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Buffering by Transporters Can Spare
Geometric Hindrance in Controlling
Glutamate Escape
Leonid P. Savtchenko* , Kaiyu Zheng and Dmitri A. Rusakov*

UCL Queen Square Institute of Neurology, University College London, London, United Kingdom

The surface of astrocyte processes that often surround excitatory synapses is packed
with high-affinity glutamate transporters, largely preventing extrasynaptic glutamate
escape. The shape and prevalence of perisynaptic astroglia vary among brain regions, in
some cases providing a complete isolation of synaptic connections from the surrounding
tissue. The perception has been that the geometry of perisynaptic environment is
therefore essential to preventing extrasynaptic glutamate escape. To understand to what
degree this notion holds, we modelled brain neuropil as a space filled with a scatter of
randomly sized, overlapping spheres representing randomly shaped cellular elements
and intercellular lumen. Simulating release and diffusion of glutamate molecules inside
the interstitial gaps in this medium showed that high-affinity transporters would efficiently
constrain extrasynaptic spread of glutamate even when diffusion passages are relatively
open. We thus estimate that, in the hippocampal or cerebellar neuropil, the bulk of
glutamate released by a synaptic vesicle is rapidly bound by transporters (or high-affinity
target receptors) mainly in close proximity of the synaptic cleft, whether or not certain
physiological or pathological events change local tissue geometry.

Keywords: excitatory synapse, glutamate, glutamate spillover, glutamate transporters, astrocyte, perisynaptic
astroglial processes, synaptic environment

INTRODUCTION

Glutamatergic circuitry of the brain has long been associated with a “wired,” one-to-one type of
transmission that carries excitatory signals between individual nerve cells. This type of connectivity
has provided a basis upon which the computation logic of neural-network learning algorithms
was established and benefited from. To ensure that glutamate released into the synaptic cleft does
not escape activating its receptors beyond the target cell, excitatory synapses are often surrounded
by perisynaptic astrocyte processes (PAPs), part of the sponge-like morphology of brain astroglia.
PAPs vary extensively in shape and size, and their membrane surface is densely packed with high-
affinity glutamate transporters, among other signalling molecules (reviewed in Heller and Rusakov,
2015; Bazargani and Attwell, 2016; Murphy-Royal et al., 2017; Rose et al., 2017; Verkhratsky and
Nedergaard, 2018). At some specialised synaptic connections, PAPs form a comprehensive isolating
shield around one or several synaptic contacts (Barbour, 1993; Grosche et al., 1999; Rollenhagen
et al., 2007; Borst and Soria van Hoeve, 2012). However, common (small) cortical synapses normally
have only a varied fraction of their immediate neuropil environment (20–80%) occupied by PAPs
(Spacek and Harris, 1998; Ventura and Harris, 1999; Witcher et al., 2007; Lushnikova et al., 2009;
Patrushev et al., 2013; Bernardinelli et al., 2014; Medvedev et al., 2014; Pannasch et al., 2014;
Gavrilov et al., 2018; Henneberger et al., 2020). It has often been argued that the synapse has to
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be comprehensively surrounded by the transporter-enriched
PAPs, to prevent synaptically released glutamate from spilling
over to the neighbouring tissue. Whilst the latter would indeed
stop glutamate from escaping, whether the commonly observed
partial PAP coverage is as effective in this respect has remained
uncertain, prompting intense theoretical and experimental
exploration of extrasynaptic glutamate escape (Diamond, 2001;
Rusakov, 2001; Scimemi et al., 2004; Szapiro and Barbour, 2007;
Zheng et al., 2008; Scimemi et al., 2009; Henneberger et al., 2020).

