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The neuroinflammatory basis of depression encompasses the detrimental role of
otherwise supportive non-neuronal cells and neuroinflammation in hampering neuronal
function, leading to depressive behavior. Animals subjected to different stress paradigms
show glial cell activation and a surge in proinfammatory cytokines in various
brain regions. The concept of sterile inflammation observed in animal models of
depression has intrigued many researchers to determine the possible triggers of
central immune cell activation. Notably, microglial activation and subsequent phenotypic
polarization in depression have been strongly advocated by the wealth of recent
preclinical studies; however, findings from human studies have shown contradictory
results. Despite intensive investigation, many research gaps still exist to elucidate the
molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology
of depression. In this mini-review, recent progress in understanding neuroinflammatory
mechanisms in light of experimental models of depression will be thoroughly discussed.
The challenges of mirroring depression in animal and in vitro models will also be
highlighted. Furthermore, prospects of targeting neuroinflammation to treat depressive
disorder will be covered.
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INTRODUCTION

Major depressive disorder (MDD) is the most prevalent debilitating psychiatric disorder affecting
individuals during some part of their life, resulting in a substantial health and economic burden
worldwide (Konig et al., 2019; Konnopka and Konig, 2020). Neurochemical and structural
alterations in mesolimbic and corticolimbic neural circuitry that regulate mood and behavior,
including the prefrontal cortex (PFC), amygdala, nucleus accumbens, and hippocampus, are
reported to be the cause of depression symptoms (Duman et al, 2016). Dysregulation of
monoaminergic neurotransmission, including serotonin and dopamine, is a widely accepted theory
of depression pathology, and various perturbations in monoamine signaling and metabolism
have been identified (Jesulola et al., 2018). Moreover, deficits in synaptic plasticity induced by
altered glutamatergic neurotransmission are involved in depression pathology, constituting the
“neuroplasticity” hypothesis of depression (Pittenger and Duman, 2008). Various drugs interfering
with glutamatergic neurotransmission have been reported to exert antidepressant actions in clinical
and preclinical studies (Pittenger and Duman, 2008). Brain-derived neurotrophic factor (BDNF)
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is known to play an important role in neuroplasticity, and
decreased BDNF expression has been reported in various
brain regions of depressed patients (Dwivedi, 2009). All of
these mechanisms play a crucial role in the pathology of
depression; however, the inefficacy of antidepressant drugs in a
subpopulation of patients with MDD and decreased remission
rates highlight the involvement of diverse mechanisms in
addition to these neurocentric theories.

Emerging evidence provides ample support for the
involvement of non-neuronal cells leading to a neuroin-
flammatory milieu in depression neurobiology (Koo and
Duman, 2008; Steiner et al., 2011; Strawbridge et al., 2015). Glial
cells constitute a major proportion of brain tissue and play a
significant role in maintaining brain homeostasis by supporting
neurons in dynamic ways. Increased microglial inflammatory
activation, astrocytic atrophy, and decreased myelin basic protein
immunoreactivity and fewer mature oligodendrocytes have been
documented in MDD subjects and animal models of depression
(Cotter et al,, 2001; Tynan et al., 2013; Yang et al., 2015). The
inflammatory activation of microglial cells has been reported
to alter glutamatergic neurotransmission, impair monoamine
synthesis, and interfere with BDNF signaling, culminating in
altered synaptic plasticity and neurogenesis, and precipitating
depression (Weber et al., 2019).

Neuroinflammatory perturbations identified in animal
models of depression provide a strong basis for non-neuronal
cell involvement in MDD pathology (Weber et al., 2017; Wang
etal., 2018). Several in vitro experimental models of MDD, which
provide cell-level information, have been developed to enhance
the usefulness of in vivo models (Zunszain et al., 2012; Zhang
et al,, 2020b). All these models are of value for deciphering
the fundamental mechanisms underlying MDD pathology and
testing novel therapies targeted against this disease. In this review,
recent literature documenting neuroinflammatory alterations
observed in experimental models of depression is discussed.
Subsequently, plausible reasons behind discrepancies between
data from human studies and preclinical data are highlighted.
Additionally, the therapeutic significance of targeting
neuroinflammation in depressive disorders will be discussed.

