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We propose a novel biologically plausible computational model of working memory (WM)

implemented by a spiking neuron network (SNN) interacting with a network of astrocytes.

The SNN is modeled by synaptically coupled Izhikevich neurons with a non-specific

architecture connection topology. Astrocytes generating calcium signals are connected

by local gap junction diffusive couplings and interact with neurons via chemicals diffused

in the extracellular space. Calcium elevations occur in response to the increased

concentration of the neurotransmitter released by spiking neurons when a group of them

fire coherently. In turn, gliotransmitters are released by activated astrocytes modulating

the strength of the synaptic connections in the corresponding neuronal group. Input

information is encoded as two-dimensional patterns of short applied current pulses

stimulating neurons. The output is taken from frequencies of transient discharges of

corresponding neurons. We show how a set of information patterns with quite significant

overlapping areas can be uploaded into the neuron-astrocyte network and stored for

several seconds. Information retrieval is organized by the application of a cue pattern

representing one from the memory set distorted by noise. We found that successful

retrieval with the level of the correlation between the recalled pattern and ideal pattern

exceeding 90% is possible for the multi-item WM task. Having analyzed the dynamical

mechanism ofWM formation, we discovered that astrocytes operating at a time scale of a

dozen of seconds can successfully store traces of neuronal activations corresponding to

information patterns. In the retrieval stage, the astrocytic network selectively modulates

synaptic connections in the SNN leading to successful recall. Information and dynamical

characteristics of the proposed WM model agrees with classical concepts and other

WM models.
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1. INTRODUCTION

In neuroscience, the understanding of the functional role of
astrocytes in the central nervous system (CNS) is still open
to debate (Savtchouk and Volterra, 2018), but now there
is accumulating evidence demonstrating the involvement of
astrocytes in local synaptic plasticity and the coordination of
network activity (Durkee and Araque, 2019), and as a result in
information processing and memory encoding (Santello et al.,
2019). Astrocytes sense synaptic activity and respond to it
with the transient elevation of intracellular Ca2+ concentration
(lasting from hundreds of a millisecond to dozens of seconds).
Such Ca2+ signals in astrocytes have been observed in different
brain regions and also in the cortex, appearing there in response
to mechanic sensory stimulation (Wang X. et al., 2006; Takata
et al., 2011; Stobart et al., 2018) and visual sensory stimulation
(Schummers et al., 2008; Chen et al., 2012; Perea et al., 2014).
Ca2+ activation can trigger the release of gliotransmitters from
astrocytes, which in turn affect the dynamics of presynaptic
and postsynaptic terminals resulting in modulations of synaptic
transmission (Araque et al., 2014). The gliotransmitter-mediated
synaptic modulation lasts from a dozen seconds (Jourdain et al.,
2007; Perea et al., 2014) to a dozen minutes (Stellwagen and
Malenka, 2006; Perea and Araque, 2007; Navarrete et al., 2012)
contributing to both short- and long-term synaptic plasticity.

Obviously, there is a qualitative coincidence between the
time scales of astrocyte-mediated synaptic modulation and the
working memory (WM) timings during decision making. Based
on this and the other following facts of astrocytes participation
in neuronal signaling, we hypothesized that astrocytes may be
involved in WM formation. In particular, recent in vivo studies
have shown the participation of astrocytes in the synchronization
of certain cortical network activities (Takata et al., 2011; Chen
et al., 2012; Paukert et al., 2014; Perea et al., 2014), cognitive
functions, and behaviors (Poskanzer and Yuste, 2016; Sardinha
et al., 2017). Experimental evidence shows that astrocyte
pathology in the medium prefrontal cortex (PFC) impairs WM
and learning functions (Lima et al., 2014), increasing astrocyte
density enhances short-term memory performance (Luca et al.,
2020), and recognition memory performance and disruption of
WM depend on gliotransmitter release from astrocytes in the
hippocampus (Han et al., 2012; Robin et al., 2018). Despite these
numerous experimental insights of the contribution of astrocytes
to synaptic modulations in neuronal signaling, the possible role
of astrocytes in information processing and learning is still a
subject of discussion (Kanakov et al., 2019; Kastanenka et al.,
2019).

Considering the significance of WM processes and the
challenge of finding alternative mechanisms and experimental
evidence of the astrocytic role in information processing in
CNS, it is interesting to study astrocyte-induced modulation
of synaptic transmission in WM organization. Specifically, we
assume that the potentiation of excitatory synapses induced
by Ca2+ elevation-mediated glutamate release from astrocytes
(Fellin et al., 2004; Perea and Araque, 2007; Navarrete and
Araque, 2008, 2010; Chen et al., 2012) plays an essential
role in WM. To test this hypothesis, we developed a novel

neuron-astrocyte network model for visual WM to reflect
experimental data on the structure, connectivity, and
neurophysiology of the neuron-astrocytic interaction in
underlying cortical tissue. We focused on the implementation
of a multi-item WM task in a delayed matching to sample
(DMS) framework representing a classical neuropsychological
paradigm (Miller et al., 1996). During the experiment, a test
animal was given a sample stimulus, which it had to remember
for several seconds until it could begin executing a certain
task. For example, a stimulus was followed by a sequence of
several test stimuli and the animal was rewarded for indicating
when one of the test stimuli. matched the original sample. The
DMS paradigm was previously studied using a recurrent neural
network (Brunel and Wang, 2001; Amit, 2003; Amit et al., 2013;
Fiebig and Lansner, 2016). The novelty of our model is that
we associate memory with item-specific patterns of astrocyte-
induced enhancement of excitatory synaptic transmission. We
present a new case of how the biologically relevant neuron-
astrocyte network model implements loading, storage, and cued
retrieval of multiple items with significant overlapping. The
memory items are encoded in neuronal populations in the form
of discrete high-frequency bursts rather than persistent spiking.

In this paper, we review some related works (section 2),
describe the proposed model and methods in detail (section 3),
present the results (section 4), and finally, we conclude this work
in section 5.

2. RELATED WORK

The concept of WM implies the ability to temporarily store and
process information in goal-directed behavior. WM is crucial in
the generation of higher cognitive functions for both humans
and other animals (Baddeley, 1986, 2012; Conway et al., 2003).
In primates, visual WM has been studied in delay tasks, such as
DMS, which require a memory to be held during a brief delay
period lasting for several seconds (Miller et al., 1996). Recordings
in the monkeys’ PFCs during the delay task showed that some
neurons displayed persistent and stimulus-specific delay-period
activity (Fuster and Alexander, 1971; Funahashi et al., 1989; Shafi
et al., 2007; Barak et al., 2010; Funahashi, 2017). Delay persistent
activity is considered the neural correlate of WM (Goldman-
Rakic, 1995; Constantinidis et al., 2018).

The classical theoretical memory models suggest that an
information item can be stored with sustained neural activity
which emerges via activation of stable activity patterns in the
network (e.g., attractors) (Hopfield, 1982; Amit, 1995; Wang,
2001; Wimmer et al., 2014) recently reviewed by Zylberberg and
Strowbridge (2017) and Chaudhuri and Fiete (2016). These WM
models propose that the generation of persistent activity can be
the result of an intrinsic property of the neurons [including the
generation of the bistabilitymediated by the voltage-gated inward
currents (Kass and Mintz, 2005) and Ca2+-triggered long-term
changes in neuronal excitability (Fransén et al., 2006)] and can
be induced by the connectivity within the neural circuit with
feed-forward (Ganguli and Latham, 2009; Goldman, 2009) or
recurrent architecture (Koulakov et al., 2002; Kilpatrick et al.,
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2013). In such models, memory recall is impossible from a
silent inactive state. For many WM models of persistent activity
based on recurrent connectivity, small deviations in the network
structure destroy the persistence. Moreover, a spiking form of
information storage is energetically unfavorable because of the
high metabolic value of action potentials (Attwell and Laughlin,
2001).

