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Brain edema is a severe stroke complication that is associated with prolonged
hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral
perfusion and may also result in transtentorial herniation. As a physical and biochemical
barrier between the peripheral circulation and the central nervous system (CNS), the
blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment
of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction
of the BBB results in increased paracellular permeability, directly contributing to the
extravasation of blood components into the brain and causing cerebral vasogenic
edema. Recent studies have led to the discovery of the glymphatic system and
meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to
enter the brain and drain to nearby lymph nodes and communicate with the peripheral
immune system, modulating immune surveillance and brain responses. A deeper
understanding of the function of the cerebral lymphatic system calls into question the
known mechanisms of cerebral edema after stroke. In this review, we first discuss
how BBB disruption after stroke can cause or contribute to cerebral edema from the
perspective of molecular and cellular pathophysiology. Finally, we discuss how the
cerebral lymphatic system participates in the formation of cerebral edema after stroke
and summarize the pathophysiological process of cerebral edema formation after stroke
from the two directions of the BBB and cerebral lymphatic system.
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INTRODUCTION

Worldwide, stroke is the leading cause of adult disability and the second main cause of
death after coronary heart disease, affecting more than 13.7 million patients every year
(GBD 2015 Mortality and Causes of Death Collaborators, 2016; Phipps and Cronin, 2020).
Stroke includes ischemic stroke, subarachnoid hemorrhage (SAH), and cerebral hemorrhage,
of which ischemic stroke accounts for 80% of all stroke cases (GBD 2015 Mortality and
Causes of Death Collaborators, 2016). They are all accompanied by cerebral edema, and
swollen tissues in a fixed volume of the skull caused by edema that exert a mechanical
force on adjacent tissues and capillaries, leading to decreased blood perfusion, aggravated
ischemia and edema, and tissue damage (Simard et al., 2007; Rungta et al., 2015;
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Leinonen et al., 2017). Malignant cerebral edema is a devastating
complication of ischemic infarction, which accounts for 10% to
78% of patients with all types of ischemic stroke (Wu et al.,
2018). It can result in massive cerebral swelling, subsequent raised
intracranial pressure (ICP), rapid neurological deterioration,
and transtentorial herniation (Huttner and Schwab, 2009). The
mortality rate in patients with malignant cerebral edema is close
to 80% (Huttner and Schwab, 2009). However, treatment options
for cerebral edema remain limited, and available treatments are
suboptimal. Therefore, understanding the underlying molecular
and cellular mechanisms of edema formation is critical.

Cerebral edema occurs in three distinct phases that mature
separately over time and space: the early cytotoxic edema
phase, the subsequent ionic edema phase, and the most severe
vasogenic edema phase (Simard et al., 2007; Stokum et al., 2016;
Clément et al., 2020). Cytotoxic edema occurs within minutes
after ischemic insult without BBB disruption, which is usually
the consequence of ATP depletion and is characterized by the
swelling of astrocytes and neuronal dendrites (Liang et al., 2007;
Risher et al., 2009; Badaut et al., 2011b). Although cytotoxic
edema does not generate tissue swelling, the ionic gradient
between the vascular compartment and interstitial fluid (ISF)
it causes provides the driving force for the subsequent ionic
and vasogenic edema, which do cause swelling (Mori et al.,
2002; Simard et al., 2007; Stokum et al., 2016). The term ionic
edema (interstitial edema) was introduced to explain the form
of cerebral edema in the early hours of ischemic stroke, with
barrier breakdown not occurring until 4–6 h after the onset
of ischemia (Gotoh et al., 1985; Young et al., 1987; Hatashita
and Hoff, 1990; Schielke et al., 1991; Simard et al., 2007). The
ionic edema is followed by BBB breakdown: vasogenic edema,
which is characterized by allowing water and plasma proteins,
such as albumin and IgG, to leak into the brain interstitial
compartment (Stokum et al., 2016; Zhang et al., 2020). The
stepwise recruitment of transcellular and paracellular pathways
contributes to the breakdown of the BBB (Dreier et al., 2018).
As early as 6 h after stroke, a rise in the number of caveolae and
an increased transcytosis rate disturb the transcellular pathway,
whereas structural abnormalities in tight junctions (TJs) activate
the paracellular pathway after 2 days (Kang et al., 2013; Knowland
et al., 2014).

The water source of ionic brain edema can only come from
blood and CSF (Simard et al., 2007). The hypothesis that local
blood perfusion acts as a water source for ionic cerebral edema
has been confirmed in numerous experiments. For example,
the post-ischemic degree of reperfusion is positively correlated
to edema (Bell et al., 1985). Furthermore, edema fluid is first
found and located mostly in peri-infarct regions that are actively
perfused (Quast et al., 1993; Simard et al., 2006). Recent studies
describe that a brain-wide paravascular pathway provides a
conduit for CSF influx prompted us to ponder whether CSF
serves as the immediate source of ions and water for edema (Iliff
et al., 2012). The hypothesis that CSF influx can drive ionic brain
edema formation is supported by some indirect evidence (Thrane
et al., 2014). For example, the increased paravascular space
following pericyte constriction and microvascular collapse can
reduce resistance to CSF influx (Hall et al., 2014). Furthermore,

the impairment of glymphatic pathway function after injury or
infarction is likely to trigger a reduced clearance of interstitial
solutes and exacerbate edema (Ren et al., 2013; Iliff et al.,
2014). This circumstantial evidence is not convincing. However,
Humberto Mestre and his colleagues directly described that the
influx of CSF into the brain tissue drives acute tissue swelling
within minutes of ischemic stroke (Mestre et al., 2020). The
discovery of the classical lymphatic drainage system in the dura
mater of the brain, which can absorb CSF from the adjacent
subarachnoid space and provides the pathway for the entrance
and exit of immune cells from the CNS, calls for a reassessment of
cerebral edema formation and sheds new light on the etiology of
the neuroinflammatory mechanisms of BBB damage in ischemic
stroke (Aspelund et al., 2015; Louveau et al., 2015).

Several fundamental pathophysiologic processes contribute
to cerebral edema development after stroke, including the
disruption of TJs, the loss of homeostatic ionic gradients,
inflammatory responses, and the activated glymphatic system.
After the disruption of TJs, inflammatory responses and the
activation of ion channels can be considered to promote the
occurrence of cerebral edema by exerting an influence on the
permeability of BBB. We summarize these aspects into only one
part: the increase of BBB permeability to promote cerebral edema.
However, the influence of the CNS lymphatic system on the
occurrence and progression of cerebral edema induced by stroke
has not been reviewed. Therefore, this article summarizes the
various pathophysiologic processes that affect the permeability of
the BBB to promote the occurrence of cerebral edema and focuses
on the effect of the CNS lymphatic system on the development of
cerebral edema after stroke.

INCREASED BBB PERMEABILITY
CONTRIBUTES TO EDEMA

BBB dysfunction that occurs during cerebral ischemia enables
considerable vascular fluid to pass through microvascular
endothelium into the brain interstitial compartment and
eventually leads to vasogenic edema formation (Sandoval and
Witt, 2008; Prakash and Carmichael, 2015; Stokum et al., 2016).
Any disorder of the factors that maintain the functional integrity
of the BBB will lead to an increase in the permeability of
the BBB. Here, we discuss and summarize the mechanisms
that can increase the permeability of the BBB. In theory, these
mechanisms will eventually lead to the aggravation of cerebral
edema after stroke.

