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In the central nervous system (CNS), glial cells, such as microglia and astrocytes, are
normally associated with support roles including contributions to energy metabolism,
synaptic plasticity, and ion homeostasis. In addition to providing support for neurons,
microglia and astrocytes function as the resident immune cells in the brain. The glial
function is impacted by multiple aspects including aging and local CNS changes caused
by neurodegeneration. During aging, microglia and astrocytes display alterations in their
homeostatic functions. For example, aged microglia and astrocytes exhibit impairments
in the lysosome and mitochondrial function as well as in their regulation of synaptic
plasticity. Recent evidence suggests that glia can also alter the pathology associated with
many neurodegenerative disorders including Alzheimer’s disease (AD) and Parkinson’s
disease (PD). Shifts in the microbiome can impact glial function as well. Disruptions in the
microbiome can lead to aberrant microglial and astrocytic reactivity, which can contribute
to an exacerbation of disease and neuronal dysfunction. In this review, we will discuss
the normal physiological functions of microglia and astrocytes, summarize novel findings
highlighting the role of glia in aging and neurodegenerative diseases, and examine the
contribution of microglia and astrocytes to disease progression.

Keywords: astrocytes, microglia, aging, neurodegeneration, glia, Alzheimer’s disease, microbiome, Parkinson’s
disease

INTRODUCTION

The majority of cells that comprise the central nervous system (CNS) lie within two broad
classifications: neurons and glia. Glial cells can further be broken down into subtypes including
microglia and macroglia, with the latter group consisting of astrocytes, oligodendrocytes,
and ependymal cells. Unlike microglia, which originate from the mesoderm and are derived
from primitive macrophages in the yolk sac, macroglia have a common neuroectodermal
embryonic origin (Curtis et al., 1988; Takahashi et al., 1989; Kaur et al., 2001; Butt, 2009;
Ginhoux et al., 2010; Gomez Perdiguero et al., 2015). Among these glial subpopulations,
microglia and astrocytes serve as crucial regulators of the innate immune response in the
brain (Aloisi, 1999; Raivich et al., 1999; Olson and Miller, 2004; Jack et al., 2005; Choi et al.,
2014). Microglia provide a variety of support roles including: synaptic pruning and remodeling
in development, parenchymal surveillance to clear metabolic products and deteriorated tissue
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components in the normal CNS, and degrading pathogenic
substances such as amyloid-β (Aβ) plaques or harmful viruses
and bacteria in diseased states (Nimmerjahn et al., 2005;
Lim et al., 2013; Heneka et al., 2015; Weinhard et al., 2018;
Cangalaya et al., 2020; Favuzzi et al., 2021). Additionally,
microglia play important roles in regulating myelination,
controlling and maintaining vascular integrity, neurogenesis,
and astrogliogenesis (Antony et al., 2011; Lampron et al., 2015;
Halder and Milner, 2019; Diaz-Aparicio et al., 2020; Dudiki et al.,
2020; Hughes and Appel, 2020). Like microglia, astrocytes are
immunocompetent, possessing the capability to detect danger
signals, responding through the release of chemokines and
cytokines, and mounting an immune response (Cornet et al.,
2000; Gimsa et al., 2013; Wang et al., 2021). Astrocytes also
execute essential functions regulating synaptogenesis, providing
metabolic support to neurons, and supporting the integrity of
the blood-brain barrier in development and in the normal CNS
(Pellerin and Magistretti, 1994; Isobe et al., 1996; Kucukdereli
et al., 2011; Sultan et al., 2015; Heithoff et al., 2020). Moreover,
astrocytes demonstrate the ability to regulate Aβ as well as α-
synuclein (α-syn) pathology and maintain synaptic integrity in
neurodegenerative disease (Morales et al., 2017; Katsouri et al.,
2020; Saha et al., 2020; Tsunemi et al., 2020).

Previous findings reveal that glial cells are heterogenous,
varying across species as well as regionally and spatially within
the brain (Lawson et al., 1990; Ko et al., 2013; Herculano-
Houzel, 2014). Similarly, glia within the same brain can be
differentially reactive or functionally distinct depending on their
microenvironment (Lawson et al., 1990; Ko et al., 2013; Boisvert
et al., 2018; Lanjakornsiripan et al., 2018). Aging also impacts glia,
hindering their normal physiological functions. For instance,
microglia in aged mice have a slower, less robust response to
insults while aging astrocytes display increased mitochondrial
oxidative metabolism that disrupts the cell’s ability to provide
neuronal support (Hefendehl et al., 2014; Jiang and Cadenas,
2014). Just as aging impacts glial function, it also affects the
composition of one’s microbiome and systemic metabolism,
which can, in turn, modulate glial cell activity and contribute to
age-associated diseases (Fukagawa et al., 1990; Vogt et al., 2017,
2018; Rash et al., 2018; Spencer et al., 2019; Xu et al., 2019; Lee
et al., 2020; Wilmanski et al., 2021).

Furthermore, glial cells have been shown to impact the
pathology of neurodegenerative diseases though their roles are
complex and can be both detrimental and beneficial. In the
context of Alzheimer’s disease (AD), microglial activation has
been shown to precede amyloid-β (Aβ) plaque deposition and the
formation of tau tangles and may result in enhanced pathology
(Yoshiyama et al., 2007; Heneka et al., 2013; Wright et al., 2013;
Leyns et al., 2017; Venegas et al., 2017; Ising et al., 2019; Shippy
et al., 2020). In contrast, in vivo and in vitro studies using AD
mice and human samples show that microglia are instrumental
for Aβ plaque clearance, which could slow AD progression
(Wang et al., 2015, 2016; Richter et al., 2020; Zhou et al., 2020).
The role of astrocytes in AD pathology is also very complex
but not fully understood to date. In an AD mouse model, the
inhibition or deletion of astrocyte-specific Stat3, a transcription
factor that is required for astrogliosis, ameliorated AD pathology,

reducing plaque load and dystrophic or deteriorating neurites
(Reichenbach et al., 2019). This study suggests that astrocytic
Stat3 signaling could exacerbate AD progression. Conversely,
in vivo and in vitro studies using AD mice or astrocyte-neuron
co-cultures illustrate that astrocytes play a neuroprotective role
in AD as in their absence, Aβ oligomers were more likely to
bind dendrites and result in synaptotoxicity (Pitt et al., 2017;
Katsouri et al., 2020). Additionally, there was enhanced Aβ

aggregation, synapse deterioration, and memory loss without
astrocyte signaling, which would increase AD pathogenicity
(Pitt et al., 2017; Katsouri et al., 2020). Astrocytes also appear
to play a similarly multifaceted role in the context of other
neurodegenerative diseases such as Parkinson’s disease (PD),
addressed later in this review.

Here, we discuss current literature addressing the
physiological function of microglia and astrocytes. We also
review how microglial and astrocyte functions are altered by
changes associated with aging and microbiome alterations as
well as assess each cell’s contribution to the progression of
neurodegenerative diseases. Since mice serve as a primary model
for many aspects of neurobiology, this review will primarily
focus on data from mouse models and will address how those
findings confirm or complement studies in humans.

HOMEOSTATIC ROLES OF MICROGLIA
AND ASTROCYTES IN HEALTH

Among the glial cells in the CNS, microglia, and astrocytes
are primarily responsible for mounting an immune response
through the production of cytokines and chemokines (Aloisi,
1999; Raivich et al., 1999; Cornet et al., 2000). In an effort to
maintain or return to homeostasis, microglia and astrocytes can
repair damage after injury and fight off infections (Figure 1;
Myer, 2006; Rasley et al., 2006; Choi et al., 2020; Moseman et al.,
2020; Sariol et al., 2020).

Microglia continuously sample their microenvironments
within the brain parenchyma by extending and retracting their
processes, detecting complement fragments, immunoglobulins,
and other inflammatory stimuli e.g., cytokines, chemokines,
danger-associated molecular patterns (DAMPs), and pathogen-
associated molecular patterns (PAMPs; Raivich et al., 1999;
Nimmerjahn et al., 2005). Microglia detect DAMPs and PAMPs
using pattern recognition receptors (PRRs) including toll-like
receptors (TLRs), nucleotide-binding and oligomerization
domain (NOD)-like receptors (NLRs), and absent in melanoma
2 (AIM2)-like receptors among others (Olson and Miller, 2004;
Freeman et al., 2017; Ma et al., 2021). Following detection of
a DAMP or PAMP, microglia produce and release an array
of cytokines and chemokines and become reactive, allowing
them to respond to their microenvironment following injury or
pathological events (Figure 1; Hammond et al., 2019; Masuda
et al., 2019; Wang et al., 2021). In addition to their immune
functions, microglia play other key homeostatic roles in the
healthy adult brain. First and foremost, microglia serve as the
brain’s primary phagocytes, removing dead cells, cell debris,
and other harmful, inflammatory stimuli in the healthy brain
(Nimmerjahn et al., 2005; Damisah et al., 2020). In adulthood
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FIGURE 1 | Role of microglia and astrocytes in health, age, and neurodegenerative disease. Microglia and astrocytes release cytokines and chemokines in the
neuronal milieu, adopting different responses depending on their surrounding environment. Their responses modulate each other’s activity as well as the activity of
neurons and other nearby cell types. In this schematic, the contributions of microglia and astrocytes as well as their influence on neuronal outcomes are identified in
health, aging, and neurogenerative disease. Microglial and astrocyte influences in neuropathology are also indicated as pathological (orange) or neuroprotective
(blue). OPC, oligodendrocyte progenitor cells; BBB, blood-brain barrier; CNS, central nervous system; LTP, long-term potentiation; Aβ, amyloid-β; AD, Alzheimer’s
disease; α-syn, α-synuclein; PD, Parkinson’s disease. *Created with Biorender.com.
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microglial phagocytosis is critical for the removal of new
granule cells and the maintenance of long-term hippocampal
neurogenesis (Sierra et al., 2010; Diaz-Aparicio et al., 2020).
Microglial phagocytosis is also important after brain injury for
the removal of cell debris, which prevents secondary neuronal
death and reduces additional brain atrophy (Herzog et al., 2019;
Wen et al., 2020). Furthermore, microglia modulate neuronal
plasticity by monitoring and pruning synapses in the adult brain
just as they do in development (Tremblay et al., 2010; Schafer
et al., 2012; Ji et al., 2013; Miyamoto et al., 2016; Weinhard et al.,
2018). Microglial regulation of synapses can facilitate adaptation
to the environment by promoting learning through memory
synapse formation or remodeling (Ehninger, 2003; Parkhurst
et al., 2013; Nguyen et al., 2020; Wang et al., 2020). Microglia
are also active near the brain’s vasculature and are important
for maintaining CNS vascular and blood-brain barrier integrity,
contributing to the perivascular glia limitans, and regulating
fine-scale vasculature remodeling (Lassmann et al., 1991; Halder
and Milner, 2019; Haruwaka et al., 2019; Joost et al., 2019;
Mondo et al., 2020). More recently, microglia have been cited
for playing roles in regulating oligodendrocyte progenitor cell
differentiation and myelin homeostasis (Hagemeyer et al., 2017).

Astrocytes also play important immune and homeostatic roles
including maintaining ion levels, regulating synaptogenesis, and
providing metabolic support to neurons among others (Pellerin
and Magistretti, 1994; Kucukdereli et al., 2011). Astrocytes
interact with their microenvironment in ways analogous to
microglia and express TLRs allowing them to detect tissue
injuries, bacteria, viruses, or other pathogenic agents including
bacterial products (Bowman et al., 2003; Park et al., 2006).
Upon TLR engagement, astrocytes, like microglia, produce and
release cytokines and chemokines that serve as mediators of cell
migration and communication (Jack et al., 2005; Cordiglieri and
Farina, 2010; Choi et al., 2014). Astrocytes are also responsible
for glutamate synthesis, uptake, and recycling, a function that
has been shown to protect neurons from glutamate-induced
excitotoxicity (Shank et al., 1985; Rothstein et al., 1996). Similar
to microglia, astrocytes are involved in synaptic pruning and
regulating hippocampal neurogenesis, two roles that are both
crucial for maintaining circuit connectivity and neural plasticity
(Song et al., 2002; Wilhelmsson et al., 2012, 2019; Chung et al.,
2013; Magnusson et al., 2020; Lee et al., 2021). Furthermore,
astrocytes play a role in maintaining the integrity of the blood-
brain barrier (BBB), though this finding has been disputed in
some disease contexts (Eugenin et al., 2011; Heithoff et al., 2020).
Astrocyte-secreted factors such as hevin, a synaptic glycoprotein,
and secreted protein acidic and rich in cysteine (SPARC),
an antagonist of hevin’s synaptogenic function, are crucial
in excitatory and inhibitory synaptogenesis, which implicates
their role in neural plasticity and circuit formation (Hughes
et al., 2010; Kucukdereli et al., 2011). Additionally, to ensure
the metabolic needs of neurons are met, astrocytes provide
them with energetic support through direct astrocyte-neuron
metabolic-coupling interactions that can impact long–term
memory formation and have neuroprotective effects (Pellerin
and Magistretti, 1994; Suzuki et al., 2011; Ioannou et al.,
2019).

While microglia and astrocytes each have important
functions, these cells do not operate in isolation. Recently,
an emerging role for the interplay between astrocytes and
microglia in brain homeostasis has been demonstrated, though
these examples are not extensive due to technical limitations
(Tremblay et al., 2010; Pascual et al., 2012; Damisah et al., 2020).
Much of the current knowledge presented about the microglia-
astrocyte-neuron interactions have developed through the
collective knowledge of how particular cellular crosstalk impacts
a cell type, involving considerable speculation, and not through
real-time observation (Cerbai et al., 2012; Lian et al., 2016;
Liddelow et al., 2017; Shi et al., 2020; Xie et al., 2020). However,
using a novel 2Phatal technique, which enables observation of
the kinetics of cell death and engulfment through live imaging
in vivo, distinct roles for microglia and astrocytes were illustrated
in neuronal corpse removal in the adult mouse (Damisah et al.,
2020). Over various modes of cell death, microglia engulfed cell
bodies and proximal dendrites while astrocytes preferentially
engulfed distal processes and diffuse neuritic debris during early
postnatal development (Damisah et al., 2020). This method
also showed that apoptotic cell corpse removal was markedly
delayed in 26-month-old aged mice compared to 4-month-old
adult mice, which is suggestive of altered glial function in aging
(Damisah et al., 2020).

MODULATION OF MICROGLIA AND
ASTROCYTE FUNCTION IN AGING

As the brain ages, it is known that cellular and molecular
processes are altered causing mitochondrial dysfunction, higher
levels of oxidative stress and damage, dysfunctional autophagy
mechanisms, and dysregulated stress and inflammatory
responses (Mattson and Arumugam, 2018). The normal
physiological functions and support roles provided by microglia
and astrocytes are also vulnerable to aging. Microglial
immune responses following an intraperitoneal injection of
lipopolysaccharide (LPS) differ in mice considered middle aged
(9–15 months), suggesting that the central nervous system (CNS)
may be more vulnerable to age-dependent changes earlier than
initially thought (Nikodemova et al., 2016; Keane et al., 2021).
Thus, observing how microglial and astrocytic responses change
in age is imperative for understanding their contribution to
age-associated pathologies.

Aging microglia in both mice and humans have a distinct
transcriptome profile, exhibiting an upregulation of gene
transcripts associated with the cell stress response, brain
inflammation, and age-related diseases such as AD (Lukiw,
2004; Sierra et al., 2007; Galatro et al., 2017; Olah et al.,
2018; Bonham et al., 2019). In aging mice, microglia undergo
morphological changes, exhibit a less ramified cell morphology,
reduced process length, and increased soma volume (Sierra
et al., 2007; Tremblay et al., 2012; Hefendehl et al., 2014).
These age-related morphological alterations vary across brain
regions and have further been correlated with shifts in microglial
function (Hart et al., 2012). For example, microglia display
an age-diminished response to laser injury, reacting with a
drastic decrease in process motility compared to their younger
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counterparts (Hefendehl et al., 2014). Microglia in aged mice
also display increased mitochondrial activity, which may impact
neuronal function in aging (Ye and Johnson, 1999; Njie et al.,
2012; Ritzel et al., 2015). Aging additionally impaired microglial
phagocytic capabilities and lysosome function as illustrated
through the accumulation of lipofuscin-like lysosomal inclusions
(Njie et al., 2012; Ritzel et al., 2015; Safaiyan et al., 2016).
Likewise, microglia can accumulate lipid droplets in age, which
is accompanied by defective microglial phagocytosis and an
increased production of toxic cell byproducts including reactive
oxygen species and pro-inflammatory cytokines (Shimabukuro
et al., 2016; Marschallinger et al., 2020; Loving et al., 2021).
Microglia that have become dysfunctional, such as dystrophic or
senescent microglia, increase with age, have shorter telomeres,
and less complex, fragmented processes (Streit et al., 2004;
Flanary et al., 2007; Lopes et al., 2008).

Astrocytes in aged mice also display elevated levels of
inflammatory and oxidative stress genes (Jiang and Cadenas,
2014; Boisvert et al., 2018; Clarke et al., 2018; Habib et al.,
2020). An elevation in genes associated with neuroinflammation
accompanied by the loss of an astrocyte’s other normal functions
such as synapse regulation characterize reactive astrocytes, which
increase with age and can influence the outcomes of brain
injury or neurodegenerative diseases (Myer, 2006; Boisvert
et al., 2018; Clarke et al., 2018; Reichenbach et al., 2019).
In addition, astrocytes isolated from aged mice expressed
increased levels of genes in synapse elimination pathways as
well as those linked with age-related diseases including Snca
and Sncg, two genes associated with PD (Boisvert et al., 2018;
Early et al., 2020; Pan et al., 2020). Similar to microglia,
cultured astrocytes isolated from aged mice display an increase
in mitochondrial activity, which limits the substrate supply
from astrocytes to neurons and can contribute to age-related
cognitive decline (Jiang and Cadenas, 2014). Astrocytes in
aged mice also mirror aged microglia in that they undergo
region-specific morphological changes, demonstrating variable
changes in cell complexity, a reduced domain size with short,
stubby processes, and decreased astrocyte coupling through gap
junctions (Rodríguez et al., 2014; Jyothi et al., 2015; Bondi et al.,
2021; Popov et al., 2021). Age-dependent morphological changes
were also concomitant with deficiencies in astrocytic physiology,
specifically in potassium buffering and glutamate clearance,
which impaired synaptic plasticity and hippocampal long–term
potentiation (Popov et al., 2021). Taken together, these findings
suggest that changes in microglia and astrocyte function due
to aging may alter outcomes following brain injury or impact
age-associated disease progression, though this continues to be
a topic of debate.

INFLUENCES OF MICROGLIA AND
ASTROCYTES IN NEURODEGENERATIVE
DISEASE

Alzheimer’s Disease
In AD microglia and astrocytes undergo functional change,
enhancing their neuropathological or neuroprotective influences

in disease progression depending on their microenvironment.
For example, in human patients with mild cognitive impairment
and AD mouse models, microglia can release pro-inflammatory
cytokines that induce neuroinflammation, which can exacerbate
AD pathology resulting in increased Aβ plaque deposition,
neuronal tau accumulation, and synapse loss (Tarkowski, 2003;
Yoshiyama et al., 2007; Wright et al., 2013). In depletion studies
elimination of microglia through the inhibition of colony-
stimulating factor 1 receptor (CSF1R) in 5xFAD mice, an AD
mouse model that overexpresses amyloid-β (Aβ) and develops
plaque pathology, there was impaired Aβ plaque formation,
reduced inflammation, and neuronal loss (Spangenberg et al.,
2016, 2019). These results suggest microglia contribute to the
development and progression of AD pathology by causing
neuronal atrophy and initiating plaque formation among other
roles (Spangenberg et al., 2016, 2019). Microglia can also
activate the NOD, leucine-rich repeat (LRR), and pyrin-domain
containing 3 (Nlrp3) inflammasome, which results in the
production of Asc specs that cross-seed Aβ plaques and enhance
both amyloid and tau-associated pathology in AD (Heneka et al.,
2013; Venegas et al., 2017; Ising et al., 2019). Inhibition of
the Nlrp3 inflammasome in AD mouse models was recently
shown to reduce Asc speck formation, plaque pathology, and
microgliosis, suggesting that Nlrp3 inflammasome activation in
microglia could be driving its neurotoxic effects (Lonnemann
et al., 2020; Shippy et al., 2020). In contrast, microglia also
appear to be neuroprotective early on in AD pathology (Condello
et al., 2015; Maphis et al., 2015; Hong et al., 2016; Wang
et al., 2016; Yuan et al., 2016). Microglia have been shown
to act as a physical barrier between neurotoxic plaques and
the surrounding CNS, thereby protecting neurons from damage
(Condello et al., 2015; Wang et al., 2016; Yuan et al., 2016).
The beneficial contributions of microglia in disease were further
highlighted when observing triggering receptors expressed on
myeloid cells (TREM2) deficient 5xFAD mice or mice that
lack an important microglial receptor (Wang et al., 2015, 2016;
Ulland et al., 2017). Microglial deficiencies in TREM2 are
associated with increased AD risk in humans and result in
diminished microglial responses to amyloidosis in 5xFAD mice
(Guerreiro et al., 2013; Jonsson et al., 2013; Wang et al.,
2015, 2016; Keren-Shaul et al., 2017; Kleinberger et al., 2017;
Krasemann et al., 2017; Zhou et al., 2020). In TREM2 deficient
5xFAD mice, total microglial cell counts were lower and
microglia were less likely to associate with and internalize Aβ

plaques (Wang et al., 2015, 2016). Microglia in 5xFAD TREM2
knock-out mice also accumulated more autophagic-like vesicles
compared to 5xFAD microglia, a trend also verified in human
AD patients (Ulland et al., 2017). This microglial deficit was
partially rescued through dietary cyclocreatine supplementation,
resulting in normalized microgliosis as well as microglial
plaque clustering and significantly reduced plaque-associated
neurite dystrophy (Ulland et al., 2017). Thus, functional
microglia are crucial for eliciting a proper immune response
in AD and can either exacerbate or help attenuate associated
disease pathology.

Like microglia, astrocytes have also been implicated in
roles that exacerbate or are neuroprotective in AD. Astrocytic
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ApoE4 expression, a strong genetic risk factor for late-onset
AD, potentiates neuronal tau aggregation in multiple in vitro
and in vivo tau models of AD, prompting AD development
(Jablonski et al., 2021). Similarly, astrocytes in primary
co-cultures with rat embryo neurons were demonstrated to
exacerbate Aβ-induced neurotoxicity, caspase-3 activation,
and the production of caspase-3-cleaved tau, which is more
likely to aggregate (Garwood et al., 2011). However, the
administration of an anti-inflammatory agent, minocycline,
reduced tau phosphorylation and other astrocytic inflammatory
responses as well as associated neuronal loss, further illustrating
the pathogenic contributions of astrocytes to AD (Garwood
et al., 2011). Astrocytes also exacerbate AD pathology
through their production of hydrogen peroxide and their
dysregulated metabolic processes resulting in compromised
neuronal support (Oksanen et al., 2017; Chun et al., 2020).
In parallel, reactive astrocytes are elevated in localized
regions associated with neurodegeneration in human AD
patient post-mortem tissue including the hippocampus and
prefrontal cortex (Liddelow et al., 2017). This finding mirrors
trends seen in other research using human tissue, noting
an accumulation of Aβ42, a pathogenic form of amyloid-β
peptides, in astrocytes within the entorhinal cortex of clinically
diagnosed sporadic AD patients (Nagele et al., 2003). The
amount of Aβ42 accumulation in reactive astrocytes was
directly correlated to the extent of AD pathology, suggesting
that astrocytes contribute to the local inflammatory response
(Nagele et al., 2003). In contrast, previous literature has
demonstrated that astrocytes have neuroprotective effects
in AD. This notion was illustrated through the ablation of
reactive proliferating astrocytes in a transgenic AD mouse,
which resulted in elevated cortical Aβ pathology and increased
levels of monomeric Aβ in brain homogenates (Katsouri et al.,
2020). In addition, astrocyte ablation reduced hippocampal
neuronal and synaptic density, which was accompanied by
increased neuroinflammation and spatial memory deficits
(Katsouri et al., 2020). Though astrocytes are known to produce
neurotoxic products following systemic injection of LPS or
induced ischemia, cytokines released from astrocytes such
as TIMP-1 have also been coupled with neuroprotective
effects (Zamanian et al., 2012; Liddelow et al., 2017; Saha
et al., 2020). For instance, in a well-characterized Aβ-
infused rat model of AD intra-cerebroventricular TIMP-1
injection resulted in a reduction in Aβ load and Aβ-induced
apoptosis in the hippocampus and cortex (Saha et al., 2020).
Furthermore, TIMP-1 treated rats displayed restored synaptic
integrity and showed an improvement in memory including
associative learning (Saha et al., 2020). Additionally, a subset
of reactive astrocytes expressing higher levels of GLT-1,
an abundant glutamate transporter, was identified in AD
patients that had neuropathological changes consistent with
AD but without dementia, unlike AD patients who had
dementia (Kobayashi et al., 2018). This finding suggests
GLT-1 expressing reactive astrocytes could help preserve
cognitive function (Kobayashi et al., 2018). Together, these
results indicate that astrocytes are important mediators of
neuroinflammation and, depending on the context, can

contribute to neurotoxic or neuroprotective responses in
AD models.

Parkinson’s Disease
Similar trends associating glial cells with beneficial and
detrimental effects were noted within the context of PD.
Microglial reactivity in PD was associated with similar
pathological features as those identified in AD such as increased
neuroinflammation, which precedes α-syn pathology in PD
mice (Marinova-Mutafchieva et al., 2009; Izco et al., 2021).
Another study targeting metabotropic glutamate receptor
5 (mGluR5), a G-coupled protein receptor that specifically
inhibits the microglial inflammatory response, showed that
mGluR5 activation partially inhibits microglial reactivity in vitro
and had an anti-inflammatory effect in vivo, partly protecting
neurons from neurotoxicity induced by microglial reactivity
(Zhang et al., 2021). Like in aging, microglia in the substantia
nigra, a brain region severely affected by PD, of postmortem
PD patient brains have been shown to accumulate more neutral
lipids or triglycerides compared to healthy controls (Brekk et al.,
2020). Brains from patients with PD also contained a higher
abundance of microglia in the substantia nigra compared to
healthy subjects, suggesting microglia could be reactive (Brekk
et al., 2020). Though microglial pathogenicity was not specifically
measured in this study, lipid- rich microglia have been associated
with functional deficits in microglia that suggest they exacerbate
neurodegeneration (Marschallinger et al., 2020). Microglia
are also associated with neuroprotective roles in PD, clearing
neuronal α-syn and mitigating neuronal degeneration (Choi
et al., 2020). Specifically, transgenic PD mice demonstrated that
microglia exhibit synucleinphagy in PD, which is the microglial
engulfment of α-syn into autophagosomes for degradation
through selective autophagy (Choi et al., 2020). When microglial
autophagy was disrupted, α-syn mediated neurotoxicity and
neurodegeneration were enhanced, demonstrating a protective
role for microglia in PD (Choi et al., 2020). Furthermore,
in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
induced mouse model of PD, microglial depletion through
CSFR1 inhibition aggravated MPTP-induced neurotoxicity,
resulting in locomotor impairment and the loss of dopaminergic
neurons (Yang et al., 2018). Additionally, the knockdown of
microglia-specific Cav1.2, a voltage-dependent calcium channel,
in MPTP-induced PD mice resulted in severe degeneration
of dopaminergic neurons and accompanying motor deficits,
further suggesting microglia help mitigate disease progression
(Wang et al., 2019). In all, these and past studies demonstrate
that microglia play dual roles in PD, either contributing to or
counteracting PD progression (Toku et al., 1998; Zhang et al.,
2005).

In PD, astrocytes also play a dual role. For instance, in
an α-syn preformed fibril PD mouse model inhibition of
reactive astrocytes was neuroprotective (Yun et al., 2018).
Specifically, the inhibition of reactive astrocytes protected
against dopaminergic neuron loss and associated behavioral
deficits in vivo (Yun et al., 2018). Likewise, when applied to
primary rat astrocyte cultures multiple forms of α-syn, including
monomeric, oligomeric, and fibrillar forms, can cause astrocytes
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to become reactive (Chavarría et al., 2018). Astrocyte reactivity
was accompanied by increased levels of intracellular oxidants
and pro-inflammatory cytokine release (Chavarría et al., 2018).
In co-culture with hippocampal neurons, astrocytes exposed
to different α-syn species increased cytotoxicity, provoking
neuronal death (Chavarría et al., 2018). Additionally, selective
expression of A53T mutant α-syn, a genetic mutation in α-syn
linked with increased PD risk, in astrocytes of transgenic PD
mice compromised their normal functions as seen through a
downregulation of GLAST1 and GLT1, two proteins associated
with glutamate transport (Gu et al., 2010). Astrocytic A53T α-syn
expression was also associated with neurological dysfunction,
a shortened lifespan, and neurodegeneration (Gu et al., 2010).
Furthermore, some of these pathological trends were exhibited
in induced pluripotent stem cells (iPSC)-derived astrocytes
from PD patients with a G2019S mutation in the Leucine Rich
Repeat Kinase 2 (LRRK2) gene, which is the most common
cause of familial PD (Ramos-Gonzalez et al., 2021). iPSC
astrocyte cultures from these patients demonstrated decreased
homeostatic support to neurons and elevated oxidative stress,
an observation that has previously been linked with enhanced
neurodegeneration both in vitro and in vivo (Hashioka et al.,
2009; Gu et al., 2010; Chavarría et al., 2018; Ramos-Gonzalez
et al., 2021). RNA sequencing of LRRK2 G2019S iPSC-derived
astrocytes also revealed a downregulation of transforming
growth factor beta 1 (TGFB1) and matrix metallopeptidase 2
(MMP2), which are both involved in regulating the extracellular
matrix, a role that can profoundly alter an astrocyte’s response
to inflammatory stimuli (Johnson et al., 2015; Booth et al., 2019).
Therefore, astrocytes carrying the LRRK2 G2019S mutation
have a reduced capacity to perform roles contributing to
neuroprotection and thus, support PD pathogenesis. Astrocytes
in PD have also been associated with providing a neuroprotective
potential. Astrocyte-specific overexpression of human DJ-1 also
known as Parkinson Disease Protein 7 (PARK7), a redox
sensitive protein with multiple reported functions crucial for
mitochondrial physiology and protein transcription, was shown
to mitigate neurotoxicity in a PD rat model (De Miranda
et al., 2018). In rats overexpressing astrocytic DJ-1 there was a
reduction in mitochondrial dysfunction, α-syn accumulation
and phosphorylation, astrocyte-induced neuroinflammation,
and neurodegeneration in dopaminergic neurons in the
substantia nigra (De Miranda et al., 2018). Additionally,
following the MPTP challenge, mice with astrocytes lacking
Kir6.1, an ATP-sensitive potassium channel, exhibited increased
dopaminergic neuron loss in the substantia nigra compacta
and more severe motor dysfunction compared to controls
(Hu et al., 2019). Similarly, astrocytic Kir6.1 deletion resulted
in increased production of mitochondrial reactive oxygen
species, astrocyte-mediated neuroinflammation, and decreased
mitophagy in astrocytes (Hu et al., 2019). Another study
using rats injected with 6-hydroxydopamine, which induces
dopaminergic denervation of the striatum, revealed that striatal
astrocytes possess physiological phagocytic properties (Morales
et al., 2017). While this functional response is more typical
of microglia, this role in astrocytes may be critical for clearing
striatal debris at the onset of PD (Morales et al., 2017). In parallel,

iPSC-derived astrocytes from PD patients carrying an ATP13A2
mutation, which affects lysosome function, were protective,
resulting in rapid phagocytosis of α-syn and higher lysosomal
degradation rates (Tsunemi et al., 2020). When co-cultured
with iPSC-derived dopaminergic neurons, the iPSC-derived
astrocytes further prevented neuronal α-syn accumulation and
inter-neuronal α-syn transfer (Tsunemi et al., 2020). Collectively,
these studies reveal that astrocytes, like microglia, can be either
toxic or beneficial in PD pathology.

MICROBIOME INFLUENCES ON
MICROGLIA AND ASTROCYTE FUNCTION
IN HEALTH

Increasingly the bidirectional communication between the brain
and the gut, termed the gut-brain axis, has been recognized
as playing an important role in brain health and disease. The
gut microbiome is predominantly composed of bacteria but it
can also contain viruses, fungi, archaea, and helminths (Vemuri
et al., 2020). The gut microbiome composition varies across
individuals as well as species and is influenced by a variety of
factors including age, diet, and disease among others (Figure 2;
The Human Microbiome Project Consortium, 2012; David et al.,
2014; Nagpal et al., 2018; Carmody et al., 2019; Xu et al., 2019;
Manor et al., 2020; Kundu et al., 2021; Wilmanski et al., 2021).
Microbial metabolites produced by gut bacteria in humans have
been shown to impact host health by directly interacting with
immune cells and intestinal epithelial cells, which allows for
selective penetration of nutrients while preventing the passage
of harmful stimuli such as toxins in subjects with healthy gut
barrier function (Figure 2; Cabinian et al., 2018; James et al.,
2020; Ghosh et al., 2021). As gut permeability increases with
age, certain individual differences in the microbiome may also be
causative in exacerbating or ameliorating disease as differentially
abundant microbiota and gut metabolites such as trimethylamine
N-oxide (TMAO) have been associated with increased risk of AD
and other neurogenerative diseases (Man et al., 2015; Qi et al.,
2017; Vogt et al., 2017, 2018; Brunt et al., 2021; Romano et al.,
2021). In humans, the gut microbiome has been implicated in
modulating immune function both systemically and in the CNS,
suggesting that the microbiome can influence microglial and
astrocyte function (Erny et al., 2015; Buford et al., 2018; Schluter
et al., 2020; Sanmarco et al., 2021).

Though the timing of fetal microbiome development
is highly debated, convincing evidence suggests the fetus
begins developing its microbiome during birth in the mouse
and human and is generally compositionally similar to the
maternal microbiome (Jiménez et al., 2008; Ferretti et al.,
2018; Younge et al., 2019; Kennedy et al., 2021). During early
life, the microbiome is critical for postnatal innate immune
development as well as microglial maturation, which could
affect how microglia respond in physiological and pathological
conditions in adulthood (Erny et al., 2015; Gomez de Aguero
et al., 2016; Matcovitch-Natan et al., 2016; Thion et al., 2018).
The microbiome also plays a role in postnatal microglial
synaptic pruning, affecting neurodevelopment outcomes
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FIGURE 2 | Microbiome influence on microglia and astrocyte function in health, age, and neuropathology. Multiple factors affect an individual’s microbiome
composition including diet, age, and disease. In the distal intestine, gut metabolites can cross the gut epithelium and modulate the immune system, which can
influence the function of microglia and astrocytes in health, age, and neurodegenerative diseases. Functions of microglia and astrocytes that are altered in mice who
have had their microbiome altered, contain a microbiome or lack thereof have been identified. Aβ, amyloid-β; GF, germ-free; ABX, antibiotic; AD, Alzheimer’s disease;
EAE, experimental autoimmune encephalomyelitis; CNS, central nervous system; DC, dendritic cell; HF, high-fat; TMAO, trimethylamine N-oxide; AHR, aryl
hydrocarbon receptor. *Created with Biorender.com.

(Lebovitz et al., 2019; Luck et al., 2020). Broadly, the host
microbiota is a critical component for shaping microglial
function (Erny et al., 2015). Compared to conventionally

colonized specific pathogen free (SPF) mice, germ-free (GF) mice
lacking a microbiota contain microglia with a more complex
morphology and an immature phenotype (Erny et al., 2015).
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As a result, microglia in GF mice are more prone to functional
deficits including a diminished immune response, a finding
mirrored in aged mice (Hefendehl et al., 2014; Erny et al.,
2015; Ritzel et al., 2015; Galatro et al., 2017). Particularly,
Bifidobacteria species and Lactobacillus murinus HU-1 can
normalize dystrophic microglia, indicating that microglial
function could be modulated by a specific type of bacteria
in the postnatal period (Lebovitz et al., 2019; Luck et al.,
2020). To date, the impact of the microbiome on astrocyte
function in postnatal development remains to be explored.
However, there is one study that demonstrated maternal
probiotic supplementation with Lactobacillus acidophilus and
Bifidobacterium infantis attenuates astrocyte reactivity in
postnatal offspring (Lu et al., 2020). Taken together, these studies
establish that microbiome influences on brain function occur
early on and could contribute to neurological outcomes in age or
disease through adulthood.

In mature animals, the microbiome also influences the
homeostatic roles of microglia and astrocyte function in health.
The importance of the microbiome in the normal microglial
immune response is illustrated by the fact that in GF mice,
microglia exhibit a diminished response to bacterial and viral
infections, compared to microglia from SPF mice (Erny et al.,
2015; Brown et al., 2019). Furthermore, the depletion of the
microbiome using broad-spectrum antibiotics in 6–10 week
old SPF mice significantly changed microglial morphology
(Erny et al., 2015). After antibiotic administration, microglia
in SPF mice resembled malformed microglia similar to those
identified in GF mice, suggesting that the microbiome is critical
for microglial homeostasis in physiological conditions (Erny
et al., 2015). Although there is limited research illustrating how
the microbiome directly modulates other functional roles of
microglia, one study links isoflavones and lignans, two classes of
highly gut and BBB permeable polyphenol microbial metabolites,
with decreased nitric oxide and pro-inflammatory cytokine levels
in murine microglia (Johnson et al., 2019). This finding indicates
that gut-microbial-derived-metabolites can dampen microglia-
specific neuroinflammation and could be beneficial to administer
as a therapeutic for neurodegenerative diseases.

In addition to microglial changes, the microbiome was also
shown to be important for maintaining astrocyte function.
Following gut microbiota perturbations, an upregulation in
genes associated with astrocyte-neuron metabolic coupling was
detected within the mouse hippocampus (Margineanu et al.,
2020). Specifically, there was an upregulation in Pfkfb3 and
Atp1a2, two astrocytic proteins responsible for regulating
glycolysis and glutamate reuptake, respectively, