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Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping
reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been
extensively tested in multiple models of human diseases. Sensorineural hearing loss has
a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can
cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli
share a battery of common mechanisms by which they cause hair cell injury, including
oxidative stress, the generation of free radicals and redox imbalance. Therefore,
targeting oxidative stress-mediated hearing loss has been the subject of much attention.
Here we review the chemistry of nitrones, the existing literature on their use as
antioxidants and the general state of the art of antioxidant treatments for hearing loss.
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INTRODUCTION

Nitrones are organic molecules able to trap reactive oxygen and nitrogen species (ROS, RNS)
(Rosselin et al., 2017). Thus, nitrones constitute potent antioxidant molecules able to reduce
oxidative stress (Firuzi et al., 2011). Nitrones power to scavenge free radicals derives from its
activated carbon nitrogen double bond (Figure 1A) that prompts easy free radical attack leading
to less reactive and harmful nitroxide species for biomolecules (Oliveira et al., 2018). However, the
fact that the doses used for spin trapping experiments are 1,000-fold higher than those usually
applied in the in vitro neuroprotection assays (10–50 µM), and that the amounts of nitrones
used in vivo are currently under 50 µM, clearly insufficient to trap ROS/RNS, suggest that other
mechanisms are responsible for nitrones scavenging capacity (Rosselin et al., 2017). Nitrones also
suppress signal transduction processes with significant anti-inflammatory, anti-apoptotic (Floyd
et al., 2008) and NO-releasing properties (Croitoru et al., 2011). These actions together with ROS
and RNS scavenging may account for the antioxidant/neuroprotective profile exhibited by nitrones
(Villamena et al., 2012).
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Nitrone derivatives have been extensively used in both
preclinical models and clinical assays as therapeutics to reduce
oxidative stress in several pathologies, mainly stroke (Marco-
Contelles, 2020), neurodegenerative disorders (Cancela et al.,
2020) and cancer (Thomas et al., 2020). Oxidative stress is also
considered a major pathological mechanism in several auditory
pathologies, including ototoxicity, noise-induced hearing loss
(NIHL) and presbycusis (Bermúdez-Muñoz et al., 2020, 2021;
Varela-Nieto et al., 2020).

Thus, the purpose of this minireview is to discuss how
the antioxidant properties of selected nitrones, such as alpha-
phenyl-tert-butylnitrone (PBN), 4-hydroxy PBN (4-OHPBN),
disufenton sodium (NXY-059, also referred to as HPN-07)
(Figure 1B), have been explored as potential therapeutic small
molecules for the treatment of hearing loss of different etiologies
and to identify the current challenges to translate these results
into the clinical practice.

NITRONES AS THERAPEUTIC AGENTS
FOR SENSORINEURAL HEARING LOSS

Sensorineural hearing loss (SNHL) is the most common sensory
deficit in adults, and is associated with normal aging. SNHL
is intensified due to the exposure to pollutants such as carbon
monoxide (CO) (Marcano Acuña et al., 2019), hydrogen cyanide
(Fechter et al., 2002), trimethyltin (Yu et al., 2016) and
acrylonitrile, as well as by the combination of high levels of noise
and these toxins (Fechter et al., 2004; Pouyatos et al., 2009). SNHL
is also caused by drugs such as aminoglycosides and cisplatin
(Kros and Steyger, 2019; Murillo-Cuesta et al., 2021). Although
the underlying mechanisms of age- or environmental toxins-
mediated SNHL are still unknown, there is large consensus in that
free radical processes are effectively involved (Fechter et al., 2004;
Wang et al., 2007; Fetoni et al., 2019; Varela-Nieto et al., 2020).

Oxidative stress plays a key role in the induction of cochlear
injury after noise exposure (Wang et al., 2007; Varela-Nieto
et al., 2020). Very interestingly, one of the consequences of
the oxidative stress induced by excessive noise is the onset
of apoptosis linked to mitochondrial release of cytochrome C,
activation of caspases and the N-terminal-c-JUN kinase pathway
(Wang et al., 2007).

