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Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with
increasing reports also indicating neurological and psychiatric symptoms in infected
individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly
affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial
stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also
the non-infected population, potentially contributing to the emergence or exacerbation
of various neurological or mental health disorders. Microglia are central players of
the CNS homeostasis maintenance and inflammatory response that exert their crucial
functions in coordination with other CNS cells. During homeostatic challenges to the
brain parenchyma, microglia modify their density, morphology, and molecular signature,
resulting in the adjustment of their functions. In this review, we discuss how microglia
may be involved in the neuroprotective and neurotoxic responses against CNS insults
deriving from COVID-19. We examine how these responses may explain, at least
partially, the neurological and psychiatric manifestations reported in COVID-19 patients
and the general population. Furthermore, we consider how microglia might contribute
to increased CNS vulnerability in certain groups, such as aged individuals and people
with pre-existing conditions.

Keywords: microglia, COVID-19, SARS-CoV-2, central nervous system, cytokines, hypoxia, neurological
manifestations, psychosocial stress

INTRODUCTION

At the beginning of the pandemic, it was thought that the coronavirus disease 2019 (COVID-
19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, affected
only the respiratory system (Wang et al., 2020b). However, increasing reports of olfactory and
taste symptoms in infected patients suggested possible central nervous system (CNS) damage
(Agyeman et al., 2020). As the scenario evolved, further reports of neurological manifestations
in COVID-19 appeared, such as encephalopathies, cerebrovascular disease, as well as psychiatric
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symptoms of depression or anxiety (Gautier and Ravussin,
2020; Giacomelli et al., 2020; Mao et al., 2020; Poyiadji
et al., 2020; Taquet et al., 2020; Wang et al., 2020b). At the
same time, the pandemic broadly imposes a high degree of
psychosocial stress (Brooks et al., 2020; McGinty et al., 2020;
Pierce et al., 2020), a strong predictor of mental health disorders
(Maes et al., 1998; Schneiderman et al., 2005), on the general
population. Similar coronaviruses (CoVs), such as severe acute
respiratory syndrome coronavirus 1 (SARS-CoV-1) and Middle
East respiratory syndrome coronavirus (MERS-CoV) were also
recently associated with psychiatric and neurological disorders,
with a prevalence of 0.09% for SARS-CoV-1 and 0.36% for MERS-
CoV (Ellul et al., 2020). Despite a seemingly low proportion,
given the large number of reported COVID-19 cases [78,383,527,
as of December 26th 2020 WHO Coronavirus Disease (COVID-
19) Dashboard (2020)], this may indicate approximately 70,545
people impacted, if a similar ratio is observed for the SARS-CoV-
2 (Ellul et al., 2020).

The cause of these diverse manifestations remains elusive. To
help stimulate and orient further research on the consequences
of COVID-19 on neurological and mental health, in this
review, we discuss several putative origins, which include SARS-
CoV-2 infection in the CNS, hypoxia-derived injuries in the
brain, and the excessive circulation of inflammatory factors in
COVID-19 affected individuals. Acting synergistically or not,
we suggest how these factors trigger protective and neurotoxic
responses by microglia, the resident innate immune cells of the
CNS, along with their possible connections to the neurological
and psychiatric manifestations encountered upon SARS-CoV-
2 infection. Lastly, we consider the burden of the psychosocial
stress imposed by the pandemic in both COVID-19 affected
individuals and the general population. We cover how, even in
the absence of infection, microglia might respond to stress and
severely impact the mental health of vulnerable groups.

MICROGLIA MEDIATE HOW THE CNS IS
AFFECTED BY SARS-CoV-2 INFECTION

The CNS Is Affected by Direct
SARS-CoV-2 Infection
The CNS-associated manifestations of COVID-19 could, in
part, result from SARS-CoV-2 infection in the brain. Two
main routes for CNS invasion, based on either (i) neuronal
or (ii) hematogenous transport (Figure 1), were proposed
in the literature.

Neuronal Route
The neuronal route relies on retrograde axonal transport from
infected peripheral nerves, such as the olfactory or vagus nerves
(Desforges et al., 2019; DosSantos et al., 2020). Many SARS-
CoV-2 related viruses, including other CoVs, use olfactory nerve
fibers to enter the CNS (Koyuncu et al., 2013). In transgenic mice
expressing the human angiotensin I converting enzyme 2 (ACE2)
protein, a high-affinity receptor for SARS-CoVs, intranasal
SARS-CoV-1 administration resulted in olfactory nerve infection,
progressively spreading to the olfactory bulb, cerebral cortex,

basal ganglia, and midbrain (Netland et al., 2008). Similarly, in
a patient who died from a severe respiratory failure associated
with COVID-19, SARS-CoV-2 viral particles were detected in the
olfactory nerve, gyrus rectus, and brainstem (Bulfamante et al.,
2020). Likewise, immunohistochemical analysis revealed SARS-
CoV-2 proteins in the cranial nerves originating from the lower
medulla oblongata and a high degree of reactive glial cells, i.e.,
gliosis, in the olfactory bulb of autopsied COVID-19 patients
(Matschke et al., 2020). Infection of the olfactory system is also
consistent with the frequent loss of smell and increased magnetic
resonance imaging (MRI) signal measured in the olfactory cortex
of patients (Lu et al., 2020; Politi et al., 2020). It is important
to note, however, that it remains unclear whether ACE2 and
transmembrane serine protease 2 (TMPRSS2), another SARS-
CoV-2 receptor, are expressed specifically by neurons of the
olfactory system (Brann et al., 2020; DosSantos et al., 2020).

Abundant ACE2 expression in small intestine endothelial
cells (ECs) (Hamming et al., 2004), and the incidence of
gastrointestinal symptoms in patients with COVID-19 (Chen
et al., 2020a; Wang et al., 2020b), also prompted a putative
neuronal route involving the enteric nervous system. Indeed,
this strategy has been proposed for several neurotropic viruses,
including CoVs (DosSantos et al., 2020). For instance, intragastric
inoculation with MERS-CoV in transgenic mice expressing
human dipeptidyl peptidase 4 (DPP4) protein, the MERS-CoV
receptor, led to enterocyte, lung, and brain infection (Zhou et al.,
2017). The path used by these viruses to reach the CNS is
unclear but they could follow the intestinal nervous plexuses and
vagus nerve, reaching the brainstem through axonal transport
(DosSantos et al., 2020). While the presence of SARS-CoV-2 in
these nerves remains obscure, human small intestinal organoids
have shown to be productively infected by the novel coronavirus
(Lamers et al., 2020). Notably, enteric glial cells recognize and
fight viruses, coordinating both innate and adaptive antiviral
responses that are connected to neurological impairment, for
example, via the release of the pro-inflammatory cytokine
interleukin (IL) 6 (Esposito et al., 2020).

Hematogenous Route
Yet, SARS-CoV-2 could also use a hematogenous route, i.e., via
the bloodstream, infecting brain microvascular ECs or leukocytes
crossing the blood–brain barrier (BBB) to reach the CNS
(Figure 1; Desforges et al., 2019). The BBB is composed of a
monolayer of ECs joined by tight junctions, and it is covered
by pericytes, as well as astrocytic (Abbott et al., 2006), and
microglial endfeet (Joost et al., 2019). This structure limits almost
all transcellular and paracellular transport from the blood to
the brain parenchyma, protecting the CNS from pathogens and
toxins (Abbott et al., 2006). In vitro human and rodent studies
have suggested all components of the BBB can be infected by
viruses (Chen and Li, 2020). Correspondingly, ACE2 protein is
broadly present in ECs of post-mortem human brains (Hamming
et al., 2004; Buzhdygan et al., 2020). Furthermore, budding of
SARS-CoV-2 viral particles has been observed in the brain ECs
of a deceased COVID-19 patient (Paniz-Mondolfi et al., 2020). In
parallel, SARS-CoV-2 infiltration through the brain vasculature
could be facilitated by BBB disruption (Alquisiras-Burgos et al.,
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FIGURE 1 | During the COVID-19 pandemic, microglia respond to various central nervous system (CNS) insults, including viral infection, hypoxic injury, excessive
circulating cytokines, and psychosocial stress. (Upper panel) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the brain via (1) peripherally
infected neurons, or via (2) infected microvascular brain endothelial cells, and (3) infected infiltrating leukocytes. Infected cells, in turn, (4) release damage-associated
molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) that are sensed by microglia, which respond by (5) becoming reactive. At the
same time, COVID-19 pathology contributes to (1) low oxygen levels, likely driving hypoxic injuries in the brain. Neurons are extremely sensitive to oxygen deficits,
becoming (2) quickly damaged, and (3) releasing DAMPs and PAMPs. This is sensed by (4) microglia, which respond by changing their morphology, molecular
signature, and cytokine release. (Lower panel) COVID-19 is also associated with an exacerbated inflammatory response, marked by increased levels of (1) circulating
cytokines, i.e., cytokine storm. These cytokines signal to the brain via different pathways, for example, (2) signaling through the blood–brain barrier (BBB), being
quickly sensed by (3) microglia. Furthermore, excessive cytokines may drive (4) BBB disruption, which increases not only cytokine levels in the brain but also of (5)
DAMPs and PAMPs associated with the systemic viral infection. Lastly, psychosocial stress drives the production of cortisol, catecholamines, and cytokines,
released into the (1) circulation. Microglia can respond to all of these factors by becoming (2) reactive, likely driving dysfunctional (3) synaptic remodeling.

2020). Endothelial infection increasing BBB permeability was
associated with the mouse CoV, i.e., neurotropic mouse hepatitis
virus (MHV), through down-regulation of proteins forming
the tight junctions between brain ECs, such as tight junction

protein 1 (TJP1), cadherin 5, and occludin (Bleau et al., 2015).
SARS-CoV-2 spike proteins (subunits 1 and 2) also increased
permeability of an in vitro 3D BBB model constituted of primary
human brain ECs, as assessed by enhanced dextran perfusion
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and decreased TJP1 immunostaining (Buzhdygan et al., 2020).
In brain ECs, this effect was accompanied by higher messenger
RNA (mRNA) expression of the (i) cytokines IL6 and IL1B,
(ii) matrix metallopeptidases (MMPs) 2, 3, 9, and 12, involved in
remodeling of the extracellular matrix; (iii) leukocyte chemotaxis
factors, such as C-C motif chemokine ligand 5 (CCL5) and
C-X-C motif chemokine ligand 10 (CXCL10); as well as protein
expression of (iv) cell adhesion molecules, including intracellular
adhesion molecule 1 and vascular cell adhesion protein 1
(Buzhdygan et al., 2020).

To reach the CNS, the SARS-CoV-2 could likewise use
the blood-cerebrospinal fluid (CSF) barrier, a more permeable
barrier compared to the BBB, formed by a single layer of
ECs of the choroid plexus (Pellegrini et al., 2020). SARS-CoV-
2 receptors, including ACE2 and TMPRSS2, were detected
in human choroid plexus organoids via transcriptomic and
immunoblotting analysis (Pellegrini et al., 2020). Pellegrini
et al. (2020) also observed that SARS-CoV-2 clinical isolate
infected choroid plexus but not neuronal organoids; and this
infection led to a disruption of tight junctions, labeled by claudin
5 (CLDN5), and an overall breakdown of barrier integrity.
Although similar reports are rare, in a case series examining 30
COVID-19 patients with neurologic symptoms, five showed a
high CSF-blood albumin ratio, suggesting either BBB or blood-
CSF barrier disruption (Neumann et al., 2020). Lastly, instead of
using the endothelium, SARS-CoV-2 CNS invasion could occur
via infected immune cells that infiltrate the brain. Yet, only
macrophages were positive for the virus according to single-cell
RNA sequencing (RNA-seq) of bronchoalveolar lavage samples
from COVID-19 patients (Bost et al., 2020). Of note, this finding
could be due to phagocytosis of the viral components or infected
cells, and not necessarily to viral propagation. Additionally, thus
far, autopsy series of deceased COVID-19 patients did not show
marked peripheral immune cell infiltration in the brain (Iadecola
et al., 2020), and dissemination of SARS-CoV-2 into the blood
has been described in inconsistent proportions, ranging from 1
(Wang et al., 2020b) to 41% (Zheng et al., 2020).

