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Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described
as orchestrated by astrocytes—elaborately ramified glial cells tiling the cortical and
hippocampal space into non-overlapping domains, each covering hundreds of individual
dendrites and hundreds thousands synapses. A key component to astrocytic signaling
is the dynamics of cytosolic Ca’* which displays multiscale spatiotemporal patterns
from short confined elemental Ca* events (puffs) to Ca’t waves expanding through
many cells. Here, we synthesize the current understanding of astrocyte morphology,
coupling local synaptic activity to astrocytic Ca’t in perisynaptic astrocytic processes
and morphology-defined mechanisms of Ca’* regulation in a distributed model. To this
end, we build simplified realistic data-driven spatial network templates and compile
model equations as defined by local cell morphology. The input to the model is
spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is
validated by statistics of simulated Ca®* transients at a single cell level. In multicellular
templates we observe regular sequences of cell entrainment in Ca®* waves, as a result
of interplay between stochastic input and morphology variability between individual
astrocytes. Our approach adds spatial dimension to the existing astrocyte models by
employment of realistic morphology while retaining enough flexibility and scalability to
be embedded in multiscale heterocellular models of neural tissue. We conclude that the
proposed approach provides a useful description of neuron-driven Ca2+—activity in the
astrocyte syncytium.

Keywords: calcium signaling, cell morphology, noise-driven dynamics, astrocytes, modeling

1. INTRODUCTION

Astrocytes of the cortical and hippocampal gray matter are important actors in a number
of information processing processes, including synaptic plasticity, long-term potentiation, and
synchronization of neuronal firing (Haydon, 2001; Lee et al., 2014; De Pitta et al., 2016; Poskanzer
and Yuste, 2016) as well as in coupling neuronal activity to blood flow changes (Otsu et al., 2015).
Recent evidence converges on a close connection of these functions with whole-brain processes
and systemic regulation pathways. Thus, astrocytes respond to and are able to regulate systemic
blood pressure (Marina et al., 2020); they significantly (up to 60%) change their volume during
sleep or under anesthesia (Xie et al., 2013); astrocytes play an important role in the clearance of
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beta-amyloids, a process with mechanisms that are now being
actively discussed (Iliff et al., 2012; Abbott et al., 2018;
Semyachkina-Glushkovskaya et al., 2018; Mestre et al., 2020);
both intracellular and network-level activity of astrocytes are
significantly different in sleep and during wakefulness, and
activates with locomotion (Bojarskaite et al., 2020; Ingiosi et al.,
2020; McCauley et al., 2020). It is important to note that many
of the mentioned astrocyte functions are not directly related
to neural activity, but are governed by their own regulatory
pathways (O’Donnell et al., 2015). Some of these functions are
tightly linked to dynamic regulation of astrocyte morphology and
volume and depend, for example, on the circadian rhythm of
aquaporin expression (Hablitz et al., 2020).

In summary, this frames a new mindset for understanding
the function of astrocytes and at the same time poses a
challenge for modeling studies. Namely, the morphological
features should now be considered as a specific control parameter
that significantly contribute to the both single-cell dynamics
and network activity patterns. This problem breaks down into
three specific tasks: (i) to provide tractable, but still biologically
reasonable mathematical account for contribution of subcellular
morphological features to intracellular calcium dynamics; (ii)
to further develop approaches to modeling of Ca** dynamics
on data-driven irregular structures, both for an individual cell
and for a network; (iii) to reveal how realistic morphological
features are manifested in the spatiotemporal patterns of the
calcium dynamics.

We address these tasks in more detail in the rest of
the Introduction.

1.1. Calcium Signaling in Astrocytes
With plasma membranes enriched in a variety of potassium
channels and lacking voltage-gated sodium channels, astrocytes
are not electrically excitable (Verkhratsky and Nedergaard, 2018).
On the other hand, they display a rich repertoire of Ca’*-
activity at multiple spatial and temporal scales (Lind et al., 2013;
Volterra et al,, 2014; Wu et al.,, 2014; Bindocci et al., 2017).
Although astrocytic Ca*>* transients can occur spontaneously,
their frequency is modulated by neuronal activity (Stobart et al.,
2018), changes in local tissue oxygenation (Mathiesen et al.,
2013; Marina et al., 2020), and other factors (Semyanov et al.,
2020). As outputs, Ca>*-activity in astrocytes leads to release of
signaling molecules: gliotransmitters, such as GABA, D-serine,
and glutamate, as well as vasoactive metabolites (Serrano et al.,
2006; Henneberger et al., 2010; Bazargani and Attwell, 2016).
This has been summarized in a concept of “tripartite synapse,”
i.e., sensing of synaptic neurotransmitter release by perisynaptic
astrocyte processes, encoding this information in Ca?* signals
and response with secretion of neuroactive molecules (Araque
et al., 2014). There is still however an ongoing debate on the
mechanisms involved in generating Ca?* transients in astrocytes
and the extent of effect of astrocyte-derived molecules on
synaptic plasticity, e.g., on LTP (Fiacco and McCarthy, 2018;
Savtchouk and Volterra, 2018).

Recent experimental evidence obtained with genetically
encoded or pipette-loaded Ca?" indicators (Tong et al., 2013;
Rungta et al., 2016) heralds functional segregation between the

less frequent global internal store-operated Ca®™ transients at the
level of cell soma and primary branches, and the more frequent
spatially limited microdomain Ca*" transients in the thin mesh
of astrocytic leaflets—ramified nanoscopic processes, also known
as perisynaptic processes (PAPs) due to their proximity to
synaptic connections between neurons. The transients located
in the leaflets primarily rely on influx of Ca’>" through plasma
membrane, in part because of the high surface-to-volume ratio
in this region and in part because the leaflets are often devoid of
organelles including ER (Patrushev et al., 2013) and thus can not
support exchange with intracellular stores.

The coupling from synaptic activity to local Ca®" transients
in PAPs and from the latter to global Ca®" events is an area of
active research. As reviewed in Savtchouk and Volterra (2018),
early works attributed this to activation of G-protein coupled
receptors to glutamate, but later this pathway has been put to
question due to apparent lack of mGIuR5 receptor expression in
adult astrocytes. Alternative sources of microdomain transients
have been proposed, such as via TRP channels (Shigetomi
et al., 2011), from mitochondria (Agarwal et al., 2017), etc.
One plausible alternative causal pathway can be formulated as
follows (Rojas et al., 2007; Verkhratsky et al., 2012; Kirischuk
etal., 2016; Parpura et al., 2016): neurotransmitters, released from
the presynaptic membranes, primarily glutamate, but also GABA,
are cleared from the extracellular space by astrocytic transporters
utilizing Nat gradient to drive the neurotransmitters into
the cell. This leads to build up of Na™ ions in the cytosol,
which can lead to temporary reversal of Na*/Ca?*-exchanger
allowing for Ca®" entry via this transporter. Conceivably, if
this local Ca?* influx happens near the ER and coincides
with an increase in inositol trisphosphate (IP3) production
by phospholipase C, it can trigger Ca*"-induced release of
Ca?t from intracellular stores via IP; receptors (IP3Rs) of
the ER.

The release of calcium from ER is spatially inhomogeneous
due to the non-uniform, clustered, distribution of IP;3
receptors (Smith et al, 2009; Taufig-Ur-Rahman et al,
2009; Ross, 2012), with clusters spaced at about 0.5-5um
apart. At a detailed level, calcium release from the receptor
clusters has a stochastic character. The effect of the stochastic
activation of IP3R clusters on the calcium dynamics has been
investigated by Shuai and Jung both in point and distributed
models (Shuai and Jung, 2002, 2003). In the case of a large
enough number of clusters, Ca>" release events can be averaged
to a lumped deterministic description. Particularly, the increase
in IP3 level transforms stochastic calcium increases into

regular waves.
Recapitulating,  calcium  signaling mechanisms are
inhomogeneous across the cell and depend on local

morphological parameters, which has to be taken into account
in modeling. It seems practical to introduce a metaparameter
to describe the relative inputs of store-related and plasma
membrane-related Ca?t pathways. This metaparameter can
reflect local surface-to-volume ratio or the dominant size
of processes and can empirically be linked to the astrocyte
cytoplasm volume fraction parameter, which can be estimated
directly from fluorescent images.
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1.2. Cell Morphology and Network

Connectivity

Astrocytes have intricate and highly complex morphology,
which raises computational issues and demands an elaborate
approach to modeling. The contribution of the astrocytic spatial
segregation and coupling to brain physiology and functions is
still not sufficiently understood, especially taking into account
that astrocyte-to-neuron and astrocyte-to-astrocyte interaction
mechanisms are diverse and depend on brain region. The
existence of intercellular Ca>* waves traveling across the network
of astrocytes suggests a distinct mechanism for long-distance
signaling (Cornell-Bell et al., 1990) and plasticity, which operates
in parallel to and at much slower time scales than neuronal
synaptic transmission (Pirttimaki and Parri, 2013; Sims et al.,
2015).

