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Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s
disease (AD) has been proposed since the 1980s. The accumulating research thus
far continues to support the association and a possible causal role of HSV-1 in the
development of AD. HSV-1 has been shown to induce neuropathological and behavioral
changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as
well as memory and learning impairments in experimental settings. However, a
neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized
in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection
plays a part in the development of AD and amnestic mild cognitive impairment (aMCI).
Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-
related brain disorders, namely AD and aMCI/MCI. Next, experimental models and
clinical observations supporting the neurotropism or predilection of HSV-1 to infect
the hippocampus are examined. Following this, factors and mechanisms predisposing
the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has
high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs),
glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-
1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the
established diseases HSV-1 causes are mucocutaneous lesions and encephalitis;
however, this review revises that HSV-1 may also induce and/or contribute to
hippocampal-related brain disorders, especially AD and aMCI/MCI.

Keywords: herpes simplex virus, hippocampus, neurotropism, Alzheimer’s disease, memory impairment,
infectious etiology

INTRODUCTION

Alzheimer’s disease (AD) is the leading neurodegenerative disease, accounting for about 60-80% of
dementia cases globally (Qiu et al., 2009; Alzheimer’s Association., 2021). AD may progress from
a long period of subtle memory decline called amnestic mild cognitive impairment (aMCI; the
most common type of MCI) (Petersen et al., 2001). While the etiology of AD is multifaceted, the
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hypothesis for an infectious cause in AD has emerged since the
1980s. Ball (1982) and Gannicliffe et al. (1986) first suggested
that periodic reactivation of herpes simplex virus type-1 (HSV-
1) from latency in neurons may facilitate the development of
AD. In the following decades, the possible involvement of herpes
viruses, such as HSV-1, HSV-2, cytomegalovirus (CMV), human
herpesvirus types 6, 7, and 8 (HHV-6, -7, and -8), varicella-
zoster virus (VZV) and Epstein-Barr virus (EBV), in AD and MCI
have been investigated (Polk et al., 2002; Strandberg et al., 2003;
Carbone et al., 2014; Barnes et al., 2015; Agostini et al., 2016b; Tsai
et al., 2017; Tzeng et al., 2018). The collective evidence implicates
HSV-1 as the most probable infectious agent contributing to
AD and MCI, according to reviews and meta-analyses (Steel
and Eslick, 2015; Itzhaki et al., 2016; Warren-Gash et al., 2019;
Sait et al., 2021).

HSV-1 is an enveloped, linear double-stranded DNA virus
that infects more than 60% of the population worldwide (Looker
et al., 2015; Harfouche et al., 2019; Khadr et al., 2019). Productive
infection of HSV-1, either from primary infection or latent
reactivation, causes mucocutaneous lesion of the lips, cornea or
genitals (Darougar et al., 1985; Scott et al., 1997; Ribes et al.,
2001). HSV-1 also causes herpes simplex encephalitis (HSE), the
most common type of infection-induced encephalitis (Granerod
et al., 2010; George et al., 2014). In pregnant mothers with
genital herpes, HSV-1 can cause congenital herpes in the infant
upon vaginal delivery, resulting in mucocutaneous lesions and
central nervous system (CNS) infection (Whitley et al., 1991;
Whitley et al., 2007).

At the neuronal level, HSV-1 infection has been shown
to induce tau hyperphosphorylation, amyloid-beta 40 and 42
(Aβ40/42) accumulation, oxidative stress, neuroinflammation
and apoptotic dysregulation, all of which are implicated in the
pathophysiology of neurodegenerative diseases such as AD. At
the genetic level, gene products of the HSV-1 life cycle have
been shown to interact with AD susceptibility genes, such as
presenilin 1 and 2 (PSEN1 and PSEN2), apolipoprotein E allele
4 (ApoE4) and clusterin genes, to promote both viral infectivity
and risk of AD. These molecular mechanisms of HSV-1-induced
neuropathology in AD have been reviewed in Harris and Harris
(2018) and Duarte et al. (2019). Consequently, at the behavioral
level, HSV-1 infection has been found to induce memory and
learning impairments reminiscent of AD (Beers et al., 1995;
Armien et al., 2010; De Chiara et al., 2019).

While molecular mechanisms underpinning contributions of
HSV-1 to AD have been reviewed extensively (Duarte et al., 2019;
Marcocci et al., 2020), a neuroanatomical standpoint has not been
considered in detail. Deciphering the HSV-1 infection pathway
and tropism in the brain would advance the understanding of
the potential neurological health outcomes of HSV-1 infection.
This review, thus, examines which brain region is most affected
by HSV-1. Literature to date suggests that it may be the
hippocampus, given its cardinal role in learning and memory.
The hippocampus and its neuronal connections to the entorhinal
cortex, amygdala, olfactory bulb and hypothalamus comprise
the limbic system (Vilensky et al., 1982). In the mammalian
hippocampus, life-long neurogenesis has been shown to occur in
the subgranular zone of the dentate gyrus (DG), where neural

stem or progenitor cells (NSCs/NPCs) are localized (Altman
and Das, 1965; Eriksson et al., 1998). The hippocampus is
susceptible to various stressors, including chronic stress, aging
and microbial infections. As a result, hippocampal functions
such as learning and memory would be compromised. Hence,
hippocampal dysfunction has been implicated in disorders that
involve memory impairment as a symptom, such as depression,
schizophrenia, dementia, aMCI/MCI and AD, as reviewed in
Small et al. (2011) and Anand and Dhikav (2012).

This review first discusses the possible role of HSV-1 in
the development of AD and aMCI/MCI in humans. Next, this
review describes the mechanisms of HSV-1 infection in neurons
and theoretical model of HSV-1 infection trajectory, focusing
on its neurotropism or predilection to target the hippocampus
based on cell culture, animal and human autopsy evidence. We
suggest that the hippocampal vulnerability to HSV-1 infection
may also present a pivotal factor in initiating or facilitating the
development of aMCI/MCI and AD. Following this, factors and
mechanisms affecting the hippocampal susceptibility to HSV-1
infection are discussed.

BRIDGING HSV-1 TO AD AND MEMORY
IMPAIRMENT

HSE, either due to primary infection or viral reactivation,
is known to cause long-term neurological sequelae despite
immediate antiviral treatments (Riancho et al., 2013; Armangue
et al., 2018). Damage to the temporal lobe and limbic system
(especially the hippocampus), as well as impairments in memory
and behavior (e.g., emotional instability and irritability), have
been frequently observed among HSE survivors (Kapur et al.,
1994; Caparros-Lefebvre et al., 1996; Dagsdottir et al., 2014;
Harris et al., 2020). Degeneration of similar brain regions
and consequent phenotypic abnormalities in HSE resemble
that of AD. This observation has led to the hypothesis that
repeated and periodic HSV-1 reactivation may contribute to AD
development, especially in the aging population with declining
immunocompetence (Ball, 1982; Esiri, 1982b; Gannicliffe et al.,
1986). Therefore, this section will describe the relationship
between HSV-1 and AD and memory impairment, which may
also reflect prodromal AD, in humans.