Anatomical Considerations of BBB
The concept of BBB was first proposed in the early 20th
century (Zlokovic, 2008). Today, the concept of the BBB
as an impermeable barrier has evolved into a dynamic and
metabolic interface that maintains the fragile homeostasis of
the brain through regulating the trafficking of fluid and
solutes bi-directionally and metabolizing potentially neurotoxic
compounds (Jiang et al., 2018). Although the BBB is formed
primarily by the brain microvascular endothelium, the complete
function of the BBB requires the harmonious functional interplay
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FIGURE 1 | Neurovascular unit (NVU) and blood–brain barrier (BBB).
(A) Transverse-section representation of the NVU. The concept of the NVU
highlights the importance of the intimate interactions between components of
the BBB and cells in brain parenchyma, including pericytes, astrocytes,
microglia, and neurons. The BBB is centrally positioned within the NVU, which
is formed by a monolayer of endothelial cells sealed by tight junctions. (B) A
schematic blow-up of the tight junctions (TJs) and adherens junctions (AJs) at
the BBB as defined in the text.

of multiple cells (Figure 1), including astrocytes, pericytes,
microglia, neurons, vascular smooth muscle cells (SMCs), and
extracellular matrix (ECM) components. Therefore, to emphasize
further the cellular interplay in maintaining the function of the
BBB, we introduce the concept of the neurovascular unit (NVU).

Blood–brain barrier endothelial cells (ECs), which act as the
first line of defense in the innermost layer of the BBB, are
differentiated from common ECs by a lack of fenestrations,
minimal pinocytotic activity, and the presence of extensive TJs
and numerous mitochondria (Abdullahi et al., 2018). Notably,
the brain endothelium plasmalemma is divided into luminal and
abluminal membrane faces by extensive inter-endothelial TJs.
The different expression of transport proteins and metabolic
enzymes between luminal and abluminal membrane faces leads
to the polarization of ECs and finally restricts the flux of
blood-to-brain substances across the microvascular endothelium
(Sanchez-Covarrubias et al., 2014). The constitutive and de
novo expression of ion transporters serve as drivers of ionic
edema after stroke (Stokum et al., 2016). Several factors that are
produced by ECs, such as platelet-activating factor, superoxide
radicals, endothelins, and eicosanoids, impair perfusion, increase

BBB permeability, and induce cell damage when overexpressed
(Spatz, 2010).

Pericyte is a mesenchymal cell type located in the endothelial
basement membrane of the capillaries and microvessels (Spatz,
2010). Astrocytes, whose endfeet are almost surrounding the
abluminal ECs surface, act as intermediaries in the NVU
responding to neuronal synaptic activity (Koehler et al., 2006).
Pericytes and astrocytes all play important roles in the formation,
maturation, and maintenance of the BBB and the regulation
of capillary blood flow (Alvarez et al., 2013; Stokum et al.,
2016; Jiang et al., 2018). Pericyte-deficient mice are identified
with endothelial hyperplasia, increased capillary diameter, an
abnormal cellular distribution of junctional proteins, and
increased transendothelial permeability (Hellstrom et al., 2001).
Chemical factors produced by astrocytes, such as Sonic Hh,
vascular endothelial growth factor (VEGF), angiopoietins-1, Src
suppressed C kinase substrate, and TGF-β, can promote vascular
growth and BBB differentiation and maturation and support BBB
integrity (Alvarez et al., 2011, 2013). In addition, a high density
of aquaporin-4 (AQP4) water channels highly polarized to
perivascular astrocytic endfeet act as an indispensable component
of the glymphatic system, which facilitates the circulation of CSF
through the brain interstitial space (Iliff et al., 2012).

Endothelial cell junctions include TJs and adherens junctions
(AJs) (Figure 1). TJs between adjacent ECs are responsible for the
formation of a continuous and impermeable barrier. AJs are likely
to play an auxiliary role to help the localization and stabilization
of TJs that are formed by cadherins and associated proteins
that are directly linked to actin filaments (Dejana et al., 2008;
Redzic, 2011). Three integral transmembrane proteins, namely,
claudins, occludin, and junctional adhesion molecules (JAMs),
are involved in the assembly of TJs (Figure 1; Stamatovic et al.,
2016). The stability of TJs can be maintained by cytoplasmic
accessory molecules comprising zonula occludens (ZO)-1, ZO-
2, and ZO-3, and cingulin, which fasten these transmembrane
proteins to the actin cytoskeleton (Ballabh et al., 2004). In
addition to these cellular components, the luminal membrane
and basement membrane also participate in maintaining vascular
permeability (Spatz, 2010). The glycocalyx coating the luminal
EC membrane is composed of proteoglycans, glycosaminoglycan,
and absorbed plasma proteins, and glycocalyx damaged by
ischemia or injury permits the attachment of leukocytes (Spatz,
2010). The basement membrane separates the endothelium from
the astrocyte and prevents the vascular leakage of plasma protein
through the cooperation of multiple ECM proteins, including
collagens, laminins, heparin sulfate proteoglycans, fibronectin,
vitronectin, nidogens, perlecan, and agrin (Spatz, 2010; Yao and
Tsirka, 2014).

Pathways Involved in BBB Permeability
and Edema
TJ Disruption
Vasogenic edema is characterized by increased paracellular
permeability of the BBB, which is mainly caused by TJ
disruption (Figure 2; Wolburg and Lippoldt, 2002; Stokum
et al., 2016). Therefore, the pathological mechanism of TJ
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FIGURE 2 | Three distinct phases of cerebral edema. (A) CSF influx occurred and peaked at 11.4 ± 1.8 s and 5.24 ± 0.48 min after MCAO. The first peak of CSF
influx is the hydrostatic pressure gradient due to vascular obstruction. The increased PVS size triggered by spreading depolarizations (SDs) drives the second wave
of perivascular CSF influx, which facilitates the swelling of astrocytic endfeet. (B) Cerebral edema can be classified into three phases: cytotoxic, ionic, and vasogenic
edema phases. The cytotoxic edema phase is characterized by swelling of astrocytes and happens simultaneously with the second peak of CSF entry. The second
stage of cerebral edema formation, the ionic edema stage, is mainly driven by endothelial ion channels and transporters in the context of an intact BBB, such as
NKCC, NHE, KCa3.1, and Sur1-Trpm4 channel. The breakdown of BBB causes vasogenic edema. Successive alterations to the transcellular and paracellular
pathway of the BBB contribute to the breakdown of BBB following stroke. First, the increase in the number of endothelial caveolae and the rate of transcytosis
impairs BBB function by disturbing the transcellular pathway. Then the destruction of TJs activates the paracellular pathway. In addition to NVU cells involved in the
regulation of BBB permeability, various immune cells and inflammatory factors play an important role in the destruction of TJs.