The size of cliques of cortical astrocytes coupled within a
local network is estimated around 60-80 cells (Haas et al,
2006; Houades et al., 2006, 2008), but several networks can also
connect via a limited number of “hub” astrocytes (Carmignoto,
2000). The implications of inter-astrocyte connectivity have
been analyzed in a modeling study by Lallouette et al. (2014)
with the main conclusion that sparse short-range connections
can promote Ca?" wave propagation along the network. This
allows to conjecture that once initiated, a wave of excitation
can propagate over long distances in the brain cortex and affect
(activate or inhibit) postsynaptic neurons at distant synaptic
terminals, although most Ca?* events are confined to a single
astrocyte spatial domain. Propagating calcium waves can travel
distances of more than 100 um with speed from 7 to 27 um/s in
culture and brain slices (Dani et al., 1992). However, the waves
observed in vivo rarely spread more than 80 um (Hoogland
et al., 2009; Brazhe et al., 2013), although this observation can be
influenced by imaging protocol, as Kuga and colleagues reported
large-scale Ca?* glissandi in vivo that were only observable under
low laser intensity (Kuga et al., 2011).

It follows that for meso-scale problems related to brain tissue
physiology, it is computationally cumbersome to build a ground-
up model starting from individual processes. We propose a more
pragmatic approach based on texture-like volume segmentation
to classes such as “soma,” “large branches,” and “gliapil” or a
mesh of unresolved thin processes. This rasterization radically
simplifies model implementation and scales to large networks. At
the same time, by defining morphology-based spatial distribution
of a metaparameter, one can study the effects of spatial
heterogeneity at different scales. Indeed, the spatial distributions
used for simulations are ideally data-driven. Because it is not
always possible to infer the astrocytic network structure or
even individual domain boundaries from experimental data, and
because the networks can be variable anyway, it seems inviting to
generate variable astrocytic tilings from images of individual cells.

1.3. Modeling Studies

Models of TP3-mediated Ca?* oscillations have been extensively
reviewed both in general (Dupont et al., 2011) and in application
to astrocytes (Riera et al., 2011; Manninen and Havela, 2017;
Oschmann et al, 2017a), which included both point- and

spatially extended models. In particular, the De Young-Keizer
model stemmed several currently popular models of Ca’*
dynamics in literature. This model allows to simulate IP3-
sensitive calcium dynamics in cytoplasm and ER occurring
at the constant level of IP; including also a variant of the
model with the positive-feedback mechanism of Ca?* on IP;
production (De Young and Keizer, 1992). Li and Rinzel (1994)
reduced De Young-Keizer model to a two-variable system
introducing the experimentally observed time scale difference
between fast and slow inactivation of IP3 receptor by Ca®.
Adding the dynamics for [IP3] with synthesis dependent on
activation of metabotropic glutamate receptors and [Ca’*]
degradation leads to a three variable model (Ullah et al,
2006). Also building on Li-Rinzel model and providing a
more detailed description of IP3 degradation, De Pitta and co-
authors proposed a three-variable model for glutamate-induced
intracellular calcium dynamics caused by the synaptic activity in
astrocytes (De Pitta et al., 2009).

One of the first models for intercellular propagation of
calcium waves has been described in (Sneyd et al., 1994) by
adding diffusion of IP; and cytosolic Ca®" to the two-pool
Ca’" model. The effect of Ca?* diffusion rate on spatiotemporal
patterns of Ca®" signaling was studied by Shuai and Jung (2003)
in alattice-based model. Later, Kang and Othmer (2009) regarded
networked astroglial Ca?" signaling in a 2D model using spatial
patterns in form of sparsely connected irregularly branching
cells with simplified morphology. Both intracellular diffusion
of IP3 via gap-junctions and extracellular purinergic signaling
was regarded as a mechanism of intercellular communication
in Kang and Othmer (2009), Edwards and Gibson (2010);
intercellular Ca®" diffusion was however disregarded in most
modeling studies, e.g., Ullah et al., 2006; Kang and Othmer,
2009; Edwards and Gibson, 2010, primarily based on the notion
of a much faster diffusion of IP; than Ca’*t, see Allbritton
et al,, 1992, and small permeability of gap junctions to Ca**.
More recently Savtchenko et al. (2018) suggested an advanced
NEURON-based modeling environment for detailed spatially
extended models of astrocytes. However, they did not address
full calcium dynamics models or morphology-defined variations
of mechanisms. Specifically, the relative weights of plasma
membrane-dependent mechanisms (IP3 synthesis and Ca?t
influx) and store-dependent mechanisms scale with astrocytic
process morphology, as defined by surface to volume ratio,
cytoplasm volume fraction and the physical presence of ER in
the process. This has been studied in point-models by Oschmann
et al. (2017b) and in 1D extended model by Wu et al. (2018).
Recently, Brazhe et al. (2018) studied the implications of the
spatial segregation between IP3 synthesis and plasma membrane
exchange and the IP3-mediated ER exchange in discrete spatial
templates of variable complexity.

The tripartite synapse concept and the computational role
of astrocytes in neural network activity has early attracted the
attention of modeling studies, pioneered by papers by Nadkarni
and Jung (2004, 2007). Understanding of the tripartite synapse
from the viewpoint of non-linear dynamics and functional
models have been developed in works of Postnov et al. (2007,
2008, 2011), and Tewari and Majumdar (2012). Later, tripartite
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synapses have been adopted in more formal neural network
models (Alvarellos-Gonzdlez et al., 2012; Sajedinia and Hélie,
2018; Lenk et al., 2020). Because there is still no consensus based
on experimental evidence on mechanisms of Ca?t transients
in PAPs and gliotransmission effects (Savtchouk and Volterra,
2018), it is hard to formulate a comprehensive model that
would include all conceivable pathways and still remain tractable.
While at this stage refraining from closing the loop from
astrocytes to neurons, we believe it is important to understand the
spatiotemporal patterning of astrocytic Ca** signaling at levels
from microdomains to networks.

1.4. The Proposed Modeling Approach

Our main motivation in this study is to learn if uncorrelated
background synaptic activity, when sensed by astrocytes, will
be shaped into morphology-defined patterns of Ca** signaling.
We present a model of multi-cellular network of astrocytes
based on realistic spatial templates. We start from a single-cell
model, which is considerably simpler than in Savtchenko et al.
(2018), allowing for smaller computational costs, and move on to
connect separate cells together to obtain a network model.

We focus on the implications of the morphology-dependent
spatial segregation of the Ca?>* signaling mechanisms between
astrocytic leaflets and branches. We follow the lines set out
in Brazhe et al. (2018) toward more realistic and larger scale
spatial templates, ranging from single astrocytes to networks. In
contrast to astrocytes in culture or retina in vivo, cortex astrocytes
are non-flat and occupy some volume in 3D space. Nevertheless,
we chose to reduce dimensions to 2D and flatten astrocyte
images used as spatial templates. One reason for this was to
reduce computational cost, especially when addressing network
models. Another reason that most existing Ca?" imaging data
are obtained as time series in single focal plane, and the
experimentally obtained dynamics is confined to flat 2D anyway.
The work of Bindocci et al. (2017) demonstrated the richness
of Ca** dynamics within the whole astrocytic domain in 3D,
but volumetric imaging is not yet widely used in the context of
astrocytes. We therefore contemplated that using 2D templates
for simulations would not restrict us from observing diverse and
physiologically relevant Ca?t signaling patterns, event if real
astrocytes have more degrees of freedom. The rest of the paper is
organized as follows: we start from a description of the proposed
model in a top-down order: the general concept is followed by
proposed algorithm of creating spatial templates for modeling
and then continues with description of the differential equations
for dynamics of intracellular and ER Ca?", intracellular IP;,
and extracellular glutamate concentrations. Having defined the
model, we test its plausibility on single-astrocyte templates
and after quantification of Ca®* event statistics we proceed to
behavior of astrocyte networks, where we observe noise-driven
regular activation patterns.