In theoretical studies, a concept of oscillatory sub-cycles
storing 7 ± 2 in oscillatory neuronal networks was proposed
by Lisman and Idiart (1995). Other models employ oscillatory
activity of spiking neuron networks after depolarization to
memorize a set of information patterns at different phases of
rhythmic oscillations (Klinshov and Nekorkin, 2008; Borisyuk
et al., 2013).

Recently, the persistent activity hypothesis has been
undergoing critical reviews (Lundqvist et al., 2018) based on the
experimental findings in rodents and primates showing that the
robust persistent activity does not last for the entire delay period,
but rather sequential neuronal firing is observed during the delay
period suggesting that the PFC neural network may support WM
based on dynamically changing neuronal activity (Fujisawa et al.,
2008; Lundqvist et al., 2016; Runyan et al., 2017; Park et al., 2019;
Ozdemir et al., 2020). Despite the considerable progress that has
been made in identifying the neurophysiological mechanisms
contributing to WM in mammals (D’Esposito and Postle, 2015;
Zylberberg and Strowbridge, 2017), the ongoing debate focuses
on the generation mechanisms of the delay period activity that
appears to underlie WM (Constantinidis et al., 2018; Sreenivasan
and D’Esposito, 2019).

Currently, one of the recognized experimentally based
hypotheses of the WMmechanism underlining the delay activity
(not necessarily persistent) is the synaptic plasticity in the PFC
(Tsodyks and Markram, 1997; Hempel et al., 2000; Wang Y.
et al., 2006; Erickson et al., 2010). Synaptic plasticity implies
a rapid regulation of the strengths of individual synapses in
response to specific patterns of correlated synaptic activity
and contributes to the activity-dependent refinement of neural
circuitry. Following these findings, alternative synaptic-based
WM models have been proposed (Mongillo et al., 2008; Barak
and Tsodyks, 2014; Koutsikou et al., 2018; Manohar et al., 2019).
In these models, memory items are stored by stimulus-specific
patterns of synaptic facilitation in a neuronal circuit. Synaptic
plasticity does not require neurons to show a persistent activity
for the entire period of the memory task, which results in a robust
and more metabolically efficient mechanism. Some synaptic WM
models based on short-term non-associative synaptic facilitation
(Mongillo et al., 2008; Lundqvist et al., 2011; Mi et al., 2017)
allow for reading out and refreshing existing representations
maintained in the synaptic structure. Others have proposed fast
Hebbian activity-dependent synaptic plasticity (Sandberg et al.,
2003; Fiebig and Lansner, 2016) for encoding and maintenance
of novel associations.

Despite the numerous models describing the astrocytic
impact on signaling in neuronal networks (see Oschmann
et al., 2018 for a recent review) (Makovkin et al., 2020),
there are few attempts to theoretically investigate the role
of astrocyte-induced modulation of synaptic transmission in
memory formation. Shen and Wilde (2007) demonstrate one of

the first results of simulating the coupling of a Hopfield neural
network, astrocytes, and cerebrovascular activity. Although this
is not yet a true biophysical model, the results suggest that
a modification of the synapse strengths allows the neuronal
firing and the cerebrovascular flow to be compatible on a meso-
scale; with astrocyte signaling added, limit cycles exist in the
coupled networks. Tewari and Parpura (2013) and Wade et al.
(2011) study how bidirectional coupling between astrocytes and
neurons in small neuron-astrocyte ensembles mediates learning
and dynamic coordination in the brain. A recent interesting
theoretical study proposes a self-repairing spiking astrocyte-
neural network combined with a novel learning rule based on the
spike-timing-dependent plasticity and Bienenstock, Cooper, and
Munro learning rule (Liu et al., 2019).

3. MATERIALS AND METHODS

3.1. Neuron-Astrocyte Network Model
Even though the balance of inhibition and excitation was
shown to play an important role in WM stabilization and can
influence WM capacity (Barak and Tsodyks, 2014), we focus
on the properties of astrocyte-induced modulation of excitatory
synaptic transmission in the PFC. We take spiking neuronal
network with dimension W × H consisting of synaptically
coupled excitatory neurons formed by the Izhikevich model
(Izhikevich, 2003). Neurons in the network are connected
randomly with the connection length determined by the
exponential distribution.

It has been experimentally estimated that there is some overlap
in the spatial territories occupied by individual astrocytes in the
cortex (Halassa et al., 2007). An individual cortical astrocyte
contacts on average 4-8 neuronal somata and 300–600 neuronal
dendrites (Halassa et al., 2007). A cortical astrocyte has a “bushy”
ramified structure in fine perisynaptic processes, which cover
most of the neuronal membranes within their reach (Allen
and Eroglu, 2017). This allows the astrocyte to integrate and
coordinate a unique volume of synaptic activity. Following the
experimental data, the astrocytic network compartment of our
model is organized into a two-dimensional square lattice with
only nearest-neighbor connectivity. Each astrocyte interacts with
the neuronal ensemble of Na neurons with some overlapping.
We consider bidirectional communication between neuronal and
astrocytic networks. The scheme of the network topology is
shown in Figure 1.

Model equations are integrated using the Runge-Kutta fourth-
order method with a fixed time step, 1t = 0.1 ms. A
detailed list of model parameters and values can be found in
Table 1 (neural network model), Table 2 (astrocytic network
parameters), Table 3 (neuron-astrocytic interaction parameters),
and Table 4 (stimulation and recall testing). The code is available
at: https://github.com/altergot/neuro-astro-network.

3.2. Neuronal Network
There are many available biophysical models of neuronal
membrane potential dynamics (Morris and Lecar, 1981; Hodgkin
and Huxley, 1990; Xu et al., 2020a,b; Zhang et al., 2020).
For our purpose we chose the Izhikevich model as it is quite
functional and computationally effective for network simulations
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FIGURE 1 | A neuron-astrocyte network topology. The neuron-astrocyte network consists of two interacting layers: a neural network layer and an astrocytic layer. The

neuronal network with dimension W × H (79× 79) consists of synaptically coupled excitatory neurons modeled by the Izhikevich neuron. Neurons in the network are

connected randomly. The astrocytic network consists of diffusely connected astrocytes with dimension M× N (26× 26). Blue lines show connections between

elements in each layer. We consider the bidirectional interaction between the neuronal and astrocytic layers. Each astrocyte is interconnected with a neuronal

ensemble of Na = 16 neurons with dimensions 4× 4 (red lines) with overlapping in one row (violet lines). The input signal is fed to the neural network.

TABLE 1 | Neural network parameters Izhikevich (2003), Kazantsev and Asatryan

(2011).