destruction is particularly important. Progressive TJ dysfunction
can be organized into three phases: protein modification, protein
translocation, and protein degradation; each of the phases
can increase BBB permeability and promote the formation of
edema (Jiang et al., 2018). In the first phase, inflammatory
factors and cytokines released during ischemic brain injury,
such as VEGF, chemokine monocyte chemoattractant protein-
1 (CCL2), tumor necrosis factor (TNF)-α, and IL-6, can induce
the phosphorylation of TJs, leading to BBB hyperpermeability
(Stamatovic et al., 2006; Murakami et al., 2009; Murakami
et al., 2012; Rochfort and Cummins, 2015). Attenuating TJ
phosphorylation can also inhibit the leakage of BBB after
transient focal cerebral ischemia (Kago et al., 2006; Takenaga
et al., 2009). In the second phase, TJ translocation, which
is largely mediated by endocytosis and actin polymerization,
also compromises BBB integrity (Jiang et al., 2018). For
example, occludin, claudin-5, and JAM-A redistribute from the
cytoskeleton or interendothelial cell cleft after ECs are treated
with CCL2 or cultured in an environment with oxygen glucose
deprivation (OGD) (Stamatovic et al., 2009, 2012; Liu et al.,
2012). Experiments have also identified the redistribution of
occludin and cadherin from the membrane fraction to the actin
cytoskeleton fraction due to robust actin polymerization and
stress fiber formation (Shi et al., 2016). The degradation of TJ
protein is the last step of TJ disruption and the most critical
step to destroy the integrity of BBB, which causes increased
paracellular leakage and the infiltration of peripheral immune
cells at the BBB. The activation of matrix metalloproteinases
(MMPs) is one of the most significant contributors to TJ
degradation in stroke (Abdullahi et al., 2018). MMP-2 and
MMP-9 are the most studied and main MMPs that are

increased following stroke (Turner and Sharp, 2016). Although
ECs, microglia, and astrocytes overexpress MMPs, infiltrating
neutrophils have proved to be a major source of MMP-9
(Romanic et al., 1998; Tang et al., 2006; Turner and Sharp,
2016). Upregulated MMP-9 and MMP-2 after stroke degrade TJs,
such as occludin and Claudin-5, and microvascular basal lamina
(Asahi et al., 2001; Liu et al., 2012; Qi et al., 2016). By selectively
inhibiting MMP-2/9, the impairment of BBB integrity and the
volume of edema in cerebral ischemic mice can be significantly
reduced (Cui et al., 2012; Liu et al., 2012; Qi et al., 2016).
Therefore, the destruction of TJs, which leads to the decrease of
BBB integrity, is one of the key factors leading to the formation of
cerebral edema after stroke.

Actived NVU Cells
The NVU, which emphasizes cell–cell and cell–matrix
interactions in the brain, provides a more integrative answer to
BBB disruption after stroke (Lo et al., 2003). The permeability
of the BBB is constantly regulated by different cell types in the
NVU. Therefore, the occurrence of cerebral edema after stroke is
also closely related to various cellular components in the NVU.

As a first-line defense located between the blood plasma
and interstitium, the continuous endothelium is essential
for physiologic homeostasis and directly reacts to harmful
substances from the periphery. Under the pressure of ischemia
and hypoxia after stroke, actin polymerization elicits stress fibers
and concomitant endothelial cell contraction mediated by zipper-
interacting protein kinase (ZIPK) through the phosphorylation
of the myosin light chain (Vandenbroucke et al., 2008;
Komarova and Malik, 2010; Shi et al., 2016; Zhang et al.,
2019). Following endothelial cell contraction, the formed
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paracellular gap improves paracellular permeability and
allows macromolecules and inflammatory cells to enter brain
parenchyma (Komarova and Malik, 2010; Zhang et al., 2019).
The global deletion of ZIPK in an animal model of middle
cerebral artery occlusion (MCAO) significantly attenuates BBB
dysfunction by inhibiting EC contraction, as proven by reduced
infarct and edema volume (Zhang et al., 2019). Oxidative stress
after stroke can also induce endothelial cell apoptosis, which is
suggested to have detrimental consequences on BBB integrity,
subsequently leading to brain edema (Rizzo and Leaver, 2010; Al
Ahmad et al., 2012). Protecting ECs from apoptosis after stroke
is beneficial to the integrity of BBB and the reduction of brain
edema (Park et al., 2004; Zhang et al., 2016; Yang et al., 2017).
The increased number of endothelial caveolae and transcytosis
rate account for the BBB disruption that occurs in the early phase
of stroke (Knowland et al., 2014; Nahirney et al., 2016; Haley and
Lawrence, 2017).

Activated pericytes and astrocytes also contribute to the
breakdown of BBB and promote cerebral edema formation after
stroke. Pericytes migrate from the brain microvascular wall in a
rat MCAO model, and the detachment increases the permeability
of the BBB to water and tracers (Gonul et al., 2002; Duz et al.,
2007; Armulik et al., 2010). Stimulation by some factors, such as
TNF-α and thrombin, makes pericytes and astrocytes important
sources of MMP-9, which can cause BBB dysfunction through the
degradation of TJs and the basal lamina and the enhancement
of pericyte migration (Takata et al., 2012; Machida et al., 2015;
Turner and Sharp, 2016). Activated astrocytes in stroke can
also facilitate the destruction of BBB by increasing VEGF (Li
et al., 2014). In EC–astrocyte co-cultures, microvesicles released
from ECs cultured in OGD conditions promote the apoptosis of
astrocytes, increase the permeability of BBB, and downregulate TJ
proteins (Pan et al., 2016).

Inflammation Responses
After stroke onset, circulating leukocytes adhere, migrate, and
eventually accumulate in the lesion site and then release
inflammatory factors to cause secondary BBB disruption.
Neutrophils are the earliest leukocyte subtype that infiltrates
an ischemic brain and contribute to the breakdown of BBB
by secreting MMP-9, neutrophil elastase, and reactive oxygen
species (ROS) (Figure 2; Jickling et al., 2015). In a study of a
mouse model of ischemic stroke, we proved that MMP9, which is
derived mainly from neutrophils rather than brain parenchymal
cells, causes BBB disruption (Gidday et al., 2005; Tang et al., 2006;
Wang et al., 2009). In an experimental intracerebral hemorrhage,
neutrophil depletion by anti-polymorphonuclear leukocyte
antibodies reduces the production of MMP-9, infiltration of
activated microglia/macrophages, and leakage of the BBB
(Moxon-Emre and Schlichter, 2011). Neutrophil elastase released
from neutrophils is another harmful inflammatory reaction that
contributes to BBB disruption and vasogenic edema (Stowe
et al., 2009; Ikegame et al., 2010). Neutrophils exacerbate BBB
breakdown by producing neutrophil extracellular traps (Kang
et al., 2020), which damage ECs by releasing many cytotoxic
proteases, such as histone, elastase, and myeloperoxidase
(Villanueva et al., 2011). In addition to that of neutrophils, the

recruitment of monocytes and lymphocytes is also involved in
the regulation of BBB function. T cells and B cells have both
protective and damaging roles in cerebral ischemia; however, the
role of each type of lymphocyte in stroke and the effect on BBB
permeability after ischemic stroke should be further clarified (Jian
et al., 2019; Yang et al., 2019).