Evidence of SARS-CoV-2 Brain Infection
The path used by SARS-CoV-2 to invade the CNS remains
puzzling, along with the fate of the virus once it reaches the
brain. On one hand, human neural organoids seem to be limited
in their ability to support SARS-CoV-2 replication (Pellegrini
et al., 2020; Ramani et al., 2020). On the other, dopaminergic
neurons derived from human pluripotent cells were found
to be susceptible to SARS-CoV-2, but not cortical neurons,
brain ECs, macrophages, or microglia (Yang et al., 2020a);
despite the RNA expression of SARS-CoV-2 receptors in several
CNS cell types. According to human brain single-cell RNA-
seq, ACE2 is expressed in many neuronal subtypes, astrocytes,
and oligodendrocytes (Matschke et al., 2020). Expression of
TMPRSS2 and TMPRSS4 was most elevated in neurons, whereas
cathepsin L (CTSL), necessary for viral entry and replication,
was highest in microglia (Matschke et al., 2020). However, the
protein expression of these receptors in the CNS still needs to be
investigated, along with SARS-CoV-2 ability to replicate in the
different brain cell types in vivo.

Notably, SARS-CoV-2 CNS invasion is also supported by viral
detection in both the CSF and brain of COVID-19 patients
(Bulfamante et al., 2020; Domingues et al., 2020; Huang et al.,
2020; Kremer et al., 2020; Matschke et al., 2020; Moriguchi
et al., 2020; Paniz-Mondolfi et al., 2020; Puelles et al., 2020;
Solomon et al., 2020; Virhammar et al., 2020). It is clear, though,
that presence of SARS-CoV-2 in CSF is rare (Domingues et al.,
2020; Huang et al., 2020; Kremer et al., 2020; Moriguchi et al.,
2020; Virhammar et al., 2020). For example, in a study with
31 CSF human samples, only one was positive for SARS-CoV-2
via quantitative reverse transcription polymerase chain reaction
(RT-qPCR) (targeting the RNA-dependent RNA polymerase
sequence), despite increased CSF markers of inflammation, such
as high protein count or elevated immunoglobulin G in all
of them (Kremer et al., 2020). Similarly, several other studies
evaluating a total of 30 COVID-19 patients with neurological
manifestations did not detect SARS-CoV-2 in the CSF by RT-
qPCR (targeting E and nucleocapsid genes) (Al Saiegh et al., 2020;
Al-Dalahmah et al., 2020; Alexopoulos et al., 2020; Filatov et al.,
2020; Helms et al., 2020; Paniz-Mondolfi et al., 2020; Schaller
et al., 2020). At the same time, definite proof of SARS-CoV-
2 invasion in the brain via autopsied tissue, while limited, was
reported in patients showing severe COVID-19 and a history of
previous chronic diseases (Matschke et al., 2020). Using electron
microscopy, the first report detected viral particles in brain
ECs and frontal lobe neurons of a 74-years old patient with
a history of Parkinson’s disease (PD) (Paniz-Mondolfi et al.,
2020). SARS-CoV-2 viral particles were also uncovered in the
brainstem of another COVID-19 deceased patient (see section
“Neuronal Route”) (Bulfamante et al., 2020). Later on, five out
of 18 (Solomon et al., 2020) and eight out of 22 (Puelles et al.,
2020) post-mortem human brains were shown to be positive for
SARS-CoV-2 RNA (E and nucleocapsid genes) but negative for
immunohistochemical analysis of nucleocapsid (Solomon et al.,
2020) and spike (Puelles et al., 2020) proteins. Yet, in the largest
study published so far, 21 out of 40 affected individuals displayed
both SARS-CoV-2 RNA and proteins in the brain, based on RT-
qPCR (E gene) and immunohistochemistry (nucleocapsid and
spike proteins) (Matschke et al., 2020).

Inconsistent SARS-CoV-2 detection in the CNS and
CSF contributes to the great uncertainty around the novel
coronavirus’ level of neurotropism. For instance, in one study,
the virus was undetectable in CSF despite being present in
the patient’s brain (Paniz-Mondolfi et al., 2020). Similarly,
brain samples of eight patients were negative for viral RNA
yet immunopositive for the spike or nucleocapsid proteins in
another study (Matschke et al., 2020). Even more intriguingly,
SARS-CoV-2 was reported in the CSF of one patient without
respiratory symptoms (Huang et al., 2020). Conflicting results
for RT-qPCR SARS-CoV-2 detection in CSF, and between
RT-qPCR and immunohistochemistry in the brain, reveal a need
for more cohesion in tests to properly estimate the prevalence of
brain infection (Murta et al., 2020). Similarly, since the putative
routes and outcomes for CNS invasion are drawn mostly from
correlative data, it is imperative to directly investigate what
pathway(s) are used by SARS-CoV-2 and if productive infections
can be generated in the brain. In the event of SARS-CoV-2 brain
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infection, the fate of CNS function relies on antiviral defenses;
and microglia, as the resident innate immune cells of the brain,
could hinder viral spread, as discussed below.

Putative Responses of Microglia to
SARS-CoV-2 CNS Infection
Microglia, contrary to all the other CNS cells, arise from erythro-
myeloid progenitors in the fetal yolk sac and are present in the
brain during embryonic development, self-renewing throughout
life (Ajami et al., 2007; Ginhoux et al., 2010; Tay et al., 2017b).
These cells are central players in the inflammatory response of
the brain, i.e., neuroinflammation, in most if not all physical,
infectious, psychiatric, or neurodegenerative-related insults to
the CNS. Microglia are also essential for brain development,
plasticity, and homeostasis, contributing to (i) the turnover (both
elimination and survival) of neuronal precursors and neurons,
(ii) oligodendrocyte progenitor cell maturation, (iii) neuronal
wiring, (iv) synaptic maturation, activity, and plasticity, (v)
myelination, as well as (vi) BBB integrity, and (vii) blood flow
regulation (Tay et al., 2017b). Considering their diverse role in
the brain’s immune and physiological functions, we hypothesize
that microglia respond to direct SARS-CoV-2 CNS infection and
changes in the CNS imposed by systemic COVID-19 response.
In addition to microglia, peripheral immune cells, derived from
the bone marrow, and able to enter the CNS from the circulation
throughout life, such as T lymphocytes and macrophages, could
assist microglia with the response to COVID-19 (Zhao et al.,
2014; Wheeler et al., 2018; Klein et al., 2019; Theret et al., 2019;
Mangale et al., 2020).

Innate immunity is fundamental for viral clearance in the
CNS. This response is initiated by sensing pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) via pattern recognition receptors (PRRs).
SARS-CoV-2 is a single-stranded RNA (ssRNA) virus that,
similarly to SARS-CoV-1 and MERS-CoV, is thought to produce
double-stranded RNA (dsRNA) molecules during replication.
PRRs, such as Toll-like receptors (TLRs), or the cytoplasmic
retinoic acid-inducible gene I-like receptors (RLRs), recognize
these PAMPs; TLR3 and RLRs, including the DEAD/H box
helicase 58 and the interferon induced with helicase C domain
1, recognize dsRNAs, whereas TLR7 and TLR8 recognize ssRNAs
(de Wit et al., 2016; Carty et al., 2021). These PRRs are expressed
mainly by microglia (Kumar, 2019; Carty et al., 2021), but also
by neurons, astrocytes, pericytes, and brain ECs (Klein et al.,
2019; Chen and Li, 2020). Activation of TLRs and RLRs leads
to the expression of type I interferons (IFN) via the interferon
regulatory factor 3/7, and of pro-inflammatory cytokines via the
nuclear factor kappa B (NFKB), thereby initiating an antiviral
cascade (Carty et al., 2021).

Upon binding of cytokines, DAMPs, and PAMPs to their
appropriate receptors, microglia initiate an inflammatory
response (Klein et al., 2019), changing their gene expression,
morphology, and function in a process known as “reactivity”
or “microgliosis” (though previously termed “activation”)
(Hoogland et al., 2015; Savage et al., 2019). Among their
adjustments, in rodents, microglia (similar to peripheral
macrophages in the brain) can up-regulate protein expression

of the ionized calcium-binding adapter molecule 1 (IBA1), the
major histocompatibility complex class II (MHCII), and the
phagolysosomal marker cluster of differentiation (CD) 68 (Jurga
et al., 2020). Reactive microglia can proliferate and increase the
release of pro-inflammatory cytokines [tumor necrosis factor
(TNF), IL1B, IL6, IFNG] as well as reactive oxygen species
(ROS) or nitric oxide (NO) which, balanced by concomitant
anti-inflammatory cytokine release by microglia, help restore
homeostasis (Lund et al., 2006; Block et al., 2007; Cunningham,
2013). Besides, reactive microglia generally adopt different
morphologies, for example, shifting to amoeboid shapes with
bigger somas and less ramified processes, as opposed to the
steady-state, highly branched “surveilling” phenotype (Figure 1;
Savage et al., 2019; Tremblay et al., 2020). Accordingly, increased
IBA1 immunostaining and less ramified CX3C chemokine
receptor (CX3CR1)-green fluorescent protein (GFP)-positive
microglial cells were observed in the olfactory bulb of MHV
infected mice (Wheeler et al., 2018). Increased IBA1-positive
microglial cells were also described in mice expressing the human
ACE2 protein, 6 days following intranasal SARS-CoV-1 infection
(Netland et al., 2008).

Reactive microglial phenotypes can secrete antiviral factors,
such as IFNs and IL6 (Klein et al., 2019). However, other cells
can compensate for this release in the absence of normal levels
of microglia (Wheeler et al., 2018). This has been shown by
manipulating signaling through the colony stimulating factor
1 receptor (CSF1R), a receptor tyrosine kinase required for
the development, maintenance, and proliferation of microglia
(Ginhoux et al., 2010; Erblich et al., 2011; Elmore et al., 2014).
Using its antagonist PLX5622 to significantly deplete CSFR1-
positive cells, including microglia (but not the resident CD45-
high macrophage population that can infiltrate the CNS from the
circulation), Wheeler et al. (2018) showed Ifnb, Ifna, Il6 mRNA
levels were not changed in mouse brains infected with neuro-
attenuated rJ2.2 strain of the murine hepatitis virus (JMHV).
Similarly, in the case of a neurovirulent strain of MHV, gene set
enrichment analysis from single-cell RNA-seq of ex vivo CD45-
high cells isolated from the brain revealed enrichment of IFN-
response genes in peripheral macrophages and dendritic cells
of infected versus non-infected PLX5622-treated mice (Mangale
et al., 2020). This compensatory mechanism is also supported by
in vitro studies showing that murine astrocytic cells are important
sources of IFNA/B after infection with MHV strain A59 (Savarin
and Bergmann, 2018; Lavi and Cong, 2020).

Similarly to other CoVs, SARS-CoV-2 can infect and drive
permeability of an in vitro human BBB model (Bleau et al., 2015;
Buzhdygan et al., 2020). BBB disruption, in turn, can enhance
the entry of peripheral immune cells and inflammatory factors
in the brain to help fight the infection. Although microglia do
not appear to be critical for overall immune cell infiltration
(Figure 1), they are crucial for initiating the antiviral responses
of peripheral cells. For instance, significant reductions in the
microglial population (mediated by PLX5622) early (0 and
6 days) after intracranial JMHV infection severely impacted
viral restriction, resulting in an increased viral load and a
higher mortality rate of mice (Wheeler et al., 2018). Microglial
depletion (i) disrupted antigen-presentation, and consequently
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CD4-positive T cell and regulatory T cell (Treg) antiviral
responses, and (ii) led to immature macrophage infiltration
(Wheeler et al., 2018; Mangale et al., 2020). Conversely,
peripheral cells seem to be important for microglial regulation.
Intravenous administration of Foxp3-positive CD4 regulatory T
cells recognizing the viral MHV M133 epitope 24 h before MHV
infection decreased microglial MHCII protein expression and
limited T helper type 1 (Th1) cell response, improving survival
of mice (Zhao et al., 2014). The close interactions between
brain resident immune cells and virus-specific T cells are also
supported by significant gene expression changes in pathways
related to (i) antigen presentation, (ii) crosstalk between the
innate and adaptive immune systems, (iii) IFN signaling,
(iv) IFN-regulatory factors, (v) PRRs, and (vi) chemokines
in microglia from MHV infected mice compared to controls
(Wheeler et al., 2018).