NEUROINFLAMMATION IN THE
PATHOPHYSIOLOGY OF DEPRESSION

Environmental and genetic factors have been identified as crucial
drivers of depression pathology in both human and rodent
models (Lesch, 2004; Levinson, 2006). As these factors are highly
variable, epistatic, and complex, they are thought to regulate
vulnerability to depression development and responsiveness
to antidepressant therapy. Various polymorphisms have been
reported in genes regulating the hypothalamic-pituitary-adrenal
(HPA) axis, serotonin recycling, and immune responses,
including corticotropin-releasing hormone receptor 1, the
sodium-dependent serotonin transporter gene (SLC6A4), and
interleukin-1p (IL-1B) (Baune et al., 2010; Schiele et al., 2021).
Moreover, environmental stressors are associated with epigenetic
modification of BDNE its receptor tropomyosin-related

kinase B gene, glucocorticoid receptor gene (NR3CI), and
glutamate ionotropic receptor NMDA type subunit 2B
(GRIN2B) (Ernst et al,, 2009; Jiang et al, 2010; Sun et al,
2013; Efstathopoulos et al., 2018).

Accumulating evidence suggests the involvement of multiple
biological systems, including the neuroendocrine system,
immune system, and neural circuitry, in the pathophysiology
of depression (de Kloet et al., 2005). Activation of the HPA
axis results in increased cortisol secretion in the blood,
which in turn activates peripheral immune cells (Otte et al,
2016). Inflammatory signals from peripheral immune cells
are propagated through various humoral, neural, and cellular
pathways and results in the activation of brain resident immune
cells that interfere with neurotransmitters and directly affect
neuronal integrity through excitotoxicity.

Triggers and Mediators of

Neuroinflammation in Depression

The activation of the HPA axis and sympathetic system is an
adaptive response of an organism toward any psychological
or environmental stimuli perceived as a threat, resulting in
the release of glucocorticoids (GC) and norepinephrine (NE)
in the blood (Selye, 1976; McEwen et al., 2016). Increased
GC and sympathetic signaling exert proinflammatory effects
by mobilizing immune cells from the bone marrow, lymph
node, and spleen and increasing their inflammatory activation
(Engler et al., 2004; Dhabhar et al., 2012; Powell et al., 2013).
Inflammatory activation of monocytes and macrophages leads
to increased secretion of proinflammatory mediators, including
tumor necrosis factor-o (TNF-a), IL-1f, and interleukin-6 (IL-
6) (Serrats et al., 2010). Increased proinflammatory cytokines in
circulation also have the propensity to repress the expression of
several tight-junction proteins of the blood-brain barrier (BBB),
including claudin-5 (Dudek et al., 2020). Mice exposed to chronic
social defeat stress (CSDS) exhibited decreased expression of
claudin-5, positively correlating with heightened peripheral TNF-
a in circulation (Dudek et al., 2020). Chronic stress-induced BBB
leakage in an animal model of depression allows the passage of
proinflammatory mediators (Menard et al., 2017).

Recent literature also highlights the potential role of
gut microbiome in precipitating inflammatory signals in
depression pathology. Among divergent pathways through which
gut microbiota can alter behavior, leading to depressive-like
outcomes, is an inflammation-to-brain mechanism (Guo et al.,
2019). A study in rodents demonstrated the activation of the
master regulator of the inflammatory pathway nuclear factor-xB
(NF-kB) when gut microbiota was altered by chronic restraint
stress (CRS). The depletion of Lactobacillus was accompanied by
increased inflammatory cytokines as well as increased microglial
activation in the hippocampus (Guo et al, 2019). Although
the mechanism of immune cell activation was not investigated,
it is quite plausible that inflammatory signaling is involved,
as Lactobacillus treatment reduced inflammation and alleviated
depressive symptoms in mice subjected to CRS, highlighting
the potential role of the gut-inflammatory pathway in exerting
behavioral consequences.
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Contribution of Malfunctioning Glia

