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Purinergic receptors play important roles in central nervous system (CNS), where the

bulk of these receptors are implicated in neuroinflammatory responses and regulation

of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family,

P2X7 receptor is generally known for its inactivity in normal conditions and activation

by moderately high concentrations (>100µM) of extracellular adenosine 5′-triphosphate

(ATP) released from injured cells as a result of brain injury or pathological conditions.

Activation of P2X7R contributes to the activation and proliferation of microglia and

directly contribute to neurodegeneration by provoking microglia-mediated neuronal

death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that

results in initiation, maturity and release of the pro-inflammatory cytokines and generation

of reactive oxygen and nitrogen species. These components of the inflammatory

response play important roles in many neural pathologies and neurodegeneration

disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes

are upregulated under neuroinflammatory conditions. Several in vivo studies have

demonstrated beneficial effects of the P2X7 receptor antagonists in animal model

systems of neurodegenerative diseases. A number of specific and selective P2X7
receptor antagonists have been developed, but only few of them have shown efficient

brain permeability. Finding potent and selective P2X7 receptor inhibitors which are

also CNS penetrable and display acceptable pharmacokinetics (PK) has presented

challenges for both academic researchers and pharmaceutical companies. In this

review, we discuss the role of P2X7 receptor function in neurodegenerative diseases,

the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which

permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation

associated with neurodegeneration.
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INTRODUCTION

Purinergic receptors or purinoceptors are plasma membrane
proteins found in almost all mammalian tissues including the
central nervous system (CNS) (Tozaki-Saitoh et al., 2011).
These receptors participate in the synaptic processes via
communications between neuron-glia and glia with other glia cell
types (i.e., astrocytes, oligodendrocytes, and microglia) (Tozaki-
Saitoh et al., 2011). Based on their endogenous ligands, the
purinergic receptors are classified into P1 and P2 categories
(Burnstock, 2008). P1 or adenosine receptors are a family of
G protein-coupled receptors (GPCR) with four subtypes: A1,
A2A, A2B, and A3. P2 receptors are further divided into the
two structurally and functionally unique families of receptors
that mediate intracellular signaling evoked by extracellular
ATP. The ligand-gated ion channel P2X receptors with seven
subtypes: P2X1−7 and the G protein-coupled metabotropic
P2Y receptors with eight subtypes: P2Y1,2,4,6,11,12,13,14 (Ralevic
and Burnstock, 1998; Burnstock, 2018). Several members of
the purinergic receptors, specifically play major roles in CNS
disorders including: Alzheimer’s disease (AD), Parkinson disease
(PD), Huntington’s disease (HD), Frontotemporal dementia
(FD), Amyotrophic Lateral Sclerosis (ALS), Multiple Scleroses
(MS), Traumatic Brain Injury (TBI), stroke, cerebral ischemia,
epilepsy, psychiatric diseases, sleep disorder, and neuropathic
pain (Burnstock, 2008, 2016; Tozaki-Saitoh et al., 2011; Beamer
et al., 2016).

Depending on the receptor subtype, adenosine and the
P2Y receptors are coupled to Gq/Gi/Gs proteins (Puchalowicz
et al., 2015). Gq proteins activation prompt a signaling cascade
through phospholipase C/inositol-1,4,5-triphosphate (PLC/IP3),
a process that promotes the release of Ca2+ from the endoplasmic
reticulum into the cytoplasm. Activation of the Gs/Gi proteins
effect stimulation or inhibition of adenylate cyclase that
subsequently modifies the production of cyclic AMP (cAMP),
while the non-selective P2X ion channel receptors facilitate
cellular exchange of cations like Ca2+, Mg2+, Na+, and K+

(Surprenant and North, 2009; Puchalowicz et al., 2015).
The energy source for neurons and glial cells, Adenosine

5
′

-triphosphate (ATP), also acts as an extracellular purinergic
signaling that controls communication between brain cells
(Burnstock, 2006a). The steady concentration of cytosolic
ATP ranges between 5 to 10mM, but very low nM in the
extracellular space (Bhattacharya and Biber, 2016). However,
under pathological conditions, and during CNS insults, high
concentration of ATP is released from the damaged cells to the
extracellular space as a danger signal and alters calcium signaling
through modulation of purinergic receptors, and in turn results
in neuroinflammatory responses, excitotoxicity, and apoptosis, a
cascade of events that eventually damages the neurons (Yegutkin,
2008; Roszek and Czarnecka, 2015).

High level of extracellular ATP signals microglia to undergo
chemotaxis to the site of injury in order to remove cell debris
from these sites (Inoue, 2008). Microglial activation (Domercq
et al., 2013) result in upregulation of P2X4 and P2X7 (Di Virgilio
et al., 2017) and downregulation of P2Y12 receptors expression
(Haynes et al., 2006). The fine balance between expressions of

these three receptors dictates the destiny of microglia (Vazquez-
Villoldo et al., 2014). A relatively high expression levels of
P2X4 and P2X7 receptors are indicator of pro-inflammatory M1
phenotype microglia activation (Burnstock, 2007). Additionally,
release of the large quantity of ATP [hundreds of micromolar
(µM)], activates P2Y1 receptor that enables movement of
ramified microglia to the damage site, while P2Y6 receptor,
a normally expressed receptor on the activated microglia,
initiates phagocytosis process (Burnstock, 2008; Boue-Grabot
and Pankratov, 2017). Moreover, conversion of extracellular
ATP to adenosine takes place by ectonucleotidases CD39 and
CD73 that are present in microglia (Braun et al., 2000) and in
turn activates adenosine receptors (Fredholm et al., 2001; Choi
et al., 2015). Both adenosine and ATP are essential modulators
of neuroinflammatory responses, excitotoxicity, oxidative stress
and cell death, especially via A2A and P2X7 receptors activity,
respectively (Cunha, 2016; Faas et al., 2017; He et al., 2017;
Vuorimaa et al., 2017).

The ligand-gated ion channel P2X receptors have seven
subunits that vary in length ranging from 377 amino acid residues
in the P2X6 receptor to 595 residues in the P2X7 receptor
(North, 2002). P2X7R is mostly coexpressed with P2X4R, and
the two receptors are proven not to form heteromeric assemblies
and function only as homomers (Guo et al., 2007). However,
P2X7R homotrimers were able to co-immunoprecipitate with
P2X4 and as such, there is an evidence of a structural
and functional interaction between P2X4 and P2X7 receptors
(Boumechache et al., 2009). Other P2X receptor subunits form
both homomeric or heteromeric receptors such as: P2X1/2,
P2X1/4, P2X1/5, P2X2/3, P2X2/5, P2X2/6 and P2X4/6 receptors
(Jiang et al., 2013). P2X receptors are widely distributed in
neuronal and non-neuronal cells, and participate in many
physiological and pathophysiological processes (Caseley et al.,
2014). Countless in vitro and in vivo studies have shown
changes in these receptors’ expression under pain sensation,
inflammation and nerve transmission conditions (Jacobson and
Muller, 2016). In the CNS, P2X receptors, especially P2X4 and
P2X7 contribute to modulation of neuron-glia communication,
inflammation, and apoptosis (Burnstock, 2006b; Surprenant
and North, 2009). With the exception of P2X7R, other P2XRs
subtypes are typically activated at low micromolar (µM) or high
nanomolar (nM) concentrations of ATP. Several publications
have extensively discussed the distribution, pharmacological
properties, physiological and pathophysiological functions of the
P2X receptors (Surprenant and North, 2009; Jiang, 2012; Jiang
et al., 2013; North and Jarvis, 2013).

P2X7 Receptors
P2X7 receptors are members of the P2X family of trimeric
ligand-gated cation channel receptors encoded by the P2RX7

gene and share the least homology (35–40%) with other
P2XRs (North, 2002; Sperlagh et al., 2006). P2X7R has the
largest monomeric subunit in the P2X family (North, 2002).
Each subunit has a short intracellular amino, long carboxyl
termini that seems to be essential for most of the receptor
activities and two hydrophobic transmembrane domains that
are separated by a long glycosylated extracellular ATP-binding
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domain (Nicke, 2008; Jiang et al., 2013). The C-terminus also
plays a role in positioning of the receptor in membrane micro-
domains (Murrell-Lagnado, 2017) and/or signaling complexes
(Kim et al., 2001; Kopp et al., 2019). Functional P2X7 receptor
forms a homo-trimeric structure (Jiang et al., 2013), and hold
important physiological functions that distinguish it from the
other receptor in its family (North, 2002; Sperlagh et al.,
2006).