While coordinating the antiviral response, microglia can
themselves become infected. This has been shown for CoVs
including the human coronavirus OC43, as well as the murine
strains MHV and JHMV (Bonavia et al., 1997; Arbour et al.,
1999; Nakagaki et al., 2005; Das Sarma, 2014; Lavi and Cong,
2020). Although, except for MHV, this infection of microglia
was observed only at low levels, and mostly in immortalized cell
lines from humans and mice, which do not necessarily correlate
with in vivo conditions (Bonavia et al., 1997; Arbour et al., 1999;
Nakagaki et al., 2005; Das Sarma, 2014; Lavi and Cong, 2020).
Evidence from different viral families suggests that upon direct
infection, microglia show signs of reactivity. For example, in
primary microglial cultures from rats, the Japanese encephalitis
virus (JEV) drives a change from a process-bearing morphology
to an amoeboid and CD68-positive cell, characteristic of a
phagocytic phenotype (Chen et al., 2010). Remarkably, this
morphological shift seemed to be induced by soluble components
released by infected cells and not by active viral replication (Chen
et al., 2010). Initial results with human microglial cells derived
from pluripotent cells argue these cells are not susceptible to
SARS-CoV-2, despite ACE2 protein and CTSL mRNA expression
(Matschke et al., 2020; Yang et al., 2020a) [though further research
in humans is necessary to confirm this finding].

Among the reports evaluating microglial markers in post-
mortem brain tissue from COVID-19 cases, one detected SARS-
CoV-2 brain invasion in 21 out of 40 patients (see also
section “Evidence of SARS-CoV-2 Brain Infection”) (Matschke
et al., 2020). Matschke et al. (2020) observed diffuse staining
for IBA1 and the microglial enriched marker transmembrane
protein 119 (TMEM119), with occasional microglial nodules,
i.e., microglial clusters, among the brainstem and cerebellum
in 29 out of 32 tested COVID-19 patients. In the subpial and
subependymal regions, IBA1-positive microglia were frequently
seen surrounded by CD8-positive T cells, and strongly expressed
CD68, as well as the human leukocyte antigen DR isotype (HLA-
DR, an MHCII receptor) (Matschke et al., 2020). However, it is
not clear if the same patients who had detectable brain levels
of SARS-CoV-2 were also those that showed an increase in
these microglial markers (Matschke et al., 2020). Up-regulated
microglial protein expression of IBA1, CD68, TMEM119, as
well as HLA-DR, and their proximity to T cells, could indicate

active phagocytosis of antigens to drive T cell activation and
CNS infiltration following viral infection, as observed previously
with other CoVs (Wheeler et al., 2018; Mangale et al., 2020). At
the same time, the changes in microglia detected in this work
could stem from or be potentiated by a response to the systemic
COVID-19, which on its own is associated, for example, with
hypoxic brain damage, as will be discussed next.

MICROGLIA COULD DETERMINE HOW
THE CNS IS AFFECTED BY COVID-19
PATHOLOGY

Microglia Respond to
COVID-19-Associated Hypoxia
Although 81% of SARS-CoV-2 infected individuals present
mild pneumonia, severe disease-associated hypoxia is observed
in around 14%, critical disease in 5%, and death in 2.3%
of patients (Wu and McGoogan, 2020). In severe cases, the
most expressive pathological consequences of COVID-19 include
massive alveolar damage, heart failure, coagulopathy, and
cerebrovascular disease, including ischemic events (Aggarwal
et al., 2020; Carsana et al., 2020; Chen et al., 2020b; Helms et al.,
2020; Klok et al., 2020; Mao et al., 2020; Oxley et al., 2020). All
factored in, these systemic changes likely drive hypoxic brain
injury (Figure 1; Iadecola et al., 2020). Consistently, COVID-19
patients often present symptoms related to CNS hypoxia, such as
headache, drowsiness, and coma, as well as brain lesions (Chen
et al., 2020a; Giacomelli et al., 2020; Mao et al., 2020; Pezzini and
Padovani, 2020; Wu et al., 2020a). In brain autopsies of COVID-
19 patients, widespread microthrombi and patches of infarction
have also been detected, together with neuronal damage in the
cerebral cortex, hippocampus, and cerebellum, i.e., brain areas
highly vulnerable to hypoxia (Kantonen et al., 2020; Kashani et al.,
2020; Solomon et al., 2020) [although these injuries could also be
present before COVID-19].

Ischemic-hypoxic brain injury is partially produced by a
switch to anaerobic metabolism in brain cells, leading to (i)
accumulation of lactic acid in the parenchyma, (ii) oxidative
stress, (iii) BBB dysfunction, (iv) cerebral vasodilation, (v)
swelling of neurons, (vi) obstruction of blood flow, (vii)
inflammation, and (viii) cell death (Fumagalli et al., 2015;
Wu et al., 2020b). Microglia rely on ATP to reorganize their
cytoskeleton and monitor the brain parenchyma (Atkinson et al.,
2004; Davalos et al., 2005; Masuda et al., 2011; Gimeno-Bayón
et al., 2014), making them highly sensitive to energy deficits
(Fumagalli et al., 2015). During COVID-19-associated hypoxia,
it is therefore likely that changes in the ATP micro gradient
are sensed by microglial purinergic P2X and P2Y receptors,
promoting their migration to the injury site, phagocytosis, and
proliferation, as observed in hypoxic injuries of rodents and
humans (Davalos et al., 2005; Melani et al., 2006; Wixey et al.,
2009; Webster et al., 2013; Fukumoto et al., 2019).

Hypoxia also triggers rodent microglial transcription factors
(e.g., hypoxia inducible factor 1, alpha subunit and NFKB),
and micro RNAs (miR-s) (e.g., miR-146a, and miR181a/c), both
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in vitro and in vivo; resulting in the release of TNFA, ROS,
IL1B, and IL18, which can help clear cellular debris and resolve
the injury (Zhang et al., 2012; Kong et al., 2014; Kiernan
et al., 2016; Mukandala et al., 2016; Jiang et al., 2020; Yang
et al., 2020b). In response to ischemia-hypoxia, rodent microglia
likewise transform morphologically (see Figure 1; Masuda et al.,
2011). Acutely, in the cerebral cortex, mouse microglia expand
their processes to reach the hypoxic area (Davalos et al., 2005;
Hines et al., 2009), but in larger or more sustained injuries,
microglia can also adopt an amoeboid morphology (as observed
during viral infections) among the hippocampus and neocortex
of rodents (Raivich et al., 1999; Stence et al., 2001; Kurpius
et al., 2007; Masuda et al., 2011). Whether microglia could react
similarly during COVID-19 pathology awaits further research.

Reactive microglia can perform neurotoxic and
neuroprotective roles after hypoxic-ischemic injury. Disrupting
fractalkine-mediated neuron-microglia signaling, by knocking
out CX3CR1 in mice after middle cerebral artery occlusion
(MCAO)-induced ischemia, decreased the proliferation of
microglia, release of inflammatory molecules, and infiltration
of macrophages, culminating in a smaller ischemic lesion
(Fumagalli et al., 2013; Tang et al., 2014). Contrastingly,
combining PLX3397 driven microglial depletion with high-
resolution two-photon calcium imaging in vivo, Szalay et al.
(2016) showed 24 h after MCAO that microglial depletion
impaired neuronal calcium responses and network activity,
while increasing intracellular calcium levels, ultimately leading
to exacerbated neuronal damage in mice. Yet, peripheral
administration of minocycline, a tetracycline antibiotic that
non-specifically normalizes microglial phagocytosis and release
of pro-inflammatory mediators (Tikka and Koistinaho, 2001;
Tikka et al., 2001; Hanisch and Kettenmann, 2007), attenuated
neuronal death in rodent models of ischemia (Yrjänheikki et al.,
1998, 1999). Thus, similar to what was previously discussed
in section “Putative Responses of Microglia to SARS-CoV-2
CNS Infection” (regarding depleting microglia during CNS viral
infection), while completely disrupting microglial function can
worsen injury recovery, down-regulating their inflammatory
response can be protective. Of note, minocycline treatment has
been proposed for COVID-19 (Oliveira et al., 2020).

Microglial nodules and elevated immunostaining for
microglial reactivity markers (e.g., IBA1, HLA-DR, and CD68)
were detected in numerous brain autopsies of COVID-19
patients also showing recent and older hypoxic/ischemic injuries
(Al-Dalahmah et al., 2020; Kantonen et al., 2020; Matschke
et al., 2020), accompanied by marked neuronal loss among
the cerebral cortex, hippocampus, medulla, and cerebellar
Purkinje cell layer (Al-Dalahmah et al., 2020; Solomon et al.,
2020). In a patient showing severe global hypoxic changes with
hypereosinophilic, shrunken neurons, microglial CD68-positive
nodules were surrounding the injured cells in the inferior
olives and dentate nuclei, possibly indicating active phagocytic
removal (Al-Dalahmah et al., 2020). However, at this point, it is
difficult to evaluate whether the observed changes in the resident
immune cells stem from the hypoxic injuries associated with the
COVID-19. Reactive microglia may arise due to other systemic
changes associated with SARS-CoV-2 infection, including the

exacerbated peripheral immune response (Al-Dalahmah et al.,
2020), as we consider next.

Microglia Respond to the Systemic
Inflammatory Response in COVID-19
A well-coordinated immune response represents the first line of
defense against viral infection. Yet, if exacerbated, this response
may become detrimental, at both the viral entry site and systemic
levels. As previously reported for SARS-CoV-1 and MERS-CoV
(Channappanavar and Perlman, 2017), a maladaptive innate
and adaptive immune response is a hallmark of COVID-19
pathology (Qin et al., 2020). Its most apparent characteristic is
an ostensible hyper-inflammation, popularly termed “cytokine
storm” prevalent in severely affected patients and significantly
contributing to multi-organ failure (Bhaskar et al., 2020; Moore
and June, 2020; Ruan et al., 2020). The putative origin of
this phenomenon lies in a three-step process, consisting of an
initial immune activation, a secondary delayed but possibly
prolonged antiviral IFN-mediated response, and an uncontrolled
monocyte-macrophage-dendritic cell hyperactivation as well as
tissue infiltration (Channappanavar and Perlman, 2017; Merad
and Martin, 2020; Moore and June, 2020). Such a process
may induce vascular and organ damage on the cellular level
and contribute to overall inefficient handling of viral load due
to sub-optimal T- and B-cell responses (Channappanavar and
Perlman, 2017). Accordingly, a reduction in serum lymphocytes
is observed in a subset of COVID-19 patients (Bhaskar et al.,
2020; Mathew et al., 2020). Within the cytokine storm framework,
elevated circulating levels of an extensive variety of pro- and anti-
inflammatory cytokines and chemokines (e.g., IL1; IL1R1; IL6;
IL8; IL7; IL10; IL12; IFNG; Transforming growth factor b; CCL2;
CXCL10; CXCL9; CX3CL10; CCR1) as well as non-cytokine
markers (C-reactive protein, CRP; CSF2; D-dimer; ferritin), were
reported in COVID-19 patients up to this point (Heneka et al.,
2020; Mathew et al., 2020; Merad and Martin, 2020; Ruan et al.,
2020). It should be noted, however, that the profile of this
systemic inflammatory response, in terms of individual markers,
varied between cohorts, which could either be a consequence of
specific profiling of these initial studies or be reflective of a strong
individual-specific nature of this response.