Astrocytes, microglia, and oligodendrocytes are the major types
of the glial population, each having a distinct role in healthy
and diseased states. Accumulating evidence suggests that gliosis
and inflammation lead to increased levels of proinflammatory
cytokines and reactive oxygen species (ROS) in various brain
regions, thereby contributing to neuronal damage and leading
to altered mood and behavior. Astrocytes are the most abundant
glial cells that provide metabolic and trophic support to neurons.
Atrophy and reduction in number of astrocytes as well as a
reduction in various astrocytic proteins have been documented
in MDD pathology (Fatemi et al, 2004; Zhao et al, 2018).
Reduced astrocyte numbers in the hippocampus, amygdala, and
prefrontal cortex of MDD patients have been reported (Altshuler
et al., 2010; Cobb et al., 2016). The excitotoxicity observed
in MDD can be correlated with astrocytic dysfunction. The
inability of astrocytes to uptake glutamate from the synaptic cleft
leads to prolonged synaptic activation, which in turn leads to
excitotoxicity (Choudary et al., 2005).

Microglia are highly plastic, brain resident macrophages, that
mainly guard the brain parenchyma in addition to playing
other physiological roles. Microglia display extensive phenotypic
plasticity dependent on surrounding cues. Recent studies
suggest the important role of stress-induced damage-associated
molecular patterns as a primary signal in activating microglia.
The primed state of microglia that is characterized by an
increased expression of proinflammatory cytokines increases the
propensity for the development of severe depressive symptoms
(Wohleb et al., 2014). In the CSDS model, it has been reported
that microglia-secreted proinflammatory cytokines are crucial for
the recruitment of peripheral immune cells in stress-responsive
brain regions, and these cells remain sensitized for a longer period
after cessation of the acute stressful stimuli (Wohleb et al., 2014).
In addition, the study provided useful insights into the temporal
effects of stress on the neuroimmune axis (Wohleb et al,
2014). A surge in proinflammatory cytokines due to microglial
activation and peripheral immune cell infiltration leads to the
upregulation of microglial indolamine 2,3 dioxygenase (IDO)
activity (Corona et al.,, 2013). Increased microglial IDO activity
diverts tryptophan metabolism from serotonin to quinolinic
acid (QUIN), which is a N-methyl-D aspartate receptor agonist,
serving as a link between immune and neurotransmitter changes
in depression. Increased inflammatory cytokines, including TNF-
a, in microglial cells can also influence the neuronal re-uptake of
monoamine neurotransmitters by regulating neuronal mitogen-
activated protein kinase (MAPK), leading to an increased surface
expression of monoamine transporters on neurons (Zhu et al.,
2010). Cytokine-mediated increases in microglial QUIN and
reduction in astrocytic glutamate uptake can lead to excessive
glutamate levels and actions, thereby altering synaptic plasticity.

EXPERIMENTAL MODELS OF
DEPRESSION

With advances in our understanding of molecular mechanisms of
depression, efforts have been made to establish in vivo and in vitro

models that can be used efficiently for a better understanding of
the enigmatic pathophysiology of depression. Although still not
completely achieved, few experimental models, including in vivo
and in vitro, have been used frequently in neuroscience research.

In vivo Models of Depression

Considering stress as a major factor in predisposing humans
to the development of depression, most animal models used
in preclinical studies are based on stress. Though many of
these models lack etiological relevance, the hyperactive HPA
axis, impaired neuroplasticity and neurogenesis, and altered
neurotransmitters are consistent features of these models that
can be paralleled with human depression disease. Thus, the
contribution of these models in providing novel insights
into depression pathology cannot be underscored. Specifically,
the role of neuroinflammation in the pathophysiology of
depression has been well-established in these models and
explains the antidepressant action of certain anti-inflammatory
drugs (Table 1).

CSDS, chronic unpredictable mild stress (CUMS), and
CRS are the most widely employed animal models to
decipher the neuropathological basis of depression. Increased
neuroinflammatory profile characterized by elevated cytokines
and the C-C Motif Chemokine ligand 2 (CCL2), and reduced
anti-inflammatory regulation of neuronal-derived fractalkine
ligand (CX3CL1) and microglial receptor (CX3CR1) are shared
features in these models (Wohleb et al., 2014; Ramirez et al.,
2016). Increased proliferation of inflammatory microglia
with concomitant increase of Iba-1 immunoreactivity in the
hippocampal tissue of mice subjected to CRS and CUMS
has been reported (Feng et al, 2019; Horchar and Wohleb,
2019). Mice subjected to CSDS stress also exhibited microglial
activation, recruitment of peripheral macrophages into the brain,
and anxiety-like behavior (Tang et al., 2018). Inflammatory
activation of microglia, stimulation of the microglial NLRP
[NLR (nucleotide-binding domain and leucine-rich repeat)
family, pyrin domain containing] inflammasome, and increased
IL-1B production in the PFC were demonstrated in CUMS (Pan
et al., 2014). Microglia isolated from mice subjected to CSDS
have gene ontology profiles signifying increased inflammation,
phagocytosis, and ROS production (Lehmann et al., 2018). The
behavioral phenotypes observed in these models, including
anhedonia, decreased sociability, and despair, are positively
correlated with inflammatory activation of microglia.