2. MODEL
2.1. Model Design and Overview

In this work we aim to conceptualize our current understanding
of spatial organization of the astrocytic Ca*" dynamics in a

form of a spatially detailed model of individual and networked
astrocytes excited by stochastic background neuronal activity. In
the light of the striking differences between Ca’" signaling in
astrocytic leaflets and thin processes on the one hand and global
somatic signaling on the other, we start with segregation of the
modeling space into three major classes as shown in Figure 1:
astrocyte soma with thick branches (I), a mesh of astrocytic
thin processes (II) and extracellular space (III). The continuum
between the two extreme classes I and II is defined as local
fraction of astrocytic cytoplasm volume (AVF) and a related
parameter—local surface-to-volume ratio (SVR) of the astrocytic
processes. In extreme class I regions, such as soma, Ca?"
dynamics are dominated by exchange with intracellular stores,
and a unit of modeled space (template pixel/voxel) contains
only astrocyte, while in extreme class II regions (leaflets), Ca?*
dynamics is dominated by exchange with plasma membrane and
each modeled pixel contains a mesh of extremely thin astrocyte
processes tangled with neuropil. We thus define a mapping of
each pixel in the spatial model template to either class III (no
astrocyte) or to a continuous variable between the extreme cases
of class I and II with implications in local calcium dynamics
and diffusion.

With regard to the local calcium dynamics, the extreme
complexity and sheer number of cellular pathways involved,
makes the detailed and comprehensive modeling of every Ca?*-
related mechanism extremely challenging. Not surprisingly, there
is a substantial body of published models that aim to account for
the essential features of calcium dynamics in astrocytes, which
do not completely agree with each other (Manninen and Havela,
2017). To choose the best model we build upon a model proposed
by Ullah et al. (2006) as a prototype, while other models could fit
in the proposed approach as well, for example the “ChI” model
by De Pitta et al. (2009), which is similar to that of Ullah et al.

2.1.1. Spatial Structure

To represent astrocyte networks with realistic geometry of the
regions I-1III, one needs to create such templates algorithmically
or, alternatively, obtain them from experimental data. Each of
the two variants has its benefits and drawbacks. To provide just
two examples, the experiment-based approach was employed in
Wallach et al. (2014) and an algorithmic creation of network
templates was employed in Postnov et al. (2009). Here, we
draw advantages from both approaches by suggesting a simple
stochastic data-driven algorithm to create realistic surrogate
spatial templates of astrocyte networks. Specifically, we use
experimental images of astrocytes obtained from a public
database, and arrange network structure using Voronoi partition
and simple geometrical transformations (see section 2.2.1).

2.1.2. Neuronal Activity

We assume that astrocytic Ca’t response to local neuronal
activity is primarily driven by the transporter-mediated uptake
of neurotransmitters released from presynaptic membranes. One
of the possible coupling mechanisms is the reversal of the
Na*/Ca”-exchanger transport due to an increase in [Na™]
allowing for a Ca?" influx. Here, we sacrifice biophysical details
in favor of model simplicity and assume that astrocyte calcium
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FIGURE 1 | Model structure and molecular mechanisms. (A) Astrocytic network is segmented in three spatial compartments: |—cell bodies and thick branches;
Il—the mesh of thin branches; lll—extracellular space. (B) Model variables (in colored ovals) and main regulatory pathways of intra-astrocyte calcium dynamics.
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dynamics is excited directly by glutamate released from the
presynaptic terminals, causing transient fluxes of Ca** through
the plasma membrane. A typical cortex astrocyte is associated
with 300-400 individual dendrites and is in contact with about
10%-10° synapses (Bushong et al., 2002; Halassa et al., 2007).
Judging by these numbers and taking into account sparsity of
neuronal signaling in the cortex it seems safe to treat each pixel in
the distributed model template as associated with a single or just
a few individual synapses. For as long as we are not focused on
information processing in the cortex, we can assume independent
stochastic nature of spiking activity in any of the presynaptic
units and describe local activity only statistically, neglecting any
complex spike timing patterns. Consequently, we describe the
synaptic glutamate drive to the model in each pixel as triggered by
presynaptic spike trains drawn from independent homogeneous
Poisson process &, (t) with intensity p Hz.

2.2. Astrocyte Network Topology

2.2.1. Data-Driven Network Generation

Astrocytes, like neurons, have complex morphology. Ideally, an
algorithm to create spatial templates should provide means to
“grow” realistic branching 3D shapes of astrocytes from a set
of randomly placed “seed” locations. Indeed, there are many
experimental and modeling studies of the branching patterns
for various types of neurons (Ascoli et al., 2007; Donohue
and Ascoli, 2008; Cuntz et al.,, 2010; Polavaram et al., 2014),
providing means for creation of realistic surrogate shapes of
as many neurons as needed. However, unlike neurons, there is
less data available on the statistics of astrocyte branching, which
makes it harder to create surrogate spatial templates of astrocyte

networks. This hindrance can be circumvented by using a public
database of microscopic images of cortical and hippocampal
astrocytes (Martone et al., 2002, 2008).

To create a library of realistic spatial templates for individual
cells, we downloaded a set of 27 fluorescent confocal 3D stacks of
hippocampal astrocytes (4-week old rats, microinjection loaded
with lucifer yellow in acute slices) (Bushong et al, 2004).
The stacks have average lateral resolution of ~ 0.07 um/px
and vertical (Z-axis) resolution of 0.2 um; there are 45-60 Z-
planes in each stack, thus encompassing the thickness of about
10 um along the Z-axis. Because our model is set in two-
dimensional space, the stacks were flattened along the Z-axis by
max-projection, Figure 2. The projections were downsampled
4x before simulations, resulting in lateral resolution of ~
0.28 um/px. Each of the experimental astrocyte images then
serves as a progenitor of randomized offsprings obtained by
applying 250 random rotations (from 0° to 360°, shearings and
stretchings (within £20% of original size, uniform distribution),
which results in a collection of 6,750 randomized pseudo-
experimental astrocyte templates, used to tile the model space.
Such data set expansion from a limited number of “real-world”
objects is a popular approach in machine learning (Simard et al.,
2003; Krizhevsky et al., 2012) helping to prevent overfitting and
providing for transformation-invariant feature learning.

Inspired by the fact that astrocytes establish distinct non-
overlapping territories, we employ an algorithm based on
Voronoi partitioning and active contours to tile the model
space with astrocytes. First, we create a lattice of “seed points”
regularly spaced at some intervals corresponding to average
cell density, typically around 50 um, shown in light gray in
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Making single cell templates Tiling the plane

experimental images (N=27) _ Voronoi partitioning for a jittered grid
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repeat for all cells;
update contours

Final spatial template

FIGURE 2 | Algorithm to create surrogate templates of astrocyte network. First, a set of seeding points on a regular grid (light-gray) is perturbed with random shifts
(dark-gray points). Voronoi diagram is then drawn for these points (blue lines). Each patch in the Voronoi partitioning is then filled with the best shape-matching
template from an augmented collection of astrocyte images. The lookup collection is created from a set of experimental images taken from CCDB (Martone et al.,
2002, 2008) by applying multiple different random rotations and shears to each experimental image.

Figure 2. The resulting regular grid is then deformed by jittering
x and y coordinates of every point by a random displacement
value drawn from Gaussian distribution with ¢ = 10um
(dark gray points in Figure 2). Different values of spacing and
jitter can be used, the ones used here tended to give the
most realistic tiling results. Next, a Voronoi diagram, which
for each seed point delineates territories closer to it than to
any other seed point, is drawn for the jittered points. We
then iteratively pick a polygonal area patch from the Voronoi
partitioning, look up a template astrocyte from the randomized
collection, with a convex hull best matching the shape of the
given Voronoi patch, and place this template into the model
space. Repeated for all patches in the Voronoi partition, this
creates a preliminary tiling with partially overlapping domains
of neighboring astrocytes and occasional empty spaces. Next,
this draft tiling is optimized with an active deformable model:
the perimeter of each cell template is treated as an elastic

two-dimensional curve, which optimizes an energy functional
designed to promote repulsion between overlapping regions and
adhesion between neighboring cells, with a penalization of the
major cell shape deformation. After all domain boundaries are
settled, the spatial templates are interpolated into the deformed
contours. The described process of the network template creation
is visualized in Supplementary Video 1.