P2X7 Receptor Expression and Activation
in the CNS
P2X7 receptors are expressed in a number of cell types in
the mammalian system including the peripheral and central
nervous systems cells (Burnstock, 2008). In the CNS, the
highest concentrations of the receptor is expressed on microglia
(Weisman et al., 2012; Bhattacharya and Biber, 2016), astrocytes
(Ballerini et al., 1996), and oligodendrocytes (Matute et al., 2007)
as well as glutamatergic pyramidal neurons of the hippocampus
(Metzger et al., 2017). While, P2X7R expression on neurons is
controversial (Illes et al., 2017), it has been detected on some
populations of the spinal cord, cerebellum, hypothalamus, and
substantia nigra neurons (Bartlett et al., 2014). Activation of
P2X7 receptor on microglia subsequently prompts activation of
the NLRP3 inflammasome, which induces the release of pro-
inflammatory cytokines IL-1β and IL-18, the key mediators
of chronic inflammation (Beamer et al., 2016), chronic pain
(Bartlett et al., 2014; Beamer et al., 2016; He et al., 2017),
neuroinflammation (Monif et al., 2010; Bhattacharya et al., 2013;
He et al., 2017), and inflammatory cell death (Leeson et al.,
2019). Additionally, activation of P2X7R onmicroglia induces the
release of TNFα, production of reactive oxygen species (ROS),
and in particular oxygen superoxides, which stimulate the NFκB
signaling, release of more pro-inflammatory and pro-apoptotic
genes, causing cell-death of surrounding neurons (Parvathenani
et al., 2003). Differently from other P2Xs, the P2X7 receptor
is generally known for its inactivity in normal conditions and
activation under toxic effects of high extracellular ATP and
therefore, is known as a toxic or death-inducing receptor (Di
Virgilio, 2020). P2X7R is only activated after injury, infection, in
tumor microenvironments, or in conditions that cause increase
in extracellular ATP concentration (in the millimolar range of
EC50 ≥ 100µM) (Surprenant et al., 1996; Donnelly-Roberts et al.,
2009; Bianchi et al., 2014; Fiebich et al., 2014). P2X7 receptor is
also activated when ectonucleotidases, which degrade ATP and
other nucleotides, are downregulated (Di Virgilio et al., 2009;
Bartlett et al., 2014). Short exposure of the receptor to ATP results
in the channel opening to small cations, including Ca2+, Mg2+,
Na+, and K+ (Surprenant et al., 1996; Bartlett et al., 2014), while
sustained exposure of the receptor to ATP leads to formation
of larger pores that allow for the uptake of large organic ions
of up to 900 Da (Volonte et al., 2012), and has shown to result
in inflammation, cytotoxicity (Di Virgilio et al., 2001; Liang
and Schwiebert, 2005) and cell death (Surprenant et al., 1996;
Illes et al., 2017). Additionally, activation of P2X7R for a longer
duration allows for recruitment of pannexin pores (Volonte
et al., 2012; Sun et al., 2013; Idzko et al., 2014) allowing the

release of even larger amounts of ATP and leading to activation
of caspases (Franke et al., 2012), and has been shown to lead
to neuro-pathology and cell death (Bartlett et al., 2014). ATP
removal from the receptor within 10–15min of the addition,
have resulted in resealing of the plasma membrane and recovery
of normal cell functions (Di Virgilio et al., 2018). The major
site for neuronal P2X7 receptor expression appears to be at
presynaptic terminals (Miras-Portugal et al., 2003), resulting
in this receptor’s participation in the release and regulation of
neurotransmitters such as GABA and glutamate (Sperlagh et al.,
2002).

P2X7 Receptor Polymorphism
The P2RX genes encode for the human P2X receptors, mainly the
human P2X7 receptor that is highly polymorphic and contains
a large set of single nucleotide polymorphisms (SNPs). Genetic
association studies suggest that non-synonymous SNPs (NS-
SNPs) in the P2RX genes are important genetic factors in
susceptibility of individuals to various diseases (Jiang et al., 2013).
The disease-associated NS-SNPs have provided novel insights
into disease mechanisms associated with these receptors (Sorge
et al., 2012). For instance, ATP-induced influx observed in
the T357S polymorphism results in a partial loss of function
in human monocytes, lymphocytes, and macrophages, and
impaired mycobacterial killing (Shemon et al., 2006; Miller et al.,
2011). Similarly, the Q460R polymorphism has been associated
with major depressive and bipolar disorders (Barden et al.,
2006; Lucae et al., 2006), while ATP-induced ethidium uptake
assays in HEK293 cells baring this SNP showed a reduction in
pore formation (Stokes et al., 2010), subsequent reduced Ca2+

flux, and diminished channel currents associated with impaired
cellular signaling. Moreover, in the P2X7R knock-in mouse
model, which harbors the Q460R polymorphism, if co-expressed
with the non-polymorphic variants, results in reductions in
sleep quality compared with controls (Aprile-Garcia et al.,
2016; Metzger et al., 2017). Similarly, the E496A SNP, has also
been associated with cancer metastasis and shown to result in
impaired ATP-induced ethidium uptake, Ba2+ permeation, and
induction of apoptosis in human B-lymphocytes (Gu et al.,
2001; Ghiringhelli et al., 2009). Moreover, the human A348T
SNP has been shown to induce pore formation and IL-1β
secretion (Stokes et al., 2010), while only the H521Q has been
described as neutral (Wiley et al., 2011). By contrast, the loss-
of-function I568N polymorphism has been reported to prevent
cell surface expression and cytosolic receptor trafficking (Wiley
et al., 2003). Importantly, the P451L SNP results in loss-of-
function, and is found in many common murine strains (i.e.,
AKR/J, C3H/HeJ, C57BL/6, C57BL/10, CBA/J, DBA/1, DBA/2,
FVB/NJ, and NZO/HILtJ), but is not observed in rats, humans,
or wild derived mouse strains (i.e., CAST/EiJ, WSB/EiJ and
PWK/PhJ) (Yang et al., 2021). This SNP impairs ATP-induced
cation fluxes, pore formation, externalization, and apoptosis
(Schwarz et al., 2012; Rissiek et al., 2015), and has been
associated with reduced pain sensitivity and inflammation in
these model systems which harbor the mutation (Sorge et al.,
2012).

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 617036

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Territo and Zarrinmayeh P2X7 Receptors of the Central Nervous System

P2X7 Receptor in Different Species
Significant species differences in receptor pharmacology exists
in mouse, rat, and human resulting in altered affinity of these
receptors for their native ligand (Donnelly-Roberts et al., 2009).
Despite this, P2X7 receptor activation does occur, resulting
in dye uptake, IL-1β release, and initiation of apoptosis (i.e.,
phosphatidylserine-flip) present in all isoforms (Kopp et al.,
2019). In general human, Rhesus macaque, dog, rat, and mouse
P2X7 receptors share 77–85% sequence homology (Surprenant
et al., 1996; Bartlett et al., 2014), which results in variations in the
receptor affinities for ATP (Table 1).