Alzheimer’s Disease
HSV-1 DNA has been detected within Aβ depositions in
postmortem brain tissues of AD patients compared to non-AD
controls (Mori et al., 2004). The same study also found HSV-1
antigens within cortical neurons, providing the first evidence of
possible HSV-1 reactivation in the AD brain (Mori et al., 2004).
A further study reported that most HSV-1 DNA was localized
within Aβ plaques in the cortices of AD patients (Wozniak et al.,
2009b). Furthermore, transcriptome analyses of brain specimens
from cohorts of AD patients have revealed higher abundance
of HSV-1 latency-associated transcripts (LATs; transcribed from
HSV-1 DNA) than older adults without AD (Readhead et al.,
2018). These results indicate that HSV-1 can infect the brain and
is associated with AD neuropathology.
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When compared to age-matched healthy controls, individuals
with AD and aMCI exhibited increased levels of anti-HSV-1
IgG antibodies (Costa et al., 2017; Agostini et al., 2019; Pandey
et al., 2019), which also correlated with increased cortical volumes
(Mancuso et al., 2014a,b). Similarly, increased antibody levels and
avidity index against HSV-1 were found to be elevated in aMCI
patients that did not develop AD, compared to those who did.
In the same study, HSV-1-specific antibody titers also correlated
positively with hippocampal and amygdala volumes (Agostini
et al., 2016a). Other studies have also found that aMCI patients
displayed higher anti-HSV-1 IgG antibody levels and avidity
index compared to that of both healthy controls and AD patients
(Kobayashi et al., 2013; Costa et al., 2020). Taken together, these
findings imply that robust antibody immunity against HSV-1
may prevent the brain atrophy progression of aMCI into AD,
possibly via antibody neutralization of HSV-1 that protects the
brain against HSV-1-induced neuropathology (Mancuso et al.,
2014a; Agostini et al., 2016a; Costa et al., 2020).

When anti-HSV-1 immunity is inadequate to control HSV-1
infection, periodic HSV-1 reactivation and productive infection
may occur. One nationwide retrospective cohort study in
Taiwan reported that individuals diagnosed with recurrent
HSV-1 infection had a 2.8-fold higher risk of developing AD
than uninfected individuals. More importantly, antiherpetic
medications reduced such risk by about 90% compared to placebo
(Tzeng et al., 2018). In another nationwide retrospective cohort
study involving participants with HSV-1 or VZV infections and
uninfected matched controls in Sweden, antiherpetic treatment
was associated with a 10% reduced risk of dementia. In
untreated patients, the risk of dementia increased by 50%
compared to uninfected controls (Lopatko Lindman et al., 2021).
A four-national (i.e., Wales, Scotland, Denmark and Germany)
retrospective cohort study found that persons with HSV infection
who were not given anti-herpetic medication had 18% higher
risk of dementia compared to uninfected controls, although
this effect was present in the Germany cohort only (Schnier
et al., 2021). In a smaller retrospective cohort study comprising
HSV-1-seropositive older adults, antiherpetic prescription was
associated with 70% lower risk of AD development compared
to no prescription (Hemmingsson et al., 2021). Two aging
prospective cohort studies have also found that the risk of AD
was about twofold greater in those with IgM seropositivity for
HSV-1 (Letenneur et al., 2008; Lovheim et al., 2015a). Taken
together, these studies suggest that HSV-1 productive infection
or reactivation may promote AD development, which may also
be preventable with antiherpetic agents.

Interestingly, a longitudinal study reported that IgM
seropositivity for HSV-1 was associated with memory decline,
especially amongst carriers of ApoE4 (Lövheim et al., 2019).
Likewise, in another prospective cohort study, ApoE4 carriers
had a threefold increased risk of both AD and HSV-1 reactivation
(i.e., as indicated by IgM seropositivity or elevated IgG levels)
compared to ApoE4-negative individuals (Linard et al., 2020).
Therefore, host genetic risk factors such as ApoE4 may modulate
the interactions between HSV-1 and AD risk.

However, several studies found no significant differences
in HSV-1 IgG seropositivity (Wozniak et al., 2005;

Letenneur et al., 2008; Lovheim et al., 2015b) and HSV-1
DNA in the brain (Jamieson et al., 1991; Hemling et al., 2003;
Pisa et al., 2017) between individuals with and without AD.
This could be attributed to genetic factors that predispose
HSV-1-infected individuals to AD. For instance, the presence
of HSV-1 DNA or IgG seropositivity with ApoE4 gene has
been shown to pose a greater risk factor in AD development
than either one by itself (Lin et al., 1995, 1996; Itzhaki et al.,
1997; Steel and Eslick, 2015; Lopatko Lindman et al., 2019).
Another reason may be that HSV-1 IgG seropositivity and DNA
only indicate a history of viral exposure, as HSV-1 may remain
latent and non-infective. Other meta-analyses have found that
HSV-1-specific IgM seropositivity and high IgG levels (i.e.,
indicating productive infection or reactivation) were associated
with dementia and MCI, but not HSV-1 IgG seropositivity and
DNA (Warren-Gash et al., 2019; Ou et al., 2020; Wu et al., 2020).

Memory Impairment
As mounting evidence supports the link between HSV-1
infection and AD development, HSV-1 may also be associated
with the prodromal stage of AD, aMCI. Patients with aMCI may
show early signs of AD neuropathological attributes, such as
hippocampal shrinkage, neurofibrillary tangles (NFT; aggregates
of hyperphosphorylated tau) and Aβ40/42 accumulation,
according to a systematic review (Stephan et al., 2012).
Hippocampal neuroimaging has also been demonstrated to
predict whether MCI patients would develop AD (Jack et al.,
1999; Hu et al., 2016; Li et al., 2019). Thus, given that HSV-1
infection can induce hippocampal dysfunction, HSV-1 infection
may also be associated with reduced memory function.

For instance, HSV-1 IgG seropositivity has been associated
with an 18-fold increased odds of memory deficits in middle-
aged adults (Dickerson et al., 2008). Associations between HSV-1
IgG seropositivity and impaired cognition were also reported in
other groups, e.g., healthy soldiers (Fruchter et al., 2015), young
individuals (Tarter et al., 2014; Vanyukov et al., 2018) and older
adults (Zhao et al., 2020; Murphy et al., 2021). Therefore, the
clinical biomarker of HSV-1 exposure (i.e., IgG seropositivity)
is likely to be linked to impaired memory and other cognitive
measures, while biomarkers of HSV-1 reactivation or productive
infection (i.e., high IgG levels or IgM seropositivity) is linked
to AD (Letenneur et al., 2008; Lovheim et al., 2015a; Warren-
Gash et al., 2019). This indicates that HSV-1 reactivation
or productive infection may promote more severe cognitive
decline than mere HSV-1 exposure. In a population study
comprising healthy adolescents, HSV-1 IgG seropositivity was
associated with memory decline, whereas HSV-1 IgG levels
correlated with both poor memory and executive functioning
(Jonker et al., 2014).