The key role of oxidative stress in producing cochlear
injury is supported by the positive therapeutic effect shown
by antioxidants in preclinical studies carried out in animal
models. Furthermore, deletion of antioxidant enzymes like Gpx1
(glutathione-peroxidase1) results in NIHL and loss of hair cells in
mice (Ohlemiller et al., 2000). Accordingly, the organoselenium
compound Ebselen, which mimic GPX1 activity, prevents outer
hair cells loss in rats after oral treatment, before and immediately
after noise exposure (Kil et al., 2007). Ebselen has also shown a
moderate effect in clinical trials for NIHL (Kil et al., 2017). Also,
adenoviral-mediated antioxidant gene therapy to overexpress
human catalase and superoxide dismutases (SOD1 and SOD2)
has been used to prevent aminoglycoside ototoxic trauma in
the guinea pig cochlea (Kawamoto et al., 2004). Supplementary
Table 1A summarizes main published data studying antioxidants,

FIGURE 1 | (A) Reaction of a free radical [R]• with a nitrone. (B) Structures of
nitrones PBN, 4-OHPBN and NXY-059.

such as acetyl-L-carnitine (ALCAR), N-acetyl-L-cysteine (NAC)
or Ebselen, among others. NAC and ALCAR are known to
efficiently reduce NIHL (Choi, 2011; Varela-Nieto et al., 2020)
and aminoglycoside ototoxicity (Somdas et al., 2015; García-
Alcántara et al., 2018). Furthermore, NAC also reduces oxidative
stress, inflammation and protects hearing (Bermúdez-Muñoz
et al., 2021) in a genetic model of early onset age-related hearing
loss (Celaya et al., 2019). More recently, researchers have tested
HK-2, a multifunctional antioxidant, which has been shown to
protect against NIHL and hair cell loss administered orally in rats
before and after noise (Chen et al., 2020).

Despite their potent antioxidant power, nitrones have been
poorly studied as a therapy for SNHL. Alone or in combination
with other well-known antioxidant agents, such as NAC (Kopke
et al., 2007, 2015), nitrones have been reported to be effective in
the prevention and treatment of NIHL (Kopke et al., 2005; Ewert
et al., 2017) or CO ototoxicity (Fechter et al., 1997).

Here we will discuss in detail the reported actions of
free radical scavenger nitrones PBN, 4-OHPBN and NXY-059
(Figure 1B) in SNHL protection.

PBN
Phenyl-tert-butylnitrone (Figure 1B) has been shown to be
effective in mitigating the SNHL that occurs in Long Evans
hooded rats exposed to CO (Rao and Fechter, 2000) or to
acrylonitrile (Fechter et al., 2004), plus exposure to high level
noise. Acrylonitrile when associated with acoustic overexposure
increased hearing loss, implying that the mechanism of the
potentiation of NIHL by these compounds involved enhancing
cochlear oxidative stress (Pouyatos et al., 2005). Rao and Fechter
observed that PBN given before and after high-level steady-
state noise decreased CO-mediated potentiation of the noise-
induced threshold shifts (Rao and Fechter, 2000). However, no
statistically significant differences were found between animals
only exposed to noise and untreated or treated with PBN (Rao
and Fechter, 2000). The underlying mechanisms of PBN have
not been studied in detail, but may involve the reduction of
oxidative stress (Floyd, 1997). Indeed, PBN protects cochlear
function from combined exposure to noise and CO by reducing
the formation of ROS/RNS in the cochlea (Fechter et al.,
2000). The otoprotection shown by PBN on acrylonitrile-induced
damage seems due to oxidative stress reduction by preventing
the depletion of glutathione caused by combined noise and
acrylonitrile exposure and also reducing reactive epoxide binding
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to cytochrome C oxidase (Pouyatos et al., 2005). PBN was
reported to have a potential key role in increasing the Cu/Zn
form of superoxide dismutase in the cochlea (Pierson and Gray,
1982), which has been shown in other organs to restore the same
type of antioxidant defense mechanisms associated with cochlear
protection (Weisiger and Fridovich, 1973).