Systemic cytokines communicate with the CNS via several
pathways, including (i) migration through leaky regions of the
BBB, such as the circumventricular organs; (ii) active transport
by cytokine-specific transporters expressed on the brain ECs;
(iii) activation of brain ECs leading to the production of second
messengers; (iv) transmission of the signal via the vagus nerve,
and (v) entry via peripherally activated immune cells (Capuron
and Miller, 2011). In the CNS, controlled levels of these soluble
substances including IL1B, TNF, and IL6 are necessary for the
proper function of both neurons and glial cells (Camacho-
Arroyo et al., 2009; Borsini et al., 2015). During infection,
systemic cytokines stimulate neuroendocrine responses via the
activation of the hypothalamus-pituitary-adrenal (HPA) axis and
the elevation of the core body temperature, ultimately promoting
disease-specific behavioral patterns (i.e., sickness behavior), such
as lethargy and reduced appetite (Szelényi, 2001; Dantzer, 2018).
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In the long-term, however, elevated cytokine levels in the brain
parenchyma (Figure 1) serve as a mediator of neurotoxic and
neurodegenerative pathology across various disease conditions
(Szelényi, 2001; Camacho-Arroyo et al., 2009).

In the context of COVID-19, pathological excess of cytokines
may lead to vascular remodeling and BBB leakage, increasing
the entry of DAMPs and PAMPs associated with the peripheral
viral infection (Figure 1), which could be especially risky
in individuals whose BBB is already impaired due to pre-
existing disease conditions (Varatharaj and Galea, 2017). This
is in line with MRI-detected BBB-related abnormalities present
in COVID-19 patients, such as the frequent occurrence of
microbleeds, especially in white matter regions (Fitsiori et al.,
2020; Kremer et al., 2020; Radmanesh et al., 2020). This BBB
permeability may be primarily driven by (i) systemic events,
such as tight junction alterations observed in diabetes (Hawkins
et al., 2007), which is a risk factor for COVID-19 complications
(Guo et al., 2020); or (ii) via direct viral infection of brain ECs
(Buzhdygan et al., 2020); and, possibly, (iii) hypercoagulation and
associated microthrombi formation, as was previously observed
in COVID-19 patients (Dolhnikoff et al., 2020). On the other
hand, viral entry and the neuroinflammatory response may even
precede BBB impairment, as it has been stipulated for JEV-
infected mice (Li et al., 2015; Pezzini and Padovani, 2020).

Considering their key roles in brain homeostasis and
neuroinflammation, microglia are particularly sensitive to
environmental perturbations (see section “Putative Responses
of Microglia to SARS-CoV-2 CNS Infection”) (Hanisch and
Kettenmann, 2007; Hoogland et al., 2015). Thus, the increase
in circulating cytokines during COVID-19 may induce or
exacerbate microglial reactivity (Figure 1; Tremblay et al.,
2020), likely worsening the direct viral or hypoxic injuries
possibly present in the patients. The long-term duration of the
systemic cytokine storm could contribute to a chronically reactive
microglial state, adversely impacting the survival of neurons
and maintenance of synaptic connections via inflammatory
signaling, phagocytosis, and oxidative stress (Savage et al.,
2019). Accordingly, in a patient with increased CSF and serum
levels of IL6, IL8, and TNF, the microglial marker triggering
receptor expressed on myeloid cells 2 (TREM2), associated
with neurodegenerative diseases and phagocytosis, was also
increased in the CSF, indicating an active inflammatory process
in the spinal cord meningeal space (Pilotto et al., 2020a,b).
Likewise, the expansion of inflammatory-oriented microglial
clusters marked by increased intensity of IBA1, HLA-DR, and
CD68 immunoreactivity and increased density of microglial
nodules found in post-mortem brains of COVID-19 patients
would be in line with this ongoing microgliosis (Mukandala
et al., 2016; Matschke et al., 2020). Microgliosis, further possibly
accompanied by astrogliosis and brain infiltration of peripheral
T-lymphocytes, was mostly localized within the cerebellum and
the brainstem of COVID-19 patients (Mukandala et al., 2016;
Matschke et al., 2020). Similarly, in mice, the brainstem is among
the brain areas most affected by SARS-CoV-1 and MERS-CoV
infection (McCray et al., 2007; Netland et al., 2008; DosSantos
et al., 2020). As the brainstem is responsible for vital brain
functions (e.g., regulation of cardiac and respiratory functions,

sleep cycles, and consciousness), this may be of relevance for the
development of breathing difficulties associated with COVID-19
(Nouri-Vaskeh et al., 2020). However, as the cohorts analyzed in
the above-mentioned studies are still quite small, further research
is necessary to confirm these observations.

MICROGLIAL-MEDIATED CNS
INFLAMMATION MAY CONTRIBUTE TO
THE COVID-19 ASSOCIATED
NEUROLOGICAL MANIFESTATIONS

Although data is still emerging, reports are indicating that
presently, approximately 30% of COVID-19 patients who are
hospitalized display neurological symptoms (Helms et al., 2020;
Mao et al., 2020), which include malaise, headache, and loss
of smell (anosmia) and taste (dysgeusia) (Mao et al., 2020),
as well as more serious complications, such as ischemic stroke
[associated with significantly higher mortality] (Merkler et al.,
2020; Yaghi et al., 2020). Drawing on what has been discussed
in the previous sections, next we propose how the neurological
abnormalities observed in COVID-19 patients could be related
to the neuroinflammation resulting from microglial responses to
viral, hypoxic, and inflammatory insults.

Loss of Smell and Taste
Many patients with COVID-19 exhibit symptoms of dysgeusia or
anosmia (Eshraghi et al., 2020). Taste buds are regenerated from a
stem cell population in the nasal epithelium, the activity of which
can be stalled by pro-inflammatory cytokines (Eshraghi et al.,
2020). Correspondingly, there are increased serum levels of TNF,
IFNG, and IL6 in confirmed COVID-19 patients (Eshraghi et al.,
2020). In other diseases where anosmia is seen, it is associated
with injury of basal forebrain cholinergic neurons that project to
the olfactory bulb, which may drive local microglia to adopt a pro-
inflammatory state, contributing to overall neuroinflammation
and cell death (Mahalaxmi et al., 2020). Collectively or not,
it is thus possible that exacerbated inflammatory responses
or CNS hypoxic injuries in COVID-19 patients contribute
to these symptoms.

Encephalopathies
The production of inflammatory mediators as a result of
brain viral infection, in particular IFNs (MacMicking, 2012),
is associated with encephalitis, a condition characterized
by inflammation of the brain parenchyma and neurological
dysfunction (Alam et al., 2020). While a few cases of encephalitis
associated with COVID-19 were reported, it has been suggested
that the symptoms used to diagnose the syndrome could be
attributed to other conditions in the patients, such as hypoxia,
inflammation, and sedation, which lead to encephalopathies
(Garg et al., 2020; Iadecola et al., 2020; Maas, 2020). Common in
older, hospitalized COVID-19 patients who present exaggerated
systemic inflammation (i.e., cytokine storm), encephalopathy
is a pathological process that is characterized by diffuse
brain dysfunction (Garg et al., 2020; Helms et al., 2020;
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Najjar et al., 2020). These patients sometimes present anti-SARS-
CoV-2 antibodies and inflammatory markers in the CSF, such as
IL6 and IL8 (Alexopoulos et al., 2020; Farhadian et al., 2020; Garg
et al., 2020), suggesting encephalopathies could also result from
viral infection in the brain [although comprehensive studies are
currently lacking].

The presence of anti-viral antibodies and cytokines in the CSF
also indicates a potential disruption of the BBB, which may allow
for increased inflammatory mediator infiltration into the brain.
Enhanced BBB permeability is in line with MRI findings, such
as microbleeds, in COVID-19 patients (see section “Microglia
Respond to the Systemic Inflammatory Response in COVID-19”)
(Fitsiori et al., 2020; Kremer et al., 2020; Radmanesh et al., 2020).
Synergistically or not, these stimuli could lead to phenotypic
changes of microglia, as supported by post-mortem brain
autopsies of COVID-19 patients (see section “Putative Responses
of Microglia to SARS-CoV-2 CNS Infection”) (Deigendesch
et al., 2020; Matschke et al., 2020). In parallel, a recent report
showed enhanced TREM2 protein levels in the CSF of a
patient with COVID-19-associated encephalopathy, along with
increased protein levels of IL6, IL8, and TNF in both CSF
and serum (see section “Microglia Respond to the Systemic
Inflammatory Response in COVID-19”) (Pilotto et al., 2020b).
The patient robustly responded to steroid treatment, further
supporting the argument that the observed encephalopathy was
related to a CNS-inflammatory induced event (Pilotto et al.,
2020b). While this awaits further research, reactive microglia may
contribute to worsening encephalopathy prognosis by ensuing
neuroinflammation in COVID-19.

Increased microglial cytokine production, associated or
not with BBB breakdown, can also lead to enhanced neuronal
excitability and excitotoxic glutamate signaling, possibly
provoking seizures, a clinical manifestation of encephalopathies
present in COVID-19 patients (Nikbakht et al., 2020). Still,
the generation of these seizures may be linked to other
microglia-related pathways, including (i) ischemic stroke–which
may be due to a microglial response to angiotensin II (see
section “Cerebrovascular Disease”), and (ii) mitochondrial
dysregulation–which may be caused by an increase in microglial
production of ROS (Nikbakht et al., 2020). In mice, excessive
extracellular glutamate recruits microglia (Dissing-Olesen et al.,
2014; Eyo et al., 2014, 2018), and impairs their phagocytic activity
in different epilepsy models (Abiega et al., 2016; Sierra-Torre
et al., 2020). Both the microglial recruitment and phagocytosis
uncoupling in these models were connected to the disruption of
ATP signaling (Eyo et al., 2014, 2018; Abiega et al., 2016; Sierra-
Torre et al., 2020), which, as discussed in sections “Microglia
Mediate How the CNS Is Affected by SARS-CoV-2 Infection”
and “Microglia Could Determine How the CNS Is Affected
by COVID-19 Pathology,” can occur during viral and hypoxic
injuries. Therefore, during COVID-19, not only can microglia
contribute to the onset of seizures, but their reparative activity
may also be impaired by the SARS-CoV-2-CNS-related insults.

Demyelination
In the periphery, there are several inflammatory changes
associated with COVID-19, one being the activation of the

NLR family pyrin domain containing 3 (NLRP3) inflammasome
(Freeman and Swartz, 2020; van den Berg and te Velde,
2020), which potentially contributes to generating the previously
discussed cytokine storm (Mehta et al., 2020). In the brain,
activation of this inflammasome is a risk factor for developing
or worsening multiple sclerosis (Soares et al., 2019) and
also Alzheimer’s disease (AD) (see section “Neurodegenerative
Diseases”) (Tejera et al., 2019; Heneka et al., 2020), potentially
through shifting microglia and macrophages toward pro-
inflammatory phenotypes leading to demyelination (Di Stadio
et al., 2020). Remarkably, multifocal brain demyelination has
been observed in a few cases of COVID-19 (Handa et al.,
2020; Zanin et al., 2020). In mice, microglia phagocytose myelin
after damage, a crucial step in remyelination (Lampron et al.,
2015; Domingues et al., 2020). By contrast, excessive microglial
antiviral IFNG response is thought to be the major cause of
demyelination in a mouse model of encephalomyelitis (Savarin
and Bergmann, 2018). Whether demyelination in COVID-19 is
a result of viral or inflammatory-mediated process(es) remains to
be investigated, yet, in either case, microglial cytokine production
and phagocytosis are likely implicated in this response.

Cerebrovascular Disease
Although the numbers are increasing rapidly, at least 200 cases
of cerebrovascular disease have been reported in association
with COVID-19, the majority being caused by ischemic strokes
(Ellul et al., 2020; Varatharaj et al., 2020). Accordingly, new
and older hypoxic/ischemic injuries were present in numerous
brain autopsies of COVID-19 patients (Al-Dalahmah et al.,
2020; Kantonen et al., 2020; Matschke et al., 2020; Schaller
et al., 2020; Solomon et al., 2020; Weyhern et al., 2020),
sometimes accompanied by neuronal loss in the cerebral cortex,
hippocampus, and cerebellar Purkinje cell layer (Solomon
et al., 2020), as well as brainstem (see section “Microglia
Respond to COVID-19-Associated Hypoxia”) (Al-Dalahmah
et al., 2020; Weyhern et al., 2020). While most affected
patients either already suffer from or belong to high-risk
groups for cerebrovascular comorbidities, SARS-CoV-2 seems
to increase the risk/rate/prevalence of stroke even in more
resilient younger individuals (Ellul et al., 2020). The high
incidence of stroke in COVID-19 affected individuals may
be partially explained by SARS-CoV-2-associated ECs damage,
activating thrombotic and inflammatory pathways, in the CNS
and systemically (Varga et al., 2020). Alternatively, SARS-CoV-
2 is proposed to, through signaling at the angiotensin type I
receptor (AT1R) expressed by microglia, increase the release of
pro-inflammatory cytokines (Murta et al., 2020), further inducing
vasoconstriction, neuroinflammation, oxidative stress, and cell
death (Arroja et al., 2016).