Population studies have also reported that IgG levels specific
for either HSV-1 or CMV independently predicted cognitive
defect in the elderly (Strandberg et al., 2003), schizophrenics
and their non-psychotic relatives (Shirts et al., 2008; Watson
et al., 2013), and middle-aged adults (Tarter et al., 2014).
However, some studies found that only CMV-specific (and
not HSV-1-specific) IgG seropositivity or levels correlated with
cognitive impairment in elderly populations (Aiello et al., 2006;
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TABLE 1 | Animal infection models assessing the neuronal invasion and spread of HSV-1.

Model of
infection

Site of viral
dissemination

Site of latency Neurological and
behavioral findings

References

Lip infection

Tooth pulp
inoculation into
BALB/C mice
(young;
5–6 weeks)

• Hippocampus
• EC
• TG
• Amygdala
• Brainstem
• Insular cortex
• Olfactory cortex
• Cingulate cortex
• Temporal cortex

N/A N/A Barnett et al., 1994

Infection by lip
abrasion into
C57BL/6 mice
(newborn; PND
0–1)

• Hippocampus • TG Accumulation of
Aβ40/42 peptides and
reduced neurogenesis
in the hippocampus.

Li Puma et al., 2019

Infection by lip
abrasion into
BALB/c and
3xTg-AD mice
(young;
6–8 weeks)

• Hippocampus
• Neocortex
• Cerebellum

• TG Upregulated
neuroinflammatory
(astrogliosis, IL-1β and
IL-6) and
neurodegenerative
(Aβ40/42 and
hyperphosphorylated
tau) markers in
neocortex and
hippocampus. Mice
exhibited learning and
memory deficits.

De Chiara et al., 2019

Upregulated oxidative
stress markers (HNE,
HNE-modified proteins,
protein carbonyls and
3-nitrotyrosine) in
cortex.

Protto et al., 2020

Intranasal infection

Intranasal
inoculation into
BALB/C mice
(young;
3–4 weeks)

• Hippocampus
• OB
• Amygdala
• Hypothalamus
• Brainstem

N/A N/A Anderson and Field, 1983

Intranasal
inoculation into
BALB/C mice
(young;
6 weeks)

• Hippocampus
• OB
• Trigeminal root entry
• Brainstem
• Amygdala
• Thalamus
• Hypothalamus
• Temporal lobe
• Cingulate cortex

N/A Neuronal degeneration
and acute inflammation
in infected areas,
especially the trigeminal
system.

Tomlinson and Esiri, 1983

Intranasal
inoculation into
BALB/C mice
(young;
6–8 weeks)

• Hippocampus
• EC
• OB
• Trigeminal nerve
• Brainstem

N/A N/A Webb et al., 1989

Intranasal
inoculation into
New Zealand
White rabbits
(adult)

• EC
• TG
• OB
• Olfactory cortex

• EC
• TG
• Olfactory cortex

Acute inflammation in
olfactory structures,
including the EC.

Stroop et al., 1990

(Continued)
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TABLE 1 | Continued

Model of
infection

Site of viral
dissemination

Site of latency Neurological and
behavioral findings

References

Intranasal
inoculation into
Lewis rats
(adult)

• Hippocampus
• EC
• Amygdala
• TG
• OB

• Hippocampus
• EC
• OB

Inflammatory and
haemorrhagic lesions in
the TG, OB, amygdala,
EC, spinal trigeminal
nuclei and
hippocampus.

Beers et al., 1993

Viral injection
into OB of
Sprague-
Dawley rats
(adult)

• EC
• Olfactory nucleus
• Piriform cortex

N/A Mice with bilateral
damage to olfactory
cortex exhibited
impaired learning and
memory.

McLean et al., 1993

Intranasal
inoculation into
Lewis rats,
followed by a
recovery period
from HSE
(adult)

• Hippocampus
• EC

• Hippocampus
• EC

Impairments in spatial
memory and learning.
Brain tissues remain
histologically normal.

Beers et al., 1995

Intranasal
inoculation into
SJL/NBOM
mice (adult)

• TG
• Olfactory epithelium

N/A Cytopathic effects
found predominantly in
the hippocampus,
temporal and
frontobasal lobes,
thalamus, pons and
mesencephalon.

Meyding-Lamade et al.,
1998, 1999

Intranasal
inoculation into
Albino Swiss
CD-1 mice
(young;
6–10 weeks)

• Hippocampus
• EC
• OB
• Amygdala
• Frontal lobe
• Temporal lobe

N/A HSV-1 replicated in the
brain without producing
neurological or
behavioral anomalies.

Boggian et al., 2000

Intranasal
inoculation into
BALB/C mice
(young;
4–6 weeks)

• Temporal cortex N/A Aβ40/42 deposition in
the temporal cortex.

Wozniak et al., 2007

Intranasal
inoculation into
Wistar
Hannover
GALAS rats
(young;
PND 14)

• Hippocampus
• OB
• TG
• Cerebral cortex Medulla

N/A Most viral antigens
were localized in the
DG subfield of the
hippocampus. Severe
neuronal loss and
tissue damage in
infected areas.

Ando et al., 2008

Intranasal
inoculation into
BALB/c mice to
induce
encephalitis
(young;
8–10 weeks)

• Hippocampus
• Trigeminal nerve
• OB
• Thalamus
• Hypothalamus
• Temporal cortex
• Piriform cortex

N/A Glial cells necrosis and
myelin degeneration
within the hippocampus
and lateral tegmental
nucleus. Neuronal loss
in the hippocampus
(most profound), EC,
amygdala and temporal
cortex. Lymphocytic
infiltration in the
hippocampus and
temporal cortex. Mice
exhibited severe
learning deficits.

Armien et al., 2010

(Continued)
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TABLE 1 | Continued

Model of
infection

Site of viral
dissemination

Site of latency Neurological and
behavioral findings

References

Intranasal
inoculation into
Sprague–
Dawley rats
(adult)

• Hippocampus
• TG
• OB
• Brainstem

N/A N/A Jennische et al., 2015

Corneal/Ocular infection

Corneal
inoculation into
BALB/C mice
(young;
4-6 weeks)

• TG
• Pons (entry of trigeminal

nerve)

• TG
• Pons
• Cerebellum
• EC
• Hippocampus

N/A Deatly et al., 1988

Corneal
inoculation into
Californian
rabbits (young;
6 weeks)

• TG
• Pons (entry of trigeminal

nerve)

• TG
• Pons

Profound
neuroinflammation in
the hippocampus and
EC.

Paivarinta et al., 1994

Ocular infection
into BALB/c
mice (young;
10 weeks)

• Hippocampus
• OB
• Brainstem
• Cerebellum
• Frontal lobe

• Hippocampus
• OB Brainstem

Cerebellum
Frontal lobe

N/A Chen et al., 2006

Ocular infection
into tree shrews
(Tupaia
belangeri
chinensis;
young;
6-months)

• Hippocampus
• OB
• Brainstem
• Thalamus
• Cerebral cortex

• OB
• Brainstem

N/A Li et al., 2016

Corneal
infection into
C57BL/6J mice
(young;
10 weeks)

• Hippocampus
• SVZ
• NPCs
• Midbrain
• Frontal lobe

• TG
• Hippocampus
• SVZ
• Midbrain
• Frontal lobe

Chronic inflammation in
the hippocampus, SVZ
and midbrain.