2.2.2. Computational Design

Our simulations are based on compiling an encoded raster
image representation (a template) of the model space to region-
specific equations. For the sake of computational simplicity, we
use two-dimensional spatial layout—each pixel of the spatial
template can be interpreted as a thin slab, occupied either
exclusively (e.g., in the soma) or partly by astrocyte cytosol;
or as belonging to extracellular space. As follows from this
approach, each pixel in the model space has to be assigned
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10 um

FIGURE 3 | Example of AVF color-coding. (A) Maximal projection of a confocal image of a cortical astrocyte. (B) color-coded template ready for simulation; regions
with non-zero blue channel delineate astrocyte domain, while intensity of the red channel encodes AVF. (C) Link between color-coded AVF and SVR parameters.
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to either astrocyte-free space (class III) or astrocyte-occupied
space, ranging from class I, astrocyte soma and thick branches,
to class 11, i.e., elements of volume containing a tangle of thin
astrocyte processes and unresolved neuronal structures, e.g.,
synaptic boutons. We account for a graded transition from thick
branches to thin processes to leaflets by introducing a local
astrocyte volume fraction (AVF) parameter, which defines the
landscape of how much of each pixel volume is occupied by
astrocyte in the 3D prototype. AVF here is defined as a ratio
between local fluorescence intensity of the template and the
intensity at the soma AVF = max(I/Inax, AVFpin). An example
of the described mapping from image intensity to AVF is shown
in Figures 3A,B, where the colormap in Figure 3B is such that
the non-zero blue channel delineates the presence of astrocyte
cytoplasm (non-zero AVF), and the intensity of the red channel
encodes the AVF value. To describe the relative input of the store-
operated calcium flux and plasma membrane flux, we introduce a
surface-volume ratio (SVR) parameter, which inversely depends
on AVF (Figure 3C). The SVR value is maximal at the edges of
the leaflets and minimal in the soma. Accordingly, a simple raster
RGB image serves as a spatial template to encode the model space.
Specifically, non-zero values in the blue channel define astrocyte-
occupied pixels, while intensity in the red channel encodes AVF
and ranges from minimal value AVFp, (class II) to 1 (class I).
Thus, one can set up computation for a specific spatial template
by simply drawing it algorithmically or with an indexed palette
using a graphical editor.

At each integration step the master program module
optionally compiles the provided image into a set of equations
by mapping each pixel color to equation set following the color-
coded dictionary. For each pixel first the point dynamics are
applied, i.e., right-hand terms are evaluated. Next, diffusion of
ions and molecules and any other short-range interactions is
taken into account based on the class of the neighboring pixels.
This approach is flexible, but has an overhead of compiling
the color-to-equation mapping. To improve the computational
performance we employ NVIDIA CUDA, a parallel GPU-based
computing technology.

2.3. Intracellular Calcium Dynamics:

Principal Quantities and Flows

The model for local Ca?* dynamics is based on that of Ullah
et al. (2006) with a few modifications previously introduced in
Brazhe et al. (2018), which sum up to treating ER calcium as
a dynamic variable, adding neurotransmitter-dependent calcium
influx via plasma membrane, and segregation between thick and
thin processes. Below we describe the proposed model, focusing
on the differences with the Ullah et al. (2006) model; equations
and parameters that are the same here as in the Ullah model
are omitted.

The principal variables of the model are (i) the cytosolic
calcium concentration [Ca?t]., (ii) calcium concentration in
the endoplasmic reticulum [Ca®t]gg, (iii) inositol trisphosphate
concentration in the cytosol [IP3] and (iv) extracellular glutamate
concentration [Glu].

To account for the morphology-based spatial heterogeneity of
astrocytes, we introduce a parameter r € (0 < fjp...1]—a
scalar quantity, roughly representing local AVF. This parameter
also defines a linked parameter s representing local SVR of the
astrocyte processes; SVR is inversely related to AVF: s = 1/(1 —
exp[0.1(r — 0.5)]). SVR scales relative inputs of Ca?t exchange
through plasma membrane and with ER as described below,
while AVF scales effective diffusion coefficients for Ca** and IP3.

The equation set for the principal variables reads:

d[Ca*T],
% = (1= $)Jer + SJpm + Jaif» W
dlCa®"lgr  1—5
- i JER> @
d[iil:ﬂ = S(IGlu + ICu) - qu + Idi > (3)
d[Glu] _ [Glu]amb — [Glu] + %‘p(t) + Ggifs (4)
dt TGlu

where Jgr is the total flow of calcium ions in exchange between
the cytosol and endoplasmic reticulum; Jp,, is the total flow
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of calcium ions through the plasma membrane in exchange
between the cytosol and extracellular space; Iy, and I¢, stand
for glutamate- and calcium-dependent inositol trisphosphate
production mechanisms, mediated by phospholipases 8 and 8; I,
is a simplified first-order equilibration of inositol trisphosphate
concentration to the basal level [IP3]o; [Glu],,p is the ambient
concentration of extracellular glutamate, and 7y, is the timescale
of its clearance and return to the baseline level; £,(¢) is stochastic
source of glutamate from nearby located neuronal synapses
triggered by Poisson spike trains in each pixel. Additionally,
Jaifp> Laigp> and Gy describe the finite-element approximation
of diffusion of cytosolic Ca?*, IP; and extracellular glutamate,
respectively and are described below.

The weighting coefficient s accounts for the stratification of
intracellular dynamics according to Figure 3: in the leaflets r =
min < 1 and s & 1, while for deep cytosol locations r = 1 and s ~
0. With this we (i) describe that input from all plasma membrane
calcium currents is maximal in the leaflets and (ii) assume that
endoplasmic reticulum does not invade leaflets much, thus ER
exchange is large only in thicker branches and soma. We also
assume that all IP3 is produced in the plasma membrane by
means of G-protein coupled phospholipase 8 or Ca?*-dependent
phospholipase §.

2.3.1. Calcium Exchange Between the Cytosol and
ER

Total calcium flow across the endoplasmic membrane is
composed of IP3R-mediated current Jip,, leak of Ca?t from
endoplasmic reticulum Jie,x, and contribution of ER membrane
Ca**t pump Jpump:

Jer = Jipy + Jleak — ]pump- (5)

Ca?t current via IP3 receptors Jip, is modeled in the same way as
in Ullah et al. (2006) (Equations 2, 4, 5, 9-12). Two other terms
in Equation (5) stand for the leak of calcium from ER, and for
the pumping it back, respectively, following Equations (3,6) in
Ullah et al. (2006).

2.3.2. Transmembrane Calcium Flows
Transmembrane calcium exchange Jpm consists of three flows:

]pm = Jin + Jau — Jout> (6)

where Ji, describes the sum of background constant Ca?t
influx and agonist-dependent IP;-stimulated Ca** influx across
plasma membrane from the extracellular space and J,,; is an
extrusion current (eqs. 7-8 in Ullah et al.); Jg, = y[Glu]
describes the direct effect of extracellular glutamate on additional
calcium influx.

2.3.3. Inositol Trisphosphate Turnover

The dynamics for IP3 concentration from Equation (3) has the
following terms: first, we use a lumped first-order description of
[IP3] equilibration to a resting level [IP3]o:

Lq = _7; (7)

second, we account for the Ca?"-stimulated IP; production in
the same way as in Ullah et al. (2006), (eq. 14), and third, we
account for glutamate-driven IP3 production I, following Ullah
et al. (2006), (eq. 15).

2.3.4. Synaptic Glutamate Drive

Stochastic glutamate source &,(¢) in each pixel is modeled
as quantal release triggered by a spike train drawn from a
homogeneous Poisson process with intensity p, which agrees with
statistics of neuronal firing (Softky and Koch, 1993). Accordingly,
the &,(t) term in Equation (4) is given by

Ep(t) =) AS(t— tp), ®)
k

where A is the instantaneous increase in glutamate release rate
associated with each presynaptic event and f; are times of
presynaptic spikes in the given pixel following Poisson process
with intensity psyy.

2.4. Intracellular Diffusion

Elevated cytoplasmic Ca’" can remain confined to the spatial
domain of a single astrocyte, but can also spread to the
neighboring astrocytes (Nedergaard, 1994; Carmignoto, 2000;
Falcke, 2004) in a wavelike manner. The involvement of a large
number of cells into a wave is still not fully understood though
it may be an important aspect of information processing in the
brain (Haas et al., 2006). At least two main mechanisms can
account for the intercellular wave propagation: (i) secretion and
diffusion of extracellular ATP and its action on P2Y receptors on
astrocytic membranes and (ii) diffusion of intracellular IP3 and
Ca%" between contacting astrocytic leaflets, via gap junctions.
Relative input of the two mechanisms differs across brain regions
and for the cortical astrocytes the one mediated by the gap
junctions has been reported to prevail (Haas et al., 2006). The
current work is therefore focused on the latter mechanism.
Accordingly, astrocytes in the model are networked by an analog
of gap junctions dispersed over the parts of the cell perimeter and
simulated as the connection of areas with low AVF.