Acute brain hypoxia deriving from systemic COVID-19 and
cerebrovascular disease could direct microglial activity toward
increased phagocytosis contributing to abnormal neuroplasticity
(Serrano-Castro et al., 2020). Reports using pharmacological or
genetic depletion of microglia in mice showed a severe reduction
of stroke-related injury (Fumagalli et al., 2013; Tang et al.,
2014). At the same time, inflammation contributes to injury
recovery, helping in immune cell recruitment, scar formation,
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and astrocytic reactivity (Kim and Cho, 2016). The heterogeneity
in microglial phenotypes and subtypes increasingly reported in
the literature is proposed as an explanation for the seemingly
opposite effects, both neurotoxic and neuroprotective, of these
cells observed upon hypoxic/ischemic injury (Stratoulias et al.,
2019; Lyu et al., 2020). Despite the lack of comprehensive
studies assessing recent territorial ischemic lesions and microglial
functions during COVID-19, all autopsied patients with hypoxic
injury also showed a history of at least one comorbidity, such
as hypertension, diabetes, kidney failure, or obesity among
others (Kantonen et al., 2020; Matschke et al., 2020; Schaller
et al., 2020; Solomon et al., 2020; Weyhern et al., 2020).
Although it is unclear whether these ischemic lesions stem from
current COVID-19 infection, comorbidities linked to heightened
inflammation, such as pulmonary and cardiac diseases, may
indirectly influence microglial reactivity and the release of pro-
inflammatory cytokines (Patterson, 2015).

In contexts where microglia are already primed, a secondary
immune challenge, such as SARS-CoV-2 infection, may further
direct their activity toward neurotoxicity (Serrano-Castro et al.,
2020). Primed microglia are thought to abnormally perform their
physiological functions, impairing neurogenesis, synaptogenesis,
and the structural as well as functional plasticity of brain circuits
(Norden et al., 2015; Tay et al., 2017b). Importantly, ensuing
neuroinflammation mediated by the activity of microglia, but also
astrocytes, is thought to damage the neural tissue and impair
synaptic plasticity, critically diminishing cognitive abilities (Lee
et al., 2008; Pistell et al., 2010; Davydow et al., 2013; Di Filippo
et al., 2013). Thus, in susceptible individuals, an exacerbated
inflammatory response of primed microglia to SARS-CoV-
2 infection may underlie the onset of disease pathology,
including that of psychiatric disorders or neurodegenerative
diseases (Norden et al., 2015; Tay et al., 2017b). Furthermore,
cerebrovascular events in COVID-19 patients are most prevalent
in aging (Ellul et al., 2020; Iadecola et al., 2020), and
dysfunctional microglial activity is elevated in older compared to
younger individuals (see section “Neurodegenerative Diseases”).
Therefore, while hypoxic injuries in COVID-19 patients may
be a result of previous chronic conditions, we hypothesize
that an already pathological central immune regulation will be
further affected by hypoxia-induced upon SARS-CoV-2 infection,
leading to exacerbated injury, possibly mediated by primed
microglia. As a result, affected individuals would be more
at risk to develop neurological symptoms during COVID-19
(Marshall, 2020).

Neurodegenerative Diseases
Microglial PRR signaling is fundamental to the antiviral IFN
response in the brain, particularly at early time points after
infection (see section “Putative Responses of Microglia to
SARS-CoV-2 CNS Infection”) (Nakagaki et al., 2005; Wheeler
et al., 2018; Mangale et al., 2020). IFNs can induce a pro-
inflammatory phenotype in microglia, and elevate complement-
mediated synaptic pruning in mouse models of AD, the most
common cause of dementia worldwide (Hong et al., 2016;
Naughton et al., 2020; Roy et al., 2020). Analysis of human AD
post-mortem tissue found that plaque-associated IBA1-positive

microglia were also immunopositive for the interferon induced
transmembrane protein 3 and AXL receptor tyrosine kinase, in
line with an IFN pathway activation in AD (Roy et al., 2020).
RNA-seq analysis of human AD post-mortem brains also showed
a robust correlation between IFN and complement pathways
(Roy et al., 2020). A similar phenomenon may occur with SARS-
CoV-2 infection, where a viral-induced increase in IFN could lead
to increased complement-mediated loss of synapses, resulting
in memory or cognitive deficits, across psychiatric, aging, and
neurodegenerative conditions.

At the same time, as previously mentioned, NLRP3
inflammasome activation is one of the hallmarks of COVID-19
(Freeman and Swartz, 2020; van den Berg and te Velde, 2020).
In humans and mice, the NLRP3 inflammasome plays an
important role in AD (Tejera et al., 2019). In mice expressing
a human mutation associated with AD, NLRP3 knockout led
to enhanced amyloid phagocytosis by microglia, and induced
the mRNA expression of anti-inflammatory factors in these
cells, including Arginase 1 and Il4 (Heneka et al., 2013).
In the same AD model, NLRP3-knockout also prevented
microglial morphological changes after a lipopolysaccharide
(LPS) challenge, according to in vivo two-photon scanning
imaging of the somatosensory system (Tejera et al., 2019).
Furthermore, in murine models of tauopathy, NLRP3 accounts
for the formation of neurofibrillary tangles, another important
component of AD pathology (Ising et al., 2019). Therefore,
the increased activation of this complex and the subsequent
production of pro-inflammatory factors may induce or worsen
neurodegenerative pathology in COVID-19 (Heneka et al., 2020).
In addition, in a SARS-CoV-2 infected individual, TREM2 was
found to be increased in CSF (Pilotto et al., 2020b). According
to human genome-wide association studies, TREM2 variants in
microglia are associated with increased risk for AD (Guerreiro
et al., 2013) and TREM2 CSF levels strongly associate with CSF
levels of tau and phosphorylated tau, important biomarkers for
AD (Cruchaga et al., 2013). These findings emphasize the risk
for neurodegeneration and correspondent cognitive decline in
COVID-19 patients (Heneka et al., 2020).

Parkinson’s disease is often associated with the accumulation
of misfolded synuclein alpha leading to a progressive loss of
dopaminergic neurons in the substantia nigra pars compacta
(Lecours et al., 2018). Although there is not yet a reported
association with SARS-CoV-2 and parkinsonism, other viruses
are associated with a transient form or an increase in the
risk of developing PD, partially through microglial reactivity,
phagocytosis, and release of pro-inflammatory factors (Sulzer
et al., 2020). For example, mouse intranasal infection by influenza
viruses (both invading and not invading the CNS) led to an
increase in IBA1-positive microglia in the substantia nigra,
associated either with neuronal transient loss of function or
death (Jang et al., 2009; Sadasivan et al., 2015; Tulisiak et al.,
2019; Sulzer et al., 2020). Furthermore, during COVID-19,
the cytokine storm and the increased AT1R microglial activity
may enhance their release of pro-inflammatory cytokines in
the CNS (Murta et al., 2020), which may exacerbate protein
misfolding and aggregation, mitochondrial dysfunction, and
induce a deficiency in autophagy in the brain of SARS-CoV-2
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infected individuals (Lippi et al., 2020; Sulzer et al., 2020). This,
in turn, may accelerate the development of neurodegenerative
disorders, such as PD and AD.

This risk is particularly relevant in older individuals,
who have the most severe course of COVID-19, worst
post-infection outcomes, and highest mortality rates (Ruan
et al., 2020). Importantly, higher ACE2 expression in ECs
was found in COVID-19 cases with a history of dementia
and hypertension, characterized also by worse outcomes of
the infection (Buzhdygan et al., 2020). Indeed, although
still understudied, neurological symptoms of COVID-19 are
currently shown to be more common in aged patients, along
with those with chronic diseases (e.g., diabetes, hypertension)
or more severe infections (Mao et al., 2020). Notably, older
age is associated with a so-called “inflammaging” phenomenon;
an overall decline in immune system efficiency, marked by an
elevation of inflammatory markers both in the periphery and
CNS (Hammond et al., 2019; Domingues et al., 2020). Older
individuals also often display increased numbers of microglia
with dystrophic (i.e., smaller cell bodies, seemingly fragmented
and tortuous or beaded processes) and reactive morphologies
(Streit et al., 2004; Sierra et al., 2007), with the latter partly
supporting the concept of microglial priming (Bilbo and Tsang,
2010; Norden et al., 2015; Niraula et al., 2017). Of note, while
senescent microglia are frequently used as a synonym for a
dystrophic phenotype; it is yet unclear whether this association
is valid (Angelova and Brown, 2019). Function-wise, microglia
in aged organisms are less motile and less capable of mediating
debris clearance (Hefendehl et al., 2014; Safaiyan et al., 2016;
Flowers et al., 2017; Marschallinger et al., 2020). When exposed
to a challenge, e.g., LPS or laser-induced focal injury, aged
microglia, despite being slow to react, can generate an excessive
inflammatory response (Sierra et al., 2007; Frank et al., 2010;
Damani et al., 2011; Hefendehl et al., 2014; Tejera et al., 2019).
For instance, the slower response of aged mouse microglia to a
laser-induced focal injury, in the retina and cerebral cortex, was
suggested to prevent tissue restoration and contribute to chronic
local neuroinflammation (Damani et al., 2011; Hefendehl et al.,
2014). After SARS-CoV-2 infection, a dysfunctional response
of aged microglia, likely exacerbated by the cytokine storm
and hypoxia, may underlie the accelerated cognitive decline
observed in aged patients (who did not previously display
altered cognition) after a single episode of pneumonia (Shah
et al., 2013), a clinical complication that is frequently reported
for COVID-19. The molecular basis of this effect could be
related to axonal degeneration and myelin loss which were both
observed in association with COVID-19 (Handa et al., 2020;
Reichard et al., 2020).

Taken together, there is some evidence that microglia are
altered upon SARS-CoV-2 infection. Yet, given COVID-19’s
novelty, the roles of microglia in the pathogenesis of the disease,
particularly in its neurological consequences, are still elusive.
Evidence from other viral infections (whether neurotropic
or not) points to a potential microglial role in the loss of
taste/scent, encephalopathy, cerebrovascular disease, epilepsy,
neurodegeneration, and neuropsychiatric concerns (see section
“Microglia Respond to Psychosocial Stress”). Furthermore,

pre-existing chronic conditions and advanced age may also
alter microglia in a way that biases them toward a deleterious
contribution to the neurological symptoms. Future work will
be essential to clarify the mechanisms underlying the role of
microglia in COVID-19’s pathogenesis in the CNS.

THE CNS IS AFFECTED BY THE
PSYCHOSOCIAL STRESS IMPOSED BY
THE COVID-19 PANDEMIC

The CNS Is Affected by Psychosocial Stress
On top of the putative neurological burden imposed on
infected individuals, the COVID-19 pandemic is associated
with increased psychological stress, among both the infected
and non-infected populations (Kempuraj et al., 2020; Park
et al., 2020). Psychosocial stress is a state of mental, emotional,
or physiological strain that results from demanding life
circumstances, and persistent maladaptive stress responses are
related to various disease conditions including mental health
disorders (Tian et al., 2017). To investigate the degree of
perceived stress during the pandemic, studies have mainly used
self-reporting surveys (Brooks et al., 2020; Ellis et al., 2020).
For example, in the United States, electronic health records of
62,354 patients with COVID-19 revealed a significant increase in
the prevalence of first diagnosis or relapses of anxiety disorders,
insomnia, and dementia, in the 14–90 days following SARS-
CoV-2 detection, compared to other health perturbations, such
as respiratory and viral infections (Taquet et al., 2020). At the
same time, although the percentage of affected individuals varies
between reports, survivors of SARS-CoV-1 infection can exhibit
impaired memory, sleep disturbance, increased levels of stress,
depression, anxiety, and post-traumatic stress disorder (PTSD)
symptoms up to 8 years after infection (Wu et al., 2005; Lee et al.,
2007; Hong et al., 2009; Lam et al., 2009; Moldofsky and Patcai,
2011). Therefore, psychiatric long-term effects of SARS-CoV-2
infection are also expected.