This issue has been somewhat blurred by the “aqueous”
connotation arising from the commonly used term “glutamate
spillover.” In reality, glutamate molecules do not flow or spill
over as do liquids. They undergo rapid Brownian diffusion,
bouncing off multiple nanoscale obstacles (such as water
molecules) millions of times, moving into random directions, in
nanoscale steps. Thus, any diffusing glutamate molecule has a
chance to encounter a PAP surface populated with high-affinity
glutamate transporters. The other issue affecting our perception
of extrasynaptic glutamate actions is our understanding of
the extracellular space architecture. The classical electron
micrographs of fixed brain tissue tend to depict the interstitial
space as a system of thin gaps between adjacent cell membranes.
It has emerged, however, that in live brain the extracellular space
occupies ∼20% of neuropil tissue volume, with interstitial gaps
sometimes as wide as 200 nm (Thorne and Nicholson, 2006;
Tonnesen et al., 2018; Paviolo et al., 2020). These data suggest
that there could be much less geometric hindrance to diffusion
in the brain neuropil than commonly perceived. Our aim was
therefore to understand better, in comparative terms, the roles
of geometric hindrance and of glutamate transporter binding
in regulating extrasynaptic escape of glutamate, as predicted
by physics. To this end, we explored detailed Monte Carlo
simulations of particle diffusion and (transporter) binding in
complex, quasi-randomly shaped geometries representing the
extracellular space.

METHODS

Monte Carlo Simulations of Particle
Diffusion
Monte Carlo algorithms for particle diffusion were designed and
run with MATLAB: they were previously described in detail,
and tested and constrained using various experimental settings
(Savtchenko et al., 2013, 2021; Sylantyev et al., 2013). The
simulation arena was a 3 µm wide cube, with 2,000 particles
“released” instantaneously at the centre. Particles positioned
at time t at point ri(x, y, z) were moved, over time step 1t,
to point ri+1(x+ 2δx11D, y+ 2δy11D, z + 2δz11D) where 11D
stands for the mean square displacement in the Einstein’s
diffusion equation for 1D Brownian motion 12

1D = 2D1t,
D = 0.65 µm2/ms is the glutamate diffusion coefficient in the
interstitial space (Zheng et al., 2017), and δx|y|z denotes a
“delta-correlated” (independently seeded, uncorrelated) uniform
random number from the (–1, 1) range. The latter ensures
that Brownian particles are equally likely to move into either
direction whereas scale factor 2 for δ gives the average elementary

displacement in x-y-z either –11D or +11D. This algorithm
provided the duty-cycle translational particle movements in a
contiguous 3D space, over all directions with varied 3D steps,
rather than over the rectangular 3D-lattice vertices used by us
and many others previously. The randomness of the displacement
vector helped avoid occasional numerical deadlocks for particles
trapped near the space dead-ends formed by aggregated
overlapped spheres. The time step 1t (usually < 0.1 µs) was set
to be small enough to prevent particles from “tunnelling” through
the smallest obstacles, and the actual value of D was verified at
regular intervals.

The interaction with obstacles was simulated either as an
elastic collision, or as a permanent bond (the catchment layer
of ± 3 nm of the sphere surface, comparable with the maximal
elementary displacement11D), with the probability as indicated.
Because the characteristic diffusion time from the centre to
the arena boundary (<1 ms) was much shorter than the time
constant of glutamate unbinding from glial glutamate transporter
(GLT1 type), particle binding to the spheres on the millisecond
scale was set as permanent.

Simulating Sphere-Filled Space
Representing Brain Neuropil
There were at least two reasons to believe that randomly sized
overlapping spheres would be a more realistic representation
of neuropil compared to regular lattices of regular shapes, a
tissue model used extensively by us and others previously.
Firstly, multiple intersecting spheres give randomly shaped and
randomly sized cellular elements and extracellular channels,
as opposed to uniform or regular structures. Secondly, this
approach provides a mixture of concave and convex shapes,
including “diffusion dead-ends” which are considered an
important trait of brain neuropil (Hrabe et al., 2004). Both
features therefore reflect reality better than do regular lattices.

