of the progeny.
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The tremendous importance of an optimal maternal diet
for proper development and neurodevelopment encompassing
cognitive and behavioral outcomes not only emphasizes the
need to investigate thoroughly the long-term incidence of
maternal lifestyle factors, namely dietary, but also stress
exposure, meditation, physical exercise, etc. on the offspring.
Moreover, the impact of the quality standard of food production
(e.g., food-processing treatment, agriculture exposure, water
and soil contamination) as well as water and air pollution
should be considered. Epidemiological studies so far have
also provided little information about food origin (e.g.,
GMO labels are not mandatory worldwide), as well as
limited knowledge of environment contamination, pollution,
use of pesticides, etc. In addition, little is known of how
nutrition, metabolism, and inflammation are tied together,
which highlights the need for longitudinal studies investigating
their joint involvement in the progression, resolution, and
modulation of offspring outcomes across life (infancy, childhood,
adulthood, and aging).

In a similar way that women about to conceive or that
are pregnant need to avoid toxic and infectious elements in
the environment, it is also critical for them to pay particular
attention to their nutritional intake. Indeed, environmental
factors are actionable and nutrition can exert an effect on
mechanisms that regulate and interact with genetic expression.

If maternal diet can prime through its genetic and inflammatory
effects the offspring to develop disorders in later life, then
better understanding of dietary needs during fetal and neonatal
development could lead us to understand the proper diet for a
healthy progeny.
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