Menendez et al., 2016

Brain infection

Intracerebral
inoculation into
BALB/C mice
(young;
3–4 weeks)

• Hippocampus
• Hypothalamus
• Cerebral cortex

N/A N/A Anderson and Field, 1983

HSV-1 vector
propagation in
an ex vivo
system of
brains of
BALB/c mice
and SABRA
rats (newborn;
PND 1–2 and
young;
4 weeks)

• Hippocampus
• NPCs
• Ependymal cells
• Ventricles
• Cortical areas

N/A N/A Braun et al., 2006

Stereotactic
injection of
HSV-1 into the
hippocampus
of transgenic
AD mice
(5XFAD) (young;
5–6 weeks)

• Cortex N/A Accumulation of Aβ42
peptides in the brain,
which inhibited HSV-1
infectivity and protected
mice from acute viral
encephalitis.

Eimer et al., 2018

(Continued)
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TABLE 1 | Continued

Model of
infection

Site of viral
dissemination

Site of latency Neurological and
behavioral findings

References

Intracranial
infection into
transgenic
5xFAD mice
(young;
3-months)

• Hippocampus
• Cortex

N/A Accumulation of Aβ42
peptides.

Ezzat et al., 2019

Intracranial
infection into
C57BL/6 mice
(age and
weight N/A)

• Hippocampus N/A Neuronal loss,
upregulated
inflammatory markers
(TNF, IL1-β, IL-6 and
IFNα/IFNβ) and
suppressed
anti-inflammatory
(IL-10, SOCS2 and
SOCS3) signals in the
hippocampus.

Toscano et al., 2020

Peripheral infection

Intravenous
and sciatic
nerve
inoculation into
BALB/C mice
(young;
3–4 weeks)

• Brainstem
• Hypothalamus

N/A N/A Anderson and Field, 1983

Intraperitoneally
inoculation into
female
C57BL/6 mice
(young;
14 weeks)

• Hippocampus
• Ventricles
• Midbrain
• Cerebellum
• Cortex

• TG
• Hippocampus

N/A Burgos et al., 2006

Aβ, amyloid-beta; EC, entorhinal cortex; HNE, 4-hydroxynonenal; IL, interleukin; NPCs, neural progenitor cells; IFN, interferon; OB, olfactory bulb; PND, postnatal day;
SOCS, suppressor of cytokine signaling; SVZ; subventricular zone; TG, trigeminal ganglion; TNF, tumor necrosis factor.

Barnes et al., 2015; Nimgaonkar et al., 2016) and bipolar disorder
patients (Tanaka et al., 2017). On the contrary, other studies
showed that only HSV-1-specific IgG (and not CMV-specific)
seropositivity or levels were associated with cognitive impairment
in healthy adolescents (Jonker et al., 2014) and individuals with
or without neuropsychiatric disorders (Dickerson et al., 2003;
Yolken et al., 2011; Hamdani et al., 2017).

A putative explanation for these inconsistencies could be that
both CMV and HSV-1 contribute to memory dysfunction.
It was suggested that CMV, which is known to induce
immune dysregulation, may exacerbate HSV-1-induced
neurodegeneration, leading to AD (Stowe et al., 2012; Lovheim
et al., 2018). This is based upon the finding that HSV-1-
specific IgG levels increased with age only in CMV seropositive
individuals (Stowe et al., 2012). CMV IgG seropositivity alone
also did not elevate the risk of AD, but both CMV and HSV-1
seropositivity did (Lovheim et al., 2018), suggesting that CMV
and HSV-1 interact to influence the risk of developing AD.
For AD with severe memory impairment, HSV-1 likely plays
a more predominant role in memory impairment than other
herpesviruses, as suggested by meta-analyses (Steel and Eslick,
2015; Warren-Gash et al., 2019) and reviews (Itzhaki, 2014;
Itzhaki and Klapper, 2014).

One key limitation of these studies is that HSV-1 seropositivity
indicates the history of prior HSV-1 exposure. Seropositivity
alone does not inform the status of HSV-1 infection; that is,
active or latent infection, or viral replication in the central
or peripheral nervous systems or peripheral epithelial cells
(Dickerson et al., 2008; Murphy et al., 2021). Therefore, the
possible link of causality or pathophysiological pathways between
HSV-1 seropositivity and memory impairment remains unclear
(Vanyukov et al., 2018). Besides, the majority of the global
adult population (i.e., > 60%) is seropositive for HSV-1 (Looker
et al., 2015; Harfouche et al., 2019; Khadr et al., 2019), whereas
only relatively few develop memory impairment (i.e., 10–20% of
adults over 50 years) (Overton et al., 2019; Pais et al., 2020; Lu
et al., 2021). This suggests that HSV-1 seropositivity may only
play a subtle role in the development of memory impairment
in certain cases.

HSV-1 IN THE NERVOUS SYSTEM

HSV-1 has four notable structures: the glycoproteins-embedded
membrane, tegument layer, capsid and double-stranded DNA
genome (Grunewald et al., 2003). Although HSV-1 is considered
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FIGURE 1 | Theoretical model of HSV-1 infection trajectory within the nervous system. Following viral replication in the (1) oral, (2) corneal, or (3) olfactory epithelial
cells, HSV-1 can exploit the neuronal retrograde machinery to reach the (4) trigeminal ganglion and (5) olfactory bulb, which are also sites for HSV-1 latency and
stress-induced reactivation. Reactivated HSV-1 relies on anterograde transport to infiltrate the brain. Therein, HSV-1 travels from the trigeminal ganglion to the (6)
pons, a part of brainstem innervated by the trigeminal nerve, and then to the (7) limbic system that inhabits the hippocampal-entorhinal circuitry. Alternatively, HSV-1
may directly infect the hippocampal-entorhinal circuity via the olfactory bulb, which is part of the limbic system.

a human pathogen, it can infect other animals in experimental
settings, as reviewed in Karasneh and Shukla (2011). The
primary target cells of HSV-1 are epithelial and neuronal cells,
where HSV-1 can alternate between lytic and latent life cycle
phases, as reviewed in Kukhanova et al. (2014). This section
will detail the mechanisms of HSV-1-neuronal interactions,
followed by the theoretical model of HSV-1 infection trajectory
in the nervous system.

HSV-1 Infection and Latency
First, HSV-1 attachment to cells depends on the binding
of envelop glycoprotein B (gB) to surface heparan sulfate
proteoglycans (HSPGs), with an optional gC to augment the
interaction (WuDunn and Spear, 1989; Herold et al., 1991, 1994).
Alternatively, gB can bind to myelin-associated glycoprotein
(MAG) (Suenaga et al., 2009) and non-muscle myosin heavy
chain IIA and IIB (NHMC-IIA and -IIB) to initiate viral entry
(Arii et al., 2010, 2015). The subsequent binding of gD to 3-
O-sulfated heparan sulfate, herpesvirus entry mediator (HVEM)
and/or nectin-1 (Montgomery et al., 1996; Whitbeck et al., 1997;
Geraghty et al., 1998; Shukla et al., 1999) catalyzes viral fusion and
entry via activation of gH/gL (Atanasiu et al., 2010).