Filling the space with overlapping spheres followed the
routines described in detail previously (Savtchenko et al., 2021).
In brief, the key parameter controlling this procedure was the
volume fraction β occupied by the spheres: β = 1-α where α

commonly stands for medium porosity, such as the volume
fraction of the extracellular space in brain tissue. The β-value was
calculated by (a) scattering 105 test points uniformly randomly
throughout the arena, and (b) calculating the proportion of the
point falling outside the spheres. We verified that increasing the
number of such test points to 106 altered β by < 1%, pointing to
asymptotic accuracy.

To fill the space with overlapping spheres that have a
distributed size, we generated random co-ordinates of sphere
centroids across the arena, and the random radius value for
each sphere, in accord with the designated diameter distribution,
which in our case was uniformly random between 20 and
100 nm. The initial number of spheres was estimated based on
their average volume and the average size (to give the required
β-value), and we left the co-ordinate origin unoccupied by
any sphere. The space-filling cycle was repeated, with adjusted
sphere numbers, until β approached the required value with
∼5% accuracy.
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Our initial tests revealed that introducing transporter binding
effectively restricted free particle movement across the simulated
arena within∼1 ms. We therefore limited simulated time to 1 ms.

Computing Environment
Monte Carlo simulations were run on a dedicated 8-node
BEOWULF-style diskless PC cluster running under the Gentoo
LINUX operating system (kernel 4.12.12), which was an
upgraded, ad hoc built version of the cluster described earlier
(Zheng et al., 2008). Individual nodes comprised an HP ProLiant
DL120 G6 Server containing a quad-core Intel Xeon X3430
processor and 8 GB of DDR3 RAM. Nodes were connected
through a NetGear Gigabit Ethernet switch to a master computer
that distributes programs and collects the results on its hard disk.
Parallelisation and optimisation of the algorithms and program
codes were implemented by AMC Bridge LLC (Waltham, MA).

RESULTS

Surface Binding Is Efficient in Curtailing
Particle Diffusion Even in Highly Porous
Environment
In a porous medium, the diffusion transfer rate scales, at least
to a first approximation, with medium porosity α (Tartakovsky
and Dentz, 2019), which in the brain represents tissue volume
fraction of the extracellular space (Sykova and Nicholson, 2008).

Thus, narrowing interstitial passages in the neuropil will slow
down escape of glutamate released at the synapse. To understand
how this would affect the scatter of glutamate molecules away
from the release site, we simulated brain neuropil as a space filled
by randomly sized, overlapping spheres representing cellular
structures: this procedure formed a porous, randomly shaped
medium, with volume fraction β occupied by spheres, or porosity
α = 1-β (see section “Methods”) (Savtchenko et al., 2021).

For the sake of comparison, we first tracked the fate of 2,000
diffusing particles representing glutamate molecules released in
the middle of a 3 µm cube arena, with space porosity of either
α = 0.7 or α = 0.2, the latter representing an adult mammalian
brain (Thorne and Nicholson, 2006; Tonnesen et al., 2018). The
diffusion coefficient for glutamate was set at D = 0.65 µm2/ms,
as measured through diffusion retardation in the interstitial
brain space using time-resolved fluorescence anisotropy imaging
(Suhling et al., 2015; Zheng et al., 2017). Because the characteristic
free-diffusion time over the arena was < 1 ms, our simulations
ran for 1 ms. The outcome showed that narrowing diffusion
passages by 3.5 times slowed down particle escape, so that the
molecular scatter became 1.5–2 times narrower (Figures 1A,B).