Parameter Parameter description Value

W × H Neural network grid size 79× 79

a Time scale of the recovery variable 0.1

b Sensitivity of the recovery variable to the

sub-threshold fluctuations of the membrane

potential

0.2

c After-spike reset value of the membrane potential −65 mV

d After-spike reset value of the recovery variable 2

η Synaptic weight without astrocytic influence 0.025

Esyn Synaptic reversal potential for excitatory synapses 0 mV

ksyn Slope of the synaptic activation function 0.2 mV

Nout Number of output connections per each neuron 40

λ Rate of the exponential distribution of synaptic

connections distance

5

(Izhikevich, 2003):

dV(i,j)

dt
= 0.04V(i,j)(2) + 5V(i,j) − U(i,j) + 140+ I

(i,j)
app + I

(i,j)
syn ;

dU(i,j)

dt
= a(bV(i,j) − U(i,j));

(1)

with the auxiliary after-spike resetting

if V(i,j) ≥ 30 mV, then

{

V(i,j)← c

U(i,j) ← U(i,j) + d,
(2)

where the superscripts (i = 1, . . . , 79, j = 1, . . . , 79) correspond
to a neuronal index, the transmembrane potential V is given in

mV and time t in ms. The applied currents I
(i,j)
app simulate the input

signal. Neurons receive a number of synaptic currents from other

presynaptic neurons in the network, N
(i,j)
in , which are summed at

the membrane according to the following equation (Kazantsev
and Asatryan, 2011; Esir et al., 2018):

I
(i,j)
syn =

N
(i,j)
in
∑

k=1

g
(i,j)
syn (Esyn − V(i,j))

1+ exp(
−Vk

pre

ksyn
)

; (3)

Parameter g
(i,j)
syn describes the synaptic weight, g

(i,j)
syn = η + ν

(m,n)
Ca .

The astrocyte (m, n) modulates the synaptic currents of the
neuron (i, j). The variable νCa introduces the astrocyte-induced
modulation of synaptic strength and will be discussed below. In
this study, we concentrate exclusively on the role of astrocyte-
inducedmodulation of synaptic transmission and did not include
mechanisms of synaptic plasticity in the model. The synaptic
reversal potential for excitatory synapses is taken with Esyn = 0.
Vpre denotes the membrane potential of the presynaptic neuron.
For simplicity, we neglect the axonal and synaptic delays.
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TABLE 2 | Astrocytic network parameters Ullah et al. (2006).

Parameter Parameter description Value

M× N Astrocytic network grid size 26× 26

c0 Total Ca2+ in terms of cytosolic vol 2.0 µM

c1 (ER vol)/(cytosolic vol) 0.185

v1 Max Ca2+ channel flux 6 s−1

v2 Ca2+ leak flux constant 0.11 s−1

v3 Max Ca2+ uptake 2.2 µM s−1

v6 Maximum rate of activation-dependent calcium influx 0.2 µM s−1

k1 Rate constant of calcium extrusion 0.5 s−1

k2 Half-saturation constant for agonist-dependent

calcium entry

1 µM

k3 Activation constant for ATP-Ca2+ pump 0.1 µM

d1 Dissociation constant for IP3 0.13 µM

d2 Dissociation constant for Ca2+ inhibition 1.049 µM

d3 Receptor dissociation constant for IP3 943.4 nM

d5 Ca2+ activation constant 82 nM

α 0.8

v4 Max rate of IP3 production 0.3 µM s−1

1/τr Rate constant for loss of IP3 0.14 s−1

IP3
∗ Steady state concentration of IP3 0.16 µM

k4 Dissociation constant for Ca2+ stimulation of IP3

production

1.1 µM

dCa Ca2+ diffusion rate 0.05 s−1

dIP3 IP3 diffusion rate 0.1 s−1

TABLE 3 | Neuron-astrocytic interaction parameters Gordleeva et al. (2012).

Parameter Parameter description Value

Na Number of neurons interacting with one astrocyte 16, 4× 4

αglu Glutamate clearance constant 10 s−1

kglu Efficacy of the glutamate release 600 µM s−1

Aglu Rate of IP3 production through glutamate 5 µM s−1

tglu Duration of IP3 production through glutamate 60 ms

Gthr Threshold concentration of glutamate for IP3

production

0.7

Fact Fraction of synchronously spiking neurons required

for the emergence of Ca2+ elevation

0.5

Fastro Fraction of synchronously spiking neurons required

for the emergence of astrocytic modulation of

synaptic transmission

0.375

ν∗
Ca

Strength of the astrocyte-induced modulation of

synaptic weight

0.5

[Ca2+]thr Threshold concentration of Ca2+ for the astrocytic

modulation of the synapse

0.15 µM

τastro Duration of the astrocyte-induced modulation of the

synapse

250 ms

The architecture of synaptic connections between neurons
is non-specific (random) with the following parameters. The
number of output connections per each neuron is fixed at
Nout = 40. Each neuron innervates Nout local postsynaptic
targets, which are randomly chosen in polar coordinates. The
distances between neurons r are determined according to the

TABLE 4 | Stimulation protocol and recall testing parameters.

Parameter Parameter description Value

fbg Background activity rate 1.5 Hz

Astim Stimulation amplitude 10 µA

tstim Stimulation duration 200 ms

Noise level in sample 5%

Atest Cue stimulation amplitude 8 µA

ttest Cue stimulation length 150 ms

Noise level in cue 20%

exponential distribution fR(r) and the angles φ are chosen from
the uniform distribution in the range [0; 2π]:

fR(r) =

{

1/λ exp(−(1/λ)r), r ≥ 0,

0, r < 0.
(4)

In this way, the coordinates of postsynaptic neurons are
computed as follows:

xpost =
⌈

xpre + r cos(φ)
⌉

, ypost =
⌈

ypre + r sin(φ)
⌉

, (5)

where xpre, ypre denote the coordinates of the presynaptic
neuron, xpost , ypost are coordinates of the postsynaptic
neurons. Coordinates are picked repeatedly in case of a
duplicated connection.

3.3. Astrocytic Network
In the model, we try to implement the biologically plausible
organization of the astrocytic network and neuron-astrocyte
interaction. The astrocytic network is configured in the form
of a two-dimensional square lattice with dimension M × N.
Cortical astrocytes are coupled via Cx43 gap junctions mostly
permeable to inositol 1,4,5-trisphosphate (IP3) (Yamamoto et al.,
1990; Nagy and Rash, 2000). Hence, in the model, we consider
local diffusive coupling. Besides, each astrocyte is interconnected
with a neuronal ensemble of Na neurons. It was experimentally
shown that the sensory stimulation evokes fast intracellular Ca2+

signals in fine processes of cortical astrocytes in response to
local synaptic activity in the neuronal circuit (Wang X. et al.,
2006; Takata et al., 2011; Stobart et al., 2018). Multiple rapid
spatially restricted Ca2+ events in the astrocytic process are
induced by intense neuronal firing. Local events are spatially
and temporally integrated by the astrocytic cell, which results
in a global long lasting Ca2+ event. In turn, this event induces
the release of gliotransmitters affecting synaptic transmission in
the local territory of individual astrocytes (Bekar et al., 2008;
Henneberger et al., 2010; Araque et al., 2014). For simplicity, we
did notmodel the detailed process of spatial-temporal integration
of the rapid Ca2+ signals in the morphological structure of
astrocytes modeled earlier by Gordleeva et al. (2018, 2019) and
Wu et al. (2018). Here we employ a mean-field approach to
describe the emergence of a global Ca2+ signal and its impact
on the synchronization of neuronal ensemble controlled by a
certain astrocyte.
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As pyramidal neurons generate the spike, glutamate is
released from the presynaptic terminal into the synaptic cleft
(Figures 3B,D). The amount of glutamate, G, that was diffused
from the synaptic cleft and reached the astrocytic process can
be described by the following equation (Gordleeva et al., 2012;
Pankratova et al., 2019):

dG(i,j)

dt
= −αgluG

(i,j) + kglu2(V(i,j) − 30mV), (6)

here αglu is the glutamate clearance constant, kglu is the efficacy

of the release, 2 denotes the Heaviside step function, and V(i,j) is
themembrane potential of the corresponding presynaptic neuron
(i, j). Binding of glutamate to metabotropic glutamate receptors
(mGluR) on the astrocytic membrane, which is located close
to the synapse, triggers the production of IP3 in the astrocytes
(Figure 3E). We use the approaches from earlier studies to
describe the dynamics of the intracellular concentration of IP3
in astrocytes (Nadkarni and Jung, 2003; Ullah et al., 2006):

dIP
(m,n)
3

dt
=

IP∗3 − IP
(m,n)
3

τIP3
+ J

(m,n)
PLCδ
+ J

(m,n)
glu
+ diff

(m,n)
IP3 , (7)

with m = 1, . . . , 26, n = 1, . . . , 26. Parameter IP∗3 denotes the
steady state concentration of the IP3 and JPLCδ describes the IP3
production by phospholipase Cδ (PLCδ) (Ullah et al., 2006):