Deficits in synaptic plasticity, altered dendritic spine
density, and impaired neurogenesis because of heightened
neuroinflammation have been reported in CSDS, CRS, and
CUMS. Increased caspase-1 signaling in hippocampal region
of mice after CSDS, CRS, and CUMS leads to dysregulated
glutamatergic neurotransmission accompanied by altered
dendritic spine density and reduced synaptic plasticity (Li
et al, 2018). The genetic and pharmacological targeting
of the IL-1B-caspase-1 pathway rescued the development
of depressive behaviors in mice, highlighting the crucial
role of neuroinflammatory pathways in impairing neuronal
integrity (Li et al., 2018). Microglia-derived IL-1 can exert its
detrimental effects on neurogenesis indirectly by stimulating
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TABLE 1 | Neuroinflammatory markers in animal models of depression.

Models Markers of Brain regions Impact on neurons Comments References
neuroinflammation
CSDS Increased IL-18, IL-18, IL-6, Hippocampus Not discussed Modulation of microglial Gu et al., 2021
and TNF-a in brain Prefrontal cortex activation state could be used as
Increased microglial a therapeutic strategy to treat
activation depressive disorders
CSDS Increased mMRNA of IL-1p Hippocampus Increased AFosB expression  IL-1 receptor pathway played a DiSabato et al.,
and CCL2 in the crucial role in mediating 2020
hippocampus stress-induced depressive
Increased microglial effects
inflammatory activation
CSDS Increased IL-18, IL-18, IL-6, Hippocampus Not discussed Increased NLRP1-inflammasome Song et al., 2020
CUMs and TNF-a pathway was critical for the
CRS development of depression
CRS Increased IL-1p and Prefrontal cortex Not discussed Neuroinflammatory cascades in MacDowell et al.,
caspase-1 expression the frontal cortex were crucial for 2021
driving depressive behaviors
CSDS Increased IL-1B and Hippocampus Reduced density of Caspase-1-mediated Lietal, 2018
CUMS caspase-1 expression presynaptic proteins neuroinflammatory pathway
CRS Impaired synaptic plasticity impaired glutamatergic pathway
Altered glutamatergic leading to depression
neurotransmission
CRS Increased reactive oxygen Hippocampus Morphological changes in Microglial Feng et al., 2019
species hippocampal neurons GR-NF-kB-NLRP3 signaling
Increased microglial including enlarged induced depressive-like
inflammatory activation pericellular spaces and behaviors in mice
Increased IL-1B, IL-18 irregular arrangement
CUMS Increased IL-1p and TNF-a Prefrontal cortex Neuronal dystrophy Microglial mediated neuronal Horchar and
Increased microglial Hippocampus Reduced dendritic spine remodeling induced behavioral Wohleb, 2019
activation density despair and cognitive
impairments
CUMS Increased IL-1B and TNF-a Hippocampus Neuronal atrophy Exaggerated inflammatory Xu et al., 2021
Increased microglial Reduced dendritic spine response in the hippocampus
activation density following exposure to stress
CUMS Increased Iba-1 reactivity in Hippocampus Reduced hippocampal Targeting microglial inflammatory Troubat et al., 2021

stress-responsive regions

neurogenesis

activation rescued

Increased immune cell
density in brain

stress-induced depression

the HPA axis as well as directly by activating IL-1 receptors
expressed on hippocampal neural progenitor cells, resulting
in decreased cell proliferation that is mediated by the NF-kB
signaling pathway (Koo and Duman, 2008). Hence, microglial
inflammatory activation as well as the neuroinflammatory
milieu in animal models of depression may play key roles in the
pathophysiology of depression.