Here we employ a rather simplified description of diffusion
in the cytoplasm where the region occupied by astrocyte is
considered as a continuous space. As corroborated by evidence
for autologous gap junctions between the processes of the same
astrocyte (Wolff et al., 1998; Nagy and Rash, 2003; Genoud et al.,
2015), astrocyte cytosolic volume can be described as a porous
sponge-like medium rather than a branched structure or acyclic
graph. Thus, possible hindrance to IP3 or Ca?* diffusion through
the intricate mesh of astrocytic processes due to tortuosity and
porosity of the astrocytic volume can be accounted for by a
simple scaling of the apparent diffusion coeflicient. Though an
interesting issue, a detailed account for intracellular diffusion
and connectivity between neighboring points in an astrocyte is
outside the scope of the current study and here we resort to a
rather minimalistic description.

Following the study of diffusion coefficients of IP3 and Ca?*
in Xenopus laevis oocytes (Allbritton et al., 1992), most modeling
studies assume a much faster diffusion of IP3 (= 300 pwm?/s)
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TABLE 1 | Model parameters.

Param. Value Units Remarks

Co Not used Total [Ca®*] in terms of cytosolic vol

V4 0.1(0.4) uMy/s, Max rate of Ca?*-stimulated IPg production

Vs 0.01 (0.025) uM/s, Rate of Ca®* Leak across plasma membrane
K1 1.0 (0.5 1/s, Rate constant of Ca?* extrusion

ks 0.05 (0.1) uM, Activation constant for Ca”—pump

TGlu 0.1 uM/s Rate constant for perisynaptic glutamate uptake
Psyn 0.005-0.01 Hz Rate of Poisson process, for glutamate release
A 27 uM Instantaneous rise in glutamate release rate
[Glulamp 0 uM Ambient extracellular glutamate

Dca 10 um?/s Diffusion coefficient for cytoplasmic Ca*+

Dips 10 um?/s Diffusion coefficient for cytoplasmic 1P

Dau 0.02 um?/s Diffusion coefficient for extracellular glutamate
T'min 0.085 Dimensionless Minimal value of the AVF

Values in parentheses are the corresponding parameter values in Ullah et al. (2006).

than Ca?t (& 10 um?/s) due to Ca’* buffering and often
disregard Ca®* diffusion altogether. However, the effective rate
of IP3 diffusion can occur on a much slower timescale (Dickinson
et al,, 2016), equalizing the signaling range and speed of the two
signaling factors. Moreover, gap junctions formed by connexin43,
characteristic for astrocytes, are permeable to Ca*™ (De Bock
etal., 2012). We thus account for intra- and intercellular diffusion
of both IP; and Ca’t in the model with the same effective
diftfusion coefficients. This includes exchange at borders between
neighboring astrocytes to imitate the function of gap junctions,
which is supported by evidence that IP3 can diffuse through the
gap junctions along with Ca*™ (Yule et al., 1996).

Specifically, the diffusive term in Equation (1), e.g., for
Ca** reads:

N
Jaig = D [Ca*T]E — N[Ca?t],) ©)

i

where DY, is the diffusion rate defined as the diffusion coefficient
for Ca** scaled by spatial grid step 8x and local AVF value r:
%, = r*Dca/8x%, and i enumerates the N nearest neighboring
astrocyte-containing units. Here, we regard diffusion in porous
media and assume that larger AVF is associated with larger
cross-sectional area open for diffusion, as the astrocyte process
diameter increases, and simultaneously with less tortuous paths
taken up by diffusing molecules as the processes become less
entangled. This leads to approximately quadratic scaling of D*
with r. The diffusive term for IP3 is defined in a similar way.
Finally, neighboring pixels with different AVF values
obviously contain unequal volumes of astrocyte cytoplasm;
hence, small concentration changes in areas with high AVF
should cause larger diffusion-mediated concentration changes
in the neighboring pixels with low AVF. This was accounted
for by scaling the concentration rates of change due to
diffusive exchange by the ratio of the AVF values of the two
neighboring pixels.

2.5. Model Parameters and Numerical

Details
The basic set of model parameters is given in Table 1. Only new
parameters and values different from that in Ullah et al. (2006)
are shown. For convenience, the full set of parameters is provided
in Supplementary Table 1. The few values that are different were
adjusted in order to provide the reasonable dynamics with the
introduced treatment of [Ca?t]gg as a variable in our model
and the spatially extended layout. Diffusion coefficient for Ca?*
is taken as a lower-bound estimate in Allbritton et al. (1992).
Slow diffusion coefficient of IP3 is based on Dickinson et al.
(2016). We also added new parameters, specifically, A, 75, and
Dgyy,. The latter was chosen as a small value to describe only
minimal spillover from a release site and buffering by binding
to transporters. The pair of parameters describing instantaneous
glutamate release rate and slower decay could be varied, because
it is hard to assess the actual transmitter concentration and
decay time as sensed by astrocyte leaflets. Extracellular glutamate
transients occurring due do quantal synaptic release as estimated
by fluorescent glutamate sensor have decay timescale in close
to 100ms (Jensen et al., 2019), and this value was used for the
simulations shown below. This led to local glutamate transients
peaking at 1.2 uM and decaying within 200 ms. We note that
qualitatively similar Ca** signaling dynamics could be obtained
with a shorter 7y, value, compensated by higher release rate A.
Numerical integration of the model differential equations
is done in an explicit scheme (4th order Runge-Kutta
method adopted for stochastic differential equations with a
fixed timestep dt = 0.002s) implemented in AGEOM-
CUDA software (Postnov et al., 2012). Spatial grid step was
8x = 0.275pum/pixel for single-cell templates and §x =
0.55 um/pixel for network templates. For reproducibilty, a
reference implementation of spatial template generation and
model simulation is available at https://zenodo.org/record/
4552726#.YDAzInUzZQ8 in form of Jupyter notebooks, Python
and C code.
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To quantify spatiotemporal properties of the simulated Ca?*
dynamics, we examined complementary cumulative distribution
functions (CCDF) of areas and lifetimes of individual Ca?*
transients in all single-cell spatial templates to avoid selection
bias. Ca?t transients were thresholded at 25% change from
the local baseline level. The resulting contiguous TXY volumes
of suprathreshold Ca** concentration were treated as discrete
events. CCDF Fx(x) of some random variable X is defined as
the probability P that X is greater than some x value: Fx(x) =
P[X > x]. We present the CCDF curves in double logarithmic
coordinates to test if they can be approximated by a straight line,
implying a power-law behavior. If a given variable is distributed
according to a power law with probability density function (PDF)
Px(x) oc x~¢, then the CCDF also has a power-law behavior, but
with a smaller exponent Fx(x) oc x~ (@),

3. RESULTS

The proposed model, including the modifications to the local
calcium dynamics and spatial mapping, was tested in a number
of simulation experiments with different parameter settings and
different spatial templates (which we call “cells” for shorthand
below). To test for agreement between model behavior and
the experimentally observed dynamics, first, we looked at the
effect of the level of mean neuronal firing rate (local rate
of the Poisson point process in terms of our model) on
spatio-temporal dynamics of astrocytic calcium, and second, we
tested whether the artificial spatial templates could provide for
realistic intercellular calcium waves or other collective variants of
astrocytic calcium dynamics.

3.1. Wave Patterns in Single-Cell Templates
Figure 4 summarizes simulations of the 27 single-cell templates
shown in Figure 2. At low excitation (psy, = 0.005Hz) most
Ca?" events were spatially confined and tended to start at a
small number of sites, as shown with max-span contours and
red labeling in Figure 4A (left) for 25 largest events. At higher
excitation (psy, = 0.01 Hz) many Cat events spread to occupy
the whole cell domain and again tended to initiate at the same
sites. Synaptic signaling events were integrated into a spatial
glutamate profile as shown in Figure 4A (bottom): local surges
of extracellular glutamate are sparse at low excitation, while their
instantaneous spatial density increases at high excitation, with a
tendency of nearby sparks to blend.

The tendency, exemplified by a single template in Figure 4A,
was supported by the majority of single-cell templates
(Figure 4B): the number of events (during 2,500s simulation
time) covering more than 25% of the cell area increased with
excitation for nearly all cells except six, which were incapable of
generating whole-cell transients at p;, = 0.01 Hz. There were
no obvious differences between these cells and all the others
in overall morphology or AVF statistics. All cells did generate
whole-cell transients at a higher excitation of ps,, = 0.02Hz.
Most cells demonstrated a decline in the number of small events,
covering less than 25% of the cell area with excitation, as a larger
proportion of events was enabled to spread over larger areas,
while the rate of event initiation could remain stable. The area of

large (> 25%) events increased for all cells which generate large
events under low drive conditions except the three, which did not
generate large events at all, apart from other cells. The average
area of the small (< 25%) events increased with excitation
strength for all cells.