JPLCδ =
v4([Ca

2+]+ (1− α)k4)

[Ca2+]+ k4
(8)

The variable Jglu describes the glutamate-induced production of
the IP3 in response to neuronal activity and is modeled as a
rectangular-shaped pulse with amplitude Aglu µM and duration
tglu ms:

Jglu =

{

Aglu, if t0 < t ≤ t0 + tglu,

0, otherwise;
(9)

here t0 denotes the periods when the total level of glutamate in all
synapses associated with this astrocyte reaches a threshold:





1

Na

∑

(i,j)∈Na

[G(i,j) > Gthr]



 > Fact , (10)

here we use the parameter Gthr = 0.7. [x] denotes the Iverson
bracket. Fact is the fraction of synchronously spiking neurons
of the neuronal ensemble corresponding to the astrocyte. For
the emergence of the calcium, elevation Fact = 0.5 is required.
In other words, according to the experimental data (Bindocci
et al., 2017), activation of the production term, Jglu, which
results in the generation of a calcium signal in the astrocyte,
can be induced only when correlated activity in the neuronal
ensemble interacting with the astrocyte reaches a sufficient level
of coherence.

Increase of IP3 concentration in the astrocytes induces
the release of Ca2+ from internal stores, mostly from the

endoplasmic reticulum (ER), to cytosol. For a simplified
description of the biophysical mechanism underlying the calcium
dynamics in astrocytes, we use the Ullah model (Ullah et al.,
2006). Changes of the intracellular Ca2+ concentration, [Ca2+],
are described by the following equations:

d[Ca2+](m,n)

dt
= J

(m,n)
ER − J(m,n)

pump + J
(m,n)
leak
+ J

(m,n)
in − J

(m,n)
out

+ diff
(m,n)
Ca ;

dh(m,n)

dt
= a2

(

d2
IP

(m,n)
3 + d1

IP
(m,n)
3 + d3

(1− hm,n)− [Ca2+](m,n)h(m,n)

)

;

(11)

where h is the fraction of the activated IP3 receptors (IP3Rs) on
the ER surface. Flux JER is Ca2+ flux from the ER to the cytosol
through IP3Rs, Jpump is the Ca2+ flux pumped back into ER
via the sarco/ER Ca2+-ATPase (SERCA), and Jleak is the leakage
flux from the ER to the cytosol. Fluxes Jin and Jout describe
the calcium exchange with extracellular space. The fluxes are
expressed as follows:

JER = c1v1[Ca
2+]3h3IP33

(c0/c1 − (1+ 1/c1)[Ca
2+])

((IP3 + d1)([Ca2+]+ d5)3
;

Jpump =
v3[Ca

2+]2

k23 + [Ca2+]2
;

Jleak = c1v2(c0/c1 − (1+ 1/c1)[Ca
2+]);

Jin =
v6IP

2
3

k22 + IP23
;

Jout = k1[Ca
2+];

(12)

Biophysical meaning of all parameters in Equations (7), (8), (11),
(12) and their experimentally determined values can be found in
Li and Rinzel (1994), Ullah et al. (2006) and Table 2.

Cortical astrocytes are coupled by Cx43 gap junctions
(Yamamoto et al., 1990; Nagy and Rash, 2000; Nimmerjahn et al.,
2004). Thus, the diffusion of active chemicals becomes possible
between the neighboring astrocytes. Currents diffCa and diffIP3
describe the diffusion of Ca2+ ions and IP3 molecules via gap
junctions between the astrocytes in the network and can be
expressed as follows:

diff
(m,n)
Ca = dCa(1[Ca2+])(m,n);

diff
(m,n)
IP3 = dIP3(1IP3)

(m,n);
(13)

where parameters dCa and dIP3 describe the Ca2+ and IP3
diffusion rates, respectively. Following experimental data, we
assume that Cx43 is less permeable to Ca2+ than to IP3. We
consider that each astrocyte is diffusively coupled with only
four nearest-neighbors. (1[Ca2+])(m,n) and (1IP3)

(m,n) are the
discrete Laplace operators:

(1[Ca2+])(m,n) = ([Ca2+](m+1,n) + [Ca2+](m−1,n)

+ [Ca2+](m,n+1) + [Ca2+](m,n−1)

− 4[Ca2+](m,n)).

(14)
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Equations (7)–(9), (11)–(13) predict that the synchronized
activity in the neuronal ensemble trigger astrocytic Ca2+ signals,
and in the absence of neuronal stimulus in the astrocytic network,
steady state Ca2+ concentration is maintained.

Next, we account for the effect of the enhancement of
excitatory synaptic transmission through the action of the
glutamate released from astrocytes. We consider that the
astrocytic glutamate-induced potentiation of the synapse consists
in NMDAR-dependent postsynaptic slow inward currents (SICs)
generation (Fellin et al., 2004; Chen et al., 2012) and mGluR-
dependent heterosynaptic facilitation of presynaptic glutamate
release (Perea and Araque, 2007; Navarrete and Araque, 2008,
2010). In the model, we propose that global events of Ca2+

elevation in astrocytes result in glutamate release, which can
modulate the synaptic strength of all synapses corresponding to
the morphological territory of a given astrocyte. For simplicity,
the relationship between the astrocyte Ca2+ concentration and
synaptic weight of the affected synapses gsyn, is described
as follows:

gsyn = η + νCa,

νCa = ν∗Ca2([Ca2+](m,n) − [Ca2+]thr),
(15)

where the parameter ν∗Ca denotes the strength of the astrocyte-
induced modulation of the synaptic weight and 2(x) is the
Heaviside step-function. The feedback from the astrocytes to the
neurons is activated when the astrocytic Ca2+ concentration is
larger than [Ca2+]thr and the fraction of synchronously spiking
neurons of the neuronal ensemble corresponding to the astrocyte
Fastro during the time period of τsyn = 10 ms. According to
the experimental data on the kinetics of NMDAr-dependent
SICs that is evoked by glutamate released from astrocytes (Fellin
et al., 2004), the duration of the astrocyte-induced facilitation of
synaptic transmission is fixed and is equal to τastro = 250 ms.

3.4. Stimulation Protocol
The term Iapp in Equation (1) represents specific and non-
specific external inputs. A non-specific noisy input simulates
input signals from networks of other brain areas and is
applied continuously to all neurons in the form of independent
Poisson pulse trains of a certain rate, fbg, with amplitudes
randomly and uniformly distributed in the interval [−10, 10]
µA. This input evokes a background network state with low-rate
spontaneous spiking.