In vitro Models of Depression

Depression research is hampered by the absence of in vitro
models that can recapitulate all molecular mechanisms of
the disease. Attempts to model depression in vitro using
hippocampal progenitor cell lines (HPCs) to study the pathways
causing impaired neurogenesis are emerging. Thus far, studies
have focused on isolated cell types in culture or occasionally
two cell types in co-culture, which cannot fully model the
important contributions of various cell types in disease. Various
depressogenic stimuli identified in clinical and preclinical studies
are used to study the mechanism or unravel pharmacological
targets in neuronal cells and glial cell cultures (Table 2).
Neurogenesis in the hippocampus regulates the HPA axis

via a negative feedback mechanism; hence, the mechanisms
underlying impairments in adult hippocampal neurogenesis
have been explored in vitro (Schloesser et al., 2009). Microglia
isolated from the hippocampus of cytokine-induced depressed
mice suppressed neural stem/precursor cell proliferation and
stimulated apoptosis of immature neurons, highlighting the role
of microglia in impairing neurogenesis in depression pathology
(Zhang et al., 2020a). IL-1p inhibited neurogenesis in HPCs by
activating the neurotoxic branch of the kynurenine pathway,
which has been postulated to be involved in the development of
depressive disorders (Zunszain et al., 2012).

Findings in Human Depression Studies

Although increased levels of proinflammatory cytokines,
including IL-1B, IL-6, and TNF-q, in the plasma and CSF of
depressed patients, have been reported, there still lies a big
question mark on neuroinflammatory markers and microglial
activation status (Martinez et al, 2012; Himmerich et al.,
2019). The elevated translocator protein (TSPO) binding
assessed by positron emission tomography studies in various
brain regions of depressed patients backs microglial activation
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TABLE 2 | Experimental findings in in vitro model of depression.

Study type In vitro models Depressogenic Outcome measured Comments References
stimuli
Mechanistic HPCs IL-18 Neurogenesis IL-1p impaired neurogenesis by Zunszain et al.,
activating the neurotoxic kynurenine 2012
pathway, which has been implicated in
depression pathology
HPCs Cortisol Neurogenesis Cortisol impaired neurogenesis in Anacker et al.,
Serum/Glucocorticoid Regulated 2013
Kinase 1-dependent manner
HPCs IL-18 and IL-6 Neurogenesis IL-6 impacted neurogenesis in a Borsini et al., 2020
concentration-dependent manner
Mouse primary LPS Microglial morphological Circular RNA DYM was crucial for Zhang et al., 2020b
microglial cells changes suppressing microglial activation, which
BV-2 mouse microglia was found to be decreased in MDD
cells patients and in vivo models of
depression
HT-22 mouse Corticosterone Cell proliferation microRNASs rescues corticosterone Jinetal., 2016

Pharmacological

hippocampal neuronal
cells

Co-culture of primary
microglial cells and
NPSCs obtained from
mice

Primary microglial cells
Mixed glial cell culture

Primary microglial cells
BV-2 mouse microglia
cells

N9 mouse microglial
cells

Primary microglial cell
culture

Primed microglia
isolated from
IFN-y-injected mice

LPS

LPS

LPS+ATP

HMGB1/TNF-a

Neuronal proliferation

Antidepressant activity of
amitriptyline and
nortriptyline

Antidepressant activity of

fluoxetine

Antidepressant activity of
melatonin

Antidepressant activity of
arctigenin

induced impaired neurogenesis by
inhibiting Sgk1

Impaired neurogenesis has been
associated with depression, and
microglial inflammatory activation
played a crucial role

The anti-inflammatory activity of these
drugs partially explained the
multifactorial pathogenesis of
depression, including
neuroinflammation

The therapeutic efficacy of fluoxetine
was partially due to modulation of
microglial activation

Inhibition of microglial inflammatory
activation was crucial for
antidepressant activity of melatonin
Targeting microglial inflammatory
activation provided a therapeutic

