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The pathology in neurodegenerative diseases is often accompanied by inflammation. It

is well-known that many cells within the central nervous system (CNS) also contribute to

ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis

(MS) is both an inflammatory and neurodegenerative disease in which there is a complex

interplay between resident CNS cells to mediate myelin and axonal damage, and this

communication network can vary depending on the subtype and chronicity of disease.

Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte

precursor cells (OPCs), are often thought of as the targets of autoimmune pathology

during MS and in several animal models of MS; however, there is emerging evidence

that OPCs actively contribute to inflammation that directly and indirectly contributes to

neurodegeneration. Here we discuss several contributors to MS disease progression

starting with lesion pathology and murine models amenable to studying particular

aspects of disease. We then review how OPCs themselves can play an active role

in promoting neuroinflammation and neurodegeneration, and how other resident CNS

cells including microglia, astrocytes, and neurons can impact OPC function. Further,

we outline the very complex and pleiotropic role(s) of several inflammatory cytokines

and other secreted factors classically described as solely deleterious during MS and

its animal models, but in fact, have many neuroprotective functions and promote a

return to homeostasis, in part via modulation of OPC function. Finally, since MS affects

patients from the onset of disease throughout their lifespan, we discuss the impact

of aging on OPC function and CNS recovery. It is becoming clear that OPCs are

not simply a bystander during MS progression and uncovering the active roles they

play during different stages of disease will help uncover potential new avenues for

therapeutic intervention.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory and

neurodegenerative disease of the central nervous system

(CNS) characterized by loss of myelin, oligodendrocytes, and
axons (Chang et al., 2000, 2002). The global prevalence of

MS has increased over the last several years and is highest
in North America and Europe (Belbasis et al., 2015). MS
represents a large personal and socioeconomical burden.
The average age of onset is 30 and 25 years after diagnosis,
nearly 50% of MS patients will require permanent use of a
wheelchair (Dendrou et al., 2015). Most patients (85%) exhibit
the relapsing-remitting form of MS (RRMS), in which disease
begins with episodes of neurological dysfunction followed
by partial or complete remission, and later progresses to
secondary progressive MS (SPMS) with fewer remissions
and increasing clinical deterioration (Thompson et al., 1991;
Compston and Coles, 2008; Hurwitz, 2009). Some patients
(15%) have a third subtype of MS, primary progressive
(PPMS), and experience unremitting, progressive loss of
neurological function from the onset of disease (Confavreux
et al., 2000; Miller and Leary, 2007; Hurwitz, 2009; McCarthy
and Weinberg, 2015). Neurological disability in RRMS is
due to immune-mediated demyelination, while SPMS and
PPMS is dominated by neurodegenerative processes (Miller
and Leary, 2007). Thus, it is not surprising that the 12 FDA-
approved immunomodulatory therapies have demonstrated
efficacy for RRMS, while a single approved therapy may be
beneficial for SPMS or PPMS, although long-term studies are
still required (Noseworthy et al., 2000; Leary and Thompson,
2003; Wingerchuk and Carter, 2014; Feinstein et al., 2015;
Montalban et al., 2017). It is also acknowledged that while
the standard therapies for treating MS reduce relapses in
RRMS patients (Haghikia et al., 2013; Feinstein et al., 2015),
they do not halt neurodegeneration and disability continues,
becoming permanent. Investigating the potential link between
neuroinflammatory and neurodegenerative processes during
autoimmunity may uncover a source of novel therapeutic
potential for MS patients.

MS is a neurodegenerative and inflammatory diseasemediated
by autoreactive immune cells that initiate myelin and axon injury
in a progressive manner, which leads to sustained motor and
sensory function loss (Trapp et al., 1998; Noseworthy et al.,
2000; Trapp and Nave, 2008). Following myelin destruction
during the pathogenesis of MS, axons are left exposed, inefficient,
and susceptible to degeneration. During remyelination, damaged
axons reacquire a myelin sheath and recover lost function
(Franklin, 2002). Clinically, this process occurs early on
and requires the generation of new oligodendrocytes (OLs)
(Keirstead and Blakemore, 1997), the myelinating cell of the
CNS, from oligodendrocyte precursor cells (OPCs) (Watanabe
et al., 2002). Although there is also evidence to suggest
that mature OLs too can participate in remyelination of MS
lesions (Duncan et al., 2018). Importantly, in the harsh lesion
environment, remyelination does occur (Prineas et al., 1993).
However, while there are OPCs found in and around MS
lesions (Chang et al., 2002), remyelination efficiency wanes

with patient age and as lesions and the disease become
more chronic (Franklin, 2002; Frischer et al., 2015; Gruchot
et al., 2019). OPCs are typically more sensitive to growth
factors produced by resident CNS cells compared to mature
myelinating OLs, which are largely unresponsive to identical
factors, although the molecular mechanisms responsible for
this dichotomy remain poorly understood (Moore et al.,
2015). Functionally, the maturation of OPCs to OLs is vital
to regain homeostasis as this conversion provides critical
structural, metabolic, and trophic support to neuronal axons
(Funfschilling et al., 2012; Lee et al., 2012; Duncan et al., 2021).
However, within the MS lesion environment, there are several
factors that can suppress proper OPC function, preventing
successful remyelination and, thus, potentially contributing
to neurodegeneration and dampening clinical improvement
(Compston and Coles, 2002; Franklin, 2002; Gruchot et al.,
2019).

The extracellular milieu in which OPCs reside can heavily
influence their ability to migrate, proliferate, and/or mature into
myelinating OLs. Within the MS lesion, there are a variety of
both resident CNS cells and infiltrating peripheral immune cells,
although the type and amount of each cell population varies
depending on the lesion type (Bo et al., 1994; Bruck et al., 1994,
1995; Trapp et al., 1998). While the etiology of MS is largely
unknown, it is well-established that subsets of infiltrating T
cells heavily contribute to pathology with the help of peripheral
monocytes, macrophages, and the CNS resident innate immune
cells, microglia. While there are multiple routes of entry, a
primary method of gaining access to the CNS by peripheral
leukocytes is to breach the endothelial (and pericyte) layer of the
blood-brain barrier (BBB). There, they are able to then penetrate
the glia limitans and the astrocyte endfeet of the neurovascular
unit, responding to localizing cues and upregulating adhesion
molecules via the release of inflammatory mediators (Lopes
Pinheiro et al., 2016; Prinz and Priller, 2017; Williams et al.,
2020). In addition to this intricate, pathological interplay among
cells of the periphery and CNS, there is significant heterogeneity
among the cell populations that contribute to this complex
neuroinflammatory lesion environment. While several T cell
subsets are known to perpetuate inflammation in MS and in
many experimental models of MS, particularly in acute phases of
disease, mice that lack CD4+ and CD8+ T cells have significant
deficits in remyelination (Bieber et al., 2003), highlighting
the complicated nature of neuro-immune interactions ongoing
in MS. Beyond the complexities of peripheral immune cell
contributions to pathology and repair, microglia and astrocytes
exhibit an exceptional amount of genetic, morphological, and
functional heterogeneity depending on microenvironmental
cues (Masuda et al., 2020; Escartin et al., 2021), which can
significantly influence how OPCs function as glia are highly
communicative with other glia (Peferoen et al., 2014; Liu et al.,
2020; Nutma et al., 2020) as well as with neurons (Stogsdill and
Eroglu, 2017). Here, we will discuss the underlying pathological
neuroinflammatory processes and factors that contribute to
neurodegeneration and MS progression, focusing on the role
of glial intercellular communication, the microenvironment,
and OPCs.
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MULTIPLE SCLEROSIS LESIONS

Between 1862 and 1865, colleagues Jean Martin Charcot and
Alfred Vulpian identified a form of spinal MS. Then, in April
of 1866, Charcot macroscopically described nearly identical
sclerotic lesions in both the brain and spinal cord during
an autopsy. He later presented microscopic characteristics of
these lesions, identifying a sharp boarder between the lesion
and normal-appearing tissue with a transition zone, and a
lesion center consisting of “greasy droplets” that resembled
myelin and a description of axonal degeneration (Zalc, 2018).
In more recent years, the characterization of MS lesions has
been extensively described (Lassmann et al., 1998; Trapp et al.,
1998, 2018; Kuhlmann et al., 2017), although new knowledge
regarding the lesion environment is continually being uncovered.
While lesions are found in both white and gray matter, they
are predominantly localized to white matter tracts and are
typically categorized into active, chronic active, and inactive,
with lesions often transitioning between types (Trapp et al.,
1998; Kuhlmann et al., 2017). Myelocortical lesions were also
recently described in the gray matter of a subset of MS
patients and may indicate that neuron degeneration can occur
independently of cerebral white matter demyelination (Trapp
and Ontaneda, 2018). Understanding the pathophysiology
underlying these various lesion types may hint at the potential
link between neuroinflammation and neurodegeneration and
uncover possible interventions to prevent permanent disability
in MS patients.

Active lesions are characterized as having a significant
amount of peripheral immune cell infiltration, often including
a substantial population of CD8+ T cells, CD20+ B cells, and
macrophages, along with some CD4+ T cells (Correale and Villa,
2010; Disanto et al., 2012; Machado-Santos et al., 2018). These
lesions also have involvement from CNS resident cells including
reactive astrocytes and activated microglia throughout the lesion,
with a high concentration of microglia ringing the lesion edge
(Frischer et al., 2015). Active lesions are highly inflammatory,
largely due to the quantity of infiltrating cells producing a myriad
of cytokines and other inflammatory factors (Cannella and
Raine, 1995; Kutzelnigg et al., 2005; Frischer et al., 2009), which
contribute to demyelination and eventual axonal loss (Trapp
et al., 1998). However, despite the inflammatory nature of active
lesions, oligodendrocytes often reappear during early stages of
remyelination in acute MS, contributing to partial or complete
recovery (Lassmann, 1983; Prineas et al., 1993; Raine and Wu,
1993; Lucchinetti et al., 1999, 2000; Barkhof et al., 2003; Patrikios
et al., 2006). RRMS is typically associated with predominately
active lesions and recovering/remyelinating plaques (Harris et al.,
1991; Thompson et al., 1991). In patients with RRMS, axon signal
conduction tends to be reduced within active lesions, which can
lead to a very heterogenous profile of symptoms, depending on
the CNS region in which the lesion is located (Kutzelnigg et al.,
2005; Campbell et al., 2012; Heß et al., 2020). During RRMS
and in early SPMS and PPMS, the majority of lesions are active
and chronic active. However, in more chronic stages of MS,
the proportion of lesions begin to shift more toward inactive
(Luchetti et al., 2018).