Mast cells, as resident cells in the brain and meninges, also
promote BBB damage and edema formation by releasing their
granule contents, such as histamine, TNF-α, proteases, heparin,
and various chemoattractants (Figure 2; Lindsberg et al., 2010;
Arac et al., 2014; Dong et al., 2014). Rats treated with a mast cell
stabilizer (cromoglycate) after MCAO show significantly reduced
ischemic brain swelling by 40%, BBB leakage by 50%, and less
postischemic neutrophil infiltration by 37% (Strbian et al., 2006).

Macrophages, which can be transformed from brain-inhabited
microglia or differentiated from peripheral monocyte, also
promote neuroinflammation and blood vessel disintegration
after ischemic stroke (da Fonseca et al., 2014; Benakis et al.,
2015; Fumagalli et al., 2015; Jian et al., 2019). Both microglia-
and monocyte-derived macrophages have a phagocytic function,
express the same phenotypic markers, and can transform to
pro-inflammatory/anti-inflammatory (M1/M2) phenotype. The
number of monocytes infiltrating the ischemic brain is lower
than that of activated microglia (Kokovay et al., 2006; Denes
et al., 2007). Therefore, we mainly discuss the damaging
effect of microglia on BBB. Recently, the presence of CD31-
positive particles (blood vessels) in the intracellular vesicles
of perivascular microglia indicates the phagocytosis of blood
vessels by perivascular microglia and finally contributes to the
breakdown of the BBB (Jolivel et al., 2015). Ischemia can also
induce the generation of NOX-dependent ROS in brain microglia
and inflict damage on BBB by activating transcription factors
or ion channels, such as JNK, p38 MAPK, JAK-STAT, NF-kB,
and Hv1 (Kacimi et al., 2011; Wu et al., 2012). The expression
of a large array of inflammatory mediators, such as IL-1, IL-6,
matrix metalloproteases, MMPs, and TNF-α, by microglia after
ischemic stroke also enhances vascular permeability in the brain
(Zhou et al., 2013; Lee et al., 2014; Thurgur and Pinteaux, 2019).
The inhibition of microglial activation by pretreatment with
minocycline can suppress vasogenic edema and infarct formation
in ischemic stroke (Tanaka et al., 2018).

Various chemical factors, such as cytokines, chemokines, ROS,
MMPs, and VEGF, secreted from the periphery and resident
immune cells and glial cells play a key role in the regulation of
BBB disruption in ischemic stroke (Yang et al., 2019). Among the
most extensively studied cytokines in the context of stroke, TNF-
α, IL-1, and IL-6 have been shown to disrupt the BBB (Blamire
et al., 2000; Pradillo et al., 2012; Cohen et al., 2013; Rochfort
et al., 2014; Kangwantas et al., 2016; Pradillo et al., 2017).
The most notorious upregulated chemokines in response to
hypoxia/ischemia are CCL2, macrophage inflammatory protein-
1α, and stromal-derived factor-1, which play an important
role in leukocyte recruitment and promote BBB destruction
(Eugenin and Berman, 2003; Stamatovic et al., 2005; Dimitrijevic
et al., 2006; Chui and Dorovini-Zis, 2010; Takata et al., 2012).
Oxidative stress caused by ROS and nitric oxide (NO) plays
a critical role in MMP activation and BBB breakdown after
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stroke (Yang et al., 2019). Leukocytes, glial cells, and vascular
ECs are important sources of ROS and NO (Iadecola et al.,
1995; Lassegue and Clempus, 2003). Furthermore, VEGF secreted
by neurons, astrocytes, and macrophages is also involved
in the activation of MMPs and BBB disruption following
ischemia (Kovacs et al., 1996; Valable et al., 2005; Lee et al.,
2007). The upregulation of cell adhesion molecules, such as
selectins, immunoglobulin superfamily, and integrins, promotes
the infiltration of leukocytes, especially neutrophils, to the CNS
and leads to BBB damage (Yang et al., 2019). In general, the
neuroinflammatory mechanism of BBB damage in ischemic
stroke is very complex but is a promising target to reduce BBB
damage, edema, and brain injury after stroke.

Ion Transporter Dysfunction
The depletion of intracellular ATP leads to the cytotoxic edema
of all CNS cell types after ischemic stroke, of which astrocytes
are particularly prominent; cytotoxic edema ultimately provides
the driving force for ionic edema, vasogenic edema, and complete
hemorrhagic conversion (Liang et al., 2007; Stokum et al., 2016).
The mechanism behind cytotoxic edema and ionic edema is ion
transporter dysfunction at the NVU rather than the breakdown
of the BBB (Figure 2; Brillault et al., 2008; Stokum et al., 2016;
Sifat et al., 2019).

Na + –K + –2Cl -cotransporter (NKCC) is expressed the
astrocytes, neurons, and ECs of the brain (Kahle et al., 2008;
Jayakumar and Norenberg, 2010), and reside predominantly in
the luminal membrane of BBB ECs (O’Donnell et al., 2004).
NKCC is activated via phosphorylation in response to hypoxia,
aglycemia, and arginine vasopressin and contributes to edema
formation during cerebral ischemia (Yan et al., 2001; Foroutan
et al., 2005; Brillault et al., 2008; Yuen et al., 2014). The inhibitory
effect of bumetanide on NKCC activities can reduce brain Na
absorption and edema formation in rat MCAO stroke models
(Yuen et al., 2014, 2019). The sodium–hydrogen antiporter
(NHE) family member, NHE1, is ubiquitously expressed in all
cell types in the brain; is stimulated by hypoxia, aglycemia, and
arginine vasopressin as with NKCC; and contributes to astrocyte
swelling, ionic edema formation, microglial activation, and BBB
breakdown (Lam et al., 2009; Stokum et al., 2016; Begum et al.,
2018; Song et al., 2018). The inhibition of NHE activities by
the intravenous delivery of Na/H exchange inhibitor HOE642
decreases brain edema in an ischemic stroke model (Lam et al.,
2009; Yuen et al., 2014, 2019). Mice with the selective ablation
of the NHE1 gene in astrocytes exhibit less edema, reduced BBB
breakdown, and alleviated disruption of TJ protein after transient
MCAO (tMCAO) (Begum et al., 2018). Furthermore, ischemia
also induces the de novo expression of the sulfonylurea receptor
1–transient receptor potential 4 channel (SUR1-TRPM4) in all
cells of the NVU and contributes to the formation of ionic
edema (Simard et al., 2014; Stokum et al., 2016). The blockage
of the SUR1-TRPM4 channel results in a significant reduction
in infarct volume, cerebral edema, and hemispheric swelling
in rodent models of ischemic stroke (Simard et al., 2006,
2009; Wali et al., 2012). In the mouse edema model, the up-
regulated SUR1-TRPM4 in astrocytes can synergize with APQ4
to promote the influx of water and the swelling of astrocytes

(Stokum et al., 2018). The recently discovered KCa3.1, a calcium-
activated potassium channel expressed by ECs, is also involved
in the formation of cytotoxic edema after ischemic stroke
(Chen et al., 2015).