Zhang et al., 2020a

Obuchowicz et al.,
2006

Liu et al., 2011

Arioz et al., 2019

Xu et al., 2020

avenue for treating depression

(Setiawan et al., 2015; Owen et al., 2017). Also, studies using
other markers of microglial activation, such as Iba-1 or
quinolinic acid, have found increased microglial reactivity
in depression, whereas no difference between the density of
major histocompatibility complex (HLA)-immunoreactive
microglia in post-mortem brain samples of depressed subjects
(Hamidi et al., 2004; Snijders et al., 2020). A recent study
using single-cell high-dimensional mass cytometry (CyTOF)
examined microglia from post-mortem MDD samples from
different brain regions and found increased markers of
homeostatic microglia, including transmembrane protein
(TMEM)119 and P2Y12 in MDD compared to controls,
which is in clear contrast with what has been found in animal
studies (Bottcher et al., 2020). Gene expression analysis of
microglia isolated from animal models of depression clearly
showed enhanced inflammatory markers, including CD11b,
CD45, and TLR4 (Wohleb et al,, 2011; Lehmann et al., 2016).
Moreover, gene expression profiling of post-mortem frontal lobe
tissue from patients with MDD did not show any difference
in the expression of IL-6 or TNF-a (Shelton et al., 2011).
Furthermore, no differential expression of IL-6, IL-1p, or TNF-a

mRNAs was found in post-mortem brain tissue of MDD cases
(Bottcher et al., 2020).

It is not possible to mimic all the pathological features of
human depression in animal models, owing to its multifactorial
pathology involving epigenetic and genetic factors, multiple
body systems working in conjunction, and subjectivity of
symptoms. Yet, these models have provided useful insights into
the neuroinflammatory mechanism of depression. Given that the
role of neuroinflammation in human depression is yet not clear,
the results of in vivo depression studies appear to be missing
pieces of the puzzle of depression pathology (Nettis et al., 2021).

TARGETING MICROGLIA AND
NEUROINFLAMMATION IN DEPRESSION

Recent literature highlights the crucial role of brain immune cells
in depression pathology and any modality that can modulate
the activity of these cells or reduce neuroinflammation, thereby
bearing the potential to treat depressive symptoms. Supporting

Frontiers in Cellular Neuroscience | www.frontiersin.org

July 2021 | Volume 15 | Article 691067


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Afridi and Suk

Neuroinflammatory Mechanisms in Depression Pathology

this notion, beneficial effects of anti-inflammatory drugs
have been observed in MDD patients (Muller et al., 2006;
Abbasi et al., 2012; Kobayashi et al., 2013; Majd et al,
2015; Cao et al, 2020; Nettis et al., 2021). Clinical trials
using non-steroidal anti-inflammatory drugs in depressed
patients have reported promising results, with increased
remission rates in patients when used in combination with
conventional antidepressant drugs (Abbasi et al, 2012
Cao et al, 2020). A tetracycline antibiotic, minocycline,
an inhibitor of microglial inflammatory activation, has
also shown promising antidepressant activity in treatment-
resistant depression patients (Kobayashi et al., 2013; Nettis
et al, 2021). The antidepressant effects of minocycline were
independent of changes in peripheral inflammatory biomarkers,
reflecting the possible decrease in central inflammation
(Nettis et al., 2021).

Mounting evidence also suggests the protective role of
targeting neuroinflammation in in vivo models of depression.
Pharmacological inhibition of caspase-1, which converts IL-
1B to its mature form, alleviated the depressive phenotype
in preclinical models by modulating neuroinflammatory
pathways and stabilizing the surface expression of glutamate
receptors (Li et al., 2018). Microglial activation was inhibited by
pharmacological treatment with minocycline in a variety of stress
models, reducing the increase of proinflammatory cytokines
(Hinwood et al., 2012; Kreisel et al., 2014). Furthermore,
minocycline attenuated stress-associated deficits in cognitive
memory tasks, including the Morris water maze and Barnes
maze, as well as depressive-like and anxiety-like behaviors,
such as reduced social interaction, sucrose preference, and
open field exploration (Hinwood et al, 2012). Moreover,
pharmacological inhibition of microglial ATP-gated purinergic
P2X7 receptor, activation of which leads to the maturation
of IL-1B, also suppressed the development of depressive
behavior in rodents subjected to CUMS (Bhattacharya et al.,
2018). Adipose-derived mesenchymal stem cells also produced
antidepressant effects by modulating microglial phenotype,
suppressing TLR4/NF-«B signaling pathways, and upregulating
antioxidant pathways in mice subjected to CUMS (Huang
et al, 2020). Anesthetic ketamine, which has antidepressant
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