Following HSV-1 entry, the DNA-containing nucleocapsid
and tegument proteins are released into the cell cytoplasm.
One of the tegument proteins may proceed to turn off
protein translation in the cell (Kwong and Frenkel, 1987). The
nucleocapsid moves and docks on the nuclear pore, which
then disassembles to release the DNA into the cell nucleus
(Sodeik et al., 1997; Dohner et al., 2002). This initiates a
cascade of HSV-1 gene expression, in the order of α-genes, β-
genes and γ-genes, where viral structural proteins and DNA

are synthesized and re-assembled (Honess and Roizman, 1974).
The assembled viral particles may bud into the inner nuclear
membrane and undergo primary envelopment for nuclear egress.
HSV-1 particles may subsequently undergo de-envelopment at
the outer nuclear membrane to allow for further viral assembly
in the cytoplasm, and complete the secondary envelopment at
Golgi vesicles before the mature virions egress out of the host
cell (Hutchinson and Johnson, 1995; Granzow et al., 2001), as
reviewed in Mettenleiter (2002).

After this lytic phase in peripheral epithelial cells, HSV-1 can
proceed to the latent phase in neurons, typically in the trigeminal
ganglion (Takasu et al., 1992; Theil et al., 2001; Hufner et al.,
2009). The latent phase of HSV-1 starts similarly to the lytic
phase, until HSV-1 reaches the nucleopore by retrograde axonal
transport (Antinone and Smith, 2010). In the latent phase, HSV-1
lytic gene expression in the nucleus is silenced, and no infectious
viral progeny is produced. Instead, HSV-1 DNA undergoes
histone modifications with nucleosomes of the chromatin in cell
nucleus (Deshmane and Fraser, 1989; Kubat et al., 2004; Wang
et al., 2005). During latency, HSV-1 gene expression is limited
to LATs and a few microRNAs, which may inhibit (i) lytic gene
transcription to maintain latency and (ii) apoptosis to promote
survival of infected neurons (Perng et al., 2000; Wang et al., 2005;
Umbach et al., 2008).

HSV-1 can transition from latent to lytic phase under
conditions of cellular stress, such as chemotherapy,
hyperthermia, ultraviolet radiation, fever, immunosuppression
and psychological stress, as reviewed in Suzich and Cliffe (2018)
and Yan et al. (2020). During HSV-1 reactivation, the HSV-1
DNA-associated chromatin relaxes and transcription of the viral
regulatory VP16 protein begins, which consequently activates a
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cascade of viral lytic gene expression that lead to the production
of infectious viral progeny (Thompson et al., 2009; Kim et al.,
2012; Sawtell and Thompson, 2016). Newly manufactured HSV-1
then travels by anterograde transport from the cell body to axon
termini to infect neighboring epithelial cells or neurons (Snyder
et al., 2008; Miranda-Saksena et al., 2009). HSV-1 reactivation
can lead to the appearance of disease (e.g., cold sores and
HSE), asymptomatic viral replication or spread into the CNS, as
reviewed in Bearer (2012) and Marcocci et al. (2020).

Neurons with actively replicating HSV-1 via reactivation or
primary infection begins to undergo various mechanisms that
lead to pathological changes, as reviewed in Harris and Harris
(2018) and Duarte et al. (2019). Neuronal culture studies have
demonstrated that HSV-1 induced tau hyperphosphorylation by
upregulating several enzymes such as caspase-3, protein kinase
A and glycogen synthase kinase 3β (Wozniak et al., 2009a;
Lerchundi et al., 2011; Alvarez et al., 2012). HSV-1-infected
neurons have also been shown to exhibit impaired autophagy
and amyloid precursor protein (APP) processing, resulting in
increased Aβ40/42 accumulation (De Chiara et al., 2010; Santana
et al., 2012; Piacentini et al., 2015). These HSV-1-induced AD-
related neuropathology can be inhibited with antiviral treatment
targeting HSV-1 in vitro (Wozniak et al., 2011, 2013, 2005).
These studies indicate that HSV-1 spread into the brain may
facilitate the development of AD-related neuropathology. Animal
models further provided support wherein HSV-1 infection or
reactivation have been shown to induce AD neuropathology in
the brain, which was also associated with learning and memory
impairments (Martin et al., 2014; De Chiara et al., 2019).

HSV-1 Infection Trajectory: Emphasis on
Hippocampal Tropism
In the brain, HSV-1 invasion has been shown to target the
olfactory system and hippocampus, followed by the higher
cortical areas in animal studies (Table 1). According to Braak’s
staging scheme in human AD samples, the hippocampus–
entorhinal circuitry within the temporal lobe deteriorates the
earliest, followed by higher cortical areas (Braak and Braak,
1991). Increasing evidence has also suggested that dysfunction
of the olfactory system may indicate prodromal AD in humans,
as Murphy (2019) reviewed. With this anatomical resemblance,
Fewster et al. (1991) and Ball et al. (2013) have previously
suggested that HSV-1 might induce the neuron-to-neuron
tauopathy and Aβ spread in AD as HSV-1 propagates along its
infection pathways.

Upon oral infection in animal models, HSV-1 can infect
the mandibular trigeminal nerve to establish latency at the
trigeminal ganglion (Barnett et al., 1994; Lewandowski et al.,
2002; De Chiara et al., 2019). Alternatively, the nasal cavity
can be an infection site wherein HSV-1 can travel along the
olfactory and trigeminal maxillary nerves and become latent in
the olfactory bulb and trigeminal ganglion of animals (Stroop
et al., 1990; Beers et al., 1993; Jennische et al., 2015). Autopsy
studies have also detected HSV-1 DNA, including LATs, in
the trigeminal ganglion, trigeminal nerves and olfactory bulb
of deceased humans (Liedtke et al., 1993; Theil et al., 2001;

Hufner et al., 2009). In animal studies, HSV-1 could also infect
the eye, propagating along the corneal subbasal nerve plexus
innervated by trigeminal ophthalmic nerve, to initiate latency
in the olfactory bulb and trigeminal ganglion (He et al., 2017;
Menendez and Carr, 2017; Figure 1). Although congenital herpes
is usually contracted upon vaginal delivery, in utero infection can
occur in 5% of human infant cases (Hutto et al., 1987; Marquez
et al., 2011). In such instances, using the murine model, genital
HSV-1 likely enters the bloodstream and crosses the placenta into
the fetal nervous system following the trigeminal infection route
(Burgos et al., 2006).