Ion channels can not only cause edema by transporting
ions but also participate in the activation of resident cells in
the brain, such as astrocytes and microglia, and lead to the
destruction of the BBB. The stimulation of NHE1 in astrocytes
causes a robust release of glutamate and the pro-inflammatory
cytokines interleukin (IL)-1β, IL-6, TNF-α, and MMP-9 (Cengiz
et al., 2014; Begum et al., 2018). The pharmacological inhibition
or genetic knockout of astrocytic NHE1 protein significantly
reduces cerebral microvessel damage, BBB breakdown, and
loss of the TJ protein occludin in ischemic brain (Cengiz
et al., 2014; Begum et al., 2018). The Na+–Ca2+ exchanger
(NCX) in astrocytes is also involved in Ca2 + induced ROS
production, DNA ladder formation, and nuclear condensation
(Matsuda et al., 2001). Microglial NCX, Kv1.3, and NHE1
channels all contribute to proinflammatory microglial activation
(Rangaraju et al., 2017; Song S. et al., 2020). By contributing to
excessive hydrogen ion extrusion and sustained NOX activation,
activated NHE1 causes the production of ROS and the expression
of cytokines in microglia after lipopolysaccharide or hypoxia
stimulation (Liu et al., 2010; Wu et al., 2012; Lam et al., 2013).
The pharmacological inhibition or genetic knockout of microglial
NHE1 and Kv1.3 reduces the secretion of pro-inflammatory
cytokines, such as IL-1β, IL-6, TNF-α, and iNOS (Liu et al.,
2010; Shi et al., 2011; Nguyen et al., 2017; Rangaraju et al.,
2017; Di Lucente et al., 2018; Song et al., 2018). NCX1-mediated
Ca2+ influx plays a critical role in microglial phagocytic activity
through Ca2 + -mediated purinergic receptors (Sunkaria et al.,
2016). Calcium overload increases brain ROS levels in type 5
NOX-dependent manner, which contributes to BBB breakdown
(Casas et al., 2019).

PATHWAYS INVOLVED IN THE
GLYMPHATIC SYSTEM AND EDEMA

At the periphery, impaired lymphatic system function is one
of the common causes of edema and leads to the pathologic
accumulation of protein-rich lymphatic fluid in the intercellular
interstitium (Cho and Atwood, 2002). Acquired lymphedema
caused by axillary lymph node dissection and filariasis is the most
common cause of clinical lymphedema (Cho and Atwood, 2002).
For a long time, due to the delayed discovery of the lymphatic
drainage system of the brain, research on the mechanism of
cerebral edema has mainly focused on BBB. However, discoveries
of recent studies, including the brain pseudolymphatic system—
glymphatic system and meningeal lymphatic system—have
brought light to us to clarify the mechanism of cerebral edema.

Anatomical Considerations of the
Glymphatic System
Solutes in CSF have been thought to recycle from the
subarachnoid space into brain parenchyma by the convective
bulk flow rather than via an anatomically discrete structure
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FIGURE 3 | Lymphatic drainage system in the brain. (A) Meningeal lymphatic vessels run down toward the base of the skull along the sinus, the vein, and the
meningeal arteries and drain out of the skull via the foramina of the base of the skull alongside arteries, veins, and cranial nerves. Meningeal lymphatic cells grow into
the injured brain parenchyma induced by photochemical thrombosis. (B) Cerebrospinal fluid (CSF) enters the parenchyma by bulk flow along paravascular spaces,
and ISF is cleared along paravenous drainage pathways. Meningeal lymphatic vessels absorb CSF from the adjacent subarachnoid space and ISF from the
glymphatic system and transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull.

(Abbott, 2004; Sykova and Nicholson, 2008). The precise
anatomical or functional structures for the clearance of metabolic
waste products from the ISF to the CSF were first described by
Iliff and his colleagues (Iliff et al., 2012). Via in vivo two-photon
imaging and other techniques, the movement of a fluorescent
tracer injected in the subarachnoid compartment flowing into
and through the brain interstitium was depicted to represent
the exchange of CSF and ISF. In the initial segments of the
pathway, flux fluid and macromolecules from the subarachnoid
space rapidly enter the brain by bulk flow through paravascular
spaces called Virchow Robinson spaces, which exist around
vascular SMCs and perivascular astrocytic endfeet (Figure 3; Iliff
et al., 2012). Then, fluids and macromolecules accumulate around
along capillaries and parenchymal venules and are eventually
cleared along paravenous drainage pathways (Figure 3; Iliff et al.,
2012). The phenomenon of larger tracer from the subarachnoid
space being confined in paravascular spaces of the brain is also
consistent with a recent study demonstrating that narrow clefts
between overlapping endfeet may serve a sieving function to
control the exchange of water and solutes between blood and
brain (Mathiisen et al., 2010). In addition, paravascular AQP4
channels, which are highly polarized to paravascular astrocytic
endfeet (Mathiisen et al., 2010), facilitate bulk ISF solute
clearance from the parenchyma (Iliff et al., 2012). The putative
glymphatic transports have also been successfully demonstrated
in humans with BBB disruption using non-invasive, high-
resolution 3D isotropic contrast-enhanced T2 fluid-attenuated
inversion recovery imaging (Wu et al., 2020).

Perivascular drainage pathways refer to a route responsible
for the solutes diffuse across brain ECs through basement
membranes between the SMCs in the tunica media of capillaries

and arteries (Carare et al., 2008; Morris et al., 2016). The
perivascular drainage of ISF and solutes is in the reverse direction
of blood flow, which only occurs after some form of attachment
of solutes or valve-like mechanism to prevent backflow during
the pulse wave (Schley et al., 2006; Carare et al., 2008; Morris
et al., 2016). However, the latest research has constructed a
novel multiscale model of arteries to prove that the arterial
pulsations from the heart are not strong enough to be the motive
force for perivascular drainage, whereas the vasomotion of
cerebrovascular SMCs acts as the drivers of perivascular drainage
(Aldea et al., 2019). Perivascular drainage pathways should
be further elaborated because the relatively dense pericapillary
basement membrane is usually considered a physical obstacle
to solute movements, and the non-specific binding of the
fluorescent dextran tracer to the capillary basement membrane
may cause the illusion of the abovementioned results (Barber
and Lieth, 1997; Brinker et al., 2014). As the study on the effect
of post-stroke perivascular drainage of edema formation is very
limited, this review focuses on the effects of paravascular drainage
on edema formation.