Stochastic local glutamate surges initiate two parallel
processes: fast localized Ca®* transients and slower IP;
production. Both integrate over time to steady-state levels of the
model variables. Because the relative input of plasma membrane
transport is defined by AVF in our model, we expected that the
steady state levels and the probability of Ca** event initiation
should depend on AVF as well. Steady-state values of [Ca2t]
and [IP3] decreased with growing AVF (Figures 4C,D), forming
an uneven spatial profile. Calcium, as well as IP3 levels, were
higher in the periphery and lower near the soma, which is due
to Ca®t entry during the synaptic excitation and due to higher
IP3 production in the regions with lower AVF. Different cells
varied in steady-state levels of the variables, while intensified
stimulation lead on average to a slight elevation of steady-
state [Ca2T];, due to increased Ca®t entry and did not affect
[IP3];, as the increase in [Ca®T]; was insufficient for activation
of PLCs.

An example of a single large Ca?'-event is shown in
Figure 4E. The expanding wave of elevated [Ca?t]; initiates in
a small location and spreads over the whole spatial domain (top
row). Due to the large range of steady-state [IP3]; concentrations,
the event is unclear in absolute [IP3]; values (middle row), but is
obvious in the relative scale (bottom row).

Despite the stochastic nature of excitation, Ca’™ activity in
most cells is self-organized in a repeated pattern of Ca®* transient
initiation and spreading (Figure 5); event initiation sites were
tightly clustered. Interestingly, activation in some clusters lead to
spatially confined events, unlinked to activity in the rest of the
cell, while transients originating in other sites tended to spread
over the whole spatial domain in a repeated fashion. This is
illustrated in Figures 5A-D for an example spatial template (see
also Supplementary Video 2). This cell is markedly anisotropic,
which defines the dominant wave spreading properties. The
two active initiation sites labeled as #1 and #2 display different
properties: events, starting in the site #1 often spread over large
portions of the cell, as shown for a line-scan path in Figure 5B,
while line-scan along the path starting in #2 was either activated
by a wave coming from #1 or—very locally and with a higher
frequency—Dby confined transients initiating in #2. Averaging
small temporal windows around Ca?* spikes at the origin of
path #1 shows that activation along this path is time-locked to
activation of the initiation site. On the other hand, averaging
similar temporal windows triggered by Ca?" spike at the origin
of path #2 did not reveal any structured activation patterns.
Figure 5D shows max-span contours of 25 largest events with
their initiation sites mapped in red, as well as 5 peak-delay maps
for a repeated pattern of activation. In these maps color indicates
delay in seconds between the Ca?* peak at the initiation site and
the Ca?* peak at each point of the cell. The precise wave initiation
site could vary within 3-5um, but the overall spatiotemporal
pattern remained similar, with activation spreading mainly along
the long thick processes toward the soma. Additional examples
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FIGURE 4 | Simulations of single-astrocyte spatial templates. (A) top row: Ca®* transient initiation sites (red) and maximum span contours at low (left,

Psyn = 0.005Hz) and high (right, ps,, = 0.01 Hz) synaptic drive, in both cases 25 largest events are shown, at high drive all such events span the whole template;
bottom row: snapshots of instantaneous extracellular glutamate concentrations at low and high synaptic drive parameters. Scale bar: 25 um. (B) Effect of synaptic
drive on Ca?* transient frequency and sizes (n = 27 templates, simulation time 2,500 s after burn-in period of 2,000's); top row: number of events covering more than
25% of cell area (“large” events) increases with excitation strength (left), number of events covering less than 25% of cell area (“small” events) decreases (right); bottom
row: average areas of both “large” (left) and “small” (right) events increases with excitation strength in most templates. (C) Distribution of baseline [Ca®t]; levels with
AVF parameter at low and high stimulation drives (left) and an example of spatial distribution (right). Each transparent line corresponds to one template, thick lines:
average. (D) Same as in (C), but for [IPg];. (E) Evolution of a single Ca®* transient starting in top-right corner of the template; top row: [Ca?*];, middle row: [IPg];,

o

bottom row: relative change in [IPs];.
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FIGURE 5 | Ca?* dynamics in single-cell templates self-organizes in repeatable spatiotemporal patterns. (A) A spatial template for simulation and 2 path-scans (#1,
purple and #2, yellow) used for rasters in (B); (B) Rasters of [Ca®*]; and relative change in [IP3]; along paths; path starting points are shown as magenta squares.
(C) Transient-triggered averages, linked to the [Ca®*]; peaks at the origin of path #1 (left) and to the [Ca®*]; peaks at the origin of path #2 (right); initiation of a [Ca*];
peak at the origin of path #1 typically leads to a full-cell [Ca®*]; wave, while [Ca?t]; transients emerging at the origin of path #2 remained localized. (D) Left: clustered
initiation points (red) and contours of 25 biggest [Ca?*]; waves; right: 5 “large” [Ca®*]; waves with color-coded delay before reaching the peak in [Ca®*); show a
tendency to start in the same area and spread with similar spatiotemporal profiles. (E) Examples of repeated spatiotemporal patterns in 4 other spatial templates: in
some cells there was more than one preferred initiation site, the full delay before initiation and waning of the wave also varied.

of repeated patterns for other cells are provided in Figure 5E. In  these event seeds needed to reach a tip of a thicker branch
some cells preferred wave initiation sites could alternate between  with higher AVF to be amplified by IP3-mediated ER exchange.
two polar positions or a few neighboring regions. There was also  Thus, initialization of a global Ca>* wave critically depends on
some scatter in the maximum delay between the initiation of the  a coincidence of exactly the right spot in the AVF profile—
wave and its full expansion. allowing both for a high enough [IP3]; baseline and sufficient

Though localized Ca** events could be initiated in the low-  ER exchange—and a wide and long enough cluster of glutamate
AVF regions due to direct influx through the plasma membrane,  release due to local increase in synaptic activity. Areas containing
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FIGURE 6 | Complementary cumulative distribution functions for areas (left) and durations (right) of Ca®* events in all single-cell templates. Red lines—low excitation
(psyn = 0.005 Hz), blue lines—high excitation (ps,, = 0.01 Hz). Event area CCDFs: slopes of the fits for the low and high excitations are 3.0 and 2.3, correspondingly;
the bend at the large areas corresponds to transition to whole-cell activation. Event duration CCDFs: slopes of the fits are 4.1 and 3.5 for the low and high
excitations, correspondingly.

only thin processes with low AVF will display only frequent
local Ca?™ sparks, unable to invade the neighboring regions
and thus will primarily set the baseline levels of [Ca®t]; and
[IP3] due to diffusion. Indeed, astrocytes in hippocampal slices
display frequent localized Ca>* events in the cell periphery, often
termed “microdomains,” with a characteristic size of high-Ca?*+
spots much smaller than the cell size and originating in the
thin processes region (Rungta et al., 2016). At the same time,
the “lifespan” of the Ca?" wavefront increases with the already
invaded area of the thick branch region due to regenerative Ca>*
release, which in turn relies on background [IP3] level. Thus, the
specific topology of the cell template predicts the “hot spots” for
the probability of Ca?* wave seeding.

We next describe statistics of areas and lifetimes of individual
Ca®t transients (thresholded at 25% deviation from baseline).
The left column of Figure 6 provides CCDF of areas, covered
by individual events, while the right column describes durations
of calcium events. Red curves correspond to the case of low
neuron activity, the blue ones correspond to high neuron
activity. In both cases the CCDF curves are presented in
double logarithmic coordinates and can be approximated by a
straight line within some ranges of event areas or durations,
suggesting a power-law behavior in agreement with experimental
data (Wu etal., 2014). After recalculating from CCDF to PDF

exponents, the resulting parameters were different from that
reported in Wu et al. (2014): for areas, @ ~ 3.3...4.0 in
the model vs. « =~ 2.1...2.4 in cultured astrocytes, and for
durations o 4.5...5.1 in the model vs. « 1.97...2.16.
These discrepancies can be explained by imperfection of the
model and the 2D spatial embedding in the model. Defining
model parameters that govern the shape of the event size
and duration distributions is a potentially interesting outlook
for further studies. Increase in synaptic excitation favored
larger areas occupied by waves and longer durations of each
event. The kinks in the CCDFs for event areas correspond
to transition to whole-cell waves, i.e., events covering more
than 30-50 um? were likely to expand further and cover the
whole cell.

