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The meninges are the fibrous covering of the central nervous system (CNS) which
contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and
pia). The dural compartment of the meninges, closest to the skull, is predominantly
composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate
lymphatic system, as well as immune cells which are distinct from the CNS. Segregating
the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells,
connected by tight and adherens junctions, which regulate the movement of pathogens,
molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma.
Most proximate to the brain is the collagen and basement membrane-rich pia matter
that abuts the glial limitans and has recently be shown to have regional heterogeneity
within the developing mouse brain. While the meninges were historically seen as a purely
structural support for the CNS and protection from trauma, the emerging view of the
meninges is as an essential interface between the CNS and the periphery, critical to brain
development, required for brain homeostasis, and involved in a variety of diseases. In
this review, we will summarize what is known regarding the development, specification,
and maturation of the meninges during homeostatic conditions and discuss the rapidly
emerging evidence that specific meningeal cell compartments play differential and
important roles in the pathophysiology of a myriad of diseases including: multiple
sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer.
We will conclude with a list of major questions and mechanisms that remain unknown,
the study of which represent new, future directions for the field of meninges biology.

Keywords: meninges, fibroblast, meningeal lymphatic system, arachnoid barrier, blood-CSF barrier, border-
associated macrophages

INTRODUCTION

The meninges are the multifaceted structure surrounding the brain and spinal cord with three
structurally and cellularly distinct layers: the pia, arachnoid, and dura. The meninges house a variety
of cell types including the largest population of CNS fibroblasts, three different vascular networks,
specialized immune populations, neural stem cells and suture stem cells. The meninges were once
considered a simple protective structure, but we now understand that the diversity of cells found
in the meninges mediate multiple CNS functions. In this review, we will detail the different cell
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populations of the meninges and discuss their role in CNS
development, homeostasis, injury, and disease.

MENINGEAL CELL TYPES

The meninges contain two compartments: the leptomeninges
(collective term for pia and arachnoid layers) and the dura
(Figure 1A). The vascular make-up, fibroblast, and immune cell
populations are different between the two compartments, as are
their roles in development, homeostasis, and disease. In this
section, we will review the cellular, molecular, and developmental
identities of meningeal cells, with a particular focus on the
fibroblast populations.

Fibroblasts
Fibroblasts, once thought of as purely structural cells, are
now known to execute a variety of functions throughout
the body. These functions, which are often organ and tissue
specific, include the regulation of neighboring blood vessels,
immune cells, and lymphatic vessels, through the production
of growth factors, cytokines, and extracellular matrix remolding
(Liu et al., 2008; Mueller and Germain, 2009; Barron et al.,
2016; Chapman et al., 2016; Furtado, 2016; Roulis and Flavell,
2016; Pikor et al., 2017; Buechler and Turley, 2018; Tallquist,
2020; Wang et al., 2020). Consistent with diverse roles,
single cell transcriptome studies of the CNS and non-CNS
organs demonstrate transcriptional heterogeneity in fibroblast
populations that can correlate with specific locations within a
tissue (Saunders et al., 2018; Vanlandewijck et al., 2018; Dobie
et al., 2019; Tsukui et al., 2020). Our recent single cell RNA
sequencing (scRNAseq) of developing mouse meninges showed
pia, arachnoid and dura fibroblasts are molecularly distinct
and likely have layer specific functions (DeSisto et al., 2020).
However, we are just beginning to understand how the molecular
and cellular features of meningeal fibroblasts emerge during
development and how these specializations translate to function.

Primitive, non-layer specific meningeal fibroblasts are first
observed as a mesenchymal layer called the “primary meninx”
which surrounds the nervous system by embryonic day 10.5
(E10.5) in the mouse (McLone and Bondareff, 1975; Dasgupta
and Jeong, 2019). Meningeal fibroblasts in different CNS regions
have different origins; forebrain meningeal fibroblasts are neural
crest derived whereas mid-, hindbrain and spinal cord meninges
are derived from the mesoderm (Jiang et al., 2002; Yoshida et al.,
2008). By E12, the mouse meninges is organized into a thin outer
layer of flat cells and a loose inner layer, which show distinct
molecular profiles (Dasgupta et al., 2019; DeSisto et al., 2020).
By E13.5 the three layers of meninges (pia, arachnoid, and dura)
can be identified in the ventral forebrain, with fibroblasts from
each layer having established unique transcriptional signatures
and cellular specializations (DeSisto et al., 2020). Maturation and
differentiation of the meningeal layers continues in a ventral
to dorsal pattern over the forebrain (Vivatbutsiri et al., 2008;
Siegenthaler et al., 2009; DeSisto et al., 2020).

The pia is a single layer of fibroblasts that sits adjacent to
the glia limitans, a basement membrane (BM) that contacts the

brain parenchyma and serves as the attachment point for radial
glia cells during development and later for astrocytic end feet
(McLone and Bondareff, 1975; Zhang et al., 1990; Sievers et al.,
1994; Beggs et al., 2003). The transcriptional profile of pial
fibroblasts shows enriched expression of extracellular matrix
(ECM) genes, many of which are key components of the pial
basement membrane (DeSisto et al., 2020). This supports pial
fibroblasts as critical for pial BM maintenance. Embryonic pial
cells uniquely express genes not seen in arachnoid or dura
fibroblasts, such as S100a6 and Ngfr, and have sub-populations
that correlate with specific brain regions (DeSisto et al., 2020).
The functional relevance of pial fibroblast heterogeneity in the
developing meninges is not known nor is it known if this persists
in adult meninges.

Arachnoid fibroblasts are organized into a meshwork of
column-like trabecular structures that create space for large
blood vessels and open pockets for cerebrospinal fluid (CSF)
(Figure 1). Studies using transmission and scanning EM in rat
and human show arachnoid trabeculae are pillars of collagen
fibrils surrounded by fibroblasts (Alcolado et al., 1988; Saboori
and Sadegh, 2015; Mortazavi et al., 2018; Figure 1B). Trabecular
pillars are not seen in mouse arachnoid cells, and EM studies
instead show long cellular processes of fibroblasts that span the
subarachnoid space (McLone and Bondareff, 1975; Figure 1C).
Fibroblasts associated with human arachnoid trabeculae have
been previously described in EM studies as un-specialized
leptomeningeal fibroblasts (Alcolado et al., 1988). However,
we found that the molecular profile of human and mouse
arachnoid fibroblasts, including in human those associated with
trabecula, differs from other leptomeningeal fibroblasts in the pia.
Arachnoid fibroblasts express RALDH2 and CRABP2, a retinoic
acid (RA) synthesizing enzyme and an RA binding protein,
respectively (Figures 1D,E; DeSisto et al., 2020). Production
of RA by the arachnoid layers critically regulates brain and
neurovascular development (Siegenthaler et al., 2009; Choi et al.,
2014; Bonney et al., 2016; Mishra et al., 2016; Haushalter et al.,
2017). Arachnoid fibroblasts are also uniquely enriched in other
secreted factors such as Wnt6, Angptl2, and Bmp4 that may act
locally in other meninges cells or adjacent structures such as the
brain or calvarium (Dasgupta et al., 2019; DeSisto et al., 2020).