Specific input contains training samples in the form of
binary spatial patterns. The patterns represent different spatial
distributions relative to background state with non-specific input
only. The average size of a sample is 1,078 neurons (18% of
the network) stimulated by the specific input, with an average
35.2% overlapping in the population. For a visual representation
of samples, we take binary images of numerals (0,1,2,3,4,..) with
size W × H pixels, where each pixel corresponds to a neuron
in the neuronal layer. Neurons corresponding to the shape of
the numerals receive a rectangular excitatory pulse with length
tstim and amplitude Astim. The shape of each sample was spatially
distorted by 5% random noise such as “salt and pepper noise.”
Then transient inputs were applied to simulate the nonmatching

test items and the cue (length ttest, and amplitude Atest). In the
cued recall for simulating the loss in saliency, we applied a shorter
input with lower amplitude and a higher level (20%) of random
noise. Figure 2 illustrates the time course of a training and test
protocol used in the WM paradigm.

3.5. Memory Performance Metrics
To measure the memory performance of the system we calculate
the correlation of a recalled pattern with the ideal item in the
following way:

Mij(t) = I









t
∑

k=t−w

I[Vij(k) > thr]



 > 0



 ,

C(t) =
1

2





1

|P|

∑

(i,j)∈P

Mij(t)+
1

W ·H − |P|

∑

(i,j)/∈P

(1−Mij(t))



 ,

CP =
1

|TP|
max
t∈TP

C(t);

(16)
here w = 10 frames = 1 ms, P—a set of pixels belonging ideal
pattern, W,H—network dimensions, thr—spike threshold, I—
indicator function, and TP—a set of frames in the tracking range
of pattern P. In a sense, this correlation metric can be associated
with 1− d averaged between the pattern and background, where
d is the Hamming distance.

4. RESULTS

Let us show how the neuron-astrocyte network model exhibits
memory formation. First, we will consider a simple single-
item memory task illustrating information loading, storage, and
retrieval. Next, we will demonstrate how the network can be
successfully trained to memorize and recall several patterns with
significant overlaps. Finally, we will analyze model performance
metrics, capacity, and characteristics of pattern remembering on
different parameters.

4.1. Single-Item WM
First, we will test the neuron-astrocyte network in the most
common experimental paradigm of WM studies—the DMS task.
This task requires a single item to be held in memory during
a brief delay period. Before specific stimulation, the neural
network demonstrates irregular, low-rate background activity
(see activity beginning in Figure 4). At the 500 ms mark,
we load an item by applying transient external input to the
corresponding neuronal population for 200 ms (Figures 3A, 4).
During training, each astrocyte tracks the activity of the neuronal
subnetwork associated with it. As soon as the extracellular
concentration of glutamate (Figures 3B,D) and correlated firing
in neurons achieve a certain level, which satisfies the condition
Equation (10), Ca2+ concentration in matching astrocytes
elevates (Figure 3E). In accordance with the experimental data
(Bindocci et al., 2017), we tuned the model parameters in such
a way that the onset of calcium elevation in the astrocytes
induced by synchronous neuronal discharge had a delay of
≤ 2 s. Following the increased firing in the stimulus-specific
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FIGURE 2 | Time course of a training and test protocol in the multi-item WM paradigm used. During training the samples were loaded sequentially by applying

external inputs of 200 ms durations with 100 ms inter-item intervals. After a 700 ms training stimulus was applied, we tested the maintenance of the memory by

applying matching and non-matching items of 150 ms durations and 250 ms inter-item intervals.

FIGURE 3 | Model of neuron-astrocyte interaction. (A) Spike train and (B) concentration of the neurotransmitter, G(t), of the stimulus-specific neuron. (C,D) Same as

in (A,B) but for an unspecific neuron. (E) Intracellular concentration of Ca2+ and IP3 in a stimulus-specific astrocyte. Black bars at the top indicate periods when each

of the stimuli (training stimulus—sample, nonmatching test items—nonmatch, test cue—match) were presented. In response to the presynaptic spike train (A,C), the

neurotransmitter, glutamate, G releases (B,D) into extracellular space and the concentration of IP3 increases in the astrocyte (E, blue line) inducing the elevation of

intracellular Ca2+ (E, red line).

part of the neuronal network upon reaching a threshold of
0.15 µM, the astrocytes release gliotransmitters modulating the
synaptic strengths in corresponding locations (Figure 3). The
calcium pulse in astrocytes lasts for several seconds. Its duration
determines the length of the delay interval in the DMS task,
during which the item is maintained in the memory. After the
training stimulus ends, we test maintenance of the single-item
memory by applying two non-matching items and cue item with

ttest durations and 250 ms inter-item intervals (Figures 3, 4).
Because the astrocytic feedback also depends on the activity of
the neuronal subnetwork, the model responds differently to the
applied items. A short presentation of the cue to the neural
network evokes the astrocytic-induced increase in the synaptic
strength between stimulus-specific neurons and results in a local
spatial synchronization in the whole stimulus-specific neuronal
population (see Figure 3A in comparison to Figure 3C). Similar
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FIGURE 4 | Delayed matching to sample WM task. (A) One trial of the task simulated in the network. Spike raster of the neuronal network showing sample-selective

delay activity. Neurons belonging to the stimulus-specific population are indicated by blue color. Black bars at the top indicate periods when each of the stimuli

(training stimulus—sample, nonmatching test items—non-match, test cue—match) were presented. (B,C) The averaged firing rate of the stimulus-specific and

unspecific neurons over time, respectively (20 ms bins).

FIGURE 5 | Snapshots of the training (A–C) and testing (D,E) of the neuron-astrocyte network in the single-item working memory task. (A) Training sample. (B)

Response of the neuronal network to the sample. The values of the membrane potentials are shown. (C) Intracellular Ca2+ concentrations in the astrocytic layer. (D)

Testing item with 20% salt and pepper noise. (E) Cued recall in the neuronal network. The averaged firing rate on the test time interval for each neuron is shown.

to experimental data (Miller et al., 1996), delay activity in
our model is sample-selective. We observe that the pattern-
specific firing rate in the neuronal network increases and is
equal to 270 Hz in comparison with the response to a non-
specific stimulus (80 Hz) (Figure 4B). Such a high frequency
is determined by the choice of a fast-spiking neuron model
(Izhikevich, 2003). The firing rates in simulations with a regular
spiking neuron model (Izhikevich, 2003) are almost 10 times

lower: 30 Hz for stimulus-specific and 4.5 Hz for non-specific
stimulus. The elevation of the frequency in the stimulus-specific
neuronal population can continue after the end of the cue,
which is determined by the duration of the astrocyte-induced
enhancement of the synaptic weight.

For a visual representation of memory formation, we follow
the space-time distribution of sample-selective delay activity.
Figure 5 illustrates the spatial distribution of activity in neuronal
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FIGURE 6 | Neuron-astrocyte network simulation with four loaded memory items. (A,C,E) Spike train and (B,D,F) concentration of the neurotransmitter, G(t), of three

neurons belonging to different stimulus-specific populations. (A,B) Stimulus-specific neuron to sample 0. (C,D) Stimulus-specific neuron to sample 2. (E,F) Neuron

unspecific to all samples. Black bars at the top indicate periods when each of the stimuli (training stimulus—sample, non-matching test items—nm, match cue—m)

were presented.

and astrocytic layers at the different moments of training and
cued recall for the same single-item memory task as presented
in Figure 4. Training induces the emergence of synchronized
calcium activity of spatially clustered astrocytes (Figure 5C).
Note that locally synchronized astrocytes have been found in
the neocortex and hippocampus in situ and in vivo (Takata and
Hirase, 2008; Sasaki et al., 2011). Such calcium activity correlated
in time and space can lead to spatial-temporal synchronization
in the neuronal network (Araque et al., 2014). This mechanism
of neuron-astrocyte network interaction underlies the sample
selectivity and pattern retrieval in the model. Note that 20 %
of noisy cue items (Figure 5D) can be identified and cleared
from noise by the neuronal network due to the astrocyte-induced
feedback (Figure 5E). In other words, the spiking neuronal
network accompanied by astrocytes can filter a cue pattern
distorted by noise. Video of the single-item memory encoding
and cued recall in the neuron-astrocyte network can be found in
the Supplementary Material.