In the non-infected population, the COVID-19 pandemic
imposes a considerable situational stress (Troyer et al., 2020).
Fear of being infected, or dying, and uncertainty of the future all
contribute to the psychological distress lived by the population
(Li et al., 2020b; Mazza et al., 2020; Satici et al., 2020).
Social isolation resulting from social distancing and quarantine,
changes in lifestyle including sleep, economic recession, financial
loss, as well as boredom, misinformation, and overexposure to
media coverage of the pandemic can further contribute to this
burden (Brooks et al., 2020; Garfin et al., 2020; Kim et al.,
2020; Thakur and Jain, 2020). These circumstances along with
several others, such as student status, poor self-rated health,
higher perceived stress load, worry about family, friends, and
other acquaintances suspected of COVID-19, together with less
family support, were all associated with an increased risk of
developing depressive or anxious symptoms during the pandemic
(Vindegaard and Benros, 2020). Accordingly, these stress-
contributing circumstances were shown to exacerbate stress-
related disorders (Horesh and Brown, 2020) in previous health
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and economic crises, potentially leading to clinical depression,
psychosis, and suicidal tendencies (Chan et al., 2006; Rhodes
et al., 2010; Pfefferbaum et al., 2012; Ng et al., 2013).

Certain populations are likely to experience worsened
consequences of stressor exposure (Holmes et al., 2020).
Susceptible populations include (i) older adults with multiple co-
morbidities, (ii) stay-at-home children and women that suffer
domestic violence or maltreatment, (iii) people with pre-existing
mental health issues or learning difficulties, (iv) health-care
workers, as well as (vi) groups struggling socio-economically
(Holmes et al., 2020). Regrettably, only a few COVID-19 surveys
have yet looked at the non-infected vulnerable groups, such as
people with pre-existing mental health conditions. In patients
with eating disorders, the symptomatology worsened in 37.5% of
responders, whilst 56.2% reported additional anxiety (Fernández-
Aranda et al., 2020). In a psychiatric hospital in China, 2,065
outpatients further reported a prevalence of 25.5% anxiety,
16.9% depression, and 26.6% insomnia symptoms, with 20.9%
of patients with pre-existing psychiatric disorders presenting
a deterioration of their overall mental health state (Zhou
et al., 2020). Regarding health-care workers, the majority of
papers reveal their increased anxiety, as well as depressive and
obsessive-compulsive disorder (OCD) symptoms (Vindegaard
and Benros, 2020) [although longitudinal studies are currently
lacking in general].

As stress is a prominent risk factor for neurodevelopmental
disorders (Bordeleau et al., 2019; Comer et al., 2020), stress
loads also need to be investigated in children living during the
COVID-19 pandemic. In a survey of 1,054 Canadian adolescents,
results indicated increased levels of concern on schooling and
peer-relationship while feeling more loneliness and depressive
emotions, especially for individuals engaging in longer virtual
meetings with friends (Ellis et al., 2020). Although necessary
for reducing the spread of the disease, by limiting contact
between people, such as between aid specialists and affected
populations, there may be reduced access to resources that
could alleviate their stress. It is also important to consider
children with mood disorders, which can be exacerbated by the
pandemic, as well as children with autism spectrum disorders
(ASD) or attention-deficit hyperactivity disorder (ADHD) whose
lifestyle is disrupted by the change of habits and familiar
structures during the pandemic (Jefsen et al., 2020). Overall,
children in confinement are subject to reduced physical activity,
irregular sleep pattern, and less favorable diets (Carroll et al.,
2020; Wang et al., 2020c), which along with their fear-induced
chronic stress, loneliness, and viral infection (possibly from
COVID-19), represent strong risk factors for developing ASD,
ADHD, psychosis, depression, or schizophrenia (Sormunen et al.,
2017; Bordeleau et al., 2019; Reeve et al., 2019; Comer et al.,
2020). Another risk factor for neurodevelopmental disorders not
mentioned yet consists of low family income (Carlsson et al.,
2020) for which the number most likely went up during the
pandemic with massive job losses (Blustein et al., 2020); together
with significant market and bank set-back (Goodell, 2020).

More studies are available looking at mental health distress
in the general population. In an online survey that assessed
the levels of psychological impact and stress during the initial

stage of the COVID-19 outbreak in China, the responses of
1,210 subjects showed that 8.1, 28.8, and 16.5% had moderate
to severe stress levels, or anxiety and depression symptoms,
respectively (Wang et al., 2020a). The overall mean Impact of
Event Scale-Revised (IES-R) score for respondents also indicated
the presence of PTSD symptoms (Wang et al., 2020a). In
another study with 1,041 Irish respondents, 17.67% met PTSD
diagnostic requirements during the lockdown, similar to what the
same group found in a parallel study for the United Kingdom
(16.79%) (Karatzias et al., 2020). In a large population-based
survey conducted in China with almost 53,000 respondents,
∼35% experienced psychological distress (Qiu et al., 2020).
Analysis of Weibo (a leading Chinese online social network)
posts, based on the approach of Online Ecological Recognition,
from almost 18,000 active users, also determined that negative
emotions, such as anxiety, depression, and indignation, increased
during the pandemic, while positive emotions, like happiness
and life satisfaction, significantly decreased (Li et al., 2020a).
Moreover, in a Danish study with 2,458 respondents, the
World Health Organization Five Well-Being Index (WHO-5)
(a psychometrically valid measure of psychological well-being
experienced over the past 2 weeks), yielded significantly lower
scores during the pandemic compared to results obtained in 2016
(Sønderskov et al., 2020). Likewise, the proportion of respondents
for whom assessment for depression should be sought increased
compared to the previous survey in 2016 (Sønderskov et al.,
2020). Considering the widespread impact of the pandemic, we
highlight the need for longitudinal studies investigating stress
levels in other cohorts, such as in developing countries or
established vulnerable groups, which would allow for a more
accurate understanding of stress levels worldwide. In addition,
considering the inter-individual response to stress, it would be
very important to include additional measures of resilience or
vulnerability in these studies.

Microglia Respond to Psychosocial
Stress
It is well established that psychological stress increases the
production of pro-inflammatory mediators, peripherally and
throughout numerous brain regions implicated in stress-
associated neuropsychiatric disorders (Vecchiarelli et al., 2016a;
Wohleb and Delpech, 2017; Johnson et al., 2019). Whether
it is acute or chronic, stress triggers the sympathetic nervous
system, and HPA axis activity, to release catecholamine
and glucocorticoids, respectively, from the adrenal glands
(Sapolsky et al., 2000). Microglia generally respond to elevated
glucocorticoids, cytokines, and catecholamines by altering
their density, changing their morphology, and producing pro-
inflammatory molecules, i.e., reactivity (Figure 1; Tian et al.,
2017). These changes have been linked to the effects of acute stress
on the motivational state and cognitive function of the organism,
but also to the neurological consequences of prolonged exposure
to stress, including atrophy of neuronal dendrites, synaptic loss,
and glutamate excitotoxicity (Frank et al., 2019). In line with this,
the stress response of microglia is implicated in the pathogenesis
of (i) neurodevelopmental conditions, such as ASD and ADHD
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(Bordeleau et al., 2019), (ii) neuropsychiatric disorders, such as
major depressive disorder (MDD), generalized anxiety disorder
(GAD), and PTSD (Dantzer et al., 2008; Miller et al., 2009;
Haroon et al., 2012; Maes et al., 2012; Leonard, 2014), as well
as (iii) neurodegenerative diseases, for instance, AD (Bisht et al.,
2018) and PD (Lecours et al., 2018).

Stress and Neurodevelopmental Disorders
During critical periods of brain development, exposure to
environmental factors (e.g., psychosocial stress) or genetic
vulnerabilities, can trigger the onset of neurodevelopmental
disorders (Chaste and Leboyer, 2012; Karmiloff-Smith et al.,
2012; Wallace, 2016; Carlsson et al., 2020). Correspondingly,
rodent models of prenatal maternal stress, induced by
sleep deprivation, exposure to bright light, injection of
LPS, or of the viral mimic polyinosinic:polycytidylic acid
(Poly I:C), produce offspring that have elevated levels of
pro-inflammatory markers, as well as impaired microglial
density, maturation, and distribution in the postnatal brain,
ultimately affecting neurogenesis, synaptic pruning, and brain
functional connectivity (Bordeleau et al., 2019). Glucocorticoids
and DAMPs released by cellular stress also prime the pro-
inflammatory response of microglia ex vivo and in vivo (Frank
et al., 2019). Primed microglia display an increased expression
of genes related to phagocytosis, cellular proliferation, and
vesicular release, leading to an exacerbated inflammatory
response upon exposure to a subsequent challenge. Priming
may also occur following acute peripheral inflammation and
the increase of circulating cytokines during COVID-19 (see
section “Microglia Respond to the Systemic Inflammatory
Response in COVID-19”). This could be particularly relevant
for children and adolescents infected by SARS-CoV-2 which,
despite presumed lower vulnerability to COVID-19 (Lee et al.,
2020), are at a critical moment of brain maturation. The same
holds for fetuses in pregnant people infected by the virus.
A disrupted physiological microglial function may partially
explain why maternal stress, and childhood maltreatment,
including physical or emotional neglect, are major risk factors for
neurodevelopmental disorders and adult psychiatric conditions
later in life, such as MDD, PTSD, and GAD (Tay et al., 2017a).
Accordingly, impairment of microglial support during critical
windows of brain development due to psychosocial stress
suggests that infants, children, and adolescents are likely to
experience worse neurodevelopmental effects during and after
the pandemic (Holmes et al., 2020), possibly potentiated by
concomitant SARS-CoV-2 infection (see section “Microglial-
Mediated CNS Inflammation may Contribute to the COVID-19
Associated Neurological Manifestations”).

Stress and Mental Health in Adulthood and Aging
Psychosocial stress during adulthood does not only increase the
risk for MDD and PTSD, but also accelerates cognitive aging,
as well as AD and PD progression (Schneiderman et al., 2005;
Farrell et al., 2017; Tay et al., 2017a; Benson et al., 2018; Barrero-
Castillero et al., 2019; Lähdepuro et al., 2019). Correspondingly,
initial reports indicate increased incidence of MDD, anxiety, and
PTSD in the general population during the pandemic (Karatzias

et al., 2020; Li et al., 2020a; Sønderskov et al., 2020; Wang
et al., 2020a). In adult rodents, chronic unpredictable stress
(CUS) and social defeat stress models were shown to induce
significant increases in microglial density and morphological
alterations within areas associated with the stress response and
emotion processing (Figure 1; Tynan et al., 2010; Wohleb et al.,
2011, 2013; Kopp et al., 2013; Lehmann et al., 2016; Tay et al.,
2017a; Nie et al., 2018), although there are many contradictory
reports (Tay et al., 2017a). Similar microglial changes were
also reported in humans, with post-mortem brains presenting
increased microglial density, morphological transformation, and
expression of translocator protein 18 kDa (TPSO), which is up-
regulated in reactive microglia and astrocytes, across patients
with ASD, schizophrenia, MDD, and bipolar disorder (Tay et al.,
2017a). Increased IBA1-positive or HLA-DR-positive microglial
immunostaining was also encountered in the prefrontal cortex,
anterior cingulate cortex, and thalamus of people who have died
by suicide (Steiner et al., 2008; Torres-Platas et al., 2014).