Fibroblasts in the mouse dura are organized into an outer layer
that adhere to the underside of calvarium bones and an inner
layer that contact arachnoid barrier cells (Figure 1A). Fibroblasts
in the outer dural layer are essentially the periosteal cells of the
calvarial bones and consist of abundant collagen fibrils. The inner
layer of dural fibroblasts are called dural border cells and are
immediately adjacent to arachnoid barrier cells (Nabeshima et al.,
1975; Alcolado et al., 1988). Of note, a scRNAseq study of the
developing mouse cranial suture indicate that outer periosteal
dural fibroblasts and inner dural border fibroblasts are likely
molecularly distinct fibroblast populations (Farmer et al., 2021).
Additionally, dural fibroblasts have been shown to play a role
in suture patency during calvarium expansion to accommodate
brain growth (Cooper et al., 2012; Yu et al., 2021).

The last class of fibroblasts seen in the meninges are
perivascular fibroblasts (Figure 1A). Perivascular fibroblasts
are found around large diameter blood vessels throughout
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FIGURE 1 | Meninges structure and cellular heterogeneity (A) Schematic of cellular make up and structure of the mouse meninges and contiguous perivascular
space. (B) Electron microscopy image of a human arachnoid trabecula, the collagen fibril structures that span the wide of the sub-arachnoid space. A cell,
potentially an arachnoid, is seen associated with the collagen fibril. Image reproduced with permission from Alcolado et al. (1988). (C) Electron microscopy image of
the mouse leptomeninges, a “pia-arachnoid” cell process (PA) spans the subarachnoid space (SA) containing blood vessels (BV). Cells of the inner arachnoid are
immediately adjacent to the arachnoid barrier cell layer, which contains microfibrils (f) of extracellular matrix material. Image reproduced with permission from McLone
and Bondareff (1975). (D) Immunofluorescence image of human fetal leptomeninges in the Sylvian sulcus labeled with CRABP2 (magenta) and DAPI (cyan). CRABP2
immunoreactivity in the meninges is limited to the arachnoid layer and cells associated with the arachnoid trabecula (AT) in the subarachnoid space (SA). Image
reproduced with permission from DeSisto et al. (2020). BV, blood vessels. (E) Immunofluorescence image of mouse leptomeninges at postnatal day 14 labeled with
CRABP2 (magenta) and DAPI (cyan). CRABP2 immunoreactivity is seen in cells of the arachnoid layer but not in pia-located cells. Image reproduced with permission
from DeSisto et al. (2020).

the pia and sit immediately adjacent to the vascular smooth
muscle layer (Zhang et al., 1990; Hannocks et al., 2018;
Riew et al., 2020; Bonney et al., 2021; Sato et al., 2021).
Perivascular fibroblasts are also found around penetrating
arterioles and pre-capillary arterioles but not capillaries in the
CNS parenchyma of human (Zhang et al., 1990) and rodent
(Soderblom et al., 2013; Kelly et al., 2016; Hannocks et al., 2018;
Bonney et al., 2021; Dorrier et al., 2021). Recent work using
2-photon live imaging in adult mice detailed the topography

of perivascular fibroblasts, showing that perivascular fibroblasts
in the brain parenchyma can extend over 200µm on cerebral
penetrating arterioles but only extend very short distances on
ascending venules (Bonney et al., 2021). Studies of human and
rodent meninges described perivascular fibroblasts as “pial” or
“leptomeningeal” cells that form an adventitial layer (Zhang et al.,
1990; Hannocks et al., 2018; Riew et al., 2020). However, the
exact molecular identity of perivascular fibroblasts has not yet
been fully elucidated. For example, are perivascular fibroblasts
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a homogenous population or are the specialized based on
tissue location (meninges vs. parenchyma) or type of blood
vessel they surround? It is also unknown how perivascular
fibroblasts compare to non-vascular meningeal fibroblasts (such
as those in the arachnoid or arachnoid barrier). Do they differ
transcriptionally, developmentally, or functionally? Perivascular
fibroblasts share some of the same markers as pial fibroblasts
such as collagen-1, laminin α1 and Platelet-derived growth factor
receptor-α (PDGFRα) (Kelly et al., 2016; Hannocks et al., 2018;
Vanlandewijck et al., 2018). Perivascular fibroblasts are of high
interest in the context of brain injury and neurological disease
because their activation contributes to fibrotic scar formation
and inflammation (discussed in detail below). Very little is
known about perivascular fibroblasts during CNS development
or adult homeostasis, and we expect that future work detailing
perivascular fibroblasts will yield important results.

Arachnoid Barrier Cells
The arachnoid barrier, part of the blood CSF-barrier, is an
epithelial-like cell layer that separates and controls transport
between the dura and CSF filled subarachnoid space (Saunders
et al., 2008, 2013; Figures 1, 2). The subarachnoid space,
defined by the arachnoid barrier cells on top and pia below, is
continuous with perivascular spaces in the brain parenchyma,
meaning that molecules in the CSF can access brain tissue
(Iliff et al., 2012; Hannocks et al., 2018). Thus, the arachnoid
barrier creates a border between the fenestrated vasculature of
the dura and CNS (Figure 2A). Arachnoid barrier cells express
a variety of transporters and can be altered by disease or infection
(detailed below), but few functional studies have been done
on the arachnoid barrier in comparison to other CNS barriers
like the blood brain barrier (BBB). Further, little is known
regarding arachnoid barrier development. We recently found that
arachnoid barrier cells can be first seen in the mouse forebrain
around E13 and they differentiate from mesenchymal cells of the
primary meninx (DeSisto et al., 2020).

EM studies first illuminated that the arachnoid barrier cells
are laden with tight junctions over 40 years ago (Nabeshima
et al., 1975; Figure 2B). These findings were preceded by tracer
studies demonstrating a functional barrier between the dura and
subarachnoid space (Rodriguez, 1955), later confirmed using
horseradish peroxidase (HRP) tracer (Balin et al., 1986). Tight
junction containing arachnoid barrier cells are observed in
the meniges of multiple species from jawless fish to humans,
demonstrating evolutionary conservation (Nabeshima et al.,
1975; Nakao et al., 1988; Vandenabeele et al., 1996; Rascher and
Wolburg, 1997; Brøchner et al., 2015). Arachnoid barrier cells
express the tight junction protein Claudin 11, best known for
its role in the blood-testes barrier and maintenance of myelin
wraps, along with E-Cadherin, consistent with their epithelial-
like identity (Figure 2C; Rascher and Wolburg, 1997; Bhatt et al.,
2013; Brøchner et al., 2015; Uchida et al., 2019b; Ximerakis et al.,
2019; DeSisto et al., 2020).

Like other CNS barrier cells, arachnoid barrier cells are
enriched in a variety of transporters, including: ABCB1
(Pglycoprotein or Pgp), ABCG2 (BCRP), ABCC4 (MRP4),
and SLC transporters OAT1 (Slc22a6) and OAT3 (Slc22a8)

(Figure 2A; Ek et al., 2010; Møllgård et al., 2017; Yaguchi et al.,
2019). Functional studies show that arachnoid barrier OAT1 and
OAT3 participate in solute clearance out of the CSF (Yasuda et al.,
2013; Uchida et al., 2019a). The exact role for arachnoid barrier
cells in controlling CSF composition and CNS transport is still
unclear, but it’s likely that a detailed understanding of arachnoid
barrier cell function could be leveraged to improve CNS drug
delivery. Finally, understanding if the arachnoid barrier plays
a role in maintaining the vascular and immune specialization
seen in the dura and leptomeninges (detailed below) could hold
clinical importance.