Next, instead of narrowing the extracellular space, we
equipped surfaces of the spheres with the ability to hold diffusing
molecules that “bumped” into them. This arrangement reflects
the scenario when astroglial surfaces that are densely populated
with GLT1 transporters (up to 105 µm−2; Lehre and Danbolt,
1998; Lehre and Rusakov, 2002) represent all cell membranes
in the nearby neuropil. Again, the time constant characterising

FIGURE 1 | Surface binding to high-affinity transporters provides efficient control of extrasynaptic glutamate escape even in high-porosity tissue. (A) 3D graph: A
snapshot of the simulated molecular scatter (400 nm wide fragment of the 3 µm wide simulation arena), 0.1 ms after release of 2,000 particles in the centre, with a
scatter of overlapping spheres representing 3D obstacles to diffusion; α = 0.7, medium porosity (volume fraction of the free space). Histogram: spatial distribution of
diffusing particles across the simulation arena, at two time points post-release, as indicated; solid lines, best-fit Gaussian distribution; σ, distribution dispersion
(standard deviation). (B) Simulations as in (A), but with medium porosity α = 0.2; note that the particle scatter is skewed because of the asymmetric geometry of
diffusion obstacles (sphere aggregates); other notations as in (A). (C) Simulations as in (A), but with the particle-surface binding enabled; particle catchment occurs
at a distance of ± 3 nm of the surface, to reflect the elementary diffusion displacement 11D (see section “Methods”); other notations as in (A).
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glutamate unbinding or the glutamate uptake rate for the main
glial glutamate transporter GLT1 is much longer than the
diffusion time of < 1 ms (Bergles et al., 2002; Savtchenko
et al., 2018). Thus, a permanent bond was fully representative of
glutamate-transporter interaction on this time scale. Simulations
showed that in these conditions the molecules remained within
the vicinity of the release site, with little progression of the
spread, even though 80% of the medium was available for free
diffusion (Figure 1C).

Glutamate Escape in Realistic Neuropil
The results above illustrate that, in principle, binding to
glutamate transporters could provide an efficient barrier to
diffusion even when the diffusion passages are widely open.
However, it was important to relate these observations to a
set of parameters characteristic of the real brain neuropil.
Whilst α = 0.2 is thought to faithfully represent brain tissue
porosity across regions (Nicholson and Phillips, 1981; Sykova
and Nicholson, 2008; Tonnesen et al., 2018), astroglial coverage
of synapse varies significantly. Stereological estimates based on
quantitative electron microscopy suggest that in the neuropil
of the rodent cerebellum (molecular layer) and hippocampus
(area CA1), astroglial surfaces represent a∼30 and 13% fraction,
respectively, of all cell membrane surfaces (Lehre and Danbolt,
1998; Lehre and Rusakov, 2002; Savtchenko et al., 2018), whereas
in the supraoptic nucleus cortex this fraction could exceed 50%
(Pilgrim et al., 1982).

Based on these measurements, we first simulated glutamate
release and diffusion in a modelled neuropil with α = 0.2 as in
Figure 1B, but with the probability for individual molecules to be
bound by the surface of either 0.3 or 0.13, thus representing the
occurrence of transporter-enriched astroglial membranes in the
cerebellar molecular layer or hippocampal area CA1, respectively.
This approach assumes that the occurrence of astroglial and
non-astroglial membranes near excitatory synapses does not
follow any regular pattern but is arbitrary, which appears in line
with the quantitative analyses of synaptic environment (Lehre
and Rusakov, 2002; Patrushev et al., 2013; Medvedev et al.,
2014). The other important assumption here is that the numbers
of glutamate transporters expressed in perisynaptic astroglial
membranes are much higher than the numbers of released
glutamate molecules, a relationship consistent with single-vesicle
release (Lehre and Danbolt, 1998; Savtchenko et al., 2013). We
have also introduced a 320 nm wide, 20 nm thick synaptic cleft
(free of transporters) based on the typical dimensions of such
clefts at CA3-CA1 synapses (Harris and Stevens, 1989; Harris
et al., 1992), centred at the arena co-ordinate origin, coinciding
with the glutamate release site.