The stress-induced increased microglial density and
reactivity may account for exacerbated oxidative stress,
neuroinflammation, and pathological synaptic remodeling,
which are together associated with the development of mental
health disorders (Zhao et al., 2015; Milior et al., 2016). For
instance, in mice, CUS has been shown to increase the number
of phagocytic inclusions containing neuronal elements per
IBA1-positive microglial process (Wohleb et al., 2011, 2013),
which is suggestive of augmented synaptic pruning. Considering
that synaptic loss is the best pathological correlate of cognitive
decline in MDD, schizophrenia, aging, and neurodegenerative
diseases (Terry et al., 1991; Tay et al., 2017a), modulating the
synaptic remodeling executed by microglia in response to stress
could allow to mitigate the detrimental effects of psychosocial
stress. To do so, one alternative could be to target fractalkine
signaling between neurons and microglia, via CX3CR1, since
several works suggest that CX3CR1-deficient mice are resistant
to the deleterious effects of chronic stress exposure (Tay et al.,
2017a). Specifically, in adult mice, CX3CR1-deficiency prevented
the effects of CUS on neuronal plasticity in the hippocampus
CA1 region, as well as the emergence of depressive-like behavior
(Milior et al., 2016). These mice were also found to be resistant
to stress-induced microglial hyper-ramification in the dentate
gyrus, and depression-like behavior under the forced swim
paradigm (Hellwig et al., 2016). Of note, disrupting this pathway
appears detrimental during pre- and postnatal development
(Paolicelli et al., 2011; Squarzoni et al., 2014; Zhan et al., 2014),
and during viral and hypoxic injuries (see sections “Putative
Responses of Microglia to SARS-CoV-2 CNS Infection” and
“Microglia Respond to COVID-19-Associated Hypoxia”),
thus, more research is necessary to determine the feasibility
of this approach.

Stress resulting from the pandemic (and viral infection)
could also enhance the activity or development of microglia
associated with higher synaptic pruning activity, for instance,
“dark microglia,” which could be targeted specifically (Bisht
et al., 2016; El Hajj et al., 2019; Savage et al., 2020; St-Pierre
et al., 2020). There are also stress-induced microglial-mediated
changes in neurotransmitter synthesis, altogether allowing
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for a neural environment where neuroinflammation and
alterations in neuronal activity contribute to the development
of mental health diseases. In response to inflammatory
stimuli or stress, in microglia, the tryptophan metabolite
kynurenine [from the indoleamine 2,3-dioxygenase (IDO)
pathway] is used to form quinolinic acid, a glutamate ionotropic
receptor agonist [N-methyl-D-aspartate receptor (NMDAR)]
(Capuron et al., 2002; Schwarcz et al., 2012; Vecchiarelli et al.,
2016b). Remarkably, there is an increase in the expression
of genes involved in tryptophan metabolism with COVID-
19 (Gardinassi et al., 2020), which could lead to glutamate
excitotoxicity and divert tryptophan away from serotonin
synthesis toward kynurenine metabolism (Capuron et al., 2002;
Schwarcz et al., 2012; Vecchiarelli et al., 2016b), associated
with anxiety, mood disorders, psychosis, and cognitive decline.
This is likely contributed to by the systemic inflammation
associated with COVID-19.

The effects of stress on microglia depend on the type, duration,
and frequency of the exposure (Yirmiya and Goshen, 2011; Calcia
et al., 2016). The myriad of psychosocial stressors during the
pandemic will likely have diverse effects on microglia, but we
hypothesize that vulnerable groups carrying an already primed
immune response, for instance, due to aging, chronic disease,
or a history of mental distress, will experience more pro-
inflammatory outcomes, in turn, resulting in an increased risk for
psychiatric disorders. We highlight the potential threat of a global
mental health crisis affecting these populations and the urgent
need for policies that provide targeted care, including access to
the COVID-19 vaccine.

DISCUSSION AND CONCLUSION

The COVID-19 pandemic possibly affects the CNS through viral
infection, hypoxic-injuries, and increased cytokine circulation
in SARS-CoV-2 infected individuals, but also by psychosocial
stress, in both non-infected and infected populations. Microglia,
crucial to physiological and immune functions of the brain,
respond to these insults in diverse ways. In a model of murine
coronavirus infection (JMHV), ablation of these cells with CSFR1
inhibition promoted deleterious outcomes, including increased
animal mortality, viral replication, T cell infiltration, and
demyelination (Mangale et al., 2020). Microglial depletion also
exacerbates stroke-injury and reduces neurogenesis (Lalancette-
Hébert et al., 2007; Szalay et al., 2016). This indicates, at least
in some models of CNS viral infection and CNS injury, that
microglia (amongst other cells) serve a protective role, and that
their reduced presence allows for even more deleterious effects.

However, in the context of a cytokine storm or after exposure to
chronic psychosocial stress, microglia can become altered in their
function and then increase the release of inflammatory mediators,
generating pathogenic effects associated with neurological and
psychiatric conditions. These combined findings highlight a
need to understand how microglia (and their different subtypes)
may switch temporally from contextually beneficial states to
harmful ones. This knowledge would be valuable to mitigate
harmful CNS outcomes of COVID-19 pandemic, and possibly
its long-term consequences on neurodevelopmental, psychiatric,
and neurodegenerative conditions. Alternatively, although this
awaits further research, in critical groups, for instance, aged
individuals or cohorts with pre-existing conditions, modulating
the pro-inflammatory activity of microglia upon SARS-CoV-2
detection, via minocycline (Oliveira et al., 2020), for example,
may help avoid unwanted neurological outcomes. The same
holds for individuals with a history of mental health disorders,
for which the reduction of dysfunctional microglial synaptic
remodeling may prevent the worsening of mental distress
associated with the pandemic.
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St-Pierre, M.-K., Šimončičová, E., Bögi, E., and Tremblay, M.-È. (2020). Shedding
light on the dark side of the microglia. ASN Neuro. 64, 826–839. doi: 10.1177/
1759091420925335

Stratoulias, V., Venero, J. L., Tremblay, M.-È., and Joseph, B. (2019). Microglial
subtypes: diversity within the microglial community. EMBO J 38:e101997. doi:
10.15252/embj.2019101997

Streit, W. J., Sammons, N. W., Kuhns, A. J., and Sparks, D. L. (2004). Dystrophic
microglia in the aging human brain. Glia 45, 208–212. doi: 10.1002/glia.10319

Sulzer, D., Antonini, A., Leta, V., Nordvig, A., Smeyne, R. J., Goldman, J. E.,
et al. (2020). COVID-19 and possible links with Parkinson’s disease and
parkinsonism: from bench to bedside. NPJ Park. Dis. 6:18. doi: 10.1038/s41531-
020-00123-0

Szalay, G., Martinecz, B., Lénárt, N., Környei, Z., Orsolits, B., Judák, L., et al.
(2016). Microglia protect against brain injury and their selective elimination
dysregulates neuronal network activity after stroke. Nat. Commun. 7:11499.
doi: 10.1038/ncomms11499

Szelényi, J. (2001). Cytokines and the central nervous system. Brain Res. Bull. 54,
329–338. doi: 10.1016/s0361-9230(01)00428-2

Tang, Z., Gan, Y., Liu, Q., Yin, J.-X., Liu, Q., Shi, J., et al. (2014). CX3CR1
deficiency suppresses activation and neurotoxicity of microglia/macrophage in
experimental ischemic stroke. J. Neuroinflammation 11:26. doi: 10.1186/1742-
2094-11-26

Taquet, M., Luciano, S., Geddes, J. R., and Harrison, P. J. (2020). Bidirectional
associations between COVID-19 and psychiatric disorder: retrospective cohort
studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8:e1. doi:
10.1016/S2215-0366(20)30462-4

Tay, T. L., Béchade, C., D’Andrea, I., St-Pierre, M.-K., Henry, M. S., Roumier, A.,
et al. (2017a). Microglia gone rogue: impacts on psychiatric disorders across the
Lifespan. Front. Mol. Neurosci. 10:421. doi: 10.3389/fnmol.2017.00421

Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K., and Tremblay, M.-È. (2017b).
Microglia across the lifespan: from origin to function in brain development,
plasticity and cognition. J. Physiol. 595, 1929–1945. doi: 10.1113/JP272134

Tejera, D., Mercan, D., Sanchez-Caro, J. M., Hanan, M., Greenberg, D., Soreq, H.,
et al. (2019). Systemic inflammation impairs microglial Aβ clearance through
NLRP3 inflammasome. EMBO J. 38:e101064. doi: 10.15252/embj.2018101064

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al.
(1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse
loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.
doi: 10.1002/ana.410300410

Thakur, V., and Jain, A. (2020). COVID 2019-suicides: a global psychological
pandemic. Brain. Behav. Immun. 88, 952–953. doi: 10.1016/j.bbi.2020.04.062

Theret, M., Mounier, R., and Rossi, F. (2019). The origins and non-canonical
functions of macrophages in development and regeneration. Dev. Camb. Engl.
146:dev156000. doi: 10.1242/dev.156000

Tian, L., Hui, C. W., Bisht, K., Tan, Y., Sharma, K., Chen, S., et al. (2017). Microglia
under psychosocial stressors along the aging trajectory: Consequences on
neuronal circuits, behavior, and brain diseases. Prog. Neuropsychopharmacol.
Biol. Psychiatry 79, 27–39. doi: 10.1016/j.pnpbp.2017.01.007

Tikka, T., Fiebich, B. L., Goldsteins, G., Keinänen, R., and Koistinaho, J. (2001).
Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity
by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 2580–
2588. doi: 10.1523/JNEUROSCI.21-08-02580.2001

Tikka, T. M., and Koistinaho, J. E. (2001). Minocycline provides neuroprotection
against N-methyl-D-aspartate neurotoxicity by inhibiting microglia.
J. Immunol. Baltim. Md 1950, 7527–7533. doi: 10.4049/jimmunol.166.12.7527

Torres-Platas, S. G., Cruceanu, C., Chen, G. G., Turecki, G., and Mechawar, N.
(2014). Evidence for increased microglial priming and macrophage recruitment
in the dorsal anterior cingulate white matter of depressed suicides. Brain. Behav.
Immun. 42, 50–59. doi: 10.1016/j.bbi.2014.05.007

Tremblay, M.-E., Madore, C., Bordeleau, M., Tian, L., and Verkhratsky, A. (2020).
Neuropathobiology of COVID-19: the role for glia. Front. Cell. Neurosci.
14:592214. doi: 10.3389/fncel.2020.592214

Troyer, E. A., Kohn, J. N., and Hong, S. (2020). Are we facing a crashing wave
of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and
potential immunologic mechanisms. Brain. Behav. Immun. 87, 34–39. doi: 10.
1016/j.bbi.2020.04.027

Tulisiak, C. T., Mercado, G., Peelaerts, W., Brundin, L., and Brundin, P. (2019).
Can infections trigger alpha-synucleinopathies? Prog. Mol. Biol. Transl. Sci. 168,
299–322. doi: 10.1016/bs.pmbts.2019.06.002

Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V.,
et al. (2010). Chronic stress alters the density and morphology of microglia in a
subset of stress-responsive brain regions. Brain. Behav. Immun. 24, 1058–1068.
doi: 10.1016/j.bbi.2010.02.001

van den Berg, D. F., and te Velde, A. A. (2020). Severe COVID-19: NLRP3
inflammasome dysregulated. Front. Immunol 11:1580. doi: 10.3389/fimmu.
2020.01580

Varatharaj, A., and Galea, I. (2017). The blood-brain barrier in systemic
inflammation. Brain. Behav. Immun. 60, 1–12. doi: 10.1016/j.bbi.2016.03.010

Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N. W. S., Pollak, T. A., Tenorio,
E. L., et al. (2020). Neurological and neuropsychiatric complications of COVID-
19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882.
doi: 10.1016/S2215-0366(20)30287-X

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel,
A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19.
Lancet Lond. Engl. 395, 1417–1418. doi: 10.1016/S0140-6736(20)30937-5

Vecchiarelli, H. A., Gandhi, C. P., Gray, J. M., Morena, M., Hassan, K. I., and
Hill, M. N. (2016a). Divergent responses of inflammatory mediators within
the amygdala and medial prefrontal cortex to acute psychological stress. Brain.
Behav. Immun. 51, 70–91. doi: 10.1016/j.bbi.2015.07.026