P2X7 Receptor in Neurodegeneration
Neurodegenerative diseases (ND) are a cluster of disorders
caused by either hereditary or sporadic conditions and
characterized by progressive dysfunction of the nervous system
that leads to inflammation, gliosis and degeneration of
neurons in the brain and/or the spinal cord (Kanellopoulos
and Delarasse, 2019). In addition to aging which is the
main contributor to the neurodegenerative diseases, abnormal
protein aggregation in the brain cells represents a common
hallmark in these pathologies as seen in both Alzheimer’s
disease (AD) and Parkinson’s disease (PD), the two most
common neurodegenerative disorders. Neuroinflammation, the
harmful shared characteristic of neuronal degeneration is
the consequence of P2X7R activation on microglia (Sperlagh
et al., 2006; Burnstock et al., 2011; Sperlagh and Illes, 2014)
(Figure 1). ATP-dependent P2X7Rs activation induce necrosis
by encouraging membrane pores opening that subsequently
promote loss of intracellular proteins and promote activation
of the caspase pathway, bringing apoptosis to glial cells.
P2X7Rs driven microglial activation has been implicated
in neuroinflammation and neurodegeneration (Monif et al.,
2010; Illes et al., 2017). Therefore, P2X7 receptor modulation
has proven to be a promising option for treatment of
neurodegenerative diseases and antagonists of this receptor have
shown to slow deposition of the amyloid plaque and progression
of AD disease in animal model systems (Diaz-Hernandez et al.,
2012; Rodrigues et al., 2015).

P2X7 Receptor in Alzheimer’s Disease
The appearance of plaques that consist of extracellular β-amyloid
(Aβ) peptide surrounded by reactive microglial is a major
hallmark of AD (Sanz et al., 2009). Aβ peptide, produced via
cleavage of the amyloid precursor protein (APP) by β- and γ-
secretases has shown to trigger increases in Ca2+, ATP and IL-
1β, induce plasmamembrane permeabilization and consecutively
damage neurons (Delarasse et al., 2011; Martin et al., 2019)
(Figure 1). P2X7 receptor has shown to be upregulated on
activated microglia in the hippocampus of Tg2576 transgenic
mice models of AD, and in rat’s brain following intra-
hippocampal Aβ injection (Parvathenani et al., 2003; Mclarnon
et al., 2006). Additionally, P2X7 receptor deficient microglia
was not activated with Aβ (Sanz et al., 2009); P2X7 receptor
silencing enhanced microglia phagocytosis and clearance of Aβ

(Ni et al., 2013); and receptor deficiency reduced Aβ plaque,
improve synaptic plasticity and resulted in reduction of cognitive

deficits in AD mice model (Chen et al., 2014). The P2X7R
antagonist BBG has shown to decrease Aβ plaque buildup in
hippocampal neurons and improve cognition in J20 mice model
of AD (Chen et al., 2014). This effect has been due to the
boost in α-secretase activity by BBG (a P2X7R antagonist) via
reduction of GSK3β activity (Diaz-Hernandez et al., 2012), an
APP phosphorylating enzyme (Mclarnon et al., 2006; Ryu and
Mclarnon, 2008). However, in AD mice, the absence of P2X7R
did not influence IL-1β release or non-amyloidogenic fragment
sAPPα level (Martin et al., 2019). Furthermore, in vitro studies
has indicated that stimulation P2X7R for a short time (∼30
minutes) increased α-secretase activity (Delarasse et al., 2011).
Therefore, the involvement of P2X7R in AD is still somewhat
unclear and requires more investigation.

P2X7 Receptor in Parkinson’s Disease
P2X7-induced microglia activation has been detected in PD
pathology (Carmo et al., 2014). α-Synuclein binding to, and
activating of the P2X7 receptor on microglia (Jiang et al., 2015;
Wilkaniec et al., 2017) have been detected in the brains of patients
with PD (Durrenberger et al., 2012; Jiang et al., 2015). P2X7

receptor has also been shown to participate in the nigrostriatal
degeneration in rat model of PD. Motor and memory deficit
induced by 6-hydroxydopamine (6-OHDA) animal model of PD
was ameliorated by administration of selective P2X7 receptor
antagonists (Marcellino et al., 2010; Carmo et al., 2014; Ferrazoli
et al., 2017; Kumar et al., 2017), suggesting P2X7 receptor
play a pro-inflammatory role in microglia activation in PD
(Kumar et al., 2017). Additionally, P2X7 receptor antagonist
BBG significantly prevented, and in some cases reversed loss
of dopaminergic neurons in the 6-OHDA model (Carmo et al.,
2014; Ferrazoli et al., 2017). However, A-438079, another P2X7R
antagonist maintained striatal dopamine; but, did not prevent
the loss of dopaminergic cells in the 6-OHDAmodel (Marcellino
et al., 2010). Furthermore, inhibition and/or genetic deletion of
P2X7R did not induce neuro-protection in the MPTP mouse
model of Parkinson’s disease (Hracsko et al., 2011). More
research is needed to further clarify the relationship between
P2X7R activation and PD.

P2X7 Receptor in Multiple Sclerosis
Multiple sclerosis (MS) is an inherited degenerative disease,
which results in focal inflammatory lesions in both white
and gray matter (Hagens et al., 2020). MS is caused by
immune cell infiltration, loss of oligodendrocytes, axonal
damage, demyelination, and neuronal death. Increased level
of P2X7 receptor expression has been detected on microglia
(Yiangou et al., 2006), astrocytes (Narcisse et al., 2005), and
oligodendrocytes (Matute et al., 2007) of the post-mortem
multiple sclerosis patients (Narcisse et al., 2005; Grygorowicz
et al., 2010; Burnstock, 2015; Sadovnick et al., 2017). In the acute
phase of the disease, elevated expression of P2X7R have been
observed in neurons, astrocytes and oligodendrocytes, causing
the release the pro-inflammatory cytokines that has shown to
contribute to the progressive inflammation, degeneration and
cells death in Experimental Autoimmune Encephalomyelitis
(EAE) model of MS (Grygorowicz et al., 2016) (Figure 1).
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TABLE 1 | P2X7 Receptor Antagonist and Radioligands and their application in CNS indications.

P2X7 Receptor

Antagonists

P2X7

Receptor Radioligands

Ki (nM) IC50 (nM) Application in CNS indications References

A-438079 7.1 ± 0.08 (h)

6.7 ± 0.1 (r)

6.0 ± 0.02 (h)

5.9 ± 0.2 (r)

5.5 ± 0.2 (m)

Studied in PD, epilepsy, depression, anxiety, and

bipolar disorders.

Maintained striatal dopamine; but did not prevent

the loss of dopaminergic cells in the 6-OHDA

model.

Reduced noxious and innocuous evoked activity of

different classes of spinal neurons in neuropathic rat

model.

Suppressed seizures and exhibited neuroprotective

effects in immature rats. Reduced induced status

epileptic seizure.

Exhibited antidepressant effects in chronic

unpredictable mild stress (CUMS) mice model

of depression.

Nelson et al., 2006

Donnelly-Roberts et al., 2009

Bhattacharya et al., 2013

Marcellino et al., 2010

Hracsko et al., 2011

Mesuret et al., 2014

Henshall et al., 2013

Engel et al., 2016

Yue et al., 2017

Bhattacharya et al., 2018

Park and Kim, 2017

Ribeiro et al., 2019

A-839977 20 - 150 (h, r, m) Produced antinociception in animal models of

inflammatory pain.

Reduced thermal hyperalgesia in rats.

Produced antihyperalgesia in the model of

inflammatory pain in mice.

Did not induce antihyperalgesic effects in IL-1

knockout mice.

Florjancic et al., 2008

Honore et al., 2009

Friedle et al., 2010

A-740003

[3H]A-740003

[11C]A-740003

40 (h)

20 (r)

Claimed to be brain-permeable, persisting in brain

tissues at least for 1 h after administration. But has

already been shown to not enter the brain. Reduced

neuropathic pain in rat.

Radioligand [3H]A-740003 was used in in vitro study

in post mortem brain sections of MS patients and rat

brain sections of a rat model of EAE model of MS.

Honore et al., 2006

Janssen et al., 2014

Beaino et al., 2017

Zarrinmayeh and Territo, 2020

A-804598

[3H]A-804598

[18F]EFB

8.0 ± 0.04 (h)

8.8 ± 0.06 (r)

7.7 ± 0.13 (h)

6.8 ± 0.17 (r)

7.0 ± 0.06 (m)

Prevented stress-induced depressive-like and

anxiety-like behaviors in mice and rats.

Induced antidepressant-like effects in FST mice

model of depression.

Failed to reverse behavioral changes caused by foot

shocks in rat.

Decreased hepatic inflammation in mice fed a high

fat diet and ethanol.

Reduced inflammatory markers in hippocampus

without altering many neurotransmitters.