4.2. Multi-Item WM
Next, we consider the multi-item WM formation. In this case,
we loaded four items, images of numerals 0, 1, 2, 3 in the
following way. The images were loaded sequentially by applying
external inputs of tstim durations with 100 ms inter-item intervals
(see Figures 2, 6, 7A, 8). Due to the coincidence of different
stimulus-specific neuronal populations in space, the spatial
calcium patterns in astrocytic layers for different items overlap
significantly (Figure 8H). After a 700 ms training stimulus
was applied, we tested the maintenance of the memory by
applying matching and non-matching items of ttest durations and
250 ms inter-item intervals (Figures 2, 6, 7A, 8). The images
were distorted by 20% noise. The astrocyte-mediated feedback
modulating coherent neuronal activity provided the selectivity of
the model response. The system remembered the correct image.
Thus, we observed that all items were successfully filtered only
in the cued recall. Needless to say that firing rate increases
significantly in the cued recall due to the selective increase of
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FIGURE 7 | Multi-item WM in the neuron-astrocyte network. (A) Spike raster of the neuronal network with four training patterns. Neurons are colored according to

their pattern selectivity. Pattern overlapping in neuronal populations is 35.2% on average for four patterns. Black bars indicate periods when each of the stimuli were

presented. (B,C) The averaged firing rate of the stimulus-specific and unspecific neurons over time, respectively (20 ms bins). (D) Correlation of filtered items. The

different colors correspond to the correlations with different ideal samples. The dotted line shows the correlation of the testing item (for 20% noise level in test). Black

bars at the top indicate periods when each of the stimuli (training stimulus—sample, non-matching test items—nm, match cue—m) were presented.

synaptic strengths (Figures 7B,C). To evaluate the performance
of the neuron-astrocyte WM, we used the correlation between
recalled item and the ideal item during the multi-item WM
task as a metric (see section 3.5; Figure 7D). It is important to
note, that during multi-item remembering, spurious correlations
never dominate in that sense as accuracy of our system is always
equal to 100%. There was an increase in correlation with the
target image and no attraction to the wrong image or chimeras.
Maximum correlation reached 95% in training and 93% in testing
sets on average for four samples. Also note that the model is quite
robust to the type of binary images input (images of numerals,
letters, etc.). Video of themulti-itemWM in the neuron-astrocyte
network can be found in Supplementary Material 2.

To characterize the quality ofmemory formation in themodel,
we examined the dependencies of correlation of retrieval pattern
in cued recall on variable parameters of the input patterns

and astrocytic, synaptic, and network structure (Figures 9, 10).
First, we investigated its dependence on noise parameters. The
dependence of correlation of recalled pattern on the noise level in
training and test experiments is shown in Figure 9A. Specifically,
the correlation difference between the recalled pattern and noisy
input is presented. In other words, the model can improve test
images depending on noise in training and testing. Training
the network with samples with a low noise level (up to 25%)
provides a high correlation. The elevation of the noise level in
the training sample induces a random activity pattern in the
astrocytic network, which in turn leads to noisy recall.

The morpho-functional structure of connections between
neurons and astrocytes can affect pattern retrieval in the
model (Figures 9B,C). The key parameters determining this
structure are the fraction of synchronously spiking neurons of
the neuronal ensemble corresponding to the astrocyte required
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FIGURE 8 | Snapshots of the training (A,B,C,F,G,H) and testing (D,E,I,J) of the neuron-astrocyte network in the multi-item working memory task. We used the

following training set consisting of four samples: 0,1,2,3. (A,F) The example of the first and last training samples, respectively. (B,G) The response of the neuronal

network to samples. The values of the membrane potentials are shown. (C,H) The intracellular Ca2+ concentrations in the astrocytic layer. (D,I) The testing items with

20% salt and pepper noise. (E,J) The cued recalls in the neuronal network. The firing rate averaged on the test time interval for each neuron is shown.

for the emergence of calcium elevation in the astrocyte, Fact ,
and the fraction of synchronously spiking neurons of the
neuronal ensemble corresponding to the astrocyte required for
the emergence of astrocyte-induced enhancement of synaptic
transmission, Fastro. Here we do not account for various
spatiotemporal properties of gliotransmitter release and astrocyte
Ca2+ signals evoked by different levels of neuronal activity
(Araque et al., 2014). We assume that simultaneous activation of
synapses induces multiple Ca2+ events at different processes of
the astrocyte, which are spatially and temporally integrated and
result in the generation of a global long-lasting Ca2+ elevation
(Bindocci et al., 2017) that can affect synaptic transmission
in the territory of individual astrocytes. For this purpose,
parameters Fact and Fastro estimate the correlation level of
synapse activity in the model. The optimal range of Fastro for
correlation of recalled pattern is [0.4–0.6] (Figure 9B). Smaller
values of the parameter, Fastro, lead to the effect of astrocyte-
induced synchronization initiated even by non-stimulus specific
uncorrelated noise activity in a small ensemble of neurons. On
the contrary, the use of larger Fastro values implies that a highly
correlated activity of almost all neurons located in the territory
of a given astrocyte is required for the existence of astrocytic
modulation of synapses. Hence, the neuron-astrocytic network
can not perform a correct recall of noisy cue. Another point is
that Figure 9B was obtained for a training set with a low 5%
noise level and did not reveal the dependence of the correlation of
recalled pattern on the parameter Fact . We studied the influence
of the parameter Fact on the correlation in the simulations
with different noise in training samples (Figure 9C). For lower
noise level in training samples, the network memorizes items

regardless of the value of the parameter, Fact . Increasing the level
of noise in the training samples for small values of the parameter,
Fact , leads to Ca2+ elevation in randomly distributed astrocytes
first, and then in the whole astrocytic layer. Nevertheless, such
non-stimulus-specific astrocytic activation can result in a high
correlation of recalled pattern because of themoderate noise level
in the cue and optimally chosen value of the parameter Fastro. On
the contrary, for a larger value of the Fact > 0.85 Ca2+ signal in
astrocytes can only be evoked by a relatively "clean" sample with a
small percentage of noise < 5%, therefore increasing the level of
noise in training samples results in poor correlation (Figure 9C).
We found that the range of Fact = 0.8 − 0.85 was optimal for
performing the WM tasks by the neuron-astrocyte network. In
this range, astrocyte activations were stimulus-specific and the
astrocyte layer could memorize training samples with a low noise
level. The obtained high value of optimal Fact denotes that correct
functioning of WM in the neuron-astrocyte network dependent
on the generation of global Ca2+ signals in astrocytes required
highly correlated activity in corresponding neuronal ensembles
as confirmed by recent experimental work (Bindocci et al., 2017).