Paravascular Pathway Is Involved in
Edema Formation
To test whether CSF is the source of edema fluid, Humberto
Mestre and his colleagues deduced a subtle way to study changes
in glymphatic function after MCAO; the approach involved
the use of in vivo magnetic resonance and multimodal optical
imaging to map the influx of CSF tagged with a fluorescent
tracer (Mestre et al., 2020). They found that the influx of CSF
along paravascular spaces occurred and peaked at 11.4 ± 1.8 s
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and 5.24 ± 0.48 min after MCAO and built a new notion that
CSF is the primary source of early edema fluid after ischemic
stroke (Figure 2; Mestre et al., 2020), which broke the traditional
concept that CSF is not a source of edema fluid (Stokum et al.,
2016). The hydrostatic pressure gradient caused by a loss in blood
flow after the MCAO was used to explain the first peak in the
CSF influx. Experiments also proved that the pressure gradient
in distal paravascular spaces caused by spreading depolarization
drove CSF influx and caused the spreading edema, which also
depends on AQP4 expression (Mestre et al., 2020). Therefore, the
influx of CSF in the glymphatic system is increased after ischemic
stroke (Mestre et al., 2020). However, before this article was
published, most articles demonstrated a decreased paravascular
CSF influx after ischemic stroke (Iliff et al., 2013; Gaberel et al.,
2014; Ji et al., 2021). The possible reasons for these conflicting
conclusions are the different time windows of observation in each
experiment and the different models constructed. For example,
this study observed the change of glymphatic perfusion at 3
and 24 h after MCAO but did not study the glymphatic influx
rate within 20 min (Gaberel et al., 2014). The establishment
of a model of internal carotid artery ligation may also lead
to different conclusions from the model of MCAO (Iliff et al.,
2013). The mechanism of cerebral edema should be explored by
conducting more studies to observe the change of CSF influx in
the glymphatic system in each time window after stroke.

Solute clearance along paravascular spaces is also markedly
impaired after ischemic stroke (Arbel-Ornath et al., 2013; Pu
et al., 2019). The glymphatic system may also play a positive
effect in clearing edema fluid in days and weeks after stroke
(Lempriere, 2020). Therefore, future works should investigate
how the function of the lymphatic system can be adjusted to
optimize edema recovery.

A recent article points out that the pressure gradient caused
by vasoconstriction draws the influx of CSF into the brain
parenchyma, driving acute ischemic tissue swelling (Mestre et al.,
2020). As such, cerebral vasospasm, which is common in SAH,
may also promote early edema formation after SAH in a manner
similar to ischemic stroke (Rowland et al., 2012). However, this
hypothesis needs more experimental proof.

Studies have also shown severely impaired glymphatic system
perfusion and a reduced glymphatic system waste clearance
function from the brain parenchyma after SAH (Gaberel et al.,
2014; Goulay et al., 2017; Golanov et al., 2018). The main reason
for glymphatic inhibition is the occlusion of perivascular spaces
by fibrin/fibrinogen clots, which can be removed through the
intraventricular injection of fibrinolytic tissue-type plasminogen
activator (Gaberel et al., 2014; Goulay et al., 2017). Although
these trials did not provide evidence that intravascular thrombus
aggravates edema after SAH by compressing the paravascular
space, a recent study showed that brain edema can be alleviated by
preserving the function of the glymphatic system after SAH (Fang
et al., 2020). Therefore, the impaired function of glymphatic
system waste clearance may be a factor leading to the formation
of cerebral edema after SAH. In general, the function of the
glymphatic system may play an important role in the cerebral
edema of SAH. However, the specific mechanism still requires
confirmation by more experimental studies.

AQP4 Is Involved in Edema Formation
The AQP family contains 13 different members, of which the
expression levels of AQP1, AQP4, and AQP9 in rodent models
and humans are upregulated after stroke (Gonen and Walz, 2006;
Ribeiro Mde et al., 2006; Yatsushige et al., 2007; Vella et al.,
2015; Stokum et al., 2018). Since studies have determined the
involvement of AQP4 in the process of cerebral edema in early
2000, AQP4 has become a hot research (Manley et al., 2000; Vella
et al., 2015). However, the exact mechanism of AQP4 regulating
edema is still controversial and unclear. Now, the discovery of
the glymphatic system and the special status of AQP4 in the
glymphatic system have brought a new understanding of these
controversies (Rasmussen et al., 2018). Therefore, the role of
AQP4 regulation on edema is discussed in the section on the
glymphatic system.

Aquaporin, a water channel highly polarized to paravascular
endfeet, provides support for paravascular CSF–ISF exchange
and drives the clearance of bulk interstitial solutes from brain
parenchyma (Iliff et al., 2012). Some brain disorders, such as
cerebral infarction, SAH, and traumatic brain injury, reduce
polarized localization at the endfeet of reactive astrocytes (Wang
et al., 2012; Ren et al., 2013; Fang et al., 2020). The abnormal
distribution of AQP4 impairs the clearance of solute from
cerebral parenchyma (Pu et al., 2019). AQP4 contributes to the
spreading of edema after MCAO by facilitating the transport of
CSF into the brain (Mestre et al., 2020). This pathophysiological
process is in line with evidence demonstrating that AQP4-
deficient mice and wild types treated with AQP4 inhibitors
progress with less cerebral edema after ischemic stroke (Manley
et al., 2000; Igarashi et al., 2011; Yao et al., 2015; Hirt et al.,
2017; Pirici et al., 2018). Furthermore, the accelerated influx of
water into the brain and elevated ICP in AQP4-overexpressing
mice induced by intraperitoneal water injection confirm that
the water channel protein promotes the occurrence of cerebral
edema by increasing the permeability of the BBB (Yang et al.,
2008). The function of AQP4 to control water uptake across
BBB also reflects that up-regulated AQP4 can promote the
formation of cerebral edema (Haj-Yasein et al., 2011). However,
the function of astroglial AQP4 to drive the clearance of
interstitial solutes from the brain parenchyma also illustrates
that AQP4 may facilitate the absorption of excess fluid in brain
edema (Iliff et al., 2012). Notably, much experimental evidence
demonstrates the role of AQP4 in the resolution of brain edema
(Papadopoulos et al., 2004; Finnie et al., 2008; Tourdias et al.,
2009; Badaut et al., 2011a). In a model of vasogenic brain
edema, AQP4-deficient mice have a significantly higher increase
in ICP and brain water content compared with wild-type mice
(Papadopoulos et al., 2004).

Interestingly, in contrast with animal brain models of ischemic
stroke, we did not find similar results of cerebral edema in SAH
(Luo et al., 2016; Liu et al., 2020). On the one hand, AQP4-
deficient mice did not develop better neurological function
and less neuroinflammation at day 7 after SAH (Luo et al.,
2016). On the other hand, AQP4 deletion in mice significantly
increased the water content in the whole brain and aggravated
the neurological deficit following SAH; the possible mechanism
involves AQP4 knockout impairing the glymphatic system
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function of facilitating ISF drainage to eliminate toxic factors
in the brain (Tait et al., 2010; Liu et al., 2020). The increased
vasogenic edema caused by AQP4 deletion is also found in other
models of BBB disruption, including status epilepticus,brain
tumor, and brain abscess (Bloch et al., 2005; Lee et al., 2012; Vella
et al., 2015).

In conclusion, AQP4 plays a dual role in the process of
cerebral edema after stroke with a harmful role in the early stages
of edema formation and plays a beneficial role during edema
subsidence (Badaut et al., 2011b; Vella et al., 2015; Clément et al.,
2020). We believe that the role of AQP4 is closely related to its
location in astrocytes and its supporting role in the glymphatic
system. Therefore, controlling the function of AQP4 is a potential
effective target for treating post-stroke cerebral edema, although
there is still a lot of research work to be done.