Blood Vessels: Leptomeninges and Dura
The blood vessels of the leptomeninges, often referred to as
the pial vasculature, are connected to the parenchymal CNS
vasculature, and located in the subarachnoid space. Several
studies show this vasculature has barrier properties and are
therefore part of the meninges blood-CSF barrier. Structural
studies show that pial blood vessels have tight junctions,
including expression of occludin and claudin proteins, as well as
adherens junctions, that link to actin filaments (Nabeshima et al.,
1975; Nakao, 1979; Cassella et al., 1997; Mazaud-Guittot et al.,
2010; Zihni et al., 2016; Liebner et al., 2018; Rua and McGavern,
2018). Further, the pial vasculature is not permeable to peripheral
injections of horseradish peroxidase (44 kD) (Balin et al., 1986),
and has a high trans-endothelial electrical resistance (Butt et al.,
1990; Revest et al., 1994). Pial blood vessels lack expression of
PLVAP (Daneman et al., 2010), a component of blood vessels
fenestrations, and show high expression of glucose transporter
GLUT-1 (Sabbagh et al., 2018). Of note, the pial vascular plexus
lacks proximate astrocytic end feet, which the BBB possesses
pervasively (Blanchette and Daneman, 2015). Pial vasculature
also lacks capillaries; thus, the relevance of its barrier properties
may serve more in controlling the movement of immune cells
and other blood contents into and out of CSF than fine-tuning
solute transport. Overall, the barrier structures seen in the pial
vasculature regulates the free movement of molecules and cells
into the CSF and CNS.

The pial vasculature forms via vasculogenesis starting at E8
in the mouse, first around the spinal cord and expanding to
encapsulate the forebrain starting at E10. This developmental
blood vessel system is referred to as the perineural vascular
plexus (PNVP) (Nakao et al., 1988). PNVP formation is initiated
by VEGFA secretion from the neural tube (Hogan et al., 2004)
and is strongly influenced by fibroblasts of the meninges.
For example, retinoic acid produced by arachnoid fibroblasts
regulates endothelial Wnt-ß-catenin signaling to promote PNVP
growth (Mishra et al., 2016). Endothelial Wnt-ß-catenin signaling
likely controls the acquisition of barrier properties in the PNVP,
as it does in parenchymal vasculature (Zhou et al., 2014;
Mishra et al., 2016). Interestingly, VEGF and Wnt ligands are
expressed by pia and arachnoid fibroblasts, respectively, during
development (DeSisto et al., 2020) and these signals likely
regulate PNVP development. The PNVP continues to grow and
mature postnatally (Coelho-Santos and Shih, 2020), but the exact
role for the meningeal fibroblasts at these later time points is
currently unknown.
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FIGURE 2 | Function and structure of the arachnoid barrier layer in the meninges. (A) Graphical depiction of proposed functions of the arachnoid barrier layer of the
meninges including (1) as a physical barrier preventing free movement of molecules and cells into the subarachnoid space by virtue of its tight junctions, (2) enriched
expression of efflux (P-glycoprotein, BCRP) and solute transporters (SLC) by arachnoid barrier cells support regulated movement of molecules across this barrier
layer. (B) Electron microscopy image of the mouse arachnoid-dura interface, reproduced with permission from Nabeshima et al. (1975). Pseudo-coloring of the cell
bodies highlights close interface between cells of the arachnoid (A) (inner arachnoid fibroblasts and arachnoid barrier cells connected by electron-dense tight
junctions) and cells of the dura, [dura border cells (Db) and dural fibroblasts within collagen fibril dense dura layer]. (C) Immunofluorescence image of mouse
leptomeninges from a postnatal day 14 Col1a1-GFP mouse brain with E-cadherin (magenta) and DAPI (cyan). E-cadherin is expressed by arachnoid barrier cells
(representing the outer part of the arachnoid layer) but not by inner Col1a1-GFP+ fibroblasts, representing pial and inner arachnoid fibroblasts. Image reproduced
with permission from DeSisto et al. (2020).

The dura contains an extensive network of blood vessels that
include arteries, veins, and fenestrated capillary beds (Shukla
et al., 2002, 2003; Coles, 2017; Mecheri et al., 2018). A unique
feature of the dura vasculature is the presence of multiple large
veins called dural venous sinuses which serve as the main
exit for blood from the brain via the cerebral veins (Shukla
et al., 2003; Coles, 2017; Mecheri et al., 2018). The non-
barrier, fenestrated blood vessels of the dura, are permeable to
horseradish peroxidase (MW 44 kD) administered intravenously
(Balin et al., 1986) and allow non-selective movement of cells
and molecules from the peripheral circulatory system into the
dura. The proximity of the leptomeningeal barrier vasculature
and non-barrier vasculature of the dura, especially in animals
with thin meninges like rodents, raises the question, what
are the mechanisms that maintain these specialized properties?
Embryonic dural fibroblasts are enriched in Wnt inhibitors

Dkk2 and Sfrp1 which could prevent development of barrier
properties in the dural blood vasculature as occurs in other
circumventricular organs (Benz et al., 2019; Wang Y. et al.,
2019; DeSisto et al., 2020). Many details of dural blood vessel
plexus development have yet to be elucidated. Development of
the dura venous sinuses starts around E12 and occurs through the
remodeling of three developmental venous plexuses (Tischfield
et al., 2017). Proper development of dura venous sinus veins
requires paracrine BMP signaling from skull progenitors cells and
dural fibroblasts and is disrupted in skull malformations such as
craniosynostosis (Tischfield et al., 2017). Away from the dural
sinuses, recent work showed that between P0 to P28 there is a
gradual reduction in dural blood vessel density and branching
(Sato et al., 2021) however, the molecular pathways controlling
initial dura blood vascular plexus growth and refinement have so
far not been studied in any detail.
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Lymphatic Vessels: Dura
Although the structure of lymphatic vessels was first described
in 1787 by Mascagni, scientific literature consistently purported
that the CNS completely lacked lymphatic vasculature until
these vessels were “rediscovered” in 2015 (Bucchieri et al., 2015;
Louveau et al., 2015). The dural lymphatics are now recognized
as a critical transport system of macromolecules, interstitial fluid,
and CSF from the CNS into the cervical lymph nodes (Aspelund
et al., 2015; Absinta et al., 2017; Louveau et al., 2018; Ahn et al.,
2019). Further, the altered function of dural lymphatics is now
implicated in several neurodegenerative diseases (Louveau et al.,
2017; Da Mesquita et al., 2018b, 2021).

The lymphatic system in the dura does not form until after
birth in the mouse, much later than the peripheral lymphatic
system (Izen et al., 2018) and meningeal blood vessels (reviewed
above). Dural lymphatic vessels are composed of specialized
endothelial cells that express VEGFR-3, LYVE-1, SLC, PDPN,
and Prox1 and require VEGF-C signaling and lymphatic flow
to properly mature (Antila et al., 2017; Izen et al., 2018; Bálint
et al., 2019). By approximately postnatal day 20 in a mouse,
the intracranial lymphatic vessels that line the dural sinuses
and the extracranial lymphatic vessels that abut cranial nerves,
become fully functional, draining content from the CNS into the
peripheral lymphatic system at the base of the skull (Aspelund
et al., 2015; Antila et al., 2017; Izen et al., 2018; Rustenhoven et al.,
2021). Interesting, the dural lymphatic vasculature network is
more voluminous in the ventral portions of the skull and display
increased complexity, including valves, which the superior
lymphatics lack (Ahn et al., 2019).