Chronic active lesions are often referred to as slowly
expanding or smoldering lesions and are characterized by fewer
infiltrating cells, further accumulation of microglia on lesion
edges, with fewer microglia located in the center of the lesion
compared to active lesions (Dal-Bianco et al., 2017; Absinta et al.,
2018; Calvi et al., 2020). While demyelination still occurs in
chronic active lesions, particularly along the lesion edge, there
is a significant reduction in the rate of demyelination. This is
accompanied by a reduction in remyelination relative to active
lesions (Absinta et al., 2019; Wang et al., 2019; Elliott et al.,
2020), with the center of the lesion remaining demyelinated and
unlikely to remyelinate (Calvi et al., 2020; Elliott et al., 2020;
Heß et al., 2020). In the center of chronic active lesions, reactive
astrocytes proliferate and form a dense network of overlapping
astrocytes with few axons, referred to as the glial scar (Voskuhl
et al., 2009; Sofroniew and Vinters, 2010; Jonkman et al., 2015;
Kuhlmann et al., 2017). In a recent in vivo cohort study, chronic
active lesions were detected by magnetic resonance imaging
using their characteristic rims and were associated with an
aggressive disease course and poorer clinical outcomes (Absinta
et al., 2019). Inactive lesions are associated with prolonged
disease duration, and unlike active and chronic active lesions, are
characterized by a lack of infiltrating cells and microglia, as well
as a stark loss of axons and near complete depletion of mature
oligodendrocytes, leading to their static nature (Brück et al., 1996;
Correale and Villa, 2010; Jonkman et al., 2015; Kuhlmann et al.,
2017). However, analogous to chronic active lesions, gliotic scars
consisting of astrocytes are still present (Kornek et al., 2000;
Peterson et al., 2001).

Active, chronic active, and inactive lesions occur
simultaneously in MS patients but tend to shift in predominance
depending on disease chronicity (Brück et al., 1996; Kornek
et al., 2000; Frischer et al., 2015; Jonkman et al., 2015; Kuhlmann
et al., 2017; Heß et al., 2020). Lesions tend to progress from active
to chronic active to inactive as an individual lesion progresses,
with some exceptions (Harris et al., 1991; Thompson et al.,
1991; Kuhlmann et al., 2017; Absinta et al., 2018). The most
notable exceptions are active lesions, which can completely or
partially remyelinate rather than progressing onto chronic active
depending on lesion severity (Frischer et al., 2015; Jonkman
et al., 2015). Additionally, inactive and later stage chronic active
lesions can be reactivated to a more active lesion phenotype
(Thompson et al., 1991; Kuhlmann et al., 2017; Absinta et al.,
2018), suggesting that inactive lesions may be reinfiltrated by a
new wave of macrophages/microglia. Interestingly, macrophages
occupying active and chronic active lesions often contain
lipids, presumably from ingesting myelin debris, and are
immunomodulatory rather than inflammatory in nature (Boven
et al., 2006). This heterogenous mix of lesion types, and thus
cellular composition, may partially account for the inefficacy
of currently approved immunomodulatory drugs in treating
SPMS and PPMS patients, as the role of inflammation can vastly
differ between lesion types (Bates, 2011; Ciotti and Cross, 2018).
Limiting inflammation in active lesions is certainly beneficial;
however, in lesions lacking significant inflammation, the impact
of immune modulation is likely minimal, or may even have
potentially negative consequences, in chronic active and inactive
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lesions. To this point, remyelination most frequently occurs
around the borders of lesions where inflammation is most
pronounced (Brück et al., 1996; Jonkman et al., 2015; Wang et al.,
2019; Calvi et al., 2020); and, many animal studies have revealed
a critical role for immune components in CNS remyelination and
repair, particularly during chronic stages of disease. To better
understand the complex nature of the CNS environment during
MS, several murine models have been developed and are critical
in uncovering novel therapeutic modalities and elucidating
multiple aspects of disease.

MURINE MODELS OF MS

Progressively sophisticated animal models of human
neurological pathology are continuously being developed and
improved. These models make it feasible to examine complex
cellular interactions within the CNS and their contributions to
neuroinflammation and disease progression (Kipp et al., 2017).
While no animal model perfectly recapitulates observed MS
pathology, there are components of any given model which
are useful, replicating different clinical, immunological, and
histological aspects of human disease. Genetic manipulations
using the Cre/lox and other systems in combination with some
murine models of MS are valuable tools in elucidating specific
molecular pathways important for MS pathology and repair.

Experimental Autoimmune
Encephalomyelitis (EAE)
EAE is the most commonly used animal model for MS, sharing
many features of the human disease, with the inflammatory
components being of particular interest (Borjini et al., 2016).
The classical EAE phenotype, characterized by ascending flaccid
paralysis and preferential immune infiltration of the spinal
cord, has been widely utilized since its characterization in the
1930s (Croxford et al., 2011). Ascending paralysis correlates
with peripheral immune infiltration and inflammation in the
lumbar region of the spinal cord, which becomes progressively
more inflamed throughout the acute phase of disease (Miller
et al., 2010). Clinical signs, most notably, an abnormal gait, tail
paralysis, and hindlimb paralysis, are scored using a standard
system. In general, the EAE model yields high disease incidence
with a consistent and robust disease course that is very
replicable (Stromnes and Goverman, 2006), and though not fully
understood, is nonetheless well-characterized. Shared aspects
of EAE and MS pathology include the targeted destruction
of myelin accompanied by axonal degradation, which results
in multiple disseminated lesions, predominantly located in
perivascular spaces (Kornek et al., 2000). Likewise, both EAE
and MS share common temporal characteristics, evidenced by
inflammatory lesion development, followed by demyelination,
gliosis, decreased frequency of lesion-associated mononuclear
cell infiltrates, and limited remyelination (Storch et al., 1998).
However, EAE is induced via external immunization while
MS occurs spontaneously (Stromnes and Goverman, 2006). As
such, EAE can represent many inflammatory characteristics of
MS including peripheral immune cell priming, followed by

CNS infiltration, and subsequent CNS resident cell responses
(Baxter, 2007). Model heterogeneity exists within EAE, with
various antigenic targets and murine strains being used.
The most common immunizing antigens include myelin-
associated glycoprotein, myelin basic protein, oligodendrocytic
basic protein, myelin oligodendrocyte glycoprotein (MOG), and
proteolipid protein (PLP). The target of choice is dependent
on the genetic background of the strain being used. EAE is
most commonly induced in rodents, which have an easily
and consistently replicable disease induction, with mice used
preferentially over rats in the last few decades (Miller et al., 2010;
Croxford et al., 2011).

EAE is primarily considered a CD4+ T cell-mediated disease
(Van Kaer et al., 2019), although the particular role of various
CD4+ T helper cell subsets and, to an extent, CD8+ cytotoxic
T cells are also well-appreciated (Sun et al., 2001; Sonobe et al.,
2007). However, like MS, EAE has a complex immune profile in
which natural killer T cells (Jahng et al., 2001; Singh et al., 2001;
Denney et al., 2012), γ δT cells (Blink and Miller, 2009), mucosal
invariant cells (Pál et al., 2001; Mars et al., 2002; Croxford
et al., 2006), and B cells (Matsushita et al., 2008; Pöllinger et al.,
2009; Pierson et al., 2014; Harp et al., 2015) each contribute
to pathology. Further, other adaptive and innate leukocytes can
have differing roles, imposing either regulatory or pathogenic
functions depending on the disease state, which have alternate
contributions to EAE pathogenesis (Mcginley et al., 2018; Van
Kaer et al., 2019).

There are two primary methods commonly used to induce
EAE: active immunization using a myelin antigen with adjuvants
(typically complete Freund’s adjuvant and pertussis toxin) and
passive induction via adoptive transfer of activated, myelin-
specific T cells from an immune-primed donor into a naïve
recipient without the use of adjuvants (Stromnes and Goverman,
2006). Actively induced EAE in the C57Bl/6 mouse strain is
typically a biphasic model, with an induction phase and an
effector phase (Miller et al., 2010). During induction, similar
to early lesions in RRMS, focal vascular disruptions and
increased BBB permeability precede microglial activation and
peripheral leukocyte infiltration (Alvarez et al., 2015; Barkauskas
et al., 2015). Next, myelin-specific T cells extravasate across
the endothelial layer and into the CNS and initiate pro-
inflammatory signaling cascades to promote the recruitment
of B cells (Furtado et al., 2008; Matsushita et al., 2008),
innate immune cell infiltration, and T cell reactivation (Pierson
et al., 2014). These primed T helper cells secrete a number of
cytokines, including interferon (IFN)γ and tumor necrosis factor
(TNF)α, which activate microglia and peripheral macrophages
(Ponomarev et al., 2005; Ajami et al., 2011). Of note, OPCs
are also responsive to (Rodgers et al., 2015) and secrete
cytokines (Moore et al., 2015) and accumulate perivascularly,
contributing to BBB compromise during EAE (Girolamo et al.,
2019). Further, this inflammatory cytokine cascade leads to
increased phagocytic activity by activated mononuclear cells and
enhanced cytotoxic effects of cytokines secreted by CD4+ T
cells and monocytes, enhancing the demyelination of axons,
eventual axonal transection, and neuronal cell death (Miller
et al., 2010). Even as the acute inflammatory response fades
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and levels of cellular infiltrates decreases, axons continue to
degenerate. In C57Bl/6J mice immunized with the myelin
peptide MOG35−55, axonal density was reduced within lesions
at early and chronic time points and significant axonal loss
was observed in both the gray matter and normal-appearing
white matter, which was associated with clinical impairment
(Herrero-Herranz et al., 2008). Similarly, axonal pathology is
a hallmark of MS and a substantial contributor to irreversible
clinical disability (Trapp et al., 1998). Passive EAE via adoptive
transfer of activated, myelin-specific T cells into naïve hosts
can be used to study the effector phase without introducing
potentially confounding effects of the adjuvants used for active
immunization (Brocke et al., 1996; Stromnes and Goverman,
2006). Additionally, compared to active EAE, passive EAE
is highly synchronous and consistent. Although a limitation
of passive EAE is limited microglial activation, the absence
of sustained demyelination and variable axonal injury, it is
extremely useful for the study of immune control mechanisms,
T cell-mediated neuroinflammation induction, and immune cell-
specific mechanisms of tissue injury (Kipp et al., 2012; Lassmann
and Bradl, 2017).

There are several variations of EAE aside from the C57Bl/6
model used to study various aspects of MS pathology. Other
commonly used models include SJL/J mice immunized against
the myelin peptide PLP139−151 (Tuohy et al., 1989). This model
has a number of similarities with the C57Bl/6 EAEmodel in terms
of pathology; however, an advantage to the SJL/J model is that
mice develop a progressive relapsing-remitting disease course
(Whitham et al., 1991; Miller and Karpus, 2007). Relapsing-
remitting EAE can be induced via active immunization or by
transfer of activated PLP-specific T cells, the latter of which is
associated with epitope spreading (McRae et al., 1995) or the
development of immunity to secondary endogenous antigens
following initial immune priming to a self-antigen (Vanderlugt
and Miller, 1996). While this model suffers from the lack of
genetic deletion strategies, it is useful for testing novel treatment
strategies with respect to additional clinical parameters including
reductions in relapse rate. Finally, some models of EAE yield
an alternative clinical presentation, referred to as atypical EAE,
which often display ataxia, head tilting, and axial rotation
associated with parenchymal hindbrain inflammation (Simmons
et al., 2013). This is most often seen in animals with a disruption
in IFNγ signaling (Wensky et al., 2005; Lees et al., 2008; Liu et al.,
2015). Some models present with a mixed phenotype developing
both atypical and classical signs (Pierson et al., 2012), mimicking
the heterogenous regional localization of MS lesions in patients.

Viral Encephalomyelitis
Several viruses initiate chronic infections in the murine CNS,
serving as useful models for the study of axonal damage and
inflammatory-induced demyelination. Two well-characterized
demyelinating viral models involve encephalomyelitis induced
by the RNA viruses Theiler’s murine encephalomyelitis virus
(TMEV), a member of the non-enveloped Picornaviridae
family, and mouse hepatitis virus (MHV), a member of the
enveloped Coronaviridae family (Miller et al., 2001; Stohlman

and Hinton, 2001; Bergmann et al., 2006; Mecha et al.,
2013).

TMEV
Similar to EAE, the pathology of TMEV-induced
encephalomyelitis is dependent on the dose administered,
the viral strain, and the genetic background of the mouse. There
are highly neurovirulent strains, such as GDVII and FA, which
induce an acute, often fatal encephalitis (DePaula-Silva et al.,
2017; Savarin and Bergmann, 2017; Libbey and Fujinami, 2021).
There are also attenuated variants of TMEV, including BeAn
and the Daniel’s strain (DA). Infecting the CNS of susceptible
SJL/J mice with an attenuated strain generates a biphasic CNS
pathology, while infection of C57Bl/6J induces an acute infection,
which is rapidly cleared (Zoecklein et al., 2003; Richards et al.,
2011). Therefore, TMEV intracerebral infection of SJL/J mice is
the most commonly used MS animal model as it produces acute
encephalomyelitis followed by a chronic demyelinating phase,
primarily in the spinal cord. The chronic demyelinating stage
is called TMEV-induced demyelinating disease (TMEV-IDD)
(Bröer et al., 2016). Unlike other models, TMEV-IDD lacks
substantial remyelination due to its progressive nature, so it
does not easily mirror a relapsing-remitting phenotype (Ulrich
et al., 2008). Thus, TMEV most effectively models MS types with
hallmark chronic, progressive immune-mediated demyelination
with remyelination failure as TMEV-IDD animals show a
continuous increase in motor disability which coincides with
increases in white matter damage (Sun et al., 2015; Leitzen
et al., 2019). The number of OPCs within TMEV-IDD lesions
is transiently higher than homeostatic levels. GFAP+ cells are
likewise present in elevated numbers in spinal cord lesions.
Interestingly, lesion-associated NG2+ OPCs can co-express
GFAP or CNPase suggesting potential alternative routes of
OPC differentiation, which may affect remyelination capacity
(Ulrich et al., 2008). Both the BeAn and DA strains can induce
TMEV-IDD, but there are strain-related differences in pathology.
BeAn infection in susceptible SJL/J mice develop clinical signs
similar to those observed in EAE, including irregular gait and
hind limb paralysis. DA-infected mice develop the same clinical
features, but not until 140–180 days post-infection (Oleszak
et al., 2004).

Following the acute phase of TMEV-DA infection, viral
replication persists at low levels in macrophages and microglia
(Clatch et al., 1990; Qi and Dal Canto, 1996; Jelachich and Lipton,
1999) and to a lesser extent in astrocytes and OLs (Zheng et al.,
2001). There is immune infiltration in the hindbrain subcortical
gray matter but little to no white matter infiltration throughout
the acute phase (Oleszak et al., 2004). During the chronic phase,
depending on viral dosage and host age, susceptible SJL/J mice
develop MS-like chronic neuroinflammation which presents as
functional motor deficits. TMEV-DA-induced lesions mimic
features of MS cortical lesions in that chronic demyelinating
white matter has extensive peripheral leukocyte infiltrates, the
majority of which are CD4+ (Palma et al., 1999; Mohindru
et al., 2006) and CD8+ T cells (Begolka et al., 2001; Lyman
et al., 2004), though some monocytes/macrophages (Mack et al.,
2003) and comparably few B cells are also present (Gilli et al.,
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2015). In particular, PLP-reactive CD4+ Th1 cells have been
implicated in the perpetuation of disease (Katz-Levy et al., 2000)
and epitope spreading (Miller et al., 1997; Mcmahon et al.,
2005) has been demonstrated to strengthen myelin antigenic
responses at 2–4 weeks (McCarthy et al., 2012; DePaula-Silva
et al., 2017). This leads to extensive white matter damage and
axonal loss in TMEV-infected mice, particularly in the thoracic
and cervical spinal cord, as early as 7 days post-infection (Leitzen
et al., 2019). Over the following weeks, damaged axons are
surrounded by locally activated macrophages/microglia without
peripheral T cell recruitment or demyelination, which does not
occur until the chronic phase. Interestingly, areas of axonal
damage corresponded to chronic demyelination late in infection
(Tsunoda and Fujinami, 2010), which may mirror aspects
of MS where neuronal death precedes demyelination and T
cell involvement.

MHV
Studies employing MHV-induced demyelination have largely
focused on two neurotropic strains: the mildly neurovirulent
and hepatotropicMHV-A59 strain and a neuroattenuated variant
of the lethal JHM strain, designated 2.2-V-1 (Fleming et al.,
1986; Bergmann et al., 2006; Templeton et al., 2008; Bender
and Weiss, 2010; Bender et al., 2010). Following intracerebral
inoculation, CNS cells become acutely infected. After infection,
chronic demyelination occurs. Clinical signs such as hind limb
paralysis correlate with neuroinflammation and white matter
damage (Savarin and Bergmann, 2017). The virus infects and
replicates within ependymocytes, microglia, astrocytes, and OLs,
comparatively sparing neurons (Wang et al., 1992). Control
of virus in astrocytes and microglia/macrophages is perforin-
mediated (Lin et al., 1997; Bergmann et al., 2004), while
IFNγ controls viral replication within OLs (Parra et al., 1999;
Bergmann et al., 2004). The MHV-A59 strain infects neurons
and glial cells and induces a mild encephalitis (Lavi et al.,
1999; Phillips et al., 2002), whereas the JHM v2.2-1 variant is
more gliatropic (Lin et al., 1997; Bergmann et al., 2004), largely
sparing neurons, and causes a more severe encephalitis which
progresses to hind limb paralysis from which the majority of
mice recover (Rempel et al., 2004; Bender and Weiss, 2010).
Despite the distinct cellular tropisms, both virus strains spread
from the brain to the spinal cord and infectious virus is generally
controlled within 10–14 days. Of note, viral RNA persists in
spinal cords for several months, up to a year post-infection in
the case of MHV-JHM v2.2-1 (Savarin and Bergmann, 2017).
Demyelination is prominent in spinal cord white matter 14
to 30 days post-infection, after initial virus control, depending
on the MHV strain and age at infection. A caveat is that
many MHV-A59 studies are carried out in 4–5 week-old mice,
whereas MHV-JHM v2.2-1 studies administer virus to 6–7 week-
old mice preempting direct comparisons (Lavi et al., 1984;
Fleming et al., 1987; Jordan et al., 1989; Templeton and Perlman,
2007). Both infections cause the upregulation of numerous
chemokines and cytokines to enhance recruitment of various
leukocytes including neutrophils, monocytes, natural killer cells,
CD4+ and CD8+ T cells as well as various B cell subsets in a
regulated, temporal pattern, yet the magnitude of inflammatory

mediators as well as leukocyte subsets is dependent on the
virus variant (Williamson et al., 1991; Bergmann et al., 2001;
Liu and Lane, 2001; Tschen et al., 2002). CD8+ T cells, with
the help of CD4+ T cells, are the main effector cells in viral
control (Phares et al., 2012). Despite a potent T cell mediated
response, upregulation of inhibitory ligands, like programmed
death-ligand 1, counteract exuberant effector function to limit
pathology potentially contributing to persistence (Phares et al.,
2010; Puntambekar et al., 2011). Demyelination is immune-
mediated as immunodeficient (SCID and RAG-deficient) mice
do not develop overt demyelination (Houtman and Fleming,
1996; Wu and Perlman, 1999) and both virus-specific CD4+

and CD8+ T cells alone can mediate demyelination (Bergmann
et al., 2004; Stohlman et al., 2008). Moreover, microglia
and macrophages have been shown to mediate demyelination
(Savarin et al., 2016). This overt demyelination lends itself to
elegant remyelination studies as chemokines like CXCR2 are
highly upregulated and are critical to OPC-mediated repair
(Marro et al., 2019; Skinner and Lane, 2020). Despite an overall
reduction in T cells during viral persistence, new lesions are
continuously formed as shown by lipid laden myeloid cells (Wu
et al., 2000; Liu et al., 2001; Rempel et al., 2004), consistent with
MS lesions.

Chemical or Toxin-Induced Demyelination
Models
Chemical and toxin-mediated demyelination models largely
lack the immune component relevant to EAE, TMEV, and
MHV. Inflammatory models indeed more closely resemble
MS pathology in many ways, but are more complex and
are less consistent in terms of demyelination chronology and
lesion localization, extent, and characteristics. Inflammation-
independent models are nonetheless useful for in-depth analyses
of CNS resident cells engaged in the de- and remyelination
process and are often employed to investigate therapeutics which
limit demyelination or stimulate remyelination (Procaccini
et al., 2015). Gliotoxic agents ethidium bromide (EtBr) and
lysolecithin induce focal demyelination at their injection site,
while the systemically administered copper chelator cuprizone
(CPZ) induces reversible white and gray matter demyelination
throughout the brain (Blakemore and Franklin, 2008; Bai et al.,
2016; Lubetzki et al., 2020).

EtBr and Lysolecithin
The EtBr model has seen extensive use in rats and remains
preferentially a rat model, though it has recently been used in
mice, revealing subtle differences in pathology between the two
rodents. EtBr is a DNA intercalator and its toxicity preferentially
impacts astrocytes by restricting their ability to release trophic
factors leading to associated OLs to die, along with the affected
astrocytes, while largely sparing neurons. The death of these glia
in and around the injection site results in localized demyelination
(Torre-Fuentes et al., 2020). Immunoreactive GFAP+ astrocytes
are then recruited, but remain confined to the lesion perimeter.
EtBr injection into murine ventral spinal cord white matter
induces hind limb motor deficits, similar to those seen in other
models, which can persist with accompanying CD45+ infiltrating
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immune cells and axonal loss in chronic stages (Kuypers et al.,
2013). While EtBr has been used in mice, the studies outlining
its use are limited. Lysolecithin is more commonly used and as a
result has been more thoroughly characterized.

Lysolecithin is a phospholipase A2 activator, which, much
like EtBr, induces a highly reproducible focal demyelination in
CNS white matter (Procaccini et al., 2015). The toxin acts as
a detergent-like agent directly deteriorating myelin sheaths by
solubilizing the lipid membrane, effectively destroying myelin
while sparing other cells and cellular components. As a result,
OPCs are spared and lysolecithin-induced lesions remyelinate
faster than most other demyelination models (Bjelobaba et al.,
2018), with nearly all axons encased in myelin sheaths by
day 23 post-injection (Jeffery and Blakemore, 1995), offering a
consistent, timely, and reproducible method for studying OPCs
in the context of de- and remyelination events. Interestingly,
while demyelination has been described as being T and B cell-
independent, CD4- and CD8-deficient mice had significantly
reduced remyelination at the injection site compared to controls,
indicating T cells may be involved in myelin repair and proper
OPC function (Bieber et al., 2003). Unlike EtBr and CPZ,
lysolecithin is not considered to be fully immune-independent,
acting as a chemoattractant to monocytes and initiating a limited
focal inflammatory response (Torre-Fuentes et al., 2020) and
remyelination that is accompanied by significant astrogliosis
(Jeffery and Blakemore, 1995).While useful, EtBr and lysolecithin
are technically demanding models and de- and remyelination is
restricted to the site of injection.

Cuprizone
CPZ, a low molecular weight copper chelator, is systemically
administered to mice typically by incorporating it into standard
chow. Copper is an enzymatic cofactor necessary for many
metabolic functions, including ATP production, and while
its exact mechanism of action is unknown, it is generally
accepted that the chelation of copper is highly disruptive to
the robust cellular metabolism of OLs (Praet et al., 2014).
Within myelinating OLs, it can cause the formation of cellular
megamitochondria, ATP shortages, reactive oxygen species
build up, and endoplasmic reticulum stress, all of which OLs
are particularly vulnerable to due to their highly intensive
metabolism required for myelin production. Additionally,
disruption of oxygen scavenging by CPZ can be exacerbated
and catalyzed via the Fenton reaction by the high amount
of sequestered iron within cells, producing more reactive
oxygen species (Praet et al., 2014). T cell suppression occurs
during demyelination, which allows the effects of CPZ to
be discriminated from particular immune compartments.
Demyelination in both the gray and white matter of the
brain are highly reproducible, synchronous, and anatomically
distinct during the time mice are fed CPZ-embedded chow
(Matsushima and Morell, 2001; Torre-Fuentes et al., 2020)
unlike the demyelination that is seen in EAE or in virally-
induced demyelination. Withdrawal of the CPZ diet also allows
consistent remyelination. This feature enables precise timing
and elucidation of specific mechanisms, particularly those active
in CNS glia, during de- and remyelination. While peripheral

immune cell infiltration is limited in this model, CXCR2+

neutrophils are thought to be critical for demyelination (Liu
et al., 2010). CPZ is therefore ideal for the study of de- and
remyelination with a focus on resident CNS cells and perhaps
an ideal model for studying a “two-hit” mechanism, relevant in
MS pathology.

Like many models for MS, there are differences in CPZ-
induced pathology depending on the CPZ dosage and mouse
strain used. Using 0.2% CPZ chow in 8–10 week-old C57Bl/6J
mice is the most commonly used and well-characterized models.
In C57Bl/6 mice, 0.2% CPZ induced reliable and complete
demyelination of the caudal corpus callosum and superior
cerebellar peduncle without significant weight loss or liver
toxicity (Hiremath et al., 1998). The typical timeframe of CPZ
exposure is 5–6 weeks, with early demyelination occurring
as early as 3 weeks with a significant presence of NG2+

OPCs and microglia within the corpus callosum (Hiremath
et al., 1998; Mason et al., 2000; Williams et al., 2014). This is
accompanied by significant gliosis, largely due to proliferating
astrocytes. These astrocytes are thought to contribute to damaged
myelin clearance via recruitment of microglia as ablation of
GFAP+ astrocytes during CPZ intoxication resulted in decreased
microglial activation, excess myelin debris, impaired OPC
proliferation, and a delay in remyelination (Skripuletz et al.,
2013). Microglia and astrocytes also significantly upregulate
interleukin (IL)-1β, which is thought to induce the release of
insulin-like growth factor (IGF)-1 during CPZ demyelination
(Mason et al., 2001; Matsushima and Morell, 2001), suggesting
a role for these glia in a return to homeostasis. A clear perk of the
CPZmodel of demyelination is that remyelination occurs rapidly
and spontaneously following the cessation of CPZ treatment
with sequential myelin proteins expressed as early as 1 week
post-CPZ cessation (Lindner et al., 2008). Importantly, chronic
exposure to CPZ (12–16 weeks) results in axonal damage, even
with concurrent remyelination. Although, remyelination using
this chronic paradigm is delayed by 2-fold compared to mice fed
CPZ for 6 weeks (Lindner et al., 2009). Although remyelination
occurs in MS lesions, it is often inhibited, particularly in chronic
disease stages; thus, this model represents a plausible way to
elucidate potential mechanisms of remyelination failure in MS.

Other variations of the CPZ model include combining
components of EAE induction to establish MS-like lesions in the
brain. In most iterations of EAE, there is little to no immune cell
infiltration in the cerebrum; however, immunization of C57Bl/6
mice fed CPZ with MOG35−55 resulted in significant lesions,
characterized by T cell accumulation and axonal damage in
the demyelinated corpus callosum, which were detectable by
magnetic resonance imaging (Boretius et al., 2012). Another
variation of this combined approach utilizes mice pre-treated
with CPZ for 3 weeks, followed by standard chow for 2 weeks
to establish focal lesions. Mice were then immunized with the
MOG35−55 peptide, which induced significant forebrain lesions
within white matter tracts and cortical and subcortical gray
matter. Further, in addition to demyelination, these lesions
exhibited discontinuation of the glia limitans, infiltration of
neutrophils and granulocytes, and focal axonal damage (Scheld
et al., 2016; Ruther et al., 2017). Combining passive transfer
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EAE with CPZ demyelination revealed that adoptive transfer
of myelin-reactive T cells into CPZ-fed mice had significant
immune cell infiltration and preservation of demyelinated axons,
though these axons were reduced in diameter (Baxi et al.,
2015). Other models using CPZ include inducing biochemical
modifications to myelin to produce a secondary immune
response, which resulted in myelin-reactive splenocytes and MS-
like lesions (Caprariello et al., 2018). These models are important
as they reflect a “neurodegeneration first” model in which brain-
intrinsic pathology triggers the peripheral immune response.

OPCs IN NEUROINFLAMMATION AND
NEURODEGENERATION

A vital role for OPCs has been well-described with respect
to remyelination in MS lesions and in several experimental
models (Franklin and Ffrench-Constant, 2008; Chang et al.,
2012; Staugaitis et al., 2012; Hughes et al., 2013; Young et al.,
2013; Kremer et al., 2015). It has also recently been shown
that heterogeneity exists between OLs during MS, which may
contribute to disease progression (Jakel et al., 2019) or could
be a result of OPC plasticity to repair damage (Foerster et al.,
2019). However, there is also evidence of additional non-
remyelinating functions of OPCs that may actively contribute
to the development of neuroinflammation. Initial demyelinating
insults stimulate recruitment of OPCs into early lesion sites and
induce proliferation (Boyd et al., 2013; Takahashi et al., 2013).
While this cellular expansion can lead to the replenishment
of OLs through activation of regenerative genes such as Olig2
and Sox2 (Zhao et al., 2015; Tiane et al., 2019), a deficiency
in the ability of OPCs to differentiate into OLs contributes to
demyelination and axonal damage within lesions, leading to
neurodegeneration (Chang et al., 2002; Boyd et al., 2013; Gruchot
et al., 2019). Inflammation has been identified as a key factor in
the suppression of OPC differentiation, as differential expression
of surface receptors allows OPCs to have a very broad and
diverse response to cytokine stimulation (Schmitz and Chew,
2008; Moore et al., 2015). While activation of inflammatory
pathways in OPCs is associated with cytotoxicity as well as
stunted differentiation and maturation (Moore et al., 2015), it
also leaves them primed to modulate immune function.

Under homeostatic conditions, OPCs express low levels of
inflammatory genes, which are normally seen in microglia, that
are critical for environmental surveillance and movement
to areas of demyelination (Fernandez-Castaneda and
Gaultier, 2016; Voronova et al., 2017). In a disease state
such as MS, expression of these genes can be significantly
upregulated, potentially contributing to participation of OPCs
in neuroinflammation, and further myelin and axon damage.
Single-cell RNA sequencing of OPCs isolated from spinal
cord tissue of mice with EAE revealed transcriptomic splicing
that yielded upregulated disease-associated transcripts. Major
histocompatibility (MHC) class I and II genes were highly
expressed in EAE-derived OPCs compared to those in control
mice, which was mediated by secretion of IFNγ by invading
leukocytes (Figure 1). Furthermore, OPCs from EAE mice

had increased phagocytic capacity as well as an ability to
promote proliferation of and cytokine production from CD4+

memory and effector T cells via MHC II antigen presentation.
Importantly, OPCs stimulated with IFNγ and/or MOG35−55

were not able to induce proliferation of naïve CD4+ T cells
(Falcao et al., 2018), suggesting that priming of T cells first
by professional antigen presenting cells is necessary for T cell
interactions with antigen presented by OL lineage cells.

Similar relationships between OPCs and CD8+ T cells have
been demonstrated using the CPZ model of demyelination.
Adoptive transfer of myelin reactive T cells following CPZ
treatment revealed that exposure to IFNγ upregulates MHC
I antigen presentation machinery and immunoproteasome
subunits in OPCs, promoting TNFα and IFNγ expression by
CD8+ T cells. Perforin and granzyme secretion were also
stimulated, promoting OPC-targeted cell death in the corpus
callosum in vivo (Figure 1). Further, analysis of postmortem MS
tissue revealed abundant expression of the immunoproteasome
gene PSMB8 in SOX10+ OL lineage cells specifically in
demyelinated white matter lesions (Kirby et al., 2019). This
suggests that immunoproteasome upregulation in OPCs may
impair remyelination 2-fold: by active destruction of OPCs and
shifting OPCs toward an immune-reactive state, contributing
to chronic neurodegeneration observed in progressive MS
patients (Basler et al., 2014; Kirby et al., 2019). Activation of
immunomodulatory function in relation to antigen presentation
by OPCs is also linked to extracellular receptors involved
in phagocytosis and cytokine production, such as lipoprotein
receptor-related protein 1. Further, specific deletion in OLs and
OPCs led to a reduction of both infiltrating cells and MHC I
expression by OPCs in EAE and in CPZ (Fernández-Castañeda
et al., 2020). Together, these studies suggest that OPCs are active
contributors to ongoing inflammation by direct stimulation of
autoreactive T cells via myelin antigen presentation during MS
and in several models of demyelination.

In addition to antigen presentation molecules, OPCs have
also been shown to produce select inflammatory cytokines and
chemokines in areas of demyelination. Gene expression analysis
of OPCs from control and CPZ-treated mice demonstrated
increased expression of IL-1β in activated PDGFRα+ OPCs from
demyelinated regions (Moyon et al., 2015; Figure 1). IL-1β is
a strong inducer of the innate immune response and has been
detected within lesions and in the cerebrospinal fluid (CSF) ofMS
patients (Dujmovic et al., 2009; Burm et al., 2016). Further, OPCs
were found to be a prominent producer of IL-17 during EAE
as deletion of the upstream signaling molecule Act1 specifically
in NG2+ cells drastically reduced EAE severity. Importantly, the
same was not true for other CNS cells including neurons, mature
OLs, and astrocytes (Kang et al., 2013). Of note, this reduction
in EAE severity due to decreased OPC-derived IL-17 was likely
not a direct effect on OPCs themselves since it was later found
that IL-17A caused OPCs to exit the cell cycle and differentiate
(Rodgers et al., 2015). In addition to the secretion of cytokines,
chemokines involved in immune cell recruitment were also
expressed by OPCs derived from the brains of mice treated with
CPZ. These chemokines also included monocyte and microglia
localizing cues like CCL2, which was significantly upregulated
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FIGURE 1 | OPCs contribute to the perpetuation of inflammation, leading to enhanced neurodegeneration in MS. During neuroinflammation, IFNγ can upregulate

both MHC I and II antigen presentation molecules on OPCs to promote functional antigen presentation to CD4+ and CD8+ T cells, respectively. The antigen-MHC I

complex can then induce TNFα and IFNγ expression by CD8+ T cells, as well as perforin and granzyme secretion, which can contribute to localized OPC cell death.

OPCs also promote proliferation of and cytokine production by CD4+ memory and effector T cells via MHC II antigen presentation. TNFα produced by microglia in

response to IFNγ signaling by T lymphocytes can also impair OPC differentiation. Excess extracellular IFNγ is associated with inhibition of OPC maturation and

oligodendrocyte cell death. OPC expression of IL-1β is also increased by IFNγ signaling, and stimulates IL-6 production by astrocytes, which can directly reduce OPC

differentiation capacity. IL-1β produced by OPCs may also contribute to neuronal cytotoxicity directly by enhancing cytotoxic glutamatergic synaptic transmission.

Myelin debris from degenerating myelin sheathes repel OPCs, inhibiting recruitment and maturation. Taken together, in a neuroinflammatory state, there are many

barriers limiting axonal support, repair, and remyelination by OL lineage cells that are perpetuated by OPCs themselves. Created with BioRender.com.

by Olig1+ cells within active, demyelinating lesions and along
the borders of chronic lesions (Moyon et al., 2015). Taken
together, the upregulation of genes associated with chemotaxis
as well as modulation of inflammatory responses demonstrates a
more direct role for OPCs in neuroinflammation through active
participation in immune cell recruitment.

Another way OPCs are known to contribute to
neuroinflammatory processes is through their dynamic
interactions with the CNS vasculature. Active lesion analysis
of MS patient tissue showed OPC clustering around vessels,
indicating impaired perivascular migration. Grouping of OPCs
at these sites was found to result from abnormal Wnt signaling
that prevented detachment of OPCs from vessels. This was
demonstrated in several in vivo models and caused improper
astrocytic endfeet interactions with the vasculature and altered
integrity of endothelial tight junctions via release of Wif1, which
reduced claudin-5 expression. The inability of OPCs to detach
from CNS vasculature led to a deficiency in OPC recruitment to

demyelinated areas as well as disruption of the BBB (Niu et al.,
2019). OPCs have also been shown to mediate opening of the
BBB just prior to demyelination in white matter injuries through
upregulation of matrix metalloproteinase (MMP)9 in response
to IL-1β (Seo et al., 2013). MMP9 mediates proteolysis of the
basal lamina and tight junction proteins, which can contribute to
BBB permeability and ultimately result in an influx of peripheral
immune cells, further contributing to demyelination and chronic
neuroinflammation (Mirshafiey et al., 2014).

Sustained inflammatory activity by OPCs may also contribute
to neurodegeneration as a deviation toward this phenotype
contributes to a dysregulation in myelin production, which
critically impacts axonal survival and proper axon conduction
(Lubetzki and Stankoff, 2014; Seidl, 2014). Specifically, OPCs in
an immune reactive state have a reduced ability to differentiate,
reducing their capacity to remyelinate lesioned areas due to a
decline in newly formed OLs. Cytokine production by OPCs,
such as the production of IL-1β, may impact differentiation
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to OLs, as it is known to stimulate a number of cytotoxic
cytokines from activated immune cells and glia, including IL-
6 by astrocytes, which can inhibit OL maturation (Schonrock
et al., 2000; Moore et al., 2015; Petkovic et al., 2016; Figure 1).
TNFα produced by microglia in response to IFNγ signaling by T
lymphocytes can also impair OPC maturation through processes
such as mitochondrial dysfunction or cytotoxicity (Kim et al.,
2011; Bonora et al., 2014). Likewise, excess extracellular IFNγ

during acute inflammatory conditions has been associated with
inhibition of OPC maturation and induction of OL cell death
during MS (Vartanian et al., 1995; Falcao et al., 2018; Kirby
et al., 2019; Figure 1). Furthermore, chronic MS lesions typically
contain immature OPCs suggesting that OPCs are prevented
from differentiating, rather than lost, and this may be a primary
contributor to remyelination failure in some neurodegenerative
diseases, including MS (Chang et al., 2002; Kuhlmann et al.,
2008).

Finally, OPCs can contribute to neurodegeneration by directly
or indirectly impacting neuron survival and function via cytokine
signaling. IL-1β produced by OPCs may contribute to neuronal
cytotoxicity as excessive IL-1β has been shown to enhance
cytotoxic glutamatergic synaptic transmission, which results
in p53-mediated apoptosis (Rossi et al., 2014a) (Figure 1).
Additionally, stimulation of cytokine production fromCD4+ and
CD8+ T cells by OPC antigen presentation can negatively impact
neuronal health. Notably, IFNγ has been heavily implicated in
MS pathology, as it is known to promote Th1 responses (Olsson,
1992; Fletcher et al., 2010), but it may also impact neurons
directly by enhancing glutamate toxicity through dysregulation
of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA)
receptors, which results in calcium influx, nitric oxide (NO)
production, and a decrease in mitochondrial function (Mizuno
et al., 2008). Moreover, release of TNFα from T cells and
other immune cells can also affect glutamatergic transmission in
neurons by promoting sustained AMPA receptor activity. This
sustained activity results in dendritic spine loss and alterations
in synaptic activity, which also contributes to neurodegeneration
(Centonze et al., 2009). As a result, the prevention of OPC
immune reactivity presents an interesting avenue for the
reduction of neuroinflammation and neurodegeneration, and
may lead to novel treatment options for MS patients.

OPC INFLUENCERS DURING
NEUROINFLAMMATION AND
NEURODEGENERATION

Many of the factors that influence OPC function during
neuroinflammation are downstream of the cytokines IFNγ,
TNFα, and IL-1β (Table 1). While the inflammatory effects of
these cytokines actively contribute to microglial-led degeneration
(Brück et al., 1996; Pang et al., 2010; Domingues et al., 2016;
Cignarella et al., 2020), these same factors are necessary not
only for effective myelin debris clearance (Lampron et al., 2015),
but also for providing many of the factors responsible for the
migration of OPCs and fostering their maturation (Nicholas
et al., 2002; Pasquini et al., 2011; Vogel et al., 2013). Many of these

factors are secreted by other CNS resident cells including, but not
exclusive to, microglia, astrocytes, and neurons (Table 1).

Cytokines
IFNγ is known to drive acute autoimmune neuroinflammation
by activating antigen presenting cells, promoting the
differentiation of Th1 cells, and regulating peripheral immune
cell infiltration into the CNS (Lees et al., 2008; Fletcher
et al., 2010). Astrocytes treated with IFNγ can promote the
proliferation and differentiation of myelin-specific Th1 cells
(Dong and Benveniste, 2001) and upregulate localizing cues to
direct CNS immune cell entry during acute EAE (Rosenman
et al., 1995; Williams et al., 2020). While the most characterized
effects of IFNγ during acute disease are primarily pathogenic,
the role of IFNγ signaling during chronic stages of MS and
in models of neuroinflammation, when the presence of the
peripheral immune cells are reduced, remain incompletely
understood. In fact, there is mounting evidence to suggest that
IFNγ also has protective functions, particularly during chronic
disease (Furlan et al., 2001; Sosa et al., 2015; Sun et al., 2017a;
Smith et al., 2020). Further, some discrepancy exists regarding
the effects of IFNγ on OPCs, likely due to differences in dosage
and/or model system. For example, in vitro, low levels of IFNγ,
while non-apoptoic, were demonstrated to inhibit OPC cell
cycle exit, which bolstered the population of immature OPCs
and reduced maturation into O1+ OLs (Chew et al., 2005). A
later study also reported that even lower doses of IFNγ were not
toxic to OPCs, but that IFNγ treatment led to a downregulation
of the immature OPC marker platelet-derived growth factor
receptor (PDGFR)α and the proliferative marker Ki-67, causing
OPCs to reversibly exit the cell cycle (Tanner et al., 2011), which
is necessary for maturation. Further, after sustained exposure
to non-toxic, low-dose IFNγ, induced pluripotent stem cells
from peripheral blood mononuclear cells from progressive
MS patients differentiated into OL lineage cells had reduced
differentiation (Morales Pantoja et al., 2020; Starost et al.,
2020). This highlights the complexity of IFNγ signaling and
need for further studies to elucidate its many roles during
neuroinflammation and neurodegeneration.

TNFα is another pleiotropic cytokine with multiple disparate
cellular responses including apoptosis, cell survival, and
proliferation, and its function is receptor- and cell-context
dependent (Locksley et al., 2001). In MS patients, TNFα
expression was higher in lesions compared to non-inflammatory
neurological disease controls and is detectible in the CSF
(Cannella and Raine, 1995; Burman et al., 2014). However,
following injection of TNFα into uninjured brains, OPCs did
not upregulate NG2 expression, suggesting that exogenous
TNFα alone does not activate OPCs in vivo (Rhodes et al.,
2006). Although TNFα receptor (TNFR)1 is expressed by
OPCs and is known to mediate neurotoxic functions (Su et al.,
2011), TNFR2 signaling largely correlates with CNS repair and
immune modulation either via activation in cells of the OL
lineage themselves (Madsen et al., 2020) or in astrocytes or
microglia, leading to downstream mediators of OL maturation
and myelination (Patel et al., 2012; Fischer et al., 2014; Gao
et al., 2017). Indeed, clinical trials using lenercept, an inhibitor
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TABLE 1 | CNS-derived factors that modulate OPC function.

Factor Type Upstream Signal Source OPC Effect Promote

(+)/Inhibit (−)

References

CCL2 Chemokine IL-1β Astrocytes Migration + Glabinski et al., 1996;

Wang et al., 2014;

Moyon et al., 2015

CCL3 Chemokine IFNγ Astrocytes Microglia Migration – Couturier et al., 2016;

Shen et al., 2021

CCL11 Chemokine IFNγ

TNFα

Astrocytes Microglia Migration

Proliferation

Maturation

+/– Maysami et al., 2006a;

Ding et al., 2015;

Parajuli et al., 2015

CXCL1 Chemokine IL-1β Astrocytes Microglia Migration

Proliferation

+ Robinson et al., 1998;

Tsai et al., 2002; Omari

et al., 2005; Karim

et al., 2019; Michael

et al., 2020

CXCL10 Chemokine IFNγ Astrocytes Microglia Maturation – Luster et al., 1985;

Vanguri and Farber,

1994; Xia et al., 2000;

Tirotta et al., 2011;

Moore et al., 2015

CXCL12 Chemokine IL-1β

TNFα

Astrocytes Migration

Proliferation Maturation

+ Maysami et al., 2006b;

Patel et al., 2010;

Cruz-Orengo et al.,

2011; Luo et al., 2016

IFNγ Cytokine Other Microglia Proliferation

Maturation

+/– Chew et al., 2005; Lin

et al., 2006; Tanner

et al., 2011; Hindinger

et al., 2012

IL-1β Cytokine Other Astrocytes Microglia Migration

Proliferation

Maturation

+/– Vela et al., 2002; Wang

et al., 2015; Zhou

et al., 2017

IL-6 Cytokine IL-1β Astrocytes Microglia Maturation +/– Schonrock et al., 2000;

Moore et al., 2015;

Petkovic et al., 2016

IL-11 Cytokine IL-1β Astrocytes Proliferation

Maturation

+ Zhang et al., 2006;

Gurfein et al., 2009

LIF Cytokine IFNγ Astrocytes Maturation +/– Butzkueven et al.,

2002; Stark et al.,

2004; Ishibashi et al.,

2006

TNFα Cytokine IFNγ Microglia Proliferation +/– Patel and Klein, 2011;

Welser-Alves and

Milner, 2013

Anosmin-1 ECM Other Astrocytes Migration – Bribián et al., 2008

CSPGs (family) ECM IL-1β Astrocytes Migration

Maturation

– Anderson et al., 2016;

Sun et al., 2017b

Fibronectin ECM Other Astrocytes Microglia Migration

Maturation

+/– Stoffels et al., 2013

Hyaluronan ECM Other Astrocytes Maturation – Back et al., 2005; Nair

et al., 2008

Laminin ECM Other Astrocytes Proliferation

Maturation

+ Chun et al., 2003

Tenascin-C ECM IFNγ Astrocytes Migration

Proliferation

+/– Garcion et al., 2001;

Ogawa et al., 2005

Tenascin-R ECM Other Astrocytes Maturation + Czopka et al., 2009;

Okuda et al., 2014

Vitronectin ECM Other Astrocytes Proliferation + Milner et al., 1999;

Baron et al., 2002

BDNF Growth Factor TNFα Astrocytes Microglia Proliferation

Maturation

+ Ferrini and De Koninck,

2013; Miyamoto et al.,

2015

(Continued)
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TABLE 1 | Continued

Factor Type Upstream Signal Source OPC Effect Promote

(+)/Inhibit (−)

References

CNTF Growth Factor Other Astrocytes Maturation + Dallner et al., 2002;

Talbott et al., 2007

FGF2 Growth Factor IL-1β Astrocytes Microglia Migration

Proliferation

+ Clemente et al., 2011

IGF-1 Growth Factor IL-1β

IFNγ

Astrocytes Microglia Proliferation

Maturation

+ Mason et al., 2001; Lin

et al., 2005; Butovsky

et al., 2006

IGF-2 Growth Factor IFNγ Microglia Maturation + Nicholas et al., 2002

NT3 Growth Factor Other Astrocytes Proliferation + Wong et al., 2013

PDGF-AA Growth Factor TNFα Astrocytes Migration

Proliferation

– Silberstein et al., 1996;

Fruttiger et al., 1999;

Baron et al., 2000,

2002; Frost et al., 2003

VEGFA Growth Factor IL-1β

IFNγ

Astrocytes Migration + Hayakawa et al., 2011;

Argaw et al., 2012

Triiodothyronine Hormone Other Astrocytes Maturation + Dugas et al., 2012;

Dezonne et al., 2013

Prostaglandin E2 Lipid IL-1β Astrocytes Microglia Maturation – Marusic et al., 2005;

Shiow et al., 2017

Adenosine Neurotransmitter Other Neuron Proliferation

Maturation

+ Stevens et al., 2002;

Safarzadeh et al., 2016

ATP Neurotransmitter IFNγ Astrocytes Neurons Migration

Maturation

+/– Verderio and Matteoli,

2001; Agresti et al.,

2005; Hamilton et al.,

2010

GABA Neurotransmitter IL-1β Neuron Migration + Lin and Bergles, 2004;

Tong et al., 2009

Glutamate Neurotransmitter IL-1β Astrocytes Neuron Migration

Maturation

+ Haberlandt et al., 2011;

Zonouzi et al., 2011; Li

et al., 2013; Xiao et al.,

2013

BMP2, 4, 6, and 7 Protein IFNγ Astrocytes Neurons Maturation – Ara et al., 2008; Miyagi

et al., 2012

Galactin-3 Protein Other Astrocytes Microglia Maturation + Pasquini et al., 2011;

Itabashi et al., 2018;

Thomas and Pasquini,

2018; Ramírez

Hernández et al., 2020

Semaphorin 3A Protein Other Astrocytes Microglia Migration – Spassky et al., 2002;

Syed et al., 2011;

Yamaguchi et al., 2012

Semaphorin 3F Protein Other Astrocytes Microglia Migration + Spassky et al., 2002

Semaphorin 4D Protein Other Astrocytes Microglia Migration – Spassky et al., 2002;

Yamaguchi et al., 2012

TIMP-1 Protein IL-1β Astrocytes Maturation + Crocker et al., 2006;

Welser-Alves et al.,

2011; Nicaise et al.,

2019b

Wnt (family) Protein IL-1β

TNFα

Astrocytes Neurons Maturation +/– Fancy et al., 2009;

Feigenson et al., 2009;

Edara et al., 2020;

Guérit et al., 2021

Retinoic Acid Morphogen Other Astrocytes Proliferation

Maturation

+ van Neerven et al.,

2010; Shearer et al.,

2012; Morrison et al.,

2020
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of TNFR1 action, resulted in increased frequency, duration, and
severity of MS relapses (1999).

IL-1 signaling has also been implicated in both MS
pathogenesis and repair and has many roles within the CNS.
It is thought to have many functions in the promotion of the
inflammatory response as mice deficient in IL-1 receptors are
protected from the development of neuroinflammation and EAE
(Matsuki et al., 2006). Further, IL-1β in particular, is found to be
highly concentrated in MS lesions, and is likewise increased in
the CSF of MS patients (Cannella and Raine, 1995; Rossi et al.,
2014b). Conversely, IL-1β was necessary for remyelination after
CPZ-induced demyelination of the corpus callosum, as IL-1β-
deficient animals had reduced IGF-1 production, delaying OPC
maturation (Mason et al., 2001). Despite its role in promoting
growth factor production necessary for CNS repair, like TNFα,
IL-1β is thought to be a risk factor in MS (De Jong et al.,
2002). Given the many targets of IFNγ, TNFα, and IL-1β, their
prominent roles in cell-cell communication within the CNS,
and variations in their expression over the course of acute
and chronic neuroinflammatory disease, these cytokines remain
relevant targets of MS research.

Cell Types
Microglia
Microglia are considered the resident macrophage of the CNS.
They originate from early yolk sac progenitors (Ginhoux et al.,
2010; Kierdorf et al., 2013; Gomez Perdiguero et al., 2015) and are
critical for proper CNS development, maintaining homeostasis,
and mounting an inflammatory response in the event of a
pathogenic insult (Butovsky and Weiner, 2018). Microglia are
self-renewing via stable turnover throughout the lifespan and are
maintained without the contribution of peripheral monocytes
under homeostatic conditions (Askew et al., 2017). It is well-
established that microglia heavily impact neuronal function,
refining synapse connectivity and providing trophic support
(Paolicelli et al., 2011; Schafer et al., 2012). They also have
sophisticated communication networks with other glia including
astrocytes and OPCs (Domingues et al., 2016; Linnerbauer et al.,
2020). Like all glial subtypes, microglia exhibit a high degree of
heterogeneity and plasticity (Bottcher et al., 2019; Masuda et al.,
2020), are heavily influenced by the microenvironment, and can
significantly contribute to neuroinflammation and CNS recovery
(Gosselin et al., 2014; Lavin et al., 2014; Voet et al., 2019).

OPCs have differing responses to the various inflammatory
states of microglia, partially due to a difference in trophic
factors expressed by specific activation states (Pang et al., 2000,
2010; Domingues et al., 2016; Hagemeyer et al., 2017; Figure 2).
Classically activated microglia are highly inflammatory and tend
to inhibit OPC differentiation (Kigerl et al., 2009) as well
as induce pro-apoptotic signals via excessive TNFα signaling.
Comparatively, steady-state microglia aid OPCs primarily via the
secretion of various trophic factors (Hanisch and Kettenmann,
2007; Hagemeyer et al., 2017), which are typically aimed at
maintaining homeostasis and facilitating OPC proliferation
(Table 1). As such, these quiescent microglia tend to secrete
IGF-2 and galectin-2, which prompt OPC proliferation and
prime OPCs for other differentiation signals (Nicholas et al.,

2001, 2002; Pasquini et al., 2011; Hoyos et al., 2014; Figure 2).
Likewise, alternatively activated microglia also express many
of the same trophic factors secreted by both steady-state and
highly inflammatory microglia, but in more moderate amounts
(Domingues et al., 2016; Cignarella et al., 2020;Wang et al., 2020).
These alternatively activated microglia express more galectin-
2 than steady-state microglia, which further promote OPCs
differentiation (Nicholas et al., 2002; Pasquini et al., 2011; Hoyos
et al., 2014). Additionally, they produce moderate amounts
of TNFα and NO, which did not exert cytotoxic effects and
promoted OPC differentiation (Nicholas et al., 2002; De Jager
et al., 2009; Karamita et al., 2017). Of note, while steady-state,
classically activated, and alternatively activated microglia are
well-studied, disease settings present a host of intermediate and
unique activation states that lead to responses that are widely
varied (Brück et al., 1996; Miron et al., 2013; Domingues et al.,
2016; Wang et al., 2020).

In addition to the secretion of various inflammatory
and/or tissue protective factors, microglia significantly alter the
microenvironment through their phagocytic functions. During
MS, microglia are the primary contributors to the clearance
of myelin debris (Davalos et al., 2005; Lampron et al., 2015;
Lloyd and Miron, 2019; Cignarella et al., 2020). Without myelin
debris removal, proper remyelination by OPCs is significantly
hindered, regardless of the remyelination-promoting factors
present (Lampron et al., 2015; Cignarella et al., 2020; Figure 1).
Myelin debris also contributes to inflammation and can activate
microglia (Williams et al., 1994; Vogel et al., 2013). Within
chronic-active lesions, the lesion edge houses a majority of the
myelin debris, which promotes the formation of the microglial
ring and enhances inflammatory activation (Frischer et al., 2015;
Kuhlmann et al., 2017). Excessive activation of microglia can
further damage OLs, contributing to the slowly expanding nature
of chronic-active lesions (Dal-Bianco et al., 2017; Calvi et al.,
2020). During active clearance, microglia also send inhibitory
signals that block OPC migration and differentiation (Williams
et al., 1994; Vogel et al., 2013; Lampron et al., 2015). As myelin
debris is cleared, inflammation is typically reduced and OPCs
lose the inhibitory signals from the highly activated microglia
ringing the lesion (Williams et al., 1994; Vogel et al., 2013;
Dal-Bianco et al., 2017; Calvi et al., 2020). However, at this
point in neurodegeneration, neurons have largely died and
the glial scar has begun forming (Brück et al., 1996; Voskuhl
et al., 2009; Kuhlmann et al., 2017), creating new barriers for
OPC differentiation.

Astrocytes
Astrocytes have numerous essential roles in nearly all aspects
of CNS function and to meet the complex needs of their
surroundings, astrocytes are highly heterogenous. During
homeostatic conditions, astrocytes provide many neurotropic
factors, promoting the survival and growth of surrounding
neurons and glia (Escartin et al., 2021; Figure 2). However, we
and others have shown that during inflammatory events, such as
in MS and EAE, astrocytes are highly responsive to cytokines and
inflammatory mediators (Zhang and Barres, 2010; Daniels et al.,
2017; John Lin et al., 2017; Smith et al., 2020; Williams et al.,
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FIGURE 2 | The secretory profiles of glia change across the spectrum of reactive phenotypes and have broad impacts on OPC function during neuroinflammation and

neurodegeneration. During homeostasis, astrocytes and microglia interact with other CNS resident cells to help maintain a homeostatic environment via the secretion

of trophic factors. During neuroinflammation, the microenvironment changes both cellularly and molecularly to shift the activation state of these glia, inducing a

spectrum of glial secretory profiles. Factors secreted during this shift include growth factors, cytokines, survival signals, and ECM modulators. Classically activated

microglia and astrocytes are highly inflammatory and significantly contribute to microenvironmental neurotoxicity and inhibit OPCs by secreting bone morphogenic

proteins (BMPs), chemokines, cytokines, and prostaglandin E2 (PGE2 ). As inflammation resolves, the reactive state of microglia and astrocytes again promote the

reparative properties of OPCs. Created with BioRender.com.

2020). This diverse astrocytic response is critical in healthy tissue
preservation and reducing prolonged CNS exposure to cytotoxic
mediators. Indeed, ablation of astrocytes following several types
of CNS injury led to sustained inflammation, impaired BBB
repair, and increased neurodegeneration (Bush et al., 1999;
Faulkner et al., 2004; Gao et al., 2005; Sofroniew, 2005;Myer et al.,
2006; Voskuhl et al., 2009; Arai and Lo, 2010; Hayakawa et al.,
2014; Anderson et al., 2016; Liddelow and Barres, 2017).

Reactive astrocytes act in concert with other CNS cells
to sustain the neuroinflammatory response necessary for the
resolution of pathogenic threats to the CNS. As is the case with
microglia, OPCs respond differently to varying activation states
of astrocytes (Su et al., 2011; Voskuhl et al., 2019; Willis et al.,
2020). As concluded recently, the binary division of reactive
astrocytes into neurotoxic and neuroprotective is far too limited
to capture the diverse astrocytic subsets (Escartin et al., 2021).
Astrocytes can heavily influence OPC function via their effect
on the microenvironment (Kiray et al., 2016) and by modulating
the extracellular matrix (ECM) (Risau and Wolburg, 1990; Sixt
et al., 2001). Traditionally, the ECM is described as a scaffolding
on which OPCs traffic to reach demyelinated areas in need of
repair (Hu et al., 2009). More recently, the ECM deposited by
astrocytes was also shown to provide directional cues to OPCs
and specific signals to initiate differentiation (Lau et al., 2013;
Wang et al., 2017). Modulatory components of the ECM that can
affect the ability of OPCs to migrate, proliferate, or differentiate
include fibronectin, anosmin-1, laminin, hyaluronan, and several

members of the chondroitin sulfate proteoglycan (CSPG) family,
along with many other ECM modifiers (Benarroch, 2015;
Table 1). Of note, inflammatory astrocytes tend to express the
ECMproteins tenascin C and R, which inhibit migration of OPCs
while simultaneously promoting OPC differentiation (Frik et al.,
2018; Table 1). While it is thought that the timing and level of
astrocyte activation significantly influences the migration and
differentiation of OPCs viamodulation of the ECM, the exact role
of the differing astrocytic subtypes on modification of the ECM
is complex and an area of active research, which was recently
reviewed in detail (Ghorbani and Yong, 2021).

Astrocytes modify the microenvironment beyond modulating
the ECM. The most neurotoxic astrocytes cause cellular
damage (Liddelow et al., 2017); however, not only do more
neuroprotective astrocytes promote amore trophic environment,
recent evidence shows that intermediates between these subtypes
can mediate a wider variety of beneficial effects (Teo and Bourne,
2018; Bhatia et al., 2019; Figure 2). A spectrum of reactive
astrocyte states are implicated in OPC migration, proliferation,
and differentiation (Nutma et al., 2020; Wheeler et al., 2020;
Escartin et al., 2021) and produce some inflammatory factors,
which are necessary for myelin debris removal and a return
to a stable microenvironment (Erta et al., 2012; Traiffort
et al., 2020). For example, leukemia inhibitor factor (LIF),
fibroblast growth factor (FGF)2, and ciliary neurotropic factor
(CNTF) are expressed by astrocytes that are categorized as non-
reactive, neuroprotective, and/or in an intermediate reactive
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state (Aloisi et al., 1994; Müller et al., 2007; Delgado-Rivera
et al., 2009; Figure 2). Further, astrocytes may contribute to a
return to tissue homeostasis via IFNγ-mediated upregulation
of the immunoproteasome to degrade oxidatively damaged
proteins and clear oxygen radicals at sites of inflammation
(Smith et al., 2020). As with ECM-modifying factors, the
microenvironment established by astrocytes is a balance of
timing and level of response (Ponath et al., 2018). One prime
example of the breakdown of this balance is the formation
of the glial scar. The glial scar forms in chronic lesions in
response to severe damage and consists primarily of reactive
astrocytes (Dal-Bianco et al., 2017; Kuhlmann et al., 2017;
Adams and Gallo, 2018). Traditionally, the glial scar is viewed
as a double-edged sword, in that it limits the initial damage
but precludes regeneration as reviewed by Adams and Gallo
(2018). However, other evidence suggests that the glial scar
releases trophic factors responsible for neuronal growth andOPC
proliferation, migration, and survival including brain-derived
neurotrophic factor (BDNF) and neurotrophin (NT)3 (Anderson
et al., 2016; Haindl et al., 2019; Figure 2; Table 1). However,
while axons within glial scars in other models remyelinate
(Bradbury and Burnside, 2019), those in MS lesions are less
likely to, particularly in lesions surrounded by an inflammatory
border (Dal-Bianco et al., 2017; Kuhlmann et al., 2017).
These lesions that progress from chronic active to the inactive
quiescent state have very little if any remyelination due to the
inability of OPCs to migrate (Kornek et al., 2000; Li et al.,
2016).

Neurons
Neuronal communication with OPCs via neurotransmitters is
altered in MS and in MS models. Early studies suggested
glutamate signaling may block OPC proliferation (Gallo et al.,
1996; Yuan et al., 1998); however, using lysolecithin, it was later
found that demyelinated axons formed functional glutamatergic
synapses with OPCs that migrated from the subventricular
zone. As OPCs matured into OLs, glutamatergic signaling
was lost, indicating a potential role for glutamate in the
migration of OPCs to lesioned areas (Etxeberria et al., 2010).
Another neurotransmitter, gamma-aminobutyric acid (GABA),
while excitatory during development, is the primary inhibitory
neurotransmitter in the mammalian CNS. OPCs express the
GABA-A receptor and endogenous GABA may also affect OPC
migration by inhibiting AMPA receptor-mediated glutamatergic
signaling (Lin and Bergles, 2004). Additionally, GABA promoted
OPC migration in rat brain slice cultures (Tong et al., 2009) and
neuronal GABA signaling is impaired in EAE, particularly in
the striatum (Rossi et al., 2011), along with excessive glutamate
activity (Centonze et al., 2009). There are several indications that
neurotransmitters play an important role in the function of OPCs
during neuroinflammation; however, the precise mechanisms
that may enhance or prevent neurodegeneration are yet to be
fully elucidated.

In response to neuronal action potentials, OPCs upregulate
adenosine receptors, which are largely beneficial. Adenosine
is known to inhibit OPC proliferation and stimulate cell
cycle exit via A1 adenosine receptors (A1ARs), allowing

OPCs to differentiate into myelinating OLs (Stevens et al.,
2002). Activation of A1ARs on OPCs was later shown to
also promote migration (Othman et al., 2003). During EAE,
A1AR-deficient mice had worsened axonal injury, demyelination,
as well as upregulation of pro-inflammatory factors by
microglia/macrophages resulting in enhanced OL death (Tsutsui
et al., 2004). Conversely, stimulation of A2A receptors inhibits
OPC maturation, which is in contrast to the oligodendrogenesis
promoting effects of A1ARs (Coppi et al., 2013). Since OPCs
form synapses with neurons during development and are
electrically active (Káradóttir et al., 2008), it is believed that
restoration of normal electrical activity in neurons could aid in
remyelination and recovery from demyelinating insults. A study
using lysolecithin-induced lesions showed that demyelinated
axons were still able to propagate action potentials, which
promoted OPC differentiation and remyelination within the
lesion. This corresponded to an activity-dependent increase in
the OPC pool in mice that received repeated neuronal electrical
stimulation (Ortiz et al., 2019). While there is dysregulation
of neuron-OPC crosstalk during ongoing neuroinflammation,
the primary source of the secreted OPC-modulating factors are
lymphocytes, microglia/macrophages, and astrocytes. Although
neurons rely on myelin and mature OL support for proper
functioning, they are nonetheless an important contributor to
neuroinflammatory pathology and are critical to OPC-mediated
CNS repair.

EFFECTS OF AGING ON OPCs

Aging is a significant risk factor for most neurodegenerative
disorders (Minden et al., 2004; Hou et al., 2019), and is correlated
with amore progressive disease course in patients diagnosed with
MS over the age of 40 (Scalfari et al., 2011). With advancing age,
MS disease progression tends to shift toward a less inflammatory,
neurodegenerative state, as only one-third of patients continue
with RRMS past the age of 75 (Tutuncu et al., 2013; Scalfari
et al., 2014). The potential for clinical recovery is reduced
with age and can ultimately contribute to neurodegeneration
(Sanai et al., 2016). Specifically, as both patient age and disease
duration increase, demyelination becomes more infrequent
due to a decrease in acute inflammatory events; however,
the capacity of OPCs to remyelinate damaged neurons also
becomes impaired (Bramow et al., 2010; Ruckh et al., 2012).
Previously demyelinated axons risk long-term exposure to
chronic inflammation and can become irreversibly damaged as
a result (Kornek et al., 2000).

Age-related remyelination failure has been linked to
suppression of OPC differentiation as large pools of
undifferentiated OL lineage cells were present in chronically
demyelinated MS lesions in post-mortem tissue (Boyd et al.,
2013). It has also been shown that functionally, OPCs become
regionally heterogenous with age, suggesting that particular
areas of the CNS may be at greater risk for long-term damage
(Spitzer et al., 2019). Rat OPC cultures harvested from young
(2–3 months) and aged (20–24 months) cohorts in vitro showed
that the aged OPCs had a reduced capacity for differentiation.
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They also lacked proliferative growth factors, as roughly 20%
expressed mature OL markers compared to 60% by OPCs
from younger animals. Moreover, treatment of aged OPCs with
maturation stimulating factors failed to increase the population
of mature OLs efficiently, requiring weeks of additional time
to fully mature compared to young OPCs, suggesting that
aging induces intrinsic changes within OPCs that restrict their
response to extracellular differentiation signals (Neumann et al.,
2019). In another study, in situ hybridization analysis of OPCs
in young (8–10 weeks) and aged (>1 year) rats undergoing
EtBr-mediated demyelination revealed that OPCs in aged
animals were recruited to the lesion site more slowly. Transcript
levels of the OPC markers Pdgfra andMyT1 were comparatively
retained in aged rats and mature OL markers of Mbp and Gtx
were delayed, indicative of impaired differentiation (Sim et al.,
2002).

The intrinsic changes associated with both OPC
differentiation and recruitment may be linked to cellular
senescence, or the cessation of the cell cycle and a deviation
from normal cell function toward an inflammatory state
(Gorgoulis et al., 2019). Considered a hallmark of normal aging,
cellular senescence is induced by a variety of stress signals
related to DNA damage such as oxidative stress and release
of inflammatory cytokines, all of which are associated with
MS pathology (Haider et al., 2011; Elkjaer et al., 2019). In
addition, cells that are senescent maintain the ability to release
these factors, promoting cellular senescence in neighboring
cells through paracrine signaling and generating pools of
senescent cells that accumulate over time (Dimri et al., 1995;
Ressler et al., 2006; Acosta et al., 2013). Aged OPCs have
elevated levels of DNA damage as well as increased mRNA
transcript levels of cellular senescence markers including Cdkn2a
(Neumann et al., 2019). Upregulation of additional markers,
such as senescence-associated beta-galactosidase, on SOX2+

OPCs resulted in inhibited differentiation suggesting that
functional inhibition of OPC recruitment and differentiation
may be partially explained by a shift toward a senescent
phenotype (Nicaise et al., 2019a). Cellular senescence is not
confined to cells with stem-like properties; it has also been
documented in glial cells (Kritsilis et al., 2018), and may further
affect the capacity of OPCs to mature and facilitate repair of
damaged axons. Specifically, transcript analysis of astrocytes
from young and aged rats showed an upregulation of genes
associated with both senescence and inflammation such as
Mmp3, p53, and p21 in older astrocytes compared to those
from younger rats. Similarly, there was a decrease in aged cells
undergoing the G2 and S phases of the cell cycle, which was
accompanied by an increase in cells associated with the G1 phase,
demonstrating inhibited astrocytic proliferation (Willis et al.,
2020).

Astrocytes are crucial for maintaining CNS
microenvironments conducive to homeostasis and proper
OPC function (Liedtke et al., 1996; Gadea et al., 2009; Kiray
et al., 2016). One way astrocytes regulate the microenvironment
is through release of extracellular vesicles. These vesicles are
not exempt from age-related cellular effects, as vesicles purified
from aged astrocytes had a reduced ability to support OPC

differentiation (Willis et al., 2020), suggesting that age-induced
senescence of other CNS resident cells may contribute to
deficient remyelination in chronic MS lesions and can affect the
remyelinating capacity of OPCs specifically. Another critical
extrinsic microenvironmental cue that modulates OPC function
is the mechanical stiffness of the progenitor niche. In an elegant
study by Segel et al., interrogation of the OPCmicroenvironment
revealed increased stiffness with age, which caused a loss of
function of OPCs. This was reversed using scaffolds to mimic
the “young” microenvironment, suggesting tissue stiffness
is a critical regulator of aged OPCs (Segel et al., 2019a,b).
Notably, apelin-APJ signaling in OL lineage cells increases
the capacity for maturation, and a decrease in signaling has
been implicated as a key factor in age-related remyelination
impairment. Recently, activity of the APJ pathway has been
shown to be significantly downregulated with age, as the
primary ligand, apelin, is decreased in the plasma of older mice
and correlates with APJ deficiency-induced hypomyelination
in neonatal mice during development. Furthermore, mice
induced with EAE as well as with toxin-mediated demyelination
showed increased remyelination with activation of the APJ
pathway in vivo, while also promoting transcript signatures of
mature OLs in human OPCs (Ito et al., 2021). Stimulation of
pro-differentiation pathways may be a viable treatment option
to reverse the effects of aging on remyelination capacity and
assist in reducing neurodegeneration in progressive stages
of MS.

CONCLUDING REMARKS

While it is clear that resident CNS cells contribute to ongoing
inflammation during MS, the complexity of the signaling events
in various cells types, the interactions between those cells,
and the role these processes have in neurodegeneration are
only beginning to be understood. This intricate cellular and
molecular symphony can also vary widely depending on the
subtype of MS, the stage of disease, and the age of the patient.
Since remyelination failure is a significant roadblock in the
treatment of MS (Franklin, 2002; Gruchot et al., 2019; Galloway
et al., 2020), many early studies have focused on promoting
OPC maturation to promote remyelination and prevent axon
degeneration. Additionally, using multiple animal models of
MS that recapitulate several aspects of the human disease,
OPCs were shown to not only prevent neurodegeneration by
participating in remyelination, but disease-specific OPCs were
also identified and have the ability to present antigen to T
cells, exacerbating neuroinflammation (Falcao et al., 2018; Kirby
et al., 2019; Figure 1). Therefore, while elucidating the obstacles
impeding remyelination is certainly critical to improve treatment
options for MS patients and initiate recovery, more recent
evidence suggests that OPCs have a much more versatile role in
neuroinflammation and neurodegeneration, offering additional
OPC-specific therapeutic targets.

In addition to factors intrinsic to OPC function during
neuroinflammation and neurodegeneration in MS, there
are a multitude of factors that impact the MS lesion
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microenvironment that critically regulate OPC migration,
proliferation, and maturation (Figure 2; Table 1). Primary
contributors to the inflammatory milieu are cytokines,
which can be secreted from infiltrating peripheral leukocytes
as well as other glia including microglia and astrocytes.
Inflammatory cytokines like IFNγ, TNFα, and IL-1β are
well-described in the literature as perpetuating inflammation
by activation of infiltrated immune cells and surrounding
glia and inducing cell death and damage to OLs, leading to
demyelination and eventual neurodegeneration, particularly
in early disease phases like RRMS. However, depending on
the concentration, the responding cell type, and the receptors
through which they signal, these same cytokines can have a
variety of neuroprotective effects. Further, the activation state
of neighboring microglia and astrocytes can strongly influence
how OPCs respond to demyelinating insults by altering the ECM
or the profile of trophic factors that they secrete (Figure 2),
positioning OPCs at the center of many neuroinflammatory and
neurodegenerative processes.
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