The results suggest that the bulk of glutamate escaping from
cerebellar molecular layer synapses is bound to transporters
within ∼100 nm from the cleft, so that virtually all molecules
become immobile very rapidly after ∼0.1 ms (Figure 2A).
In these simulations, the distribution histograms represent
all, both free and transporter-bound, molecules, so that
the spatiotemporal dynamics of freely diffusing glutamate is
reflected in how this distribution changes in time (see section
“Discussion”). In the hippocampus, where astroglial presence

is three times lower, the glutamate profile does change from
0.1 to 1 ms post-release, allowing for a more widespread “tail”
of diffusing molecules, even though the majority of them still
remain bound in close proximity to the cleft (Figure 2B).

The Effect of Extracellular Space
Shrinkage or Expansion
It has long been known that during intense excitatory activity,
or in some pathological conditions such as epilepsy or ischemia,
the extracellular space of the brain can shrink (Lux et al.,
1986; Vorisek and Sykova, 1997; Vargova et al., 2001; Witcher
et al., 2010). We have therefore asked whether such changes
could significantly affect extrasynaptic escape of glutamate,
by repeating our simulations for reduced porosity values. As
expected, decreasing tissue porosity α from 0.2 to 0.1 and further
to 0.05 led to a lower number of molecules escaping away from
the cleft. However, the main feature of glutamate escape, its
intense binding in cleft proximity, remained (Figures 2C,D).

Finally, we asked what could happen when the extracellular
space is significantly expanded, which is thought to be the
case during postnatal development (Lehmenkuhler et al., 1993),
but also in the human cerebellum (Cragg, 1979). Simulations
adopting α = 0.5 still indicated perisynaptic binding as a prevalent
feature even though glutamate molecules have a significantly
wider spread, and a longer free-diffusion span than in cases with
lower α (Figure 3).

DISCUSSION

Scope and Limitations
It this study we asked which aspects of the perisynaptic
environment are prevalent in controlling glutamate escape from
excitatory synapses. Our primary purpose was therefore to
understand whether geometric hindrance by tissue elements,
and high-affinity binding by glutamate transporters, play
comparable roles, in this context. The goal was neither to
firmly establish the “true” glutamate escape profile for a
particular synaptic type nor to expand such claims to various
synaptic types featuring varied morphologies. The modelling
relied on several basic assumptions, such as (a) single-vesicle
glutamate release hence non-saturation of local glutamate
transporters, (b) random distribution of glial and non-glial
cellular surfaces in the neuropil, with the ratio established
purely by the probability of encountering one or the other
surface, and (c) negligible binding inside the synaptic cleft
(numbers of glutamate receptors much smaller than that
of released glutamate molecules). Clearly, these assumptions
impose certain interpretability limitations: repetitive synaptic
discharges or highly asymmetric occurrence of perisynaptic
astroglia may produce a somewhat different dynamic picture of
glutamate escape.

Empirical Relevance
Our estimates are generally consistent with the previous
theoretical assessments that used alternative modelling
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FIGURE 2 | Astroglial high-affinity transporters control the scatter of escaping glutamate molecules in the modelled cerebellar and hippocampal neuropil.
(A) Simulations as in Figure 1B, with the synaptic cleft (diameter 320 nm, height 20 nm) placed in the co-ordinate origin (also glutamate release site); particle-surface
binding enabled, for each particle with probability of 0.3 (to mimic 30% chance of encountering cell membranes representing astroglia); medium porosity α = 0.2.
Histogram: spatial distribution of glutamate molecules (free and transporter-bound combined) across the simulation arena, at two time points post-release, as
indicated; note two scales (one log-scale) of the ordinate. (B) Simulations as in (A), with the particle-surface binding enabled, for each particle with probability of 0.13
(to mimic 13% of neuropil cell membranes representing astroglia); other notations as in (A). (C) Simulation outcome (molecule distribution histograms) for the model
shown (A), but with tissue porosity values α = 0.1 and α = 0.05, as indicated); other notations as in (A). (D) Simulation outcome (molecule distribution histograms) for
the model shown (B), but with tissue porosity values α = 0.1 and α = 0.05, as indicated); other notations as in (B).
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FIGURE 3 | Astroglial high-affinity transporters control the scatter of escaping glutamate molecules under conditions of expanded extracellular space.
(A) Simulations as in Figure 2, with the particle-surface binding enabled, for each particle with probability of 0.3 (to mimic 30% chance of encountering cell
membranes representing astroglia); tissue porosity α = 0.5; other notations as in Figure 2A. (B) Simulations as in (A), but with the particle-surface binding enabled,
for each particle with probability of 0.13 (to mimic 13% of neuropil cell membranes representing astroglia); other notations as in (A).