The three vascular plexuses of the meninges (pial, dural,
lymphatics) are strikingly diverse in their developmental timing,
barrier properties, and the functions they serve. The variations
in barrier integrity have major implications in waste drainage,
immune trafficking, antigen presentation, and drug delivery to
the brain. Overall, the meningeal vascular systems are critical
to CNS function.

Immune Cells
The meninges house an extensive immune cell population that
are increasingly recognized to execute important functions in the
CNS. The immune cells present in the leptomeninges differ from
those present in the dura and several recent reviews detail the
transcriptional and functional diversity of meningeal immune
cells (Rua and McGavern, 2018; Kierdorf et al., 2019; Alves
de Lima et al., 2020). Specifically, Rua and McGavern provide
important details for T cells including that CD4+ T cells traffic
from the blood to the dura and then the deep cervical lymph
nodes, potentially “scanning” the dura meningeal tissue before
returning to the lymph node; they also summarize how CD4+
T and B cells mediate homeostatic behavior and that these cells
are enriched in the dura with aging. Kierdorf et al. (2019)’s
review delves into the barriers that segregate macrophages into
various compartments in the CNS at the dura, leptomeninges,
choroid plexus, and perivascular compartments and how these
populations are differentially regulating homeostasis and disease
processes. Finally, Alves de Lima et al. (2020) is a meticulous

review of meningeal immune compartments with important
speculation on the future directions and importance of meningeal
immune cell function. Our goal with this section is to give
an overview of meningeal immune cells under homeostatic
conditions and direct readers to comprehensive reviews for
further details, such as the ones listed above.

The adult leptomeninges primarily harbor macrophages and
non-migratory dendritic cells, along with much smaller numbers
of lymphoid cells (Mrdjen et al., 2018; Jordão et al., 2019; Van
Hove et al., 2019). The adult dura contains macrophages, mast
cells, B cells, T cells, neutrophils, innate lymphoid cells, and
the largest population of dendritic cells, including migratory
dendritic cells, in the CNS (Mrdjen et al., 2018; Jordão et al.,
2019; Van Hove et al., 2019). Of note, immune cells of the
dura are not evenly distributed through the tissue but rather
accumulate around dural venous sinuses (Rustenhoven et al.,
2021). Dural venous sinuses are an active site of immune cells
trafficking and have emerged as a key neuroimmune interface
(Rustenhoven et al., 2021). Stromal cells of the dural sinuses
(mural cells and fibroblasts) promote immune cell trafficking
and T cell extravasation through their expression of ICAM,
VCAM, and Cxcl12 (Rustenhoven et al., 2021). T cells interact
with dural antigen-presenting cells laden with CSF derived
antigens (Rustenhoven et al., 2021), representing a novel mode
of peripheral immune cell surveillance of the CNS. In addition
to T cells, gut-educated IgA+ B cells also localize next to the
dural venous sinuses to protect against bacterial and fungal brain
infection (Fitzpatrick et al., 2020).

Macrophages of the meninges are one of better documented
meningeal immune cell and belong to a highly specialized class
of macrophages called border associated macrophages (BAMs).
BAMs and microglia both originate from yolk sac erythro-
myeloid progenitors and can be detected in the brain as early
as E10 (Utz et al., 2020). As development continues BAMs
and microglia segregate both physically and transcriptionally,
with BAMs remaining in the leptomeninges (they are also in
the choroid plexus and perivascular spaces) and expressing
CD206 and Lyve1 which are not expressed by microglia. In
the adult, leptomeningeal BAMs are defined by expression of
CD206, Lyve1, P2rx7, and Egfl7 and have significantly different
transcriptional profiles from dural BAMs (Mrdjen et al., 2018;
Van Hove et al., 2019). Adult dural BAMs don’t express Lyve1 and
can also be divided in subgroups. For example, one group of dural
BAMs has low expression of major histocompatibility complex
II (MHCIIlo) and express Clec4n, Clec10a, Folr2, while MHCIIhi

dural BAMs express greater CCR2, implicating a monocytic
origin. Another important difference is that leptomeningeal
BAMS are long lived while dural BAMs are continuously renewed
by peripheral monocytes (Goldmann et al., 2016; Van Hove
et al., 2019). The bone marrow in the calvarium and vertebral
column specifically supply monocytes and neutrophils to the
dura during homeostasis (Cugurra et al., 2021) and to the
meninges and brain parenchyma following brain injury or in
neuroinflammation via vascular tunnels connecting the bone
marrow and dura (Herisson et al., 2018; Yao et al., 2018; Cai et al.,
2019; Cugurra et al., 2021). The unique properties seen among
leptomeningeal and dural BAMs is consistent with specialized
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functions for these populations in their respective barrier and
non-barrier compartments.

While several studies have begun to investigate BAMs in
disease (discussed below) very little has been worked out
regarding their function in development or homeostasis. Further,
the investigations looking into to the details and functions of the
other meningeal immune cell populations have only just started.

MENINGEAL RESPONSE TO INJURY
AND DISEASE

The next sections will highlight how meningeal cell types
and structures respond to CNS injury (traumatic brain injury,
stroke, spinal cord injury), infections (meningitis), and disease
(multiple sclerosis, cancer, Alzheimer’s disease) (Figure 3). We
also recommend several other comprehensive recent reviews
that highlight the meningeal vasculature, immune cells, and
lymphatics/glymphatics in disease (Rasmussen et al., 2018; Rua
and McGavern, 2018; Mastorakos and McGavern, 2019; Alves de
Lima et al., 2020; Bolte and Lukens, 2021).

Meningeal and Perivascular Cells in
Acute CNS Injury
Acute injuries to the CNS, such as stroke, traumatic brain
injury (TBI) or spinal cord injury (SCI), induce a cascade of
immediate events beginning with BBB breakdown, peripheral
immune infiltration, acute inflammation, and tissue edema,
which ultimately leads to neuronal cell loss (reviewed in
Mastorakos and McGavern, 2019). These immediate events are
followed by a protracted formation of fibrotic and glial scars,
which have both neuroprotective and detrimental effects (Hesp
et al., 2018). CNS acute injury responses are driven by a variety
of CNS parenchymal cells, perivascular cells and meningeal cell
types. For example, formation of the glial scar, which is largely
driven by astrocytes, prevents peripheral immune cell invasion
and limits inflammation by “sealing” off the infarct area from the
healthy CNS tissue. Further, the glial scar works together with
the fibrotic scar, which is primarily generated by meningeal and
perivascular fibroblasts, to facilitate wound healing (Bundesen
et al., 2003; Kelly et al., 2016; Dias and Göritz, 2018; Hesp et al.,
2018; Riew et al., 2018). However, both the glial and fibrotic
scars also act as major barriers to neural regeneration and axon
regrowth long-term (Hesp et al., 2018). The contradictory effects
of scar formation underscore the importance of investigating the
cell and molecular mechanisms that drive post injury astrocyte
and fibroblast behavior. Beyond astrocytes and fibroblasts, other
perivascular and meningeal cells and structures like immune cells
and lymphatics, also contribute to the CNS injury acute injury
response and are discussed in more detail below.