Following reactivation from the trigeminal ganglion, HSV-1
may infiltrate the pons innervated by trigeminal nerves and then
travel along the brainstem to the limbic system, as demonstrated
in animal models (Tomlinson and Esiri, 1983; Webb et al., 1989;
Barnett et al., 1994; Paivarinta et al., 1994). The olfactory bulb
constitutes part of the limbic system and has direct projections to
the hippocampus. Thus, reactivation from the olfactory bulb may
provide HSV-1 and other neurotropic viruses direct access to the
hippocampus, as proposed by Mori et al. (2005) and Duarte et al.
(2019).

The theoretical model depicting neuronal pathways of HSV-
1 infection in the brain (Figure 1) is also consistent with
autopsy examinations of HSV-1 antigen distribution amongst
HSE patients. Specifically, HSV-1 antigens were localized mostly
in the hippocampus with the highest number of cases and
viral abundance found, as well as in the temporal lobe,
olfactory bulb and amygdala (Dinn, 1979; Twomey et al., 1979;
Esiri, 1982a,b). Notably, postmortem analysis of AD victims
detected HSV-1 DNA more frequently in the hippocampus
and temporal cortex compared to other brain areas (Jamieson
et al., 1991, 1992). Damasio and Van Hoesen (1985) also
hypothesized that HSV-1 travels to the limbic system via
the trigeminal nerve, wherein HSV-1 may exhibit higher
affinity for the hippocampus, and subsequently spread to
cortices during HSE.

Most animal models investigating HSV-1 neurotropism
following reactivation, primary infection, or both have supported
the predilection of HSV-1 to infect the hippocampus (Table 1).
Some studies induced stress in animal models to reactivate HSV-1
and showed that the consequent viral replication was particularly
prominent in the hippocampus (Burgos et al., 2006; De Chiara
et al., 2019). Further supporting evidence can be derived from
animal findings that demonstrated impairment in hippocampus-
dependent memory and learning tasks following HSV-1 infection
(McLean et al., 1993; Beers et al., 1995; Armien et al., 2010; De
Chiara et al., 2019).

AD-associated neuropathology induced by HSV-1 can
be observed in the hippocampus. For instance, multiple
reactivations of HSV-1 caused memory deficits that were
correlated with increased Aβ accumulation, tau phosphorylation
and neuroinflammation in the neocortex and hippocampal
DG of mice (De Chiara et al., 2019). It was demonstrated
that HSV-1 could form a protein corona layer that served as
catalytic surfaces for Aβ accumulation in the hippocampus
and cortex of mice (Ezzat et al., 2019). Neurodegeneration and
lymphocytic infiltration were also observed in the hippocampus,
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entorhinal cortex, amygdala and temporal cortex in HSV-
1-infected mice (Ando et al., 2008; Armien et al., 2010;
Toscano et al., 2020). Moreover, HSV-1 has been shown to
inhibit the proliferation and differentiation of hippocampal
NSCs (Li Puma et al., 2019). In mature hippocampal neurons,
acute HSV-1 infection has been shown to increase Aβ42
accumulation and hyperphosphorylated tau compared to
uninfected neurons (Powell-Doherty et al., 2020). Taken
together, findings from neuronal culture, animal models and
human autopsy studies implicate the hippocampus as the
nexus between HSV-1 and memory-related disorders, such as
AD and aMCI/MCI.

SUSCEPTIBILITY FACTORS TOWARD
HSV-1 INFECTION IN THE
HIPPOCAMPUS

Several biological factors potentially place the hippocampus
at risk for HSV-1 infection compared to other brain regions,
providing a mechanistic basis for the hippocampal tropism of
HSV-1 (Table 2). For one, receptors for HSV-1 cellular entry
are highly expressed in the hippocampus. The hippocampus
is a site of active neurogenesis throughout adulthood, which
may also favor HSV-1 infection. The impaired antiviral
immunity in the hippocampus, especially during aging,
may further render the hippocampus vulnerable to HSV-1
infection. HSV-1 may also capitalize on the high levels of
hippocampal glucocorticoid receptors (GRs) to promote
its virulence. Additionally, the high APP levels in the
hippocampus may facilitate HSV-1 neuronal propagation.
Details of these hippocampal susceptibility factors are further
discussed below.

High Expression of Cellular Receptors
for HSV-1
HSV-1 entry and infection in cells rely on the presence of viral
envelop gB, gD and gH/gL and cell surface receptors for gB and
gD. According to the Allen Brain Atlas transcriptome database
of the adult human brain, the expression of receptors for the
envelop glycoproteins of HSV-1, specifically gB (i.e., NHMC-
IIA and MAG receptors) and gD (i.e., HVEM and nectin-1
receptors), were found to be highest in the hippocampus by 2–
3-fold compared to other brain regions (Lathe and Haas, 2017).
The same study also found similar HSV-1 receptors being highly
expressed in the murine hippocampus (Lathe and Haas, 2017).
Immunohistochemical analyses have also revealed that nectin-
1 expression was particularly high in the hippocampus of mice
and humans (Horvath et al., 2006; Prandovszky et al., 2008).
Similarly, nectin-1 RNA was detected in large quantities in the
murine hippocampus compared to other brain regions (Haarr
et al., 2001). Aside from nectin-1, the distribution of other HSV-1
receptors in the brain has not been widely studied.

Furthermore, it was shown that the cerebellum lacks gD
receptors (Lathe and Haas, 2017), which may explain the finding
that HSV-1 inoculation into the cerebellum did not induce lethal

TABLE 2 | Susceptibility factors of the hippocampus toward HSV-1 infection.

Susceptibility factor Component Function

High expression of viral
receptors

↑ NMMHC-IIA
(MYH9)
↑ MAG
↑ HVEM
(TNFRSF14)
↑ Nectin-1
(PVRL1 or
HveC)

Binds to gB for HSV-1
attachment Binds to gB for
HSV-1 fusion and entry

Abundance of NPCs/NSCs:
A neurogenic niche

↑ HSPG Binds to gB for HSV-1
attachment

Inadequate antiviral
immunity

↓ IL-6
↓ Microglial
type I interferon

Lowered resistance against
HSV-1 infection

High expression of GR ↑ GR Interact with HSV-1 promoters
to enhance infectivity

High expression of APP ↑ APP Promote HSV-1 spread

Alternative names are bracketed; refer to the main text for relevant references.
APP, amyloid precursor protein; GR, glucocorticoid receptor; HSPG, heparan
sulfate proteoglycan; HveC; herpesvirus entry mediator C; HVEM, herpesvirus
entry mediator; IL-6, Interleukin-6; MAG, myelin-associated glycoprotein; MHY9,
myosin heavy chain 9; NMMHC-IIA, non-muscle myosin heavy chain-IIA; PVRL1,
poliovirus receptor-like 1; TNFRSF14, tumor necrosis factor receptor superfamily,
member 14.

disease in mice (McFarland and Hotchin, 1987). This was in
contrast to the pervasive viral spread and death when HSV-1 was
inoculated into the murine hippocampus instead (McFarland and
Hotchin, 1987). Another study also showed that HSV-1 binds
more strongly to the murine hippocampus than the brainstem
and cerebellum (McFarland et al., 1982). Based on animal models
investigating HSV-1 spread in the brain, HSV-1 infects the
hippocampus in most studies, and rarely targets the cerebellum
(Table 1). Therefore, the HSV-1 tropism for the hippocampus
may be attributed to the high expression of viral gB and gD
receptors in the hippocampus.