4-OHPBN
Nitrone 4-OHPBN (Figure 1B), a PBN derivative, and its major
metabolite, has been reported to decrease permanent NIHL
in chinchilla (Choi et al., 2008). This was very interesting
because a previous report claimed that PBN was ineffective
in reducing noise-induced auditory threshold shifts (Rao and
Fechter, 2000). In fact, 4-OHPBN, administrated after 4 h of
noise exposure, proved effective in the treatment of NIHL,
and when administrated in combination (4-OHPBN + NAC,
and 4-OHPBN + NAC + ALCAR) with other antioxidant
drugs such as NAC or ALCAR, showed increased efficacy,
since each antioxidant targeted different injury mechanisms
(Choi et al., 2008). Choi et al. (2008) reported that animals
exposed to a 105 dB octave-band noise for 6 h and
then treated with 4-OHPBN drug combinations for 4 h
increased the efficiency of the treatment, reducing the individual
drug dose. The precise mechanisms by which 4-OHPBN
reduces cochlear injury are still largely unknown; among the
targets proposed by different authors we found free radical
scavenging, inhibition of iNOS activation, suppression of
ROS/RNS formation, decreased mitochondrial ROS production,
reduced neuroinflammation and activation of MAP kinase
cascades (Floyd, 1999; Du et al., 2011).

NXY-059
The potential therapeutic effect of nitrone NXY-059 (Figure 1B)
and of its combination with NAC to treat permanent NIHL
was explored in female chinchillas exposed to a 105 dB octave-
band noise centered at 4 kHz, for 6 h, by starting treatment
4 h after noise exposure and continually injecting twice daily
for the next 2 days (Choi, 2011). Results showed that the
mean permanent hearing threshold of NXY-059 and NXY-
059 + NAC treated groups was decreased compared to the noise
exposed group. Furthermore, NXY-059 + NAC showed greater
effects, demonstrating that this drug combination enhances the
therapeutic effect (Choi, 2011). Indeed, the combination of
antioxidants with different and complementary mechanisms of
action has proven to be more effective than using just one drug
(García-Alcántara et al., 2018). NXY-059+NAC has been further
evaluated as a therapeutic approach for NIHL in rats exposed
to 115 dB octave-band noise (10–20 kHz) treated 1 h before
and 1 h after noise exposure, and then for two consecutive
days (Lu et al., 2014). Auditory brainstem response showed that
this treatment significantly reduced the threshold shift across all
tested frequencies along the 21 days studied. Reduced distortion
product otoacoustic emission level shifts were also detected at
7 and 21 days following noise exposure of treated animals.
Protection was associated to increased conservation of outer
and inner hair cells in the organ of Corti. Treatment also
significantly reduced the noise-induced expression of c-FOS in

the cochlear nucleus neurons. These results indicated that NXY-
059 + NAC is a promising pharmacological combination for
NIHL therapy, as it decreases both temporary and permanent
threshold shifts after intense noise exposure, protects cochlear
sensory cells, and potentially afferent neurites, from the damaging
effects of noise-induced oxidative stress. In addition, the drugs
reduced aberrant activation of neurons in the central auditory
regions of the brain following noise exposure (Lu et al., 2014).
Finally, NXY-059 free radical spin trapping activity has been
reported to protect the cochlea exposed to acute acoustic trauma
(Ewert et al., 2017).

CONCLUSION AND FUTURE
PERSPECTIVES

The pathophysiological response to oxidative stress has been a
widely studied and is a well-established cochlear mechanism of
injury leading to hearing loss (Choi and Choi, 2015; Wang and
Puel, 2018; Bermúdez-Muñoz et al., 2020, 2021; Varela-Nieto
et al., 2020). Oxidative stress occurs when cochlear cells show
excessive amounts of oxidants or decreased levels of antioxidants
and causes formation of free radicals. These free radicals can
damage cellular DNA, proteins, lipids, and unregulated apoptotic
pathways, causing cell death and irreversible damage to the
cochlea (Kurabi et al., 2017). Secondary to oxidative stress,
inflammation occurs and further expands cochlear injury leading
to apoptotic cell death of the irreplaceable sensory hair cells
and neurones (Perin et al., 2021). In this context, nitrones
have been explored to prevent hearing loss rendering modest
positive results, generally combined with NAC. The enormous
potential of these molecules invites to study in depth their
largely unknown biodistribution and pharmacokinetics when
administered by different routes to the inner ear. Improving
their solubility in biological membranes by means of medical
chemistry strategies, the modification of their structure or
their combination with biocompatible vehicles, could allow
their local administration, which could eventually improve their
preclinical results.
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