CNS Fibroblasts in Acute CNS Injury
There is ample evidence for fibrotic scar formation following
acute CNS injury, but there is some confusion regarding the
exact identity of the fibrotic scar forming cells. Beginning ∼3
days post injury, the fibrotic scar forming cells, which are located
perivascularly and in all three layers of the meninges, become

activated; characterized by proliferation, detachment from the
vasculature, increased expression of ECM molecules (vimentin,
fibronectin, type I collagens), and upregulation of smooth muscle
actin (SMA) (Fernández-Klett et al., 2013; Soderblom et al., 2013;
Kelly et al., 2016; Dias and Göritz, 2018; Riew et al., 2018;
Figure 3B). The fibrotic scar forming cells express PDGFRβ

[which is expressed by fibroblasts, pericytes and vascular smooth
muscle cells (vSMCs)], along with PDGFRα, and Collagen-
1, which are expressed by fibroblasts, but not pericytes or
vSMCs (Soderblom et al., 2013; Kelly et al., 2016; Vanlandewijck
et al., 2018). Fibrotic scar forming cells are labeled in the
Collagen1a1-GFP mouse line, which marks fibroblasts but not
pericytes, and do not express common markers of pericytes,
like desmin and Ng2 (Göritz et al., 2011; Soderblom et al.,
2013; Kelly et al., 2016). Thus, the expression pattern of fibrotic
scar forming cells is consistent with that of fibroblasts, which
are found in both the leptomeninges and CNS perivascular
spaces (Soderblom et al., 2013; Kelly et al., 2016). Further
support was demonstrated in a mouse model of multiple
sclerosis, where the authors used a Col1a2-CreERT mouse line,
which labels all CNS fibroblasts but not pericytes or vSMCs,
with a Cre reporter and found that almost all fibrotic cells
within the lesion were labeled by the reporter (Dorrier et al.,
2021). In contrast, Ng2-CreERT lineage traced cells, which
includes pericytes, vSMCs and some neural populations, did
not show any expansion in the lesion (Dorrier et al., 2021).
While not done in an acute injury model, this evidence further
supports that CNS fibroblasts, not pericytes or vSMCs, are the
main reactive fibrotic cell type in CNS injuries and disease.
It should be noted that some of the confusion surrounding
fibrotic scar forming cells comes from a lack of established
nomenclature, as scar forming cells are sometimes called stromal
cells, mesenchymal cells, Type A Pericytes, Type 2 pericytes
and fibroblasts (Göritz et al., 2011; Dias et al., 2018, 2020).
In summary, fibroblasts from the meninges and perivascular
space are major drivers of fibrotic scar formation following
CNS injury however establishing a standard nomenclature
would be beneficial.

Another major function of CNS fibroblasts following acute
CNS injury is communication with neighboring cells (Figure 3B).
For example, in a rat spinal cord transection model of
SCI, direct signaling between fibrotic cells and astrocytes
mediated the glial/fibrotic scar border formation (Bundesen
et al., 2003). In an SCI compression injury model, fibrotic
scar fibroblasts transiently increased Wnt/β-catenin signaling
(Yamagami et al., 2018), and since Wnt signaling is known
to drive fibrosis in other organs (Chilosi et al., 2003), and
Wnt ligand expression is increased following SCI (Fernández-
Martos et al., 2011; González-Fernández et al., 2014), induction
of fibroblast WNT signaling likely contributes to fibrosis. In
the photothrombotic stroke injury model, activation of TGF-β1
and retinoic acid signaling pathways in meningeal fibroblasts
stimulated arachnoid barrier cells and facilitated reconstruction
of the blood-CSF barrier (Cha et al., 2014). Fibroblast production
of retinoic acid is also implicated as an important regulator
of the post CNS injury response by several other studies.
For example, perivascular fibroblasts express retinoic acid
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FIGURE 3 | Meningeal cells or structures in CNS injury and disease. (A) Depiction of CNS injury or diseases in which meningeal cells, meninges located cell types or
parenchyma located perivascular fibroblasts are part of the pathology. SCI, spinal cord injury; TBI, traumatic brain injury; EAE, experimental autoimmune
encephalomyelitis. (B) Graphical depiction of fibrosis, caused by increased meningeal/perivascular fibroblast proliferation and Extracellular matrix (ECM) deposition
and summary of known CNS fibroblast-derived factors identified in specific CNS disease states. AD, Alzheimer’s disease. (C) Summary of functional roles of
meningeal-located immune cells in specific CNS disease states. B-CSFB, blood-CSF barrier. (D) Summary of cellular changes in meninges located lymphatic
vasculature in response to different CNS injuries and disease states.

synthesizing enzymes RALDH1 and RALDH2 in uninjured
brain, and the number of RALDH-expressing fibroblasts increase
in the fibrotic scar following stroke injury in mice (Kelly
et al., 2016). Retinoic acid signaling was elevated in neurons
and astrocytes in the peri-infarct region, suggesting that scar
fibroblasts signal to the surrounding CNS cells via retinoic
acid release (Kelly et al., 2016). Interestingly, retinoic acid
treatment following stroke in rodents reduces neurogenesis while
also reducing angiogenesis and gliogenesis in the peri-infarct
region (Jung et al., 2007). Thus, fibroblast production of retinoic
acid seems to impair CNS recovery while stimulating fibrosis.
Overall, continued investigations that detail the cellular and
molecular behaviors of post injury CNS fibroblasts will forward
our understanding of damage induced pathology and provide
therapeutic insight.

Meningeal Immune Cells in Acute CNS
Injury
The degree of neuroinflammation following acute CNS injury is a
major predictor of clinical outcomes, and numerous studies show
that meningeal immune cells play an important role in the brain
injury response (reviewed in Arac et al., 2014; Corps et al., 2015;
Iadecola et al., 2020). In a study investigating the contribution
of meninges-located mast cells in stroke pathology, depletion
of mast cells resulted in decreased levels of neuroinflammation,

brain swelling, and infarct size following stroke and this
was partially mediated by mast-cell derived IL-6 (Arac et al.,
2019; Figure 3C). Similarly, in a sub-arachnoid hemorrhage
model, depletion of macrophages in the leptomeninges and
perivascular spaces surrounding large arterioles prior to injury
results in improved neurological scoring and reduced levels of
inflammation and neuronal cell death (Wan et al., 2021).

Resident meningeal macrophages regulate the acute injury
response by influencing the severity of neuroinflammation
and fibrosis (Figure 3C). For example, in a mild closed-skull
compression injury model, Cx3cr1+ meningeal macrophages
are observed dying within 30 min of injury induction, leading
to formation of a “honeycomb” network of microglia at the
glial limitans, likely preventing the spread of reactive oxygen
species from the leptomeninges into the brain parenchyma (Roth
et al., 2013). In both MCAO and SCI models, macrophages are
observed in the fibrotic scar and may associate with fibroblasts
(Zhu et al., 2015; Kelly et al., 2016). One study showed that
CD11b+ macrophages are partially responsible for recruitment
of fibroblasts to the fibrotic scar following SCI (Zhu et al., 2015).
The molecular mechanisms by which macrophages in the injury
lesion could activate fibroblasts is unclear, though depletion
of macrophages prior to SCI leads to depletion of pro-fibrotic
cytokines, such as tumor necrosis factor superfamily members
Tnfsf8 and Tnfsf13 (Zhu et al., 2015). Inhibition of pro-fibrotic
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cytokines could serve as a therapeutic to reduce fibrotic scarring
and improve axon regrowth.