Abundance of NSCs/NPCs: A
Neurogenic Niche
As demonstrated ex vivo, the hippocampus and periventricular
areas of neonate mice were particularly susceptible to HSV-
1 infection (Braun et al., 2006). The viral dissemination into
these brain regions where neuronal differentiation is active
suggests that dividing cells are more vulnerable to HSV-1
infection (Braun et al., 2006). Using organotypic hippocampal
cultures, it was shown that the hippocampal DG (i.e., the chief
neurogenic niche) was most vulnerable to HSV-1 infection
compared to hippocampal glia and other neuronal types (Ando
et al., 2008). Another study also showed that HSV-1 preferentially
infects undifferentiated NSCs rather than mature hippocampal
neurons, resulting in impaired hippocampal neurogenesis (Li
Puma et al., 2019). More recent studies have shown that HSV-
1 readily infects NSCs/NPCs and induces Aβ42 accumulation,
neuroinflammation and neuronal impairments, which can be
prevented with valacyclovir antiherpetic treatment (Abrahamson
et al., 2020; Cairns et al., 2020; Zheng et al., 2020).
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FIGURE 2 | Framework for HSV-1 pathogenicity. Green denotes established disease pathways wherein mild HSV-1 infection causes mucocutaneous lesions of the
lips (cold sores), genitals (genital herpes), and cornea (keratitis). Severe HSV-1 infection causes herpes simplex encephalitis (HSE). Following productive infection
(dashed arrows), HSV-1 establishes latency in the trigeminal ganglion and olfactory bulb, and periodically reactivates. Red-brown denotes current and emerging
putative pathogenicity pathways, wherein HSV-1 preferentially infects the hippocampus due to several susceptibility factors. HSV-1 consequently induces
neuropathological effects and, thus, compromises hippocampal functions. As a result, memory becomes impaired, which may lead to aMCI/MCI and AD.
Alternatively, the progressive HSV-1-induced hippocampal damage may facilitate the progression from aMCI/MCI to AD. Given that hippocampal dysfunction may be
present in other neuropsychiatric disorders such as schizophrenia, PTSD, depressive and anxiety disorders, HSV-1 may hypothetically contribute to such disorders
as well. Aβ, amyloid-beta; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; CNS, central nervous system; HSV-1, herpes simplex virus type 1;
MCI, mild cognitive impairment; PNS, peripheral nervous system; PTSD, post-traumatic stress disorder.

The vulnerability of dividing, undifferentiated NSCs in the
hippocampal DG to HSV-1 infection could be attributed to the
high expression of surface HSPGs. HSPGs comprise a family of
two glycoproteins, syndecans and glypicans, which are highly
expressed throughout mammalian neurogenesis (Hagihara et al.,
2000; Wang et al., 2012; Oikari et al., 2016; Yu et al., 2017). HSPGs
regulate basic fibroblast growth factor (bFGF; NSCs mitogen)
to initiate neurogenesis (Rapraeger et al., 1991; Yayon et al.,
1991; Vicario-Abejon et al., 1995). However, HSPGs also mediate
HSV-1 attachment to mammalian cell surfaces (WuDunn and
Spear, 1989; Herold et al., 1991, 1994). HSV-1 infection in
mice has also been shown to downregulate FGF-2 expression
and NSCs proliferation (Rotschafer et al., 2013). Similarly,
reactivating HSV-1 in mice resulted in Aβ40/42 accumulation in
the hippocampal NSCs, disrupting neurogenesis (Li Puma et al.,
2019). Therefore, HSPGs play dual roles in promoting NSCs
proliferation and HSV-1 cell attachment.

In addition, surface HSPGs have been implicated in the
pathogenesis of AD (Zhang et al., 2014). HSPGs expression has
been detected in Aβ plaques and NFTs in cortical areas and
more frequently in the hippocampus of AD patients (Snow et al.,
1992; Bignami et al., 1994; Verbeek et al., 1999). This indicates
that existing NFTs and Aβ plaques in the hippocampus may
bind to HSV-1 via HSPGs, perhaps to advance AD progression.
Indeed, the heparin-binding domain of Aβ oligomers has been

shown to bind to HSV-1 glycoproteins, which entrapped and
neutralized HSV-1 to prevent encephalitis in mice, but at the
consequence of increased Aβ42 accumulation (Eimer et al., 2018).
Conversely, HSV-1 infection has been shown to form a protein
corona layer that bound to amyloidogenic peptides and catalyzed
Aβ42 accumulation in the hippocampus and cortex of mice
(Ezzat et al., 2019). Taken together, HSPGs-mediated interactions
between HSV-1 and Aβ peptides at the NSCs-rich hippocampus
may initiate and/or facilitate AD neurodegenerative processes.

Inadequate Antiviral Immunity
NPCs have also been found to be susceptible to HSV-1
infection and latency establishment in murine and neuronal
3D models (Menendez et al., 2016; Zheng et al., 2020). In
cultured NPCs, HSV-1 infection decreased neuronal survival,
which was prevented in co-cultures of NPCs with microglia
(Chucair-Elliott et al., 2014). This protective effect can be
reversed by the addition of IL-6-specific neutralizing antibodies.
Likewise, exposing NPCs to recombinant IL-6 demonstrated
similar protective effects against HSV-1 infection (Chucair-Elliott
et al., 2014). IL-6 activation has also been associated with
increased in vivo resistance against HSV-1 infection (Carr and
Campbell, 1999; LeBlanc et al., 1999a). Immunohistochemical
analyses have revealed that IL-6 expression was localized in the
ventricles and lesser in other areas, including the hippocampus,
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in mice (Aniszewska et al., 2015). Hence, the low protein levels
of IL-6 in the hippocampus may not provide sufficient antiviral
immunity against HSV-1 infection.

Microglia have been identified as the primary activator
of cyclic GMP-AMP synthase-stimulator of interferon genes
(cGAS-STING)-dependent type I interferon antiviral defense
against HSV-1. Specifically, mice deficient in cGAS or STING
showed impaired microglial type I interferon responses and
elevated HSV-1 replication in the brain, leading to increased
vulnerability to HSE (Reinert et al., 2016). A genome-wide study
analyzing the microglia immunophenotype in the adult mice
brain found that the immune vigilance (e.g., antiviral interferon
activities) of hippocampal microglia was more robust than other
brain areas. Interestingly, the hippocampal microglia were most
vulnerable to age-related decline in immune function (Grabert
et al., 2016). HSV-1 might become opportunistic as a result,
targeting the hippocampus when microglial immunosurveillance
weakens. This is consistent with the findings that senescence
or aged microglia often preceded AD-related neuropathology
in the brain, including the hippocampus (Kaneshwaran et al.,
2019; Rodriguez-Callejas et al., 2020), as also reviewed in Streit
et al. (2009). Henceforth, specific antiviral immunity against
HSV-1 might be inadequate in brain regions susceptible to HSV-
1 infection. Kramer and Enquist (2013) also hypothesized that
not all cells of the nervous system are equally prone to HSV-1
infection due to variations of immune defenses involved.