Vecchiarelli, H. A., Gandhi, C. P., and Hill, M. N. (2016b). Acute psychological
stress modulates the expression of enzymes involved in the kynurenine pathway
throughout corticolimbic circuits in adult male rats. Neural Plast. 2016:7215684.
doi: 10.1155/2016/7215684

Vindegaard, N., and Benros, M. E. (2020). COVID-19 pandemic and mental health
consequences: systematic review of the current evidence. Brain. Behav. Immun.
89, 531–542. doi: 10.1016/j.bbi.2020.05.048

Virhammar, J., Kumlien, E., Fällmar, D., Frithiof, R., Jackmann, S., Sköld, M. K.,
et al. (2020). Acute necrotizing encephalopathy with SARS-CoV-2 RNA
confirmed in cerebrospinal fluid. Neurology 95, 445–449. doi: 10.1212/WNL.
0000000000010250

Wallace, R. (2016). Environmental induction of neurodevelopmental disorders.
Bull. Math. Biol. 78, 2408–2426. doi: 10.1007/s11538-016-0226-5

Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., Ho, C. S., et al. (2020a). Immediate
psychological responses and associated factors during the initial stage of
the 2019 coronavirus disease (COVID-19) epidemic among the general
population in China. Int. J. Environ. Res. Public. Health 17:1729. doi: 10.3390/
ijerph17051729

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020b). Clinical
characteristics of 138 hospitalized patients with 2019 novel coronavirus-
infected pneumonia in Wuhan. China. JAMA 323, 1061–1069. doi: 10.1001/
jama.2020.1585

Wang, G., Zhang, Y., Zhao, J., Zhang, J., and Jiang, F. (2020c). Mitigate the effects of
home confinement on children during the COVID-19 outbreak. Lancet Lond.
Engl. 395, 945–947. doi: 10.1016/S0140-6736(20)30547-X

Webster, C. M., Hokari, M., McManus, A., Tang, X. N., Ma, H., Kacimi, R., et al.
(2013). Microglial P2Y12 deficiency/inhibition protects against brain ischemia.
PLoS One 8:e70927. doi: 10.1371/journal.pone.0070927

Weyhern, C. H., von Kaufmann, I., Neff, F., and Kremer, M. (2020). Early evidence
of pronounced brain involvement in fatal COVID-19 outcomes. The Lancet
395:e109. doi: 10.1016/S0140-6736(20)31282-4

Wheeler, D. L., Sariol, A., Meyerholz, D. K., and Perlman, S. (2018). Microglia are
required for protection against lethal coronavirus encephalitis in mice. J. Clin.
Invest. 128, 931–943. doi: 10.1172/JCI97229

WHO Coronavirus Disease (COVID-19) Dashboard (2020). WHO Coronavirus
Disease (COVID-19) Dashboard. Available online at: https://covid19.who.int
(accessed December 26, 2020).

Wixey, J. A., Reinebrant, H. E., Carty, M. L., and Buller, K. M. (2009). Delayed
P2X4R expression after hypoxia-ischemia is associated with microglia in the
immature rat brain. J. Neuroimmunol. 212, 35–43. doi: 10.1016/j.jneuroim.
2009.04.016

Frontiers in Cellular Neuroscience | www.frontiersin.org 21 February 2021 | Volume 15 | Article 647378

https://doi.org/10.1016/j.jpsychires.2006.10.013
https://doi.org/10.1177/1759091420925335
https://doi.org/10.1177/1759091420925335
https://doi.org/10.15252/embj.2019101997
https://doi.org/10.15252/embj.2019101997
https://doi.org/10.1002/glia.10319
https://doi.org/10.1038/s41531-020-00123-0
https://doi.org/10.1038/s41531-020-00123-0
https://doi.org/10.1038/ncomms11499
https://doi.org/10.1016/s0361-9230(01)00428-2
https://doi.org/10.1186/1742-2094-11-26
https://doi.org/10.1186/1742-2094-11-26
https://doi.org/10.1016/S2215-0366(20)30462-4
https://doi.org/10.1016/S2215-0366(20)30462-4
https://doi.org/10.3389/fnmol.2017.00421
https://doi.org/10.1113/JP272134
https://doi.org/10.15252/embj.2018101064
https://doi.org/10.1002/ana.410300410
https://doi.org/10.1016/j.bbi.2020.04.062
https://doi.org/10.1242/dev.156000
https://doi.org/10.1016/j.pnpbp.2017.01.007
https://doi.org/10.1523/JNEUROSCI.21-08-02580.2001
https://doi.org/10.4049/jimmunol.166.12.7527
https://doi.org/10.1016/j.bbi.2014.05.007
https://doi.org/10.3389/fncel.2020.592214
https://doi.org/10.1016/j.bbi.2020.04.027
https://doi.org/10.1016/j.bbi.2020.04.027
https://doi.org/10.1016/bs.pmbts.2019.06.002
https://doi.org/10.1016/j.bbi.2010.02.001
https://doi.org/10.3389/fimmu.2020.01580
https://doi.org/10.3389/fimmu.2020.01580
https://doi.org/10.1016/j.bbi.2016.03.010
https://doi.org/10.1016/S2215-0366(20)30287-X
https://doi.org/10.1016/S0140-6736(20)30937-5
https://doi.org/10.1016/j.bbi.2015.07.026
https://doi.org/10.1155/2016/7215684
https://doi.org/10.1016/j.bbi.2020.05.048
https://doi.org/10.1212/WNL.0000000000010250
https://doi.org/10.1212/WNL.0000000000010250
https://doi.org/10.1007/s11538-016-0226-5
https://doi.org/10.3390/ijerph17051729
https://doi.org/10.3390/ijerph17051729
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1016/S0140-6736(20)30547-X
https://doi.org/10.1371/journal.pone.0070927
https://doi.org/10.1016/S0140-6736(20)31282-4
https://doi.org/10.1172/JCI97229
https://covid19.who.int
https://doi.org/10.1016/j.jneuroim.2009.04.016
https://doi.org/10.1016/j.jneuroim.2009.04.016
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-647378 March 1, 2021 Time: 16:4 # 22

Gonçalves de Andrade et al. Microglia: Brain Frontline in COVID-19

Wohleb, E. S., and Delpech, J.-C. (2017). Dynamic cross-talk between microglia
and peripheral monocytes underlies stress-induced neuroinflammation and
behavioral consequences. Prog. Neuropsychopharmacol. Biol. Psychiatry 79,
40–48. doi: 10.1016/j.pnpbp.2016.04.013

Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey,
M. T., et al. (2011). β-Adrenergic receptor antagonism prevents anxiety-like
behavior and microglial reactivity induced by repeated social defeat. J. Neurosci.
Off. J. Soc. Neurosci. 31, 6277–6288. doi: 10.1523/JNEUROSCI.0450-11.2011

Wohleb, E. S., Powell, N. D., Godbout, J. P., and Sheridan, J. F. (2013). Stress-
induced recruitment of bone marrow-derived monocytes to the brain promotes
anxiety-like behavior. J. Neurosci. Off. J. Soc. Neurosci. 33, 13820–13833. doi:
10.1523/JNEUROSCI.1671-13.2013

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., et al. (2020a). A new
coronavirus associated with human respiratory disease in China. Nature 579,
265–269. doi: 10.1038/s41586-020-2008-3

Wu, K. K., Chan, S. K., and Ma, T. M. (2005). Posttraumatic stress, anxiety,
and depression in survivors of severe acute respiratory syndrome (SARS).
J. Trauma. Stress 18, 39–42. doi: 10.1002/jts.20004

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., et al. (2020b). Nervous
system involvement after infection with COVID-19 and other coronaviruses.
Brain. Behav. Immun. 87, 18–22. doi: 10.1016/j.bbi.2020.03.031

Wu, Z., and McGoogan, J. M. (2020). Characteristics of and important lessons
from the coronavirus disease 2019 (COVID-19) outbreak in China: summary
of a report of 72 314 cases from the Chinese center for disease control and
prevention. JAMA 323, 1239–1242. doi: 10.1001/jama.2020.2648

Yaghi, S., Ishida, K., Torres, J., Mac Grory, B., Raz, E., Humbert, K., et al.
(2020). SARS-CoV-2 and stroke in a New York healthcare system. Stroke 51,
2002–2011. doi: 10.1161/STROKEAHA.120.030335

Yang, L., Han, Y., Nilsson-Payant, B. E., Gupta, V., Wang, P., Duan, X., et al.
(2020a). A human pluripotent stem cell-based platform to study SARS-CoV-
2 tropism and model virus infection in human cells and organoids. Cell Stem
Cell 27, 125–136.e7. doi: 10.1016/j.stem.2020.06.015

Yang, T., Sun, J., Wei, B., and Liu, S. (2020b). SENP1-mediated NEMO de-
SUMOylation inhibits intermittent hypoxia induced inflammatory response of
microglia in vitro. J. Cell. Physiol. 235, 3529–3538. doi: 10.1002/jcp.29241

Yirmiya, R., and Goshen, I. (2011). Immune modulation of learning, memory,
neural plasticity and neurogenesis. Brain. Behav. Immun. 25, 181–213. doi:
10.1016/j.bbi.2010.10.015

Yrjänheikki, J., Keinänen, R., Pellikka, M., Hökfelt, T., and Koistinaho, J. (1998).
Tetracyclines inhibit microglial activation and are neuroprotective in global
brain ischemia. Proc. Natl. Acad. Sci. U.S.A. 95, 15769–15774. doi: 10.1073/pnas.
95.26.15769

Yrjänheikki, J., Tikka, T., Keinänen, R., Goldsteins, G., Chan, P. H., and Koistinaho,
J. (1999). A tetracycline derivative, minocycline, reduces inflammation and

protects against focal cerebral ischemia with a wide therapeutic window. Proc.
Natl. Acad. Sci. U.S.A. 96, 13496–13500. doi: 10.1073/pnas.96.23.13496

Zanin, L., Saraceno, G., Panciani, P. P., Renisi, G., Signorini, L., Migliorati, K., et al.
(2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta
Neurochir. (Wien) 162, 1491–1494. doi: 10.1007/s00701-020-04374-x

Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., et al.
(2014). Deficient neuron-microglia signaling results in impaired functional
brain connectivity and social behavior. Nat. Neurosci. 17, 400–406. doi: 10.1038/
nn.3641

Zhang, L., Dong, L.-Y., Li, Y.-J., Hong, Z., and Wei, W.-S. (2012). miR-21
represses FasL in microglia and protects against microglia-mediated neuronal
cell death following hypoxia/ischemia. Glia 60, 1888–1895. doi: 10.1002/glia.
22404

Zhao, J., Zhao, J., and Perlman, S. (2014). Virus-specific regulatory T cells
ameliorate encephalitis by repressing effector T cell functions from priming
to effector stages. PLoS Pathog. 10:e1004279. doi: 10.1371/journal.ppat.100
4279

Zhao, Q., Xie, X., Fan, Y., Zhang, J., Jiang, W., Wu, X., et al. (2015). Phenotypic
dysregulation of microglial activation in young offspring rats with maternal
sleep deprivation-induced cognitive impairment. Sci. Rep. 5:9513. doi: 10.1038/
srep09513

Zheng, S., Fan, J., Yu, F., Feng, B., Lou, B., Zou, Q., et al. (2020). Viral load dynamics
and disease severity in patients infected with SARS-CoV-2 in Zhejiang province,
China, January-March 2020: retrospective cohort study. BMJ 369:m1443. doi:
10.1136/bmj.m1443

Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H. H.-N., et al. (2017).
Human intestinal tract serves as an alternative infection route for Middle East
respiratory syndrome coronavirus. Sci. Adv. 3:eaao4966. doi: 10.1126/sciadv.
aao4966

Zhou, J., Liu, L., Xue, P., Yang, X., and Tang, X. (2020). Mental health response
to the COVID-19 Outbreak in China. Am. J. Psychiatry 177, 574–575. doi:
10.1176/appi.ajp.2020.20030304

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Gonçalves de Andrade, Šimončičová, Carrier, Vecchiarelli, Robert
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