Meningeal Lymphatics in Acute CNS
Injury
Several recent studies have highlighted the contributions of dual
meningeal lymphatics, and more recently, brain perivascular
glymphatics, in the neuroinflammatory response following acute
CNS injury (Iliff et al., 2014; Plog et al., 2015; Rasmussen
et al., 2018). The brain glymphatic and meningeal lymphatic
systems work together to clear waste and macromolecules from
the brain parenchyma in homeostasis and following injury (Iliff
et al., 2014; Plog et al., 2015; Rasmussen et al., 2018). Following
TBI, glymphatic fluid flow is disrupted and greater amounts of
tau protein is observed accumulating in the parenchyma (Iliff
et al., 2014). Additionally, knock-out of Aqp4, a water transport
channel necessary for interstitial solute clearance and glymphatic
function, following TBI, exacerbates the accumulation of tau
in the parenchyma (Iliff et al., 2014). Consistent with these
results, disruption of glymphatic function results in lower levels
of TBI-associated biomarkers in the cervical lymph nodes and
bloodstream (Plog et al., 2015). These results highlight the
important function of the glymphatic system in clearance of
molecular substances from the brain and potential role in
facilitating signaling between the brain and periphery.

The dural lymphatic function is also disrupted following
acute CNS injury. In a mild closed-skull TBI model, meningeal
lymphatic drainage is impaired likely due to increases in
intracranial pressure, accompanied by lymphatic morphological
changes (Bolte et al., 2020). Interestingly, lymphangiogenesis
was observed up to 2 weeks following TBI, though this
did not correspond with increased lymphatic function (Bolte
et al., 2020). Similarly, lymphangiogenesis was seen following
photothrombotic stroke lesion in the mouse cortex, but this
effect was not seen following MCAO (Yanev et al., 2020;
Figure 3D). Thus, the degree of lymphatic impairment and
response is dependent on the injury mechanism, and there is
likely communication of lymphatic vessels with surrounding
tissues following injury.

The importance of meningeal lymphatics post-injury is
further highlighted by studies that selective ablation of meningeal
lymphatic vessels worsens pathophysiology (Figure 3D). In a
subarachnoid hemorrhage model, erythrocytes accrue in the
cervical lymph nodes via meningeal lymphatics following injury,
and ablation of meningeal lymphatic vessels leads to less
erythrocyte aggregation and greater neuroinflammation and
neurological defects (Chen et al., 2020). Consistent with this
observation, pre-existing defects in meningeal lymphatics causes
worsened neuroinflammation following TBI (Bolte et al., 2020).
Likewise, stimulating meningeal lymphatic vessel outgrowth
via VEGF-C administration had decreased levels of gliosis
(Bolte et al., 2020). Manipulating VEGF-C/VEGFR3 signaling
is a promising avenue for mitigating post-injury complications
related to meningeal lymphatic drainage. Blockage of VEGFR3
(expressed by lymphatic endothelial cells) in mice following focal
cerebral ischemia resulted in reduced inflammatory response

and infarct (Esposito et al., 2019). However, VEGFR3 mutant
mice subjected to MCAO develop larger stroke volumes, thus
worsened edema (Yanev et al., 2020). Altogether, meningeal
lymphatics play a key role in regulating the post-injury response,
and further work is needed to tease apart the context-dependent
functions and key signaling mechanisms involved in meningeal
lymphatic response to acute CNS injury.

Response of the Meninges to Meningitis
A number of infectious agents can induce meningitis, or
inflammation of the meninges, including viruses, bacteria,
parasites, or fungus (McGill et al., 2017; Wright et al., 2019).
Meningitis induces a variety of acute complications (severe
headache, fever, photophobia, and neck pain) and regularly
induces a range of long term neurological sequelae and sleep
defects (Schmidt et al., 2006; Lucas et al., 2016; McGill
et al., 2018). Meningitis induced inflammation is driven by
the response of resident meningeal immune cells, meningeal
fibroblasts and infiltrating leukocytes to the infectious agent
(Coles et al., 2017; Manglani and McGavern, 2018; Rua and
McGavern, 2018). For example, during murine CNS infections,
including mouse hepatitis virus, a murine coronavirus (strains
Srr7, cl-2, and A59), the Armstrong strain of lymphocytic
choriomeningitis virus (LCMV), all show there is an influx into
the brain and subarachnoid space of CD8+ T cells, monocytes
and neutrophils into the meninges quickly after infection (Kim
et al., 2009; Takatsuki et al., 2009; Cupovic et al., 2016; Watanabe
et al., 2016). However, the specific localization of immune cells
and neuropathology vary by strain, administration, and dose.
Interestingly, in the mouse model of corona virus MHV A59
infection, production of cytokines CCL19 and CCL21 by a
meningeal fibroblasts subpopulation, marked by ER-TR7 antigen,
and podoplanin, work to recruit anti-viral CD8+T cells (Cupovic
et al., 2016; Figure 3B). The role of meningeal fibroblasts in
fighting viral infection shares similarities to the function of
reticular fibroblasts in the lymph nodes and spleen that help drive
immune responses by creating specialized microenvironments
(Cupovic et al., 2016; Perez−Shibayama et al., 2019; Morgado
et al., 2020). In the LCMV Armstrong mouse model, it was shown
that the recruitment of antiviral CD8+ T cells, while necessary
to defeat the infection, can also be deleterious. These CD8+ T
cells also produce cytokines that can lead to over infiltration
of monocytes and neutrophils that drive breakdown of vascular
integrity and induce severe edema and brainstem herniation
(Kim et al., 2009; Mastorakos and McGavern, 2019), which can
ultimately lead to coma and death due to the complex interplay
of vascular, hypoxic, and inflammatory changes.

In cases of bacterial meningitis, infections usually start as skin,
gastrointestinal or respiratory infections that spread to the blood
(Doran et al., 2016; Cain et al., 2019). Once in the blood, the
meningitis causing bacteria accumulate in the leptomeningeal
vasculature (Mook-Kanamori et al., 2011; Iovino et al., 2013) and
move into the meninges by inducing BBB breakdown through
multiple mechanisms (van Sorge and Doran, 2012; Kim et al.,
2015; Coureuil et al., 2017). Bacterial presence in the meninges
induces a strong inflammatory response, including production
of multiple cytokines (tumor necrosis factor (TNF)-alpha,
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interleukin (IL)-1-beta, and IL-6), and a massive infiltration of
neutrophils (Mook-Kanamori et al., 2011; Principi and Esposito,
2020). The inflammatory cytokines and neutrophils work to quell
the infection but also drive the breakdown of endothelial cell tight
junctions (Banerjee et al., 2011; Barichello et al., 2011; van Sorge
and Doran, 2012; Figure 3C).

While the reaction of meningeal immune and blood vessels to
bacterial meningitis infection has been fairly well characterized,
the response of meningeal fibroblasts and arachnoid barrier cells
has only just begun to be investigated. All major meningitis
causing bacteria can adhere strongly to meningeal fibroblasts and
arachnoid barrier-like cells (Hardy et al., 2000; Fowler et al., 2004;
Alkuwaity et al., 2012; Auger et al., 2015). The Doran laboratory
has shown that Group B Streptococcus bacteria cross the blood
brain barrier by binding to vimentin on endothelial cells (Deng
et al., 2019). Vimentin is also highly expressed by arachnoid
barrier cells (Weller et al., 2018), raising the possibility that
this is an additional mechanism of entry for meningitis-causing
bacteria, however this has yet to be experimentally assessed.
Local cytokine production by meningeal immune cells may also
disrupt arachnoid barrier integrity; intracisternal injection of IL1-
β, highly upregulated in meningitis, induces rapid meningeal
barrier leakage (Ichikawa and Itoh, 2011).