Next, we studied the influence of synaptic connectivity
architecture in the neural network, specifically the number,
weight, and distribution of synaptic connections, on the
correlation in the multi-item WM task (Figure 10). The
minimal number of synaptic connections, Nout, required for
the existence of cued recall is 20 (Figure 10A). A smaller
number of connections is not enough to activate all the
neurons from the stimulus-specific population. Simultaneous
increase of weights and number of connections induces the
generation of large synaptic currents resulting in self-sustained
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FIGURE 9 | Correlation between recalled pattern (see section 3.5) and ideal item in a multi-item WM task performed by the neuron-astrocyte network. The correlation

averaged over four patterns is shown. (A) Noise-resistance of the model. Dependence of correlation on the noise level in training and testing. The correlation

(Continued)
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FIGURE 9 | difference between cued recall pattern and noisy input is shown. (B,C) The influence of the neuron-astrocytic interaction structure. (B) Dependence of

correlation on the number of spiking neurons required for the calcium elevation in the astrocyte, Fact, and on the number of spiking neurons required for the

emergence of astrocyte-induced enhancement synaptic transmission, Fastro. (C) Dependence of correlation on noise level in training samples and on the parameter,

Fact. Fastro = 0.5. For (B,C) noise level in cue is 20%.

FIGURE 10 | Influence of synaptic connectivities architecture in the neural network on the correlation of recalled pattern in the multi-item WM task performed by the

neuron-astrocyte network. The correlation averaged over four patterns is shown. (A) Dependence of correlation on the number of output synaptic connections for

each neuron, Nout, and synaptic weight, η. λ = 5. (B) Dependence of correlation on the number of output synaptic connections for each neuron, Nout, and synaptic

connection distribution parameter, λ Equation (4). η = 0.025.

overactivation of the neuron-astrocyte network. Therefore there
exists an optimal range of synaptic weight values to ensure
high correlation. We found that for our model this range is
η ∈ [0.005 − 0.05]. Figure 10B illustrates the dependence of
correlation on the number of output synaptic connections and
their distribution. The smaller the parameter λ from Equation
(4), the lower the probability of long-distance connections.
The highest correlation was observed for local connections,
λ < 7, due to the fact that short-range connections do
not lead to blurring of the pattern retrieval boundaries in
the neural network. Figure 10B also determined the optimal

range for the number of synaptic connections: Nout ∈

[25, 55].
The key parameters, which determine WM capacity in

the proposed neuron-astrocyte network, are the duration of
calcium signals in astrocytes and duration of the astrocyte-
induced modulation of synaptic transmission. Duration of
astrocytic calcium elevations is determined by the intrinsic
mechanisms of the IP3-evoked Ca2+-induced Ca2+ release
from the astrocyte endoplasmic reticulum stores, which is
described by the biophysical model (Li and Rinzel, 1994) used
in this study. Fragmentary experimental data on duration of
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FIGURE 11 | Capacity of the multi-item WM in the neuron-astrocyte network. Capacity as a function of the sample number in training. The number of images with a

correlation of recalled pattern higher than 90% is shown.

the gliotransmitter-induced modulation of synaptic transmission
shows that the short-lived version of this modulation lasts from
fractions of a second to a few minutes, while long-term plasticity
can last for tens of minutes (for review see Pittà et al., 2016).
In this study we have chosen the duration of astrocytic effect
on synaptic transmission in accordance with the kinetics of SICs
triggered by astrocytic glutamate (Fellin et al., 2004).

To characterize memory capacity, we subjected it to longer
trains of samples. Samples were applied to neuronal ensembles
with an average 35.2% overlapping in population. To check
the memorization, we presented cue items in reverse order
compared to the learning mode (e.g., learning: 0, 1, 2, ..., 7, 8;
test: 8, 7, ..., 2, 1, 0). The number of items with a correlation
of recalled pattern higher than 90% indicated the capacity of
the system. Figure 11 shows the capacity as a function of the
sample number in the training sequence. For a chosen set
of parameters, the capacity of WM ranges from five to six.
It is interesting that such a limited capacity coincides with
psychological studies indicating that human ability to keep
information in readily accessibleWM is limited, ranging between
three and five items for the majority of healthy people (Cowan,
2010). However, it is obvious that the organization of the
WM in the human brain involves the coordinated work of a
much larger number of cells and even several CNS regions.
We investigated the influence of the duration of astrocyte-
induced modulation of synaptic transmission, τastro, on the
capacity of WM. The number of items stored in the system
memory is maximum for parameter values in the range: τastro ∈
[60, 660] ms. For small values of τastro, excitation does not have
time to spread to the stimulus-specific neural population; for
long astrocytic modulation the different items in cued recalls
interfered with each other.

The capacity of WM in the proposed neuron-astrocyte
network is primarily limited by the duration of the astrocytic
Ca2+ event τCa and does not depend on the number of neurons
or astrocytes in the network. In the protocol of our testing
session, the duration of the Ca2+ signal is sufficient to keep
six samples only, and after that it starts forgetting the images
received at the beginning. So, the maximum capacity of the
model is six. In case more than 12 items are applied, the
network starts dumping them and chimeras appear (Figure 11).
So, the system begins to make mistakes and the capacity of the
network shrinks (here the capacity is understood as the number
of the retrieval items with a correlation level with the sample
of more than 90%). This is valid for the case considered in the
paper when a stimulus is applied to the whole network and
different stimuli overlap strongly in neuronal subnetworks. For
this case, the capacity does not depend on the number of neurons
and astrocytes.

If we consider the case of applying items to different unique
non-overlapping neuronal subpopulations, an increase in the
size of the network will result in increased capacity. The
WM capacity of each subnetwork in this case is unequivocally
determined by the duration of the calcium signal and can be
obtained analytically. We estimated the Ca2+ signal duration
to be τCa = 3.8 s. We consider the case of training on K
samples in a fixed order: 1, 2, ...,K. During the test, we look at
a permutation p consisting of K patterns. For the permutation,
we estimate the number of correctly recalled patterns, Kp.
The pattern is considered correctly recalled if no more than
τastro has passed since its presentation. The average capacity,
C, for this case is defined as the average number of correctly
recalled patterns over all possible permutations p. According to
this description, the average capacity can be calculated by the
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FIGURE 12 | Capacity of the multi-item WM in the neuron-astrocyte network in the case of non-overlapping neuronal populations obtained analytically. Capacity as a

function of the sample number in the training sequence.

following equation:

titrain = i · τ11 + (i− 1)τ12,

t
j,i
test = titrain + τshift + j · τ21 + (j− 1)τ22,
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]

,

(17)

where τ11—train sample duration, τ12—duration between train
samples, τ21—test sample duration, τ22—duration between test
samples, τshift—delay between train and test, τCa—calcium

event duration, titrain—time of i-th train sample finishes, t
j,i
test .

Figure 12 shows the capacity as a function of the sample number,
K. After it reaches a maximum of 6.6 for 8 samples, the
capacity begins to decrease monotonically, while the number of
samples increases.

5. DISCUSSION

We proposed a new biologically motivated spiking neuron
network model accompanied by astrocytes that demonstrates
working memory formation. The model acts at multiple
timescales: at a millisecond scale of firing neurons and
the second scale of calcium dynamics in astrocytes. The
neuronal network consists of randomly sparsely connected
excitatory spiking neurons with non-plastic synapses. Astrocyte-
induced activity-dependent short-term synaptic plasticity results
in local spatial synchronization in neuronal ensembles. The
WM realized by such astrocytic modulation is characterized

by one-shot learning and is maintained for seconds. The
astrocyte influence on the synaptic connections during the
elevation of calcium concentration implements Hebbian-like
synaptic plasticity differentiating between specific and non-
specific activations. Note that the proposed model is crucially
different from the attractor-based network memory models
(Hopfield, 1982; Amit, 1995; Wang, 2001; Wimmer et al., 2014)
and works similarly to WM models based on synaptic plasticity
(Mongillo et al., 2008; Lundqvist et al., 2011; Mi et al., 2017;
Manohar et al., 2019). In particular, in its functionality, the
model is quite close to short-term associative (Hebbian) synaptic
facilitation (Sandberg et al., 2003; Fiebig and Lansner, 2016).