We so far examined Ca®* transients in 2D spatial templates,
which we use to generate astrocytic network in the next section
to reduce computational load. We note however that the
presented modeling approach is extendable to 3D with minimal
modifications. An example of simulation for a 3D single-cell
spatial template is presented in Supplementary Video 3. The
features reported above for 2D templates remain in 3D: there
are Ca®" transients at different spatial and temporal scales, waves
that expand toward soma and vice versa, there are visible repeated
patterns of activation.

~
~

~
~
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FIGURE 7 | Ca®* activity in multicellular template. (A) Layout of individual spatial domains, each cell is color-coded. (B) Activity level is not uniform: color-coded

percentage of time that each pixel had [Ca®*]; above 0.1uM. Domain periphery is more active than somatic regions. (C) Example of spatiotemporal evolution of two
co-oceurring waves. Contours are separated by 1, time delay since the first contour is color-coded. (D) Cellwise dynamics: Ca®* and IP3 values averaged over
individual cell domains, line color corresponds to the map in (A), visible are single-cell events as well as packed Ca* transients representing multi-cellular waves.
(E,F) Repeated patterns of cell activation. (E) Spike-triggered averages of cellwise [Ca?*]; profiles initiated by the cells indicated as #, *, and & in (A,F); activity of the
first cell is time-locked to activation of a single other cell, Ca?t transient the second cell consistently leads to activation of several cells, while the third cell does not
participate in repeatable patterns. (F) Local score of activation pattern repeatability based on approach shown in (E) (see text for more details); activation of a
subpopulation of cells leads to repeated activation of its neighbors; red regions denote wave initiation sites as in Figure 4A.

3.2. Collective Dynamics of Astrocytes

After testing model behavior at microdomain and single-cell
level, we turned to ensembles of connected cells. Collective
dynamics of astrocytes was simulated using spatial templates
containing about 40 cells as shown in Figure 7A; see also
Supplementary Video 4. The simulated network is smaller than
the size of cliques or networks of connected astrocytes in the
neocortex (Houades et al., 2008), but still at the same order
of magnitude. Simulations of larger spatial network templates

are also possible but are more computationally demanding.
Ca%" activity was not uniform across the spatial template:
there were active “hot” brims in the periphery of most of the
cell domains and some cells were less active than others, as
shown in Figure 7B. We observed Ca?* transients originating in
some astrocytes and expanding to their neighbors in a wavelike
manner, an example of such a wave is shown in Figure 7C
as a sequence of contours of elevated [Ca?t];, separated
by 1s.
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To simplify the description of emerging spatiotemporal
patterns, each cell can be considered as an element that “fires,”
i.e., producing a global whole-cell spike, or remains silent. This
cell-wise activity is shown for [Ca2t]; and [IP3]; in Figure 7D,
where line colors correspond to domain colors in Figure 7A. We
observed individual cell spikes as well as packs of tightly grouped
spikes corresponding to multi-cellular waves. A considerable
scatter is clear in the baseline levels of IP3, which reflects
individual properties of each cell. IP3 concentration peaks are
wider and occur with a small delay in comparison to Ca?* peaks,
which reflects the slower kinetics of IP3 production timescale
and a lag due to diffusion of IP; from the periphery to the
somatic region.

A large Ca®* transient in one astrocyte can spread to other
cells. In single cell templates we observed self-organized repeated
patterns of activation. We were curious, if there will also emerge
repeated patterns of intercellular dynamics at a network level. As
a simple test for repeatable patterns, we calculated averages of the
domain-averaged Ca?* rasters in a short time window, triggered
by Ca?* spikes in different domains. We collected Ca>* traces,
where each spatial domain served as a large region of interest
(ROI), selected one cell as a seed, created time windows around
Ca** spikes in this cell and averaged Ca** dynamics snapshots
in all other ROIs across the time windows. In the case of stable
activation sequence, the spikes appear with the same time-lag
relative to the seeding astrocyte, and are thus visible in the raster
plot, while if spiking in other astrocytes is not time-locked to the
seeding astrocyte, the average Ca?* signal will be faint. Examples
of such spike-triggered averages are shown in Figure 7E for three
cells labeled as “#” “*)” and “&” in Figure 7A used to center the
time windows. Here, Ca?* spikes in cell “#” was time-locked
to activation of a single other cell, activation of cell “*” lead to
repeated activation of several other cells with a stable delay, while
activation of cell “&” did not repeatedly lead to activation of
other cells.

Inspired by this cell-wide “repeatability” measure based on
the contrast of spike-triggered averages, we defined a similar
score for more a detailed mapping of whether activation in some
region repeatedly lead to activation in other areas with stable time
lags. To this end, we split the spatial domain into overlapping
square windows of size 5x5um and extracted Ca?" dynamics
from these patches. We then selected the patches where there
were more than 10 Ca2™ spikes reaching at least 0.5 uM [Ca2t];
and created spike-triggered 50s-long averages from the raster
of Ca®" signals in all patches. Percentage of all points with
[Ca®T]; > 0.2uM in such spike-triggered windows was used
as the repeatability score for a given patch. The patches were
then projected back onto the spatial template, with averaging of
the values in overlapping areas between patches. This resulted in
an automated mapping of areas leading to repeated downstream
activation at the network level, revealing cells, serving as hubs
in spreading multicellular events (Figure7F). As suggested
in Brazhe et al. (2018) for a simpler model, some spatial
configurations of thick branches and leaflets can trigger persistent
pacemaker-like activity, taking over the control of dynamics at
the network level. We thus tested if alterations to the spatial
template could lead to self-organization in a different spatial

pattern of the centers of high repeatability (Figure 8). The cell
labeled as “*” in Figure 7 was often activated from its direct
neighbor to the right. Unlinking this cell from the network by
setting to zero all contacts at domain boundaries (Figure 7A)
lead to a change in the repeatability map, decreasing the score
for the cell “*” and increasing it for the three cells in the center.
Unlinking the cell “*” from the network effectively silenced it,
leaving only three cells with relatively high repeatability scores
in the template.

A subtler alteration of the spatial template can be directed at
the sites of frequent Ca2T transient initiation sites shown in red
in Figure 8. Substituting the natural AVF profile at these sites
with the average AVF value (Figure 8C) or ablating cell content
from these areas (Figure 8D) lead to a dramatic reorganization
of the Ca?* initiation sites and the centers of high repeatability.
In both cases the number of initiation sites was reduced, with
some of the former sites being silenced and some new sites
formed in the neighborhood of the previous sites. Also in both
cases the inequality of repeatability score was increased, with
a few cells showing very high values. We attribute this to the
reduced number of initiation sites, leading to a more repeated
activation sequences.

4. DISCUSSION

We proposed a spatially detailed model of astrocytic calcium
activity, which reflects current understanding of the two distinct
mechanisms of Ca?* dynamics: excitable IP3-mediated exchange
with ER in astrocyte soma and branches and plasma membrane
exchange in the fine astrocytic processes and leaflets, sensitive to
external conditions. Specifically, we suggest (i) an algorithm for
data-based generation of 2D spatial templates matching realistic
astrocyte morphology, and (ii) morphology-dependent spatially
non-uniform parameter landscape for the calcium dynamics. To
this end, we introduce the AVF parameter, which sets locally
the relative input of the plasma membrane and ER based
pathways and scales effective intracellular diffusion coefficients.
The central idea underlying this separation is that astrocytes
“sense” synaptic activity with fine processes, and it is where
Ca®* transients are relying on extracellular Ca®" rather than
intracellular stores, and where the bulk of IP3 can be produced,
while thicker branches and somata provide the positive feedback
gain mechanism for IP;-mediated Ca?"-induced Ca?* release
from ER. This mechanism separation is directly mapped to cell
morphology in our approach.