Overall, the pathology of meningitis is driven by a complex
interplay between cells of the meninges and the peripheral
immune system. Future work to detail the pathological
mechanisms will lead to more effective treatments, improved
initial diagnostics, and an enhanced understanding of what drives
long term sequalae.

Meninges and Perivascular Fibroblasts in
Multiple Sclerosis
The leptomeninges are now recognized as a key player in
multiple sclerosis (MS), an inflammatory CNS autoimmune
disorder characterized by axon demyelination (Russi and Brown,
2015; Pikor et al., 2017; Rua and McGavern, 2018; Wicken
et al., 2018). In both MS patients and MS mouse models,
immune cells infiltrate the leptomeninges and pathology is
commonly seen in cortical areas adjacent to the meninges
(Lucchinetti et al., 2011; Mitsdoerffer and Peters, 2016; Pikor
et al., 2017). In the experimental autoimmune encephalomyelitis
(EAE) mouse model of MS, autoreactive effector T cells
first infiltrate the leptomeninges via the pial vasculature,
are activated by antigen presenting meningeal/perivascular
macrophages, and subsequently enter the CNS parenchyma,
triggering lesion formation (Bartholomäus et al., 2009; Schläger
et al., 2016). Biopsies taken from early MS patients with
cortical demyelination were more likely to have leptomeningeal
inflammation, consisting of effector T cells and IgA B
cells infiltrates, than those without cortical demyelination.
Furthermore, in human cases of MS the severity of cortical
lesions is correlated to the extent of meningeal inflammation
(Lucchinetti et al., 2011). The presentation of MS induced
leptomeningeal inflammation can be variable, ranging from
disorganized collections of immune cells to organized ectopic
lymphoid follicle-like structures (Choi et al., 2012; Mitsdoerffer

TABLE 1 | Future areas of investigation in meninges biology.

Topic Future areas of investigation

Regionalization Meningeal fibroblasts show regional gene expression during
development, does embryonic regionalization persist in the
adult?

Do meningeal fibroblasts have CNS region-specific
functions in the healthy CNS or during disease and injury?

Layer-specific
meningeal
functions

Layer-specific meningeal stroma/fibroblast populations can
impact specific subpopulations of immune cells
(Rustenhoven, 2021), do meningeal fibroblasts in other
layers serve a similar function(s)?

Are fibroblasts spatially heterogenous (perivascular vs. layer
fibroblasts) in their functions that influence immune and
vascular populations?

Arachnoid
barrier

What controls the development of the epithelial-like
arachnoid barrier vs. arachnoid fibroblasts cells?

What are the range of functions for the arachnoid barrier
and are these functions different between development and
adulthood?

Is a “leaky” arachnoid barrier related to acute or chronic
CNS insults?

Dura
vasculature

When and how does the dural blood vasculature develop?
What mechanisms regulate development and maintenance
of diverse vascular properties in the fenestrated blood dura
(as opposed to the barrier leptomeninges vasculature)?

CNS fibroblast
identity

Many whole brain single cell studies annotate fibroblast
containing clusters as “vascular leptomeningeal cells,” while
other studies refer to these cells as stromal cells,
mesenchymal cells, Type A Pericytes, Type 2 pericytes and
fibroblasts. There is a lack of consensus on the spatial,
transcriptional, and potential functional heterogeneity for
these populations. Consistent annotation and analysis are
needed to fully advance studies of different CNS fibroblast
populations.

This table elucidates the prioritized areas of investigation on key topics that need
further study, including: meningeal cellular regionalization, layer-specific functions,
arachnoid barrier development and function, dural vasculature development, and
CNS fibroblast identity.

and Peters, 2016; Wicken et al., 2018). Emerging work suggests
that the ectopic lymph structures seen in MS are potentiated by
leptomeningeal fibroblasts which form a reticular cell network
consisting of activated fibroblasts in a scaffold-like structure,
and that these fibroblasts “scaffolds” might be driven by a
subset of meningeal fibroblast that express podoplanin (Pikor
et al., 2015, 2017). This is consistent with another report
showing that lymphoid follicle-like structures in the cerebral
leptomeninges contained CD20+ B-cells, CD8+, CD4+, and
CD3+ T-cells, CD138+ plasma cells, and a network of CD21+
and CD35+ follicular dendritic cells (Serafini et al., 2004). It
remains unclear if ectopic lymph structures in the leptomeninges
potentiate MS pathology or forms because of the pathology, but
the meninges are clearly an important player in MS induced
neuroinflammation.

Like acute CNS injury, CNS fibroblast activation and
expansion contribute to MS induced lesions. Using a Col1a1-GFP
mouse line in conjunction with an EAE model, two independent
groups identified substantial increases in fibroblasts within spinal
cord lesion sites (Yahn et al., 2020; Dorrier et al., 2021). Fibroblast
expansion was deleterious for oligodendrocyte precursor cell
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(OPC) differentiation into mature oligodendrocytes and OPC
migration into the lesion, suggesting that fibrosis may be
deleterious for remyelination (Yahn et al., 2020). Of interest,
a scRNAseq analysis showed that fibroblasts from EAE lesions
upregulate interferon γ (IFNγ) signaling, and conditional
deletion of IFN receptor γ from fibroblasts partially blocked
fibroblast expansion (Dorrier et al., 2021). IFNγ is produced by
spinal cord T cells in EAE mice, implicating immune cells in EAE
lesions as a source of fibroblast activation signals (Dorrier et al.,
2021; Figure 3C). Increased number of PDGFRβ-expressing
cells are detected in human MS pathology samples (Dias et al.,
2020) and increased ECM protein deposition is a common
pathological feature of MS lesions (van Horssen et al., 2006),
further supporting fibroblast driven fibrosis as a feature of MS.
Continued studies on the mechanisms and consequences of MS
induced fibrosis will likely provide therapeutic insight.

BBB breakdown is a well-documented feature of MS (Russi
and Brown, 2015; Russi et al., 2018; Sweeney et al., 2019) and
there is some evidence that MS can also induce disruption
of the arachnoid barrier in the meninges, part of the B-CSF
barrier (Bartholomäus et al., 2009; Schläger et al., 2016; Uchida
et al., 2019b). Claudin 11 is a tight junction protein enriched in
arachnoid barrier cells and it is downregulated in late stages of
an EAE mouse model (Uchida et al., 2019b). The mechanism of
downregulation and if this translates into functional breakdown
is currently unknown, however, it may relate to cytokines
produced by local immune cell infiltration into the meninges.
Previous studies have indicated that cytokine administration into
the cisterna magna of mice is sufficient to drive arachnoid barrier
and blood-cerebral spinal fluid barrier functional breakdown,
however this has not been shown definitively in the EAE models
or MS patients (Ichikawa and Itoh, 2011). Activated T cells in
the leptomeninges produce cytokines known to perturb tight
junction integrity of brain endothelial cells, including IFNγ

which is known to drive BBB breakdown in viral encephalitis
(Bonney et al., 2019; Figure 3C). A disruption to the arachnoid
barrier could permit dural and peripheral immune cells to
migrate into the leptomeninges, and potentially contribute
to leptomeningeal immune infiltrate that is common in MS
pathology. However, more detailed investigations into the impact
and cellular signals that drive this infiltration still need to be
conducted. Overall, the meninges play a critical role in MS and
continued work to uncover its exact contributions hold high
clinical relevance.