The concept of our WM model operation is schematically
summarized in Figure 13. Composed of two building blocks, e.g.,
fast-spiking neurons and slow astrocytes, the proposed memory
architecture eventually demonstrated synergetic functionality in
loading information and its readout by the neuronal block
and storage implemented by the astrocytes. In contrast with
solely neuronal circuit models where memory is encoded in
synaptic connections and their plasticity, which inevitably leads
to the problem of overlapping, our model splits functionality
using astrocytes as a pool for stored patterns. Even with
significant overlaps, they can be successfully retrieved due
to coherent synaptic modulations by the astrocytes and
synchronous neuron firing, which provide the selectivity. When
the memory is maintained at the time scale of calcium elevation
in astrocytes, the synapses are not specifically modulated and
theoretically can be employed for other tasks. Note also that the
memory is transient with no long-lasting changes in structure
and parameters. Thus, new information can be successfully
uploaded and stored without interference of traces of previously
memorized information. Complete memory overwrite interval
is estimated at several seconds and is also defined by the
duration of astrocyte activations. The circuit in Figure 13 can
be also treated as a building block for functional spiking neuron
networks (SNN) which are now intensively discussed in the IT
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FIGURE 13 | Concept of WM operation in the spiking neuron network model accompanied by astrocytes.

community as an alternative to artificial neural networks (ANNs)
used inmachine learning and artificial intelligence. Theoretically,
SNNs as more accurate models of brain circuits are believed
to be much more powerful than traditional formal networks in
processing efficiency. However, learning and memory algorithms
working well in ANNs can not be directly translated to spiking
neurons representing, in fact, analogous dynamical systems. We
hypothesized that astrocytes may be a missing block in the
implementation of learning and memory in SNNs as systems to
solve information processing tasks.

The proposed model clearly confirms the theoretical
hypothesis that astrocytic modulation of synaptic transmission
can be involved in the formation of functional cortical WM.
We show that the potentiation of excitatory synapses induced
by the glutamate released from astrocytes could serve as a
possible molecular mechanism for WM. Stages of multi-item
WM, which include loading, storage, and cued recall, manifest
in brief oscillatory bursts, which are functionally similar to WM
activity in nonhuman primate PFC (Lundqvist et al., 2016)
rather than sustained neuron spiking. Interestingly, the activity
of the neuron-astrocyte network corresponding to a memorized
pattern exhibits a sufficient degree of stability, which ensures
memory retention despite the presence of significant overlaps in
the stimulus-specific subnetworks.

Needless to say the astrocyte-induced modulation of synaptic
transmission proposed in this study as a mechanism for
WM organization does not exclude but rather complements
other synaptic and neural plasticity mechanisms (fast Hebbian
synaptic plasticity/short-term synaptic plasticity, facilitation,
augmentation, dendritic voltage bistability, etc.) and may well act
in parallel to them.

On the one hand, there has been much experimental evidence
that astrocytes contribute to synaptic plasticity, coordination
of neural network oscillatory activity, and memory function
(Santello et al., 2019). It was shown recently that astrocytic impact
is circuit-specific (Martin et al., 2015) and stimulus-specific
(Mariotti et al., 2018). Improved Ca2+ imaging approaches have

identified a spatiotemporal diversity of astrocytic signals that
may underlie the capacity of astrocytes to encode and process
different patterns of activation (Bindocci et al., 2017; Stobart
et al., 2018). Besides, the temporal scale of the astrocytic calcium
dynamics and dynamics of the neuron-astrocyte bidirectional
communication including the effects of astrocytic influence
on synaptic plasticity fit very well in the timing required in
WM processes.

On the other hand, the ongoing intense debate about
principles of WM organization challenges the canonical theory
of persistent delay activity in network attractors with recurrent
excitation (Bouchacourt and Buschman, 2019) and offers
alternative models incorporating different biophysical network
mechanisms of WM (Barak and Tsodyks, 2014; Lundqvist
et al., 2018). The principal reasons for such a debate are
the reexamination of experimental data, which show a large
heterogeneity in delay neuronal activity during WM tasks
(Stokes et al., 2013). A non-classical WM model includes
short-term synaptic plasticity (Mongillo et al., 2008; Hansel
and Mato, 2013), the balance of inhibition and excitation
(Boerlin et al., 2013), NMDA currents affecting on the neuronal
excitability (Durstewitz, 2009), and other parameters. These
models, however, have a number of shortcomings: inability to
describe encoding of novel associations in synaptic facilitation-
based models; unclear mechanisms for achieving precise tuning
of recurrent excitation and inhibition; and the time constant
of the NMDA receptor is appropriate to maintain memories
for 1–5 s, but not for longer. The investigation of the synaptic
mechanisms underlying WM is an ongoing process. Therefore,
incorporation of astrocytes as spatiotemporal integrators and
modulators of synaptic transmission in neural network models
may help advance the theoretical framework of WM encoding
and maintenance mechanisms.

Our simulations in a biologically relevant but still quite
general model have eventually illustrated the hypothesis of
astrocytes participation in WM functioning. This hypothesis
emerged from several experimental facts on the astrocyte
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contributions to the cognitive functions and their impairments
(Santello et al., 2019; Gordleeva et al., 2020; Whitwell et al.,
2020). Indeed, in many of these cases, the understanding of
the precise mechanisms of the astrocytic involvement is quite
fragmentary and more work on the specific role of astrocytic
action in the memory processes is needed. We believe that our
model demonstrating WM functionality based on a quite clear
mechanism of inter-coordination between fast spiking neuronal
circuits and an astrocyte reservoir will be helpful in further
experimental research including cellular and in vivo studies.
In particular, depressing or facilitating the neuron-astrocyte
interaction by specific drug injections can be used to monitor
behavior impairments in animal studies.

To conclude, the recent controversies in the field of WM
and the constant growth of experimental evidence about the
participation of astrocytes in information processing, cognitive
function, and dysfunction open up questions about mechanisms
of astrocyte involvement in memory formation. Using a
computational model, we demonstrated that the astrocyte-
induced facilitation of excitatory transmission in PFC is a
plausible mechanism for WM organization. The proposed
model accounts for the astrocytic modulation of synaptic
transmission in a spiking neural network. The biologically
relevant neuron-astrocytic network implements loading, storage,
and cued retrieval of multiple items presented to the neuronal
populations with significant overlapping. The mechanism of
WM functioning in the model is based on coherent neuronal
firing in response to sensory inputs which are coordinated by
astrocytes in time, serving as a “memory reservoir” and in
space serving as a “signal bridge” providing a certain level
of synchrony.

Future research in the framework of the proposed WM
model in the neuron-astrocyte network will be focused
on the interplay of excitation and inhibition that can
stabilize WM (Boerlin et al., 2013); the effects of synaptic
plasticity (Mongillo et al., 2008; Hansel and Mato, 2013)

namely associative short-term potentiation (a fast-expressing
form of Hebbian synaptic plasticity) that can provide an
encoding of novel associations (Fiebig and Lansner, 2016); the
subcellular calcium dynamics in astrocytes (Bindocci et al.,
2017; Gordleeva et al., 2019); and on the structure of the
cortical microcircuit reflecting the columnar organization of
the neocortex.
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