approaches (Scimemi et al., 2004; Zheng et al., 2008; Scimemi
et al., 2009; Zheng and Rusakov, 2015; Armbruster et al., 2020)
predicting a very rapid fall of free glutamate concentration the
cleft. However, the distributions of mainly bound molecules
obtained here could be particularly relevant to the experimental
measurements of extrasynaptic glutamate escape using optical
glutamate sensors (Hires et al., 2008; Jensen et al., 2019;
Armbruster et al., 2020; Henneberger et al., 2020). Because such
sensors feature the glutamate binding rate on the same scale
as do glutamate transporters, one could simply assume that in
our simulations a proportion of the binding sites represents
glutamate sensors. In this case, the local sensor/transporter
concentration ratio would reflect the ratio of glutamate molecules
bound to the two respective targets. In other words, assuming
no significant difference between the spatial arrangement of
either transporters and sensors (e.g., as in the case of astroglia-
expressing iGluSnFR), the distribution profiles obtained here
for bound glutamate molecules should be equally relevant to
sensor-bound molecules.

One may argue that the experimental fluorescence profiles of
glutamate-bound iGluSnFR around synapses are much smoother,
and with no “voids” indicating the synaptic cleft, compared

with the profiles shown here (Jensen et al., 2019). However, this
is most likely because fluorescence signal is blurred over the
point-spread function of an optical system (∼0.4 µm in the
xy plane and ∼1 µm in the z direction), and because imaged
synapses will have their cleft randomly oriented with respect to
the focal plane. Exploring 3D simulation results by mimicking
optical projections to match a particular imaging setting should
bring theoretical findings closer to a faithful representation of
experimental readout.

In this context, one novelty element of the present simulations
is tissue modelling that uses randomly sized, randomly
positioned intersecting spheres. As explained in the section
“Methods,” we believe that this approach should provide a
fairer representation of brain neuropil than would regular
lattices of regular shapes that we and others employed
previously. Also, we presented examples of individual trials
rather than averaged outcome because “average synapse
geometry” is a non-existing entity in which important
“outlier” features of perisynaptic architecture could be unduly
smoothed out. We therefore considered it intuitively more
revealing, in this particular case, to illustrate individual Monte
Carlo realisations.
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Extracellular Space in Pathology
Our basic results suggest that glutamate transporters can
efficiently restrict glutamate diffusion even when the diffusion
escape passages are relatively open. As mentioned, dynamic
changes of the extracellular space volume, such as its transient or
long-term shrinkage, have long been associated with pathological
brain conditions such as in epilepsy or stroke (Lux et al.,
1986; Vorisek and Sykova, 1997; Sykova, 2001; Vargova et al.,
2001; Witcher et al., 2010). At the same time, physiological
studies of neurodegenerative diseases, stroke, or addiction
have found reduced expression of glial glutamate transporters
in brain tissue (Maragakis and Rothstein, 2004; Fontana,
2015; Kruyer et al., 2019), which normally undergo rapid
recycling on astroglial surfaces (Michaluk et al., 2021). The
present results suggests that, over a wide range of tissue
porosities, high-affinity transporters remain the principal factor
in curtailing glutamate escape. Thus, the availability of high-
affinity glutamate transporters appears a prevalent mechanism
to control extrasynaptic actions of glutamate in pathological
conditions affecting brain tissue architectonics.
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