The Meninges and Alzheimer’s Disease
Several lines of evidence implicate meningeal-located structures
in the genesis and progression of Alzheimer’s disease (AD)
(for recent reviews see Da Mesquita et al., 2018a; Rasmussen
et al., 2018; Nedergaard and Goldman, 2020). AD is a
dementia inducing neurodegenerative disorder characterized by
the accumulation of amyloid-β containing plaques, which were
initially isolated from homogenates of AD patient meningeal
tissue (Joachim et al., 1988; Da Mesquita et al., 2018b). The
transport of interstitial fluids and macromolecules (including
amyloid-β peptides) out of the brain occurs via a complex
transport network that utilizes the perivascular glymphatic
system of the brain and lymphatic vessels of the meninges

(Rasmussen et al., 2018; Nedergaard and Goldman, 2020).
Multiple publications show that both the brain glymphatic and
meningeal lymphatic systems deteriorate with age (Kress et al.,
2014; Ma et al., 2017; Da Mesquita et al., 2018b; Ahn et al., 2019)
and their dysfunction can potentiate AD pathology and dementia
(Peng et al., 2016; Da Mesquita et al., 2018a,b; Rasmussen et al.,
2018; Wang L. et al., 2019; Nedergaard and Goldman, 2020;
Figure 3D). For example, disruption of meningeal lymphatic
vessels promotes amyloid-β deposition, in both the brain and
meninges (Da Mesquita et al., 2018b; Wang L. et al., 2019),
while the rescue of age-induced meningeal lymphatic defects
improved cognitive performance (Da Mesquita et al., 2018b). In
the APP/PS1 mouse model of AD, glymphatic dysfunction as
measured by CSF clearance rates was impaired (Peng et al., 2016),
and injection of amyloid-β into the CSF reduced glymphatic
activity (Wang L. et al., 2019). Further, the ablation of meningeal
lymphatics impedes anti-amyloid-β therapy by exacerbating
microgliosis, neurovascular dysfunction, and behavior defects in
the 5XFAD model of Alzheimer’s disease (Da Mesquita et al.,
2021). Together this supports that impairment of meningeal
lymphatics is a feature of AD and a potential therapeutic target.

Meningeal blood vessels, fibroblasts and macrophages are
also of interest in AD pathology but their exact roles are
unclear. There is overwhelming evidence for cerebrovascular
alterations in AD pathology and amyloid-β deposition around
leptomeningeal vessels is a hall mark of cerebral amyloid
angiopathy, occurring in almost all AD patients (Greenberg
et al., 2020). Of interest, recent scRNAseq profiling of human
brain vasculature from healthy and AD cerebral cortex showed
that perivascular fibroblasts were significantly under-represented
in the AD brain single cell data set (Yang et al., 2021;
Figure 3B). This is in contrast to large increases in CNS fibroblast
numbers after acute CNS injuries and in neuroinflammation,
demonstrating a different response of perivascular fibroblasts
in AD. How accumulation of amyloid-β in the meningeal
vasculature may potentiate neuronal impairment or impact
meningeal fibroblast and immune cell populations is still
being worked out. There are evidence that perivascular and
barrier macrophages, found both in the brain parenchyma
and leptomeninges, play a role in amyloid-β removal as their
depletion causes increased amyloid deposition (Hawkes and
McLaurin, 2009). Future studies that further probe AD induced
changes to meningeal/perivascular fibroblasts, blood vessels
and immune cells will forward our understanding of AD
pathophysiology.

Meninges as a Site of Cancer Metastasis
Primary tumors of the meninges are quite rare, however, the
leptomeninges is a relatively common site for by contiguous
extension of primary tumors of the central nervous system,
paranasal sinuses and skull base origin or tumor metastasis
which can lead to dissemination into the CNS parenchyma and
poor prognosis (Mahendru and Chong, 2009; Waki et al., 2009;
Oechsle et al., 2010; Scott and Kesari, 2013). Cancer cells may
enter the meninges via the choroid plexus, the brain, by crossing
pial blood vessels or by vascular channels that connect the bone
marrow and meninges (Redmer, 2018; Yao et al., 2018). To cross
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the BBB, tumor cells bind endothelial cells and disrupt their
tight junctions (Bos et al., 2009; Kienast et al., 2010; Fazakas
et al., 2011; Redmer, 2018). Melanoma cells adhere to and
disturb the interaction of brain endothelial cells, which maintain
the integrity of the BBB, through a disruption of tight and
adherence junction proteins such as Claudin 5 and ZO-
1. In addition, proteolytic enzymes such as heparanase and
seprase are important for the capacity of metastatic cells to
traverse the BBB and occupy the brain (Fazakas et al., 2011).
Here, micrometastases give rise to macrometastases through
proliferation along brain microvessels (Kienast et al., 2010).
Additionally, breast cancer cells express ST6GALNAC5, which
is normally exclusively expressed in the brain, allowing for
increased adhesion to brain endothelial cells to pass through
the BBB (Bos et al., 2009). Further, acute lymphoblastic leukemia
cells access the CNS via vascular channels that exist between
bone marrow located in the vertebral and calvarium bone and
the meninges (Yao et al., 2018).

Once in the leptomeninges, cancer cells can modulate the
CSF content in the subarachnoid space content to support
cancer growth. CSF is acellular, poor in protein, glucose
and cytokine content, which is not conducive to cancer
cell proliferation, however, cancer cells are able to grow in
the nutrient deficient CSF filled leptomeninges using several
notable mechanisms. For example, tumor cells present in
the CSF secrete complement component 3 (Boire et al.,
2017), which disrupts the barrier functions of choroid plexus
epithelial cells, allowing nutrients and macromolecules to
enter the CSF (Boire et al., 2017). scRNAseq analysis done
on tumor cells isolated from the leptomeninges of patients
with metastatic growth showed high expression of the iron-
binding protein lipocalin-2 (Lcn2) its receptor SLC22A17
(Chi et al., 2020). Lcn2 expression, which is induced by
macrophage cytokine release, allows tumor cells to grow more
effectively in the low nutrient CSF environment. Thus, tumor
cells can effectively alter the leptomeninges microenvironment,
however, how tumor cells effect leptomeningeal fibroblasts has
not been well-studied. Continued studies to the detail the
interactions between cancer cells and the leptomeninges could
help develop new treatments.

CONCLUSION

Here we have sought to summarize many decades of
research on the cellular composition and structures of the
meninges, as well as their development and function in
the health CNS and contribution to injury and disease.
Recent technical advances such as 2-photon in vivo imaging
in rodents, transgenic mouse lines to better visualize
meningeal cell subtypes, scRNAseq to appreciate meningeal
cell heterogeneity as well as key conceptual advances in
meningeal function (ex: meningeal lymphatics, connection to
glymphatics, meningeal immune cell function) has enabled
important new discoveries about how the meninges serves
as a key interface between the CNS and periphery. There
are several novel areas of meningeal biology, particularly
as it relates to meningeal fibroblasts and arachnoid barrier,
that we would like to highlight as areas of research in
the future as well as current challenges that need to
be overcome (Table 1). Further examination into the
precise functions of meningeal subpopulations during
homeostasis and disease may provide important insights
to develop novel treatments for CNS disorders. Improved
capacity to target exact subpopulations of meningeal cells
may allow us to slow or halt pathogenesis and restore
CNS health by reducing meningeal inflammation and
barrier breakdown.
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