Converted to [3H]A-804598 radioligand to study

recombinant rat receptors expressed in 1321N1

cells.

PET radioligand [18F]EFB,a fluorinated analog of

A-804598, showed limited yet quantifiable

brain penetration.

Donnelly-Roberts et al., 2009

Bhattacharya et al., 2013

Karasawa and Kawate, 2016

Fabbrizio et al., 2017

Ly et al., 2020

Ruiz-Ruiz et al., 2020

Freire et al., 2019

Ribeiro et al., 2019

Zarrinmayeh and Territo, 2020

GSK1482160

[11C]GSK1482160

[18F]IUR-1601

2.63 (h) 8.5 (h)

6.5 (r)

Brain penetrable.

Entered phase I for treating inflammatory pain in

arthritis, but failed to proceed further.

PET radioligand [11C]GSK1482160 showed high

affinity to brain P2X7R.

PET radioligand [18F]IUR-1601 showed similar

affinity and selectivity for P2X7R

as [11C]GSK1482160.

Abdi et al., 2010

Ali et al., 2013

Territo et al., 2017

Glaxosmithkline, 2009

Zarrinmayeh and Territo, 2020

Gao et al., 2018

SMW139

[11C]SMW139

32 (h) Entered clinical trial for evaluation of

neuroinflammation in MS patients.

PET radioligand [11C]SMW139 was developed to

study in vivo marker of neuroinflammation in

multiple sclerosis.

Janssen et al., 2018

Hospital, 2019

Hagens et al., 2020

Zarrinmayeh and Territo, 2020

(Continued)
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TABLE 1 | Continued

P2X7 Receptor

Antagonists

P2X7

Receptor Radioligands

Ki (nM) IC50 (nM) Application in CNS indications References

JNJ-42253432 7.9 ± 0.08 (h)

9.1 ± 0.07 (r)

7.7 ± 0.07 (h)

7.8 ± 0.1 (r)

7.1 ± 0.2 (m)

Brain permeable (Brain/Palms = 1).

Significantly reduced severe convulsive seizures

after one-week treatment.

Lord et al., 2014

Amhaoul et al., 2016

JNJ-47965567 7.9 ± 0.07 (h)

8.7 ± 0.07 (r)

8.3 ± 0.08 (h)

7.2 ± 0.08 (r)

7.5 ± 0.1 (m)

Brain penetrable.

Blocked the Bz-ATP induced IL-1β release.

Attenuated amphetamine-induced hyperactivity.

Efficacious in rat model of neuropathic pain.

Reduced temporal lobe epilepsy.

Produced long-lasting delay in kindling

development.

Chronic administration to SOD mice model of ALS

modified disease progression in female animals, but

had no effect in male animals.

Bhattacharya et al., 2013

Jimenez-Pacheco et al., 2016

Ruiz-Ruiz et al., 2020

Fabbrizio et al., 2017

Ly et al., 2020

JNJ-55308942 8.12 ± 0.08 (h)

8.5 ± 0.04 (r)

7.87 ± 0.2 (h)

7.81 ± 0.2 (r)

7.55 ± 0.5 (m)

7.96 ± 0.1 (mk)

7.72 ± 0.06 (d)

Brain-penetrant (brain/plasma = 1)

Engaged brain targets, modulated microglial

activation and reduced IL-1β release.

Efficacious in models of anhedonia in rodents.

Entered phase I clinical trial and is currently in

clinical development to study P2X7R occupancy in

the brain.

In clinical trial to assess the safety, tolerability, and

pharmacokinetics in healthy participants after

administration of single and multiple oral doses.

Ali et al., 2013

Letavic et al., 2017

Bhattacharya, 2018

Chrovian et al., 2018

Letavic et al., 2017

Bhattacharya, 2018

Nv, 2017b

Watch, 2021

JNJ-54175446 8.3 ± 0.1 (h)

8.3 ± 0.05 (r)

8.46 ± 0.36 (h)

8.81 ± 0.24 (r)

Brain-penetrant.

Entered phase I clinical trial to study safety,

tolerability, and pharmacodynamics in participants

with major depressive disorder.

Letavic et al., 2017

Kolb et al., 2019

Bhattacharya, 2018

Cctu-Core, 2019

JNJ-64413739

[18F]JNJ-64413739

15.9 (h)

2.7 (rat cortex)

1.0 ± 0.2 (h)

2.0 ± 0.6 (r)

Potent, selective and brain permeable.

PET radioligand [18F]JNJ-64413739 was used to

study P2X7R in human brain, and can be used for

testing target engagement of other brain permeable

P2X7 antagonists.

Kolb et al., 2019

Koole et al., 2019

Nv, 2017a

Zarrinmayeh and Territo, 2020

JNJ-54232334

[3H] JNJ-54232334

7.8 ± 0.05 (h)

9.3 ± 0.1 (r)

9.5 ± 0.02 (h)

7.5 ± 0.02 (r)

Higher levels of P2X7 ex vivo occupancy were

measured using [3H] JNJ-54232334 due to less

non-specific binding.

Radioligand [3H] JNJ-54232334 showed improved

properties over [3H] A-804598.

Lord et al., 2015

Rudolph et al., 2015

Zarrinmayeh and Territo, 2020

JNJ-54140515 7.7 (h)

8.9 ± 0.01 (r)

7.7 ± 2.6 (h)

8 ± 2.9 (r)

Readily crossed the blood-brain barrier.

Studied brain P2X7R occupancy.

Has shown a 10-fold increase in brain penetration

over JNJ-54232334.

Lord et al., 2015

Bhattacharya and Jones,

2018

Hempel et al., 2013

Rudolph et al., 2015

JNJ-54173717

[11C]-JNJ-54173717

1.6 ± 0.1 nM

rat cortex

4.2 ± 0.01 (h)

7.6 ± 0.01 (r)

Brain-penetrable.

Studied in models of depression, epilepsy and PD.

PET radioligand [11C]JNJ-54173717 used for

studying the brain P2X7R functions in both rats and

nonhuman primates.

[11C]JNJ54173717 was also studies in healthy

volunteers and PD patients in human.

Ory et al., 2016

Rudolph et al., 2015

Savall et al., 2015

Van Weehaeghe et al., 2019.

Zarrinmayeh and Territo, 2020

JNJ-54166060 7 (h)

8 (r)

4 (h)

115 (r)

72 (m)

Brain-penetrable with brain/plasma ratio (∼3).

Bioavailable P2X7R antagonist with moderate

clearance.

Exhibited dose dependent occupancy in the rat

brain with an ED50 = 2.3 mg/kg.

Swanson et al., 2016

P2X7R, P2X7 receptor; h, human; r, rat; m, mouse; d, dog; mk, monkey; PD, Parkinson’s disease; 6-OHDA, 6-hydroxydopamine; CUMS, chronic unpredictable mild stress; PET, positron

emission tomography; Bz-ATP, 3′-O-(4-benzoylbenzoyl)-adenosine 5′-triphosphate; SOD, superoxide dismuatase; ALS, Amyotrophic Lateral Sclerosis.
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FIGURE 1 | Diagram of common neurologic diseases mediated via P2X7 receptors (P2X7R)- in central nervous system (CNS). P2X7R are expressed on a number of

CNS cells, which include: nerve terminals, astrocytes, and microglia. These receptors are upregulated in response to stress signals such as mechanical injury, bacterial

or chemical toxins, and hypoxia/ischemia, and lead to a self-amplified release of ATP, which results in further activation of P2X7R on neighboring cells. Following ATP

dependent Ca2+ influx through the receptor ion channel complex, P2X7R activation results in: (1) releases glutamate from nerve terminals and astrocytes by both exo

and endocytotic mechanisms, which results in excite-toxicity; (2) synthesis and post-translational modification of pro-interleukin-1β (pro-IL-1β) which leads to mature

IL-1β and ultimate release via the NLRP3 inflammasome. This activation then leads to other cytokine release and activation leading to neuroinflammation; (3) enhance

reactive oxygen and nitrogen species which results in neuronal damage and protein misfolding; which in turn (4) leads to cell death and reactive astrogliosis; and (5)

the downregulation of brain-derived neurotrophic factor (BDNF) and alterations in neuronal plasticity. The aforementioned mechanisms have been shown

independently, or in concert, to contribute to disease pathology in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), status epilepticus

(SE), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, pain, and mood disorders. ATP, Adenosine Triphosphate; GLU, glutamate; ROS, reactive

oxygen species. Figure adapted from Sperlagh and Illes (2014) with modification, and generated using the online software at BioRender.com.