MENINGEAL LYMPHATICS

We have discovered that tracers injected into the brain
parenchyma and ISF pass into the CSF and further into deep
cervical lymph nodes (CLNs) (Koh et al., 2005; Iliff et al., 2012;
Plog et al., 2015). However, it was not until 2015 that we
found the basic structure of the metastatic pathway through the
discovery of meningeal lymphatic vessels in mice (Aspelund et al.,
2015). In the human brain, we also provided in vivo evidence
of CSF tracer drainage to CLNs via meningeal vessels and that
tracer enhancement within lymph nodes parallels glymphatic
enhancement (Eide et al., 2018). Therefore, the discovery of the
classical lymphatic drainage system in meninges also promotes
us to think about its role in cerebral edema.

Anatomical Considerations of the
Meningeal Lymphatic System
Meningeal lymphatic vessels were discovered by chance
after whole-mount mouse brain meninges stained by
immunohistochemistry for different cells were used to determine
the gateways responsible for T cells into and out of the meninges
(Louveau et al., 2015). They found that high concentrations
of T lymphocytes were abluminal and aligned linearly in
CD31-expressing structures along sinuses (Louveau et al., 2015).
These structures express markers of the lymphatic system,
such as lymphatic vessel endothelial hyaluronan receptor-1,
podoplanin, Prospero homeobox protein 1, VEGF receptor 3,
CD31, and chemokine (C-C motif) ligand 21 (CCL21) (Aspelund
et al., 2015; Louveau et al., 2015). Structurally, the meningeal
lymphatic vessels are close to initial lymphatic capillaries but are
devoid of SMCs, positive for the immune-cell chemoattractant
protein CCL21, the punctate expression pattern of Claudin-5
and vascular endothelial cadherin, and the lack of integrin-
a9 expression (Louveau et al., 2015). The lymphatic vessels
accompany arteries and veins in the meninges, including the
transverse sinus, sigmoid sinus, retroglenoid vein, superior
sagittal sinus, rostral rhinal vein, and the major branches of
the middle, anterior meningeal arteries (Aspelund et al., 2015),
and meningeal septae penetrating the cerebral cortex (Lohrberg
and Wilting, 2016). Lymphatic vessels can also be seen followed

by the olfactory (CN I), optic (CN II), trigeminal (CN V),
glossopharyngeal (CN IX), vagus (CN X), and accessory (CN
XI) nerve sheaths (Aspelund et al., 2015; Absinta et al., 2017;
Antila et al., 2017) and exit the skull along with CN IX, X,
and XI (Aspelund et al., 2015). Except for CN IX, X, and XI,
lymphatic vessels are also observed to exit the skull along the
meningeal portions of the pterygopalatine artery, sigmoid sinus,
and retroglenoid vein (Figure 3; Aspelund et al., 2015). The
mechanism for the emergence of lymphatic vessels from the
skull has yet to be discovered. The newly discovered meningeal
lymphatic vessels constitute the second part of the current
relatively complete CNS lymphatic drainage system. First, GSF
flows into the brain interstitium along arterial perivascular
spaces and is then cleared along paravenous drainage pathways
to the CSF (Rasmussen et al., 2018). The last step is draining the
CSF along the meningeal lymphatic vessels into the CLNs and
communicating with the periphery. Therefore, the meningeal
lymphatic system and the glymphatic system constitute a
relatively complete cerebral lymphatic drainage system.

Meningeal Lymphatic Involved in Edema
Formation
More than two decades ago, some researchers have systematically
studied the effects of cervical lymphatic blockade (CLB) in
conditions such as ischemic stroke and SAH; the specific
mechanisms by which CLB exerts an influence on stroke lesions
remain unclear (Xing et al., 1994; Xia et al., 2003; Sun et al.,
2000, 2006, 2009, 2011; Li et al., 2005, 2007; Si et al., 2006; Zheng
et al., 2008). Before meningeal lymphatic vessels were discovered,
cellular and soluble constituents of CSF were thought to enter
the lymphatic vessels in brain mucosa through the cribriform
lamina to elicit immune responses in CLNs (Weller et al., 2010;
Laman and Weller, 2013; Mathieu et al., 2013). Now, studies have
confirmed that meningeal lymphatic vessels, in addition to taking
up and draining CSF, also directly communicate with CLNs
to regulate intracranial inflammatory processes (Louveau et al.,
2015; Dave et al., 2018; Ahn et al., 2019). Therefore, CLB not only
directly leads to the disruption of meningeal lymphatic drainage,
leading to intracranial hypertension and cerebral edema, but
may also affect neuroinflammation by affecting the connection
between the brain and the peripheral immune system (Sun et al.,
2018). We can indirectly evaluate the role of meningeal lymphatic
vessels in the entire process of edema occurrence and resolution
by observing the effect of CLB on post-stroke edema.

In an ischemic stroke model, Sun et al. (2000) and Si et al.
(2006) randomly assigned mice to the MCAO group and MCAO
plus CLB group to determine the major effects of CLB (Sun et al.,
2000; Si et al., 2006). In their experiments, they all observed
that CLB aggravates brain edema caused by MCAO, which can
be indicated by the content of water, sodium, calcium, and
glutamate (Sun et al., 2000; Si et al., 2006). Compared with
the MCAO only group, CLB + MCAO mice show decreased
superoxide dismutase activity and a more markedly increased
malondialdehyde content, which may indicate that CLB can
deteriorate ischemic brain damage by promoting oxidative stress
damage (Sun et al., 2000). Furthermore, the cerebral infarction
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volume and mRNA expression levels of N-methyl-D-aspartame
receptor 1 in the ischemic hemisphere are markedly higher in rats
with MCAO + CLB than in those with only MCAO at different
time points (Si et al., 2006). CLB was also found to aggravate
cerebral edema in a SAH model. After infusing arterial blood
into the cisterna magna of mice to establish an experimental
model of SAH with and without CLB, investigators found that
regional CBF drops more obviously, and the increased ICP and
brain water content were more serious in SAH plus CLB groups
(Sun et al., 2006).

Many experiments have directly expounded the important
role of the meningeal lymphatic system in the post-stroke
activation of the processes of brain drainage and edema
clearing (Chen et al., 2019; Semyachkina-Glushkovskaya et al.,
2020; Yanev et al., 2020). The increase in the diameter of
meningeal lymphatic vessels has been observed in a variety
of experimental models, including cerebral hemorrhage, SAH,
and the opening of the BBB (Semyachkina-Glushkovskaya
et al., 2017, 2018, 2019, 2020). For example, only during
the opening of the BBB can optical coherence tomography
allow the observation of meningeal lymphatic vessels with
increased diameter (Semyachkina-Glushkovskaya et al., 2017).
Furthermore, the increased diameter of meningeal lymphatic
vessels suggests the activation of meningeal lymphatic drainage
function after stroke (Semyachkina-Glushkovskaya et al., 2020).
Compared with the slow and non-remarkable accumulation of
gold nanorods in the deep CLNs of normal mice, the extensive
accumulation of gold nanorods in cavities of deep CLNs within
three hours after SAH indicated the activation of lymphatic
clearance as SAH progressed (Semyachkina-Glushkovskaya et al.,
2019). Recent work also demonstrates that the increased outflow
rate of meningeal lymphatics participates in the clearance of
extravasated erythrocytes from CSF into CLNs after SAH (Chen
et al., 2020). One week after SAH, long-term meningeal lymphatic
clearance was proven to be dysfunctional (Pu et al., 2019).

In addition to cerebral hemorrhage and SAH, meningeal
lymphatic drainage also plays a role in the pathophysiology
of ischemic stroke (Chen et al., 2019; Yanev et al., 2020).
Pavel Yanev and his colleagues found that meningeal lymphatic
vessels sprouted from an adjacent sinus into the anatomical
area corresponding to stroke in a mouse ischemic stroke
model induced by photothrombosis; however, they detected no
lymphangiogenesis in the tMCAO model (Yanev et al., 2020).
Coincidentally, in a zebrafish ischemic stroke model induced
by photochemical thrombosis, meningeal lymphatic cells rapidly
grew into the injured brain parenchyma (Figure 3; Chen et al.,
2019). These ingrown meningeal lymphatic vessels played a role
in resolving cerebral edema and guiding and supporting the
growth of nascent blood vessels (Chen et al., 2019). The role
of lymphangiogenesis in promoting the regression of edema has
also been confirmed in myocardial infarction (Vieira et al., 2018).
Meningeal lymphatic hypoplasia was found to exacerbate stroke
severity by increasing infarct size and causing sustained motor
deficits in the tMCAo model (Yanev et al., 2020). Meningeal
lymphatic dysfunction slows the efflux of macromolecules from
the brain parenchyma (Da Mesquita et al., 2018). Furthermore,
preexisting meningeal lymphatic dysfunction leads to aggravated

neuroinflammation and cognitive outcomes following traumatic
brain injury (Bolte et al., 2020).

In general, the meningeal lymphatic system plays a
neuroprotective function after stroke and promotes the
resolution of edema. Its function may mainly depend on two
aspects. On the one hand, in the early stage of stroke, the
activation of meningeal lymphatic drainage function can remove
excess fluid in the skull; on the other hand, meningeal lymphatic
vessels directly invade the injured brain parenchyma to resolve
edema. The augmentation of lymphogenesis by treatment with
VEGF-C improves heart function following myocardial infarct in
mice (Klotz et al., 2015). VEGF-C also stimulates the drainage of
meningeal lymphatic vessels in aged mice, resulting in improved
cognitive function (Da Mesquita et al., 2018). Therefore,
promoting the growth of meningeal lymphatic vessels seems to
be beneficial for cerebral edema resolution and tissue repair.

Meningeal Immunity Is Involved in
Edema Formation
The discovery of meningeal lymphatic vessels has led to a collapse
of dogma that the brain was an “immune-privileged” site, and
its function to carry both fluid and immune cells from the CSF
to the deep CLNs sets off an upsurge of how lymph nodes
participate in the CNS immune response (Aspelund et al., 2015).
Neuroinflammation following ischemic stroke plays a pivotal
role in the breakdown of BBB, leading to vasogenic edema
formation, hemorrhagic transformation, and aggravated patient
prognosis (Rosenberg and Yang, 2007; Khatri et al., 2012). After
focal cerebral ischemia in rats, the elevation of VEGF-C in
CSF can increase pro-inflammatory macrophages by activating
the lymphatic endothelium. By blocking VEGF-C/VEGFR3
signaling in lymphatic ECs, cytokine/chemokine expressions in
superficial CLNs and pro-inflammatory macrophages in the
ischemic area are significantly decreased, and the final effect is
an obvious reduction in cerebral infarction volume (Esposito
et al., 2019). This article focused on the aggregation and
activation of macrophages during stroke, which is regulated by
VEGF-C/VEGFR3 signaling in lymphatic ECs. However, the
lymphocytes in the CLNs involved in the immune damage of
stroke also include T and B cells, and many factors, such as
neuropilin-2 (Xu et al., 2010), angiopoietins (Alitalo, 2006),
BMP9-ALK1 (Yoshimatsu et al., 2013), DAMPs (Shichita et al.,
2017), may participate in the activation of lymphatic endothelium
after stroke. The function of meningeal lymphatic network in
controlling immune responses in the CNS was also proved in a
mouse model of glioblastoma (Song E. et al., 2020). The increased
meningeal lymphatic drainage via VEGF-C can promote the
priming of CD8 T cells in the draining CLNs and antitumor T
cell responses (Song E. et al., 2020). Furthermore, the surgical
and pharmacological blockade of meningeal lymphatic function
diminishes the migration of activated encephalitogenic T cells
into the CNS in an animal model of multiple sclerosis (Louveau
et al., 2018). The presence of meningeal lymphatic vessels
provides a link between the CNS and the peripheral immune
system and provides a new therapeutic target for reducing
neuroinflammation after stroke. However, the mechanism by

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 716825

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-716825 August 10, 2021 Time: 12:50 # 11

Chen et al. Cerebral Edema Formation

which CLNs and meningeal lymphatic vessels participate in the
immune response after stroke remains to be discovered.

CONCLUSION

Traditionally, the occurrence of cerebral edema can be divided
into three distinct phases: an early cytotoxic phase, a middle
ionic phase, and a later vasogenic phase. Cytotoxic edema occurs
within minutes after ischemic insult and ionic edema is the
form of cerebral edema which forms immediately following
cytotoxic edema and before barrier breakdown not occurring
until 4–6 h after the onset of ischemia. Vasogenic edema, which is
characterized by the breakdown of the BBB, manifests hours after
the initial insult. However, the discovery of the glymphatic system
and meningeal lymphatic vessels adds new content to each phase.
Ion transporter dysfunction at the NVU lays the foundation
for cytotoxic edema and ionic edema, and GSF, which flows
rapidly into brain parenchyma through the glymphatic system
within minutes after insult, also acts as the source of edema
fluid. As the primary initial event driving tissue swelling, the
glymphatic inflow of CSF may provide a basis for the treatment
of cerebral edema after stroke. The breakdown of the BBB,
which results in vasogenic edema formation, involves many joint
effects, including the destruction of TJs, imbalance of the NVU,
damage of inflammatory response, and activation of ion channels.
Inflammation is a key element among many factors that lead to
the progression of BBB damage in stroke. The glymphatic system
plays a dual role in the process of cerebral edema after stroke
with a harmful role in the early stage of edema formation and
plays a beneficial role during edema subsidence. The function of
glymphatic system is supported by astrocytic AQP4. AQP4 can
not only control water flux across the BBB, but also facilitate

the circulation of CSF, and drive the clearance of bulk interstitial
solutes from the brain parenchyma. Therefore, in the earlier
phases of cerebral edema (cytotoxic and ionic edema), the up-
regulation of AQP4 can aggravate brain edema formation, while
in the vasogenic edema phases, AQP4 may play a key role in
the elimination of water of vasogenic origin. The activation
of meningeal lymphatic drainage function and the ingrown of
meningeal lymphatic vessels into the injured brain parenchyma
promote the resolution of edema after stroke. Consequently,
the rigorous dissection of the pathophysiology of the cerebral
lymphatic system may eventually lead us to novel mechanisms
and targets for cerebral edema after stroke.
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