High Expression of Glucocorticoid
Receptor (GR)
In the mammalian brain, high GR expression has been found
in the hippocampus throughout life (Reul et al., 1989; Wang
et al., 2013). Hence, the hippocampus is known to be highly
vulnerable to glucocorticoid- or stress-related pathology, as
reviewed in McEwen et al. (2016). Activated GR is known to
interact with viral promoters to facilitate viral replication and
infectivity in the brain (Fouty and Solodushko, 2011). The HSV-1
genome has several GR response elements that have been shown
to stimulate viral promoters (i.e., VP16 and ICP0) to initiate
reactivation and replication (Harrison et al., 2019; Ostler et al.,
2019). These studies further demonstrated that GR antagonists
prevented HSV-1 shedding in neuronal cells and reactivation
in mice (Harrison et al., 2019; Ostler et al., 2019). Inhibiting
glucocorticoid synthesis with cyanoketone also inhibited HSV-
1 reactivation in mice (Noisakran et al., 1998). In contrast,
dexamethasone (i.e., synthetic glucocorticoid) treatment has been
shown to induce HSV-1 reactivation and replication in vitro and
in vivo (Sawiris et al., 1994; Halford et al., 1996; Hardwicke and
Schaffer, 1997; Noisakran et al., 1998; Erlandsson et al., 2002; Du
et al., 2012; Harrison et al., 2019). Therefore, the hippocampus
has a prominent GR expression that could promote HSV-1
virulence in the CNS.

High Expression of Amyloid Precursor
Protein (APP)
HSV-1 infection has been shown to upregulate enzymes that
cleave APP following the amylogenic pathway to generate

Aβ40/42 peptides (Wozniak et al., 2007; De Chiara et al., 2010;
Piacentini et al., 2015). APP is ubiquitously expressed in the
brain, with higher expression found in the olfactory system,
cerebral cortex and hippocampus (Card et al., 1988; Imaizumi
et al., 1993). These areas are also known to be targeted by
HSV-1 (Table 1). HSV-1 capsids have been shown to bind to
APP to expedite viral transport in both squid and epithelial cell
culture models (Satpute-Krishnan et al., 2003; Cheng et al., 2011).
The infected epithelial cells further displayed abnormal APP
processing, resulting in mislocalized APP that may contribute to
AD (Cheng et al., 2011).

Recent studies have also demonstrated that HSV-1 infection
induced Aβ42 or Aβ40/42 accumulation, indicative of
pathological APP metabolism, in the hippocampus in vitro
and in vivo (De Chiara et al., 2019; Ezzat et al., 2019; Powell-
Doherty et al., 2020). Interestingly, Aβ40/42 accumulation was
observed in the hippocampus in a mouse model of HSV-1
reactivation, but such neuropathology did not occur in mice with
APP gene knockout (Li Puma et al., 2019). Thus, APP appears
imperative for the cellular propagation and spread of HSV-1,
generating Aβ40/42 peptides in the process. This might also
contribute to the hippocampal susceptibility to HSV-1 infection,
given that the hippocampus has high APP expression.

CONCLUDING REMARKS

The review discussed the interplay between HSV-1 and
hippocampal- or memory-related brain disorders, namely AD
and aMCI/MCI. Next, this review outlined the theoretical
pathway by which HSV-1 productive infection or reactivation
infiltrates the brain, underscoring its predilection for the limbic
system and the hippocampus therein. HSV-1 likely induces
neuropathological effects in the hippocampus comparable to
AD phenotype. Given the established role of the hippocampus
in learning and memory, aMCI/MCI likely precede AD in the
course of disease development in persistent or recurrent HSV-
1 infection.

Factors and mechanisms contributing to the hippocampal
susceptibility to HSV-1 infection are also elucidated. Several
2D and 3D cell culture studies reported the use of antiherpetic
agents to prevent HSV-1-induced AD-related neuropathology,
including hippocampal damage (Ando et al., 2008; Wozniak
et al., 2011, 2013; Cairns et al., 2020). This is consistent
with three large retrospective cohort studies spanning multiple
countries showing that antiherpetic agents (e.g., acyclovir and
valacyclovir) were associated with a reduced risk of dementia
(Tzeng et al., 2018; Lopatko Lindman et al., 2021; Schnier et al.,
2021). However, observational cohort studies can only inform
associations, not causation. To this end, an on-going 78-week
phase II randomized placebo-controlled clinical trial is assessing
the efficacy of valacyclovir in attenuating symptom progression
in patients with mild AD with HSV-1 seropositivity (Devanand
et al., 2020). This is the first trial to investigate whether antiviral
has any causal role in treating AD (Devanand et al., 2020).

It is still unknown whether the risk of AD development
or progression would remain attenuated should antiviral
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agents be discontinued as HSV-1 may reactivate thereafter.
Current antiherpetic agents only inhibit HSV-1 replication
and do not eradicate HSV-1 latency (LeBlanc et al., 1999b;
Sawtell et al., 2001). Hence, HSV-1 may reside permanently in the
nervous system amongst those infected, with their hippocampal
function at risk for HSV-1 infection. More research could be
conducted on potential treatments that may attenuate or prevent
HSV-1-induced neuropathology. For one, the optimal drug
dosage, frequency and duration of antiherpetic agents in treating
AD should be determined, in light of HSV-1 latency. No vaccines
are available for HSV-1 to date, suggesting further research on
vaccine design and development to be considered (Whitley and
Baines, 2018). Multiple phase II/III clinical trials investigating
Aβ-based therapies (e.g., secretase inhibitors and monoclonal
antibodies) for AD have been unsuccessful, as reviewed in Oxford
et al. (2020). A possible reason for this could be an on-going
HSV-1 infection or reactivation that may promote the formation
or prevent the clearance of Aβ40/42 in the brain, especially in
the hippocampus. Therefore, synergistic antiherpetic agent with
Aβ-based therapy may show promise in treating AD.

All in all, persistent HSV-1 infection and reactivation may
present as risk factors, which likely interacts with and adds to
other risk factors (e.g., age, ApoE4 genotype and other microbial
infections) in the development of AD and other hippocampal-
related brain disorders, as reviewed in Wainberg et al. (2021)

and Vigasova et al. (2021). However, there is no evidence
of causation in humans yet as HSV-1 reactivation cannot be
measured in the living brain, as Mancuso et al. (2019) suggested.
Although only AD and aMCI/MCI neuropathogenesis have been
strongly linked to HSV-1, HSV-1 may also be involved in other
hippocampal-related brain disorders, such as schizophrenia,
depression, anxiety and post-traumatic stress disorder (Small
et al., 2011; Anand and Dhikav, 2012; Klein, 2017). This possibly
adds on to the list of established diseases caused by HSV-1,
namely mucocutaneous lesions and encephalitis (Figure 2).
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