We tested the suggested framework both at individual cell
level and for algorithmically created multicellular astrocytic
network templates. Our results show that the model is able
to reproduce characteristic spatiotemporal patterns of Ca’*
dynamics driven by synaptic activity, represented by spatially
uncorrelated point-sources of glutamate release coupled to focal
Ca’* entry, triggered by independent stochastic Poisson spike
trains. At the single-cell level, the statistics of Ca®t event
durations and expansion areas turned out to have a power-
law distribution resembling experimental data (Wu et al., 2014).
Power-law statistics of the Ca?* transients does not directly
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FIGURE 8 | Modification of spatial templates changes activation patterns. Color-coding: repeatability score, red: wave initiation sites. (A,B) Unlinking single cells from
the neighbors; Blue contours—isolated cells, red regions denote wave initiation sites as in Figure 4A. Isolation of the cell often activated the cell denoted “*” in
Figure 7 lowers repeatability of the latter. (B) Isolation effectively silences the cell denoted “*” in Figure 7, which was a center of repeated patterns before. (C,D)
Modifications of wave initiation sites. (C) Averaging AVF values within the activation sites increases repeatability of the waves, starting at the cells, isolated in (A,B) and
one other cell. (D) Removing cell content from the spatial template within active initiation sites leads to a lower number of wave initiation sites and increased
repeatability in several cells.

follow from the model equations and is an emergent property of A 2D morphology-based modeling approach has earlier been
the interplay between astrocyte morphology and Ca?* dynamics.  employed by Kang and Othmer (2009) to study calcium waves

The presented model is a rather simplified representation  in retinal astrocytes. Our interpretation of astrocyte morphology
of native astrocyte morphology and Ca’* dynamics. It is less  is however different from the one in Kang and Othmer (2009) in
detailed, but also less computationally demanding than the  several key aspects. First, Kang and Othmer used a GFAP-positive
framework proposed by Savtchenko et al. (2018), allowing  immunostained micrograph of retinal astrocytes, but GFAP
for simulations on a GPU-equipped laptop rather than on a  stains only a small fraction of astrocyte cytosol volume, while
supercomputer or a cloud. A major simplification of our model,  the rest, especially the mesh of thin processes, got excluded from
dictating its limitations, is the reduction of real 3D astrocytic ~ consideration of calcium dynamics, leading for the reconstructed
morphology to flat 2D spatial templates. The flattening was  morphology to resemble that of cultured astrocytes (see e.g., Wu
primarily done for the sake of computational tractability, but et al., 2014 for comparison of morphology). On the other hand,
also conceptually matches single-plane imaging regime. The  an account for spatial segregation of calcium activity in fine
emergence of repeated activation patterns should not depend  astrocytic processes and thick branches was key to this study.
on the embedding space dimensionality, although the repeated =~ Second, we account for a morphology-based balance between
propagation patterns can become more complex and elaboratein  Ca?™" entry via plasma membrane and from ER, which is absent
3D; one can also expect different expansion rates and initiation  in the work of Kang and Othmer. Third, we use a larger spatial
probabilities for Ca** events in 3D. Notwithstanding, we argue  template and describe Ca?* dynamics on a larger spatial scale.
that using 2D patterns can be a useful approximation. First, some  Our model is also more focused on intercellular communication
astrocyte network systems can be regarded as effectively two-  through gap junctions, as we do not account for extracellular
dimensional, e.g., astrocyte cultures or retinal astrocyte networks.  purinergic signaling to explain Ca?* wave propagation, which
Second, “true” astrocyte morphology can be regarded as less  was done in earlier works focused on retinal astrocytes (Kang and
than three-dimensional, with the degrees of freedom limited = Othmer, 2009; Edwards and Gibson, 2010), keeping in mind that
by branching connectivity of the astrocytic processes, creating  the role of the extracellular pathway can be more pronounced in
more or less independent astrocyte lobes and sub-domains.  the retina than in neocortex.
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Another limitation comes from our approximation of the 3D
mesh of fine astropil sponge by a continuous active medium,
parameterized by astrocytic cytosol volume fraction. Effectively,
we “glue” together the individual branches and leaflets, assuming
that they are at least partly interconnected by autologous gap
junctions and branch-to-branch loops. The idea of “loopy”
or sponge-like organization of the astropil has experimental
support (Wolff et al, 1998; Genoud et al., 2015; Arizono
et al, 2020), and we therefore adopt the AVF framework
to represent unresolved astrocyte processes, also accounting
for the tortuosity of the sponge by AVF-dependent scaling
diffusion coeflicients.

Indeed, the mentioned simplifications are expected to limit the
predictive power of the model with regard to event frequencies,
scaling characteristics and propagation speed. On the other
hand, the simulated patterns of single-cell calcium transients are
qualitatively similar to that observed in a single focal plane, which
suggests that this reduction seems to preserve main features of
astrocyte dynamics, while it is worth to be investigated further
at sub-cellular spatial scales in future work. A proof-of-concept
possibility to use the proposed modeling framework to simulate
Ca?* signaling in 3D is presented in Supplementary Video 3.

A notable feature of simulated Ca?>* dynamics in this system
is spontaneously emerging stable patterns in both initiation
and propagation of calcium transients, in tune to the co-active
neuronal and astrocytic cells or repeating sequences of neuronal
activation reported in slices (Sasaki et al., 2011, 2014). In
agreement with Brazhe et al. (2018) we observed morphology-
dependent emergence of hotspots with persistent pacemaker-like
activity, taking over control of the dynamics at larger scales.
In single-cell templates these preferred initiation sites could
lead to activation of either spatially confined microdomains or
larger expanding Ca?" areas, covering up to the whole cell.
In multicellular systems we observed self-organized patterns of
repeated calcium activity involving multiple cells. All cells in
the template sharing the same equations and parameters, local
differences in morphology of single astrocytes and geometry of
astrocyte-to-astrocyte contacts favored initiation of multicellular
Ca** waves in some cells, followed by repeated sequences of
cell activation as the Ca®t wave sweeped across the network.
Excluding some cells from the original template caused dramatic
reshaping of repeating activation patterns; removing or mashing
up cell content in event initiation hotspots effectively reduced
the number of active initiation sites and led to more stereotyped
network activity. Our simulations showed that different cells in
the network templates had different levels of activity and could
develop patterns of Ca** events with preferred directionality.
Recently, Wang et al. (2019) have demonstrated heterogeneity of
individual neocortical astrocytes with respect to the properties
of their Ca?* activity. They also report a tendency for
anatomical directionality during network-wide bursts of Ca?"
activity, accompanying locomotion and presumed to result from
adrenergic input from locus coeruleus. In the light of the
present study, it is interesting to ask, whether the experimentally
observed heterogeneity of astrocytic signaling is defined by
different patterning and levels of local synaptic activity or by
individual astrocyte morphology, or the interplay of both? At
a larger spatial scale it is interesting whether the observed

population-wide directionality is a product of the afferentation
delays from locus coeruleus or some previously unstudied
anatomic directionality of astrocyte morphology? Going even
further, it seems an exciting possibility that—if Ca?* activity
indeed affects LTP and Ca’* activity patterns are shaped by
astrocytic morphology template—some part of memory in the
neural network can be engraved in the fingerprint of astrocyte
morphology. We conclude that with the same parameter set, the
specific dynamical regime and role of an individual cell within
astrocytic network is to a large extent defined by its morphology
and this may have implications for computational performance
of the underlying neuronal network.

The concept of spatially segregated oscillator regarded
in (Brazhe et al., 2018) attracts growing interest as a new
class of bio-inspired dynamic models. For example, Vanag
(2020) explores a model of spatially segregated Belousov-
Zhabotinsky oscillating reaction, where the catalyst (analogous
to calcium induced calcium release in Ca?™ models) is
confined to small beads, whereas the rest chemical components
of the reaction can diffuse freely, which leads to complex
dynamical regimes and interaction between neighboring beads
with immobilized catalyst. Another similar concept is that
of volume transmission and intercellular communication via
diffusing signaling molecules secreted by excitable cells (Sykova
and Nicholson, 2008). There also appears to be an interesting
connection between the self-organizing Ca’* signaling in
coupled astrocytes and the concept of “reaction-diffusion
computing” or “chemical computing” based on oscillatory
chemical (e.g., Belousov-Zhabotinsky) systems in coupled reactor
volumes, e.g., microemulsions (Adamatzky et al., 2005; Epstein
et al,, 2012; Showalter and Epstein, 2015; Torbensen et al.,
2017; Vanag, 2019; Proskurkin et al.,, 2020). It is conceivable
that astrocytes can provide a substrate for such Ca?*-based
reaction-diffusion computing in parallel to, and organizing
sparse network-based neuronal connectivity. Interestingly, it
is common for self-organizing spatially distributed chemical
systems to rely on inhibitory diffusive coupling (Li et al., 2015),
while only excitatory coupling of neighboring astrocytes was
modeled. Finding a mechanism for negative diffusive coupling,
competing with the excitatory one can be an interesting outlook
stemming from this analogy. Finally, it is inviting to believe that
a combination of “analog” chemical computing approaches and
“digital” neuronal ones, as well as a combination of graph-based
and neighbor-based connectivity will inspire new algorithms for
machine learning.
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