Remarkably, P2X7R expression is down-regulated on peripheral
monocytes of MS patients during the acute phase of the
disease (Amadio et al., 2017). This behavior of the receptor
has created a gap in understanding of the receptor function
in MS and the treatment of the disease. Several cohort studies
have acknowledged an association of loss-of-function, minor
allele frequency P2X7 receptor SNP, rs28360457, coding for
R307G with protection against MS and a gain-of-function

haplotype rs208294, coding for H155T, which increases risk of
MS (Oyanguren-Desez et al., 2011; Gu et al., 2015). Additionally,
in a case-control study, elevated frequency of a gain-of-
function SNP, rs17525809 coding for A76V in MS patients was
observed (Oyanguren-Desez et al., 2011), suggesting that P2X7R
variants may play a significant role in the pathogenesis of MS
disease. Moreover, studies have reported that P2X7 receptor
antagonist decreased astrogliosis, abridged demyelination, and
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improved neurological symptoms in an EAE rat model of MS
(Grygorowicz et al., 2016). Some of these antagonists, including
BBG, have shown to improvemotor deficits in EAE by decreasing
demyelination that consequently improves axonal conduction
(Bartlett et al., 2017).

P2X7 Receptor in Huntington’s Disease
Huntington’s disease (HD) is an inherited neurodegenerative
disorder caused by progressive degeneration of nerve cells in
the cortex and striatum of the brain (Oliveira-Giacomelli et al.,
2018). Patients with HD experience progressive cognitive decline
in addition to motor and psychological dysfunction. Brains of
Tet/HD94 and R6/1 mice, which are genetic models of HD, have
shown increased mRNA and protein levels of P2X7 receptor
(Diaz-Hernandez et al., 2009), and BBGhas shown to prevent loss
of body weight and motor coordination deterioration in the R6/1
mouse model of HD (Diaz-Hernandez et al., 2009). Importantly,
recent work by Olla et al. (2020) has shown that P2X7R has been
found upregulated, and in some case showed altered splicing, in
the brain of HD subjects.

P2X7 Receptor in Amyotrophic Lateral
Sclerosis
Amyotrophic lateral sclerosis (ALS) is an adult-onset
neurodegenerative disease characterized by decline and loss
of motor neurons (i.e., both upper and lower) (Oliveira-
Giacomelli et al., 2018). Inflammation and autophagy play
critical roles in the pathogenesis of ALS, while several studies
have implicated the role of P2X7Rs in pathogenesis (Volonte
et al., 2016). Increased expression of P2X7Rs has been detected
in microglia (D’ambrosi et al., 2009; Rudnick et al., 2017) or
astrocytes (Gandelman et al., 2010; Apolloni et al., 2014) isolated
from superoxide dismutase 1 (SOD1G93A) mouse model of
ALS, and application of the P2X7R antagonist BBG improved
spinal cord pathology and ameliorated the disease in these mice
(Apolloni et al., 2014; Bartlett et al., 2017). Additionally, more
potent and selective P2X7R antagonists such as A804598 and
JNJ-47965567 have provided some beneficial effects in ALS
mouse models (Fabbrizio et al., 2017; Ly et al., 2020; Ruiz-Ruiz
et al., 2020). Furthermore, ATP-induced activation of P2X7R
has shown to activate kinase ERK1/2 and NOX2 in microglia
of SOD1G93A mice (Apolloni et al., 2013). Nevertheless, P2X7R
down-regulation has also been detected in peripheral circulating
monocytes of ALS patients (Liu et al., 2016), which contrasts
the up-regulation of the receptor in spinal cord and nervous
tissues of post-mortem ALS patients post-mortem (Yiangou
et al., 2006). Thus far, studies of the P2X7R function in ALS has
not been conclusive and it seems that this receptor plays a dual
role in ALS (Volonte et al., 2020).

P2X7 Receptor in Epilepsy
Epilepsy can occur from an insult to the brain (stroke and head
trauma such as in TBI), repeated episodes of status epilepticus
or genetic malfunction (Rees, 2010; Pitkanen and Lukasiuk,
2011). In adults, the most common form of acquired epilepsy is
temporal lobe epilepsy (TLE) which is characterized by a pattern
of reactive gliosis and selective neuronal loss, a phenomenon

that is also called hippocampal sclerosis (Chang and Lowenstein,
2003). P2X7 receptor activation and upregulation has been
associated with TLE and inhibition of receptor activity with
antagonist JNJ-47965567 has shown to reduce TLE both during
and past the time of drug presence (Jimenez-Pacheco et al.,
2016). Hippocampal sections of these treated mice displayed
reduction of activated microglia and astrocytes, suggesting
anticonvulsant and anti-epilepsy property of P2X7R antagonists
(Jimenez-Pacheco et al., 2016). BBG treatment of rats with
spontaneous recurrent seizures helped treatment by reducing
the P2X7 receptor expression (Fischer et al., 2016; Song et al.,
2019). Additionally, significant reduction in severe convulsive
seizures was observed after treatment with P2X7R antagonist
JNJ-42253432 for a week (Amhaoul et al., 2016). Another
P2X7R antagonist A-438079 suppressed seizures and exhibited
neuroprotective effects in immature rats (Mesuret et al., 2014).
P2X7R antagonists BBG and A-438079 have also been shown
to reduce status epileptic seizure caused by unilateral injection
of kainic acid into the mice amygdala in rodent model of
temporal lobe epilepsy (Henshall et al., 2013; Engel et al.,
2016). Additionally, several lines of evidence confirms increase
of P2X7R in hippocampus of patients with pharmaco-resistant
temporal lobe epilepsy and in hippocampal subfields of mice
that experienced status epilepticus (Jimenez-Pacheco et al., 2016).
These studies support the role of P2X7 receptor antagonists
in treating epilepsy, including drug-resistant epilepsy (Beamer
et al., 2016; Cieslak et al., 2017; Rodriguez-Alvarez et al.,
2017). Furthermore, P2X7R have been recognized as targets for
treatment of hypoxic/ischemic encephalopathy (Beamer et al.,
2017). Recent anticonvulsant studies using P2X7R antagonists,
which include BBG, AFC-5128, JNJ-47965567, and tanshinone
IIA sulfonate (traditional Chinese herbal medicine, TIIAS) in
animal models have illustrated the potential of these agents to
modulate seizures. Remarkably in the pentylenetetrazol-kindling
(PTZ-kindling) and maximal electroshock seizure (MES) models
threshold test, none of the compounds showed anticonvulsant
effects when given by itself; however, when given in combination
with carbamazepine, AFC-5128 and JNJ-47965567 increased the
threshold in the MES test (Fischer et al., 2016). Similarly, in
the PTZ-kindling rat model anti-epileptogenic activities for BBG
and TIIAS were observed, whereas the P2X7R inhibitors AFC-
5128 and JNJ-47965567 showed long-lasting delay in kindling
development, while results in fully kindled animal showed
reductions in seizure stage (Fischer et al., 2016). In the case of
epilepsy, P2X7 receptors have three distinct functions depending
on the situations of the extracellular environment. P2X7R
initiates cell death in the presence of elevated extracellular ATP,
while mediates calcium signal transduction in response to ATP
that regulates proliferation and differentiation. Finally, P2X7R
activation promotes phagocytosis in the absence of extracellular
ATP (Zheng et al., 2017).

P2X7 Receptor in Ischemia, Stroke and
Trauma
Ischemic stroke, one of the major type of strokes, results from
oxygen and glucose deprivation that cause cell death (Hempel
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et al., 2013; Yoshida et al., 2015). Neuroinflammation and over
expression of the P2X7 receptor has been detected in this
ischemic stroke (Figure 1) and the neuroprotective effects of
P2X7R suppression has been proven to be successful in this
type of stroke (Melani et al., 2006; Eyo et al., 2013). The ATP
degrading enzyme apyrase and P2X7 receptor antagonists have
shown to relieve the damage initiated by ischemia and improve
action potential recovery (Domercq et al., 2010). In hemorrhagic
stroke, where a sudden rupture of cerebral blood vessels and cell
death promote quick release and accumulation of large quantity
of ATP, P2X7R inhibition has been promising in prevention of
acute neuroinflammation and cell death (Chen et al., 2013a,b).
Striatal P2X7R has also shown to intensify neuroinflammation
and brain damage in intracerebral hemorrhage (ICH) possibly via
activation of NLRP3 inflammasome and release of IL-1β/IL-18.
The P2X7R antagonist BBG treatment following ICH has shown
to downregulate the release of these proinflammatory cytokines
(Feng et al., 2015). Inhibition of P2X7Rs improved global cerebral
ischemia/reperfusion injury. This positive effect is evidenced by
increase in survival rate, reduction of neuronal death in the
hippocampal CA1 region, and improvement in learning memory
(Chu et al., 2012; Yu et al., 2013). P2X7Rs are also involved in
cerebral neurological damage and edema after traumatic brain
injury. Application of P2X7R antagonist BBG has resulted in
decreased expression of Glial fibrillary acidic protein (GFAP) and
reduction of aquaporin-4, which is an astrocytic water channel
that promotes cellular edema (Kimbler et al., 2012; Leeson et al.,
2019).

P2X7 Receptor in Depression
P2X7 receptor activation by ATP followed by NLRP3 induced
IL-1β release that results in neuroinflammation are major
contributors of neuropsychiatric disorders, especially depression
(Adinolfi et al., 2018; Bhattacharya and Jones, 2018; Franklin
et al., 2018; Li and Barres, 2018; Liu et al., 2018). An
anti-inflammatory Chinese medicine, Chrysophanol has shown
an anti-depressant effects by mediation of the P2X7R/NFκB
signaling pathway (Zhang et al., 2016) supporting the role of
P2X7 receptor participation in depression. Additionally, the
P2X7R knock out mice did not show signs of depression in forced
swim and tail suspension tests (Basso et al., 2009; Leeson et al.,
2019), consistent with this hypothesis. Some brain penetrable
P2X7R antagonists such as BBG and A-438079 have exhibited
antidepressant effects in chronic unpredictable mild stress
(CUMS) mice model of depression by inhibiting the activation
of P2X7/NLRP3/IL-1β pathway (Yue et al., 2017; Bhattacharya,
2018). Furthermore, stress is known to prompt production of
excessive glutamate that is proven to stimulate large ATP release
from astrocytes, activating P2X7R and subsequently increasing
IL-1β level in the brain (Faloia et al., 2012).

P2X7 RECEPTOR LIGANDS

Agonists
Two major agonist of the P2X7 receptor are ATP and BzATP,
which is 10–30 fold more potent than ATP (Surprenant et al.,
1996; Beigi et al., 2003), but also activates P2X1 and P2X3

receptors (De Marchi et al., 2016). Activation of P2X7R by
ATP induces neuroinflammation that results in pathogenesis
of many diseases of CNS, suggesting significant potential
for P2X7 receptor antagonists to combat the diseases of
neuroinflammatory origin (Mehta et al., 2014). Therefore, there
has been extensive effort to develop several potent and selective
P2X7R antagonists.

Antagonists
There are two non-selective ATP derivative antagonists TNP-
ATP and periodate-oxidized ATP (oATP) with high µmol
potencies (Beigi et al., 2003; Di Virgilio, 2003; De Marchi
et al., 2016). The major group of P2X7R antagonists are the
non-ATP based compounds. Depending on their interaction
with the receptors, some are orthostatic antagonists that bind
competitively to the ATP binding pocket, while majority are
allosteric antagonists that bind to other locations than the ATP-
binding site, and reduce ATP binding affinity to the receptor (De
Marchi et al., 2016).

First Generation Antagonists
The first generation of non-ATP antagonists were mostly
designed for in vitro study of the receptor and included
compounds such as: Reactive Blue 2 (Bartlett et al., 2014),
Suramin (Leff et al., 1990), Brilliant Blue G (BBG) (Jiang
et al., 2000), the irreversible PPADS (Jiang et al., 2000), and
KN-62 (Gever et al., 2006; Bartlett et al., 2014). Among this
list, KN-62 (Bartlett et al., 2014) and the non-specific BBG
exhibited brain permeability property (Wang et al., 2004, 2017;
Donnelly-Roberts et al., 2009; Peng et al., 2009; Jo and Bean,
2011; Carmo et al., 2014). BBG is currently the most widely
used P2X7R antagonist in research (Peng et al., 2009). BBG
has also shown to block pannexin-1 (Bin Dayel et al., 2019).
Additional primary antagonists include Chelerythrine and other
benzophenanthridine alkaloids (Shemon et al., 2004), CAY10593
which is a synthetic phospholipase D blocker (Pupovac et al.,
2013), Ca2+ and Mg2+ cations (Jiang, 2009). Some of the
aforementioned antagonist exhibited poor stability and less
desirable pharmacokinetics properties, preventing their use for
in vivo studies of the receptor (Jiang, 2012).

Second Generation Antagonists
The second generation of the P2X7R antagonists were developed
aiming for higher potency, selectivity, in vivo stability and
possible equal potency at different species. Among this list are the
tetrazole-based compounds A-438079 and A-839977 (Table 1).
Antagonist A-438079 [Ki = 7.1 ± 0.08 (h) and Ki = 6.7 ± 0.1
(r); IC50 = 6.0 ± 0.02 (h), IC50 = 5.9 ± 0.2 nM (r), and IC50

= 5.5 ± 0.2 nM (m)] (Nelson et al., 2006; Donnelly-Roberts
et al., 2009; Bhattacharya et al., 2013) has been studied in PD
(Marcellino et al., 2010) and while maintained striatal dopamine,
it did not prevent the loss of dopaminergic cells in the 6-OHDA
model of PD (Marcellino et al., 2010). It suppressed seizures and
exhibited neuroprotective effects in immature rats (Mesuret et al.,
2014). A-438079, also exhibited antidepressant effects in chronic
unpredictable mild stress (CUMS) mice model of depression
(Yue et al., 2017; Bhattacharya, 2018). Another tetrazole based
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antagonist A-839977 [IC50 = 20–150 nM (h r, m)] reduced
thermal hyperalgesia in rats and produced antihyperalgesia in the
CFA model of inflammatory pain in mice (Florjancic et al., 2008;
Honore et al., 2009; Friedle et al., 2010). However, A-839977 did
not induce any antihyperalgesic effects in IL-1 knockout mice
(Honore et al., 2009).

Another class of antagonists in the second generation group
are the cyanoguanidine based compounds A-740003 and A-
804598 (Table 1). Cyanoguanidine A-740003 [IC50 = 40 nM (h)
and IC50 = 20 nM at (r)] dose-dependently reduces neuropathic
pain in rat (Honore et al., 2006). This antagonist was converted
to [11C]A-740003 PET radioligand and while has been shown
not to enter the brain (Janssen et al., 2014), its tritiated analog
[3H]A-740003 was used in an in vitro study in post mortem brain
sections of MS patients and rat brain sections of a rat model of
EAE model of MS (Beaino et al., 2017). Antagonist A-804598
[Ki = 8.0 ± 0.04 nM (h), Ki = 8.8 ± 0.06 nM (r); IC50 = 7.7 ±

0.13 nM (h), IC50 = 6.8 ± 0.17 nM (r), IC50 = 7.0 ± 0.06 nM
(m)] (Donnelly-Roberts et al., 2009; Bhattacharya et al., 2013;
Karasawa and Kawate, 2016) was used to study the functional role
of P2X7R in inflammatory response in the liver and brain of the
C57BL/6J mice fed a high fat diet and those with chronic ethanol
consumption. It showed reduction of inflammatory markers
in hippocampus without altering many neurotransmitters and
decrease in hepatic inflammation but not steatosis (Freire et al.,
2019). A-804598 has also shown to induce antidepressant-like
effects in the FST mice model of depression (Ribeiro et al., 2019),
but failed to reverse behavioral changes caused by foot shocks in
rat (Catanzaro et al., 2014). Tritiated A-804598 ([3H]A-804598)
was also prepared and utilized as a P2X7R radioligand to study
recombinant rat receptors expressed in 1321N1 cells (Donnelly-
Roberts et al., 2009). Fluorinated analog of A-804598 was also
converted to F-18 PET radioligand [18F]EFB that showed limited
yet quantifiable brain penetration (Zarrinmayeh and Territo,
2020).

Other second-generation antagonists included: AZD9056
(Keystone et al., 2012); AZ-11645373 (Stokes et al., 2006; Syed
and Kennedy, 2012; Mehta et al., 2014); AZ-10606120 (Michel
et al., 2007); GW791343 (Felix et al., 2012); GSK314181A (Broom
et al., 2008); GSK1482160 (Ali et al., 2013); CE-224,535 (Stock
et al., 2012); AFC-5128 (Fischer et al., 2016); SMW139 (Hansen
et al., 2018); and EVT-401 (Zhu et al., 2017). Among the
list of antagonists, AZD9056 (Keystone et al., 2012) and CE-
224,535 (Stock et al., 2012) entered clinical trials in patients
with rheumatoid arthritis and while passed acceptable safety
and tolerability hurdles, they failed in phase II efficacy (Stokes
et al., 2006; Keystone et al., 2012). EVT-401 also entered phase
I clinical trial in patients with rheumatoid arthritis, but did not
advance further (Zhu et al., 2017; Evotec, 2020). GSK1482160
entered phase I clinical trials for treating inflammatory pain in
arthritis, but failed to proceed beyond phase I (Glaxosmithkline,
2009). GSK1482160 was also converted to C-11 PET radioligand
[11C]GSK1482160 and showed high affinity (Kd = 1.15 ±

0.12 nM) in targeting P2X7R (Territo et al., 2017). Recent work
from our lab has also developed an F-18 PET radioligand
[18F]IUR-1601 that shows similar affinity and selectivity [Ki =

4.31 nM (h), IC50 = 7.86 nM (h)] for P2X7R as [11C]GSK1482160

(Gao et al., 2018). Another benzamide, compound, SMW139
has also been converted to PET radioligand [11C]SMW139
to study the P2X7R receptor expression on pro-inflammatory
microglia (Janssen et al., 2018). [11C]SMW139 proceeded to first
in-man study to evaluate its potential in identifying in vivo
neuroinflammation in MS patients (Hospital, 2019; Hagens et al.,
2020).

New Generation Antagonists
The newer generation of the P2X7R antagonists have specifically
been designed to penetrate CNS and enable evaluation
of the P2X7R functions in the CNS disorders including
neuroinflammation (Bhattacharya, 2018). This collection of
highly potent and selective antagonists has been clustered into
four groups based on their chemical scaffolds. They are presented
in Table 1 and are briefly mentioned herein:

Group 1

The phenylpiperazine based compounds JNJ-42253432 and JNJ-
47965567. JNJ-42253432 is a potent P2X7R antagonist [Ki =

7.9 nM ± 0.08 (h) and Ki = 9.1 ± 0.07 nM (r); IC50 = 7.7
± 0.07 nM (h), IC50 = 7.8 ± 0.1 nM (r) and IC50 = 7.1
± 0.2 nM (m)] that penetrates into the CNS (Brain/Plasma
= 1) (Lord et al., 2014). With its excellent pharmacokinetic
and pharmacodynamic properties, JNJ-42253432 has shown to
block the Bz-ATP-induced release of IL-1β in a concentration-
dependent manner (Lord et al., 2014). Significant reduction
in severe convulsive seizures was also detected after one-week
treatment with JNJ-42253432 (Amhaoul et al., 2016). Another
centrally permeable phenylpiperazine based antagonist is JNJ-
47965567 that has shown high potency [Ki = 7.9 ± 0.07 nM
(h) and Ki = 8.7 ± 0.07 nM (r); IC50 = 8.3 ± 0.08 nM (h),
IC50 = 7.2 ± 0.08 nM (r), and IC50 =7.5 ± 0.1 nM (m)].
It exhibited target engagement in rat brain (EC50 = 78 ±

19 ng/ml in P2X7R autoradiography) and functionally blocked
the Bz-ATP induced IL-1β release (Bhattacharya et al., 2013).
JNJ-47965567 reduced amphetamine-induced hyperactivity and
showed substantial efficacy in neuropathic rat model of pain
(Bhattacharya et al., 2013). JNJ-47965567 significantly reduced
temporal lobe epilepsy characterized by a pattern of selective
neuronal loss and reactive gliosis (Jimenez-Pacheco et al., 2016).
Chronic administration of JNJ-47965567 (4X/week) to SODmice
model of ALS modified disease progression in female animals,
but had no effect in male animals, suggesting partial effect of
P2X7R in progression of ALS (Ruiz-Ruiz et al., 2020).

Group 2

The 1,2,3-triazolo based antagonists include JNJ-55308942,
JNJ-54175446, and JNJ-64413739. JNJ-55308942 is a P2X7R
antagonist with high potency [Ki = 8.12± 0.08 nM (h) and 8.5±
0.04 nM (r)] (Ali et al., 2013; Letavic et al., 2017; Bhattacharya
et al., 2018; Chrovian et al., 2018). JNJ-55308942 is a brain-
penetrant antagonist (brain/plasma = 1) that has shown a
prominent pharmacology at recombinant human, rat, mouse,
macaque, and dog P2X7R [IC50 = 7.87 ± 0.2 nM (h), IC50 =

7.81 ± 0.2 nM (r), IC50 = 7.55 ± 0.5 nM (m), IC50 = 7.96 ±

0.1 nM (mm), and IC50 = 7.72 ± 0.06 (d)] (Letavic et al., 2017;
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Nv, 2017b; Bhattacharya et al., 2018). JNJ-55308942 has shown
to engage brain targets, modulates microglial activation, reduce
IL-1β release and has been efficacious in models of anhedonia in
rodents (Letavic et al., 2017; Bhattacharya et al., 2018; Chrovian
et al., 2018). JNJ-55308942 entered phase I of clinical trial in
2017 to assess the safety, tolerability, and pharmacokinetics in
healthy participants after administration of single and multiple
oral doses (Nv, 2017a;Watch, 2021). Another 1,2,3-triazolo based
P2X7R antagonist is the highly potent and brain penetrant JNJ-
54175446 [Ki = 8.3 ± 0.1 nM (h) and Ki = 8.3 ± 0.05 nM (r),
IC50 = 8.46 ± 0.36 (h), and IC50 = 8.81 ± 0.24 (r)] with dose-
dependent occupancy (ED50 = 0.46 mg/kg, corresponding to
plasma EC50 = 105 ng/ml) (Kolb et al., 2019). JNJ-54175446 has
also entered phase I of clinical trial to study its antidepressant
activity (Bhattacharya, 2018; Cctu-Core, 2019). Third 1,2,3-
triazole based antagonist is the selective and potent JNJ-64413739
[Ki =15.9 nM (h) and Ki = 2.7 nM at rat cortex; IC50 = 1.0
± 0.2 nM (h) and IC50 = 2.0 ± 0.6 nM (r)] (Kolb et al., 2019;
Koole et al., 2019). The F-18 PET radioligand of JNJ-64413739,
[18F]JNJ-64413739 was developed to study brain P2X7 function
(Zarrinmayeh and Territo, 2020).Micro-dosing inmice showed a
38% lower compound binding in P2X7R knock out compared to
wild type mice receptor and the uptake of [18F]JNJ-64413739 was
reduced by JNJ-54175446 in a dose-related manner in a monkey
PET study (Nv, 2017a; Kolb et al., 2019; Koole et al., 2019). Study
of [18F]JNJ-64413739 in healthy human volunteer also showed
the tracer to be an appropriate PET ligand for quantification of
P2X7R expression in the human brain (Table 1) (Nv, 2017a; Kolb
et al., 2019; Koole et al., 2019).

Group 3

The 1,2,4-triazolo based P2X7R antagonists are three close
analogs JNJ-54232334, JNJ-54140515, and JNJ-54173717. The
high affinity JNJ-54232334 [Ki = 7.8 ± 0.05 nM (h) and Ki

= 9.3 ± 0.1 nM (r); IC50 = 9.5 ± 0.02 nM (h), and IC50 =

7.5 ± 0.02 nM (r)] was tritiated to produce [3H]JNJ-54232334
that reached saturable binding, and equilibrium dissociation rate
constant (Kd) of 4.9 ± 1.3 nM (Lord et al., 2015; Rudolph et al.,
2015). The specific binding of [3H]JNJ-54232334 in rat brain
sections was enhanced compared to that of the [3H] A-804598
as a result of low non-specific binding (Lord et al., 2015). JNJ-
54140515, an analog of JNJ-54232334 with comparable in vitro
pharmacology [Ki = 7.7 nM (h) and Ki = 8.9± 0.01 nM (r); IC50

= 7.7± 2.6 nM (h) and IC50 = 8.0± 2.9 nM (r)], readily crossed
the blood-brain barrier and facilitated the high level of brain
P2X7R occupancy (Lord et al., 2015; Bhattacharya and Jones,
2018). While similar in potency, JNJ-54140515 has shown a 10-
fold increase in brain penetration over JNJ-54232334 (Hempel
et al., 2013; Lord et al., 2015; Rudolph et al., 2015). JNJ-54173717
is another high affinity P2X7R antagonists at human and rat
receptor [Ki = 1.6 ± 0.1 nM in rat cortex; IC50= 4.2 ± 0.01 nM
(h) and IC50 = 7.6 ± 0.01 nM (r)]. JNJ-54173717 has good
drug-like properties and high P2X7 receptor occupancy in rat
subsequent oral administration (Ory et al., 2016). JNJ-54173717
has been studied in models of depression, epilepsy and PD
(Rudolph et al., 2015; VanWeehaeghe et al., 2019). JNJ-54173717
was also converted to PET radioligand [11C]JNJ-54173717 for

studying the brain P2X7R functions in both rats and nonhuman
primates (Ory et al., 2016). This tracer crossed the blood-brain
barrier, and was cleared from plasma via hepatobiliary pathways
in rat bio-distribution study (Rudolph et al., 2015; Savall et al.,
2015; Ory et al., 2016). [11C]JNJ54173717 was studies in healthy
volunteers and PD patients in human and showed selectivity for
P2X7R (Van Weehaeghe et al., 2019).

Group 4

The imidazolopyridin JNJ-54166060 is another P2X7R antagonist
with high potency [Ki = 7 nM (h) and Ki = 8 nM (r); IC50

= 4 nM (h), IC50 = 115 nM (r), and IC50 = 72 nM (m)] that
has shown great oral bioavailability and low-moderate clearance
in preclinical animal models. It has brain penetrable property,
exhibiting a significant brain/plasma ratio (∼3) with ED50 = 2.3
mg/kg when dosed orally (Swanson et al., 2016).

Controversies, Research Gaps, and
Potential Developments
While numerous research studies have been conducted to unravel
the function of P2X7R in neurodegenerative disorders, there
are still unanswered questions that could add clarity to our
understanding of the role of P2X7R in CNS disease progression.
For example, in patients with MS, P2X7R expression is down-
regulated on peripheral monocytes during the acute phase of
the disease (Amadio et al., 2017), while it appears to be up
regulated on myeloid derived cells in the CNS. Similarly, P2X7R
down-regulation has also been detected in peripheral circulating
monocytes of ALS patients (Liu et al., 2016), while this contrasts
the up-regulation of the receptor in spinal cord and nervous
tissues of post-mortem ALS patients (Yiangou et al., 2006).
The fact that P2X7R shows opposite expression patterns in
peripheral vs. central compartments, and in some cases shows
a temporal expression pattern which is also tissue specific,
suggest that additional work is needed to better understand the
interdependency of these compartments on disease progression.
Another aspect of P2X7R expression is related to the genetic
context in which the receptor is being expressed. As noted above,
many of the mouse models of AD, PD, HD, ALS, MS, TBI,
stroke, and depression have been conducted in mice which bares
the P451L SNP, as such it is unclear if these mice show the
full complement of signaling associated with the P2X7R system,
since the polymorphism results in reduction in sensitivity to
ATP by several orders of magnitude. Based on work from our
laboratory (Territo et al., 2017), we showed that activation of
P2X7R in C57BL6/J mice required 5–10 fold higher levels of
lipopolysaccharide than have been reported for mice which do
not carry this polymorphism. Provided this, we believe that both
face and construct validity are required in model systems to
ensure that they faithfully replicate the type of signaling observed
in human cell lines and clinical studies (see Table 1). Therefore,
to better understand the role P2X7R in neurodegenerative
diseases, we believe it is imperative that one asks the right
question, at the right time, and using the right model systems to
maximizes our understanding so that these results can be used to
help inform and guide clinical trials.
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CONCLUDING REMARKS

Purinergic receptors (i.e., purinoceptors) are plasma membrane
proteins that play key physiological roles in mammalian central
nervous system (CNS), and regulate neurotransmission,
neuromodulation, and intra and inter-glial network
communication. Purinoceptors are found in a variety of cells in
the CNS that include microglia, astrocytes and oligodendrocytes.
Astrocytes express many types of purinergic receptors, and
release adenosine triphosphate (ATP) as an intercellular
signaling molecule allowing communication of these cells with
microglia, neurons, oligodendrocytes and the vascular walls
of capillaries. In the CNS, purinergic receptor signaling in
oligodendrocyte cells helps them in their development and for
myelination, while in microglia purinergic receptors are known
to function as immunocompetent. In all of these cases, ATP and
other nucleotides work as danger signals by activating microglia
in pathophysiological conditions. Importantly, dysregulations of
purinoceptors have been associated with major CNS disorders
including neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson disease (PD), Amyotrophic lateral sclerosis
(ALS), brain trauma, ischemia, epilepsy, and chronic pain
associated with neuroinflammation, as well as neuropsychiatric
diseases, including depression, anxiety, and schizophrenia.
Importantly, the P2X7 receptor has been involved in all of
the aforementioned diseases, and in many cases influenced by
mutations that increase (or in some cases decrease) function,
thus altering one’s susceptibility for developing the disease.
Moreover, P2X7 receptors have been shown to activate the
NLRP3 inflammasome and the release of pro-inflammatory
cytokines, which drives neuroinflammation, and recent work
suggests that inhibition of these receptors may server as a viable
drug target.

The role of P2X7 receptor in the production and release
of active pro-inflammatory cytokine IL-1β has inspired major
efforts to develop antagonists. A number of research groups

have disclosed potent P2X7 receptor antagonists, which have
been shown to attenuate the release of IL-1β from stimulated
cells. Since P2X7 receptor is integral in the processing and
release of many inflammatory mediators (IL-1β, NFκB, TNFα
etc.), the inhibition of this receptor may provide therapeutic
benefit in diseases including cancer, tuberculosis, diabetes,
asthma, and all of the neurodegenerative diseases. While, full
understanding of the P2X7R localization and function in the
brain is currently incomplete, development of high potency
and selective antagonists that cross the BBB have helped our
understanding of the receptor in multiple rodent models of
peripheral inflammatory diseases, neuroinflammatory disorders,
and cancer. Although these data have begun to fill this
knowledge gap, it is important to recognize that many of
the rodent models are based on base-strains that retain SNPs,
and therefore show dampened or reduced sensitivity to ATP
and thus reduced signaling. Despite this, several antagonists
have been studied in depression, anxiety, bipolar disorders,
and PD. In some cases, clinical trials have been conducted to
evaluate inflammatory pathologies such as rheumatoid arthritis,
Crohn’s, and basal cell carcinoma. The latest generation of
antagonists have been designed to specifically penetrate brain and
evaluate brain disorders. Several antagonists from this group have
entered clinical trials for evaluation of the P2X7R participation
in CNS disorders. In the future, the development of P2X7

receptor antagonist that are potent, selective, and have acceptable
pharmacokinetic and pharmacodynamic readouts will be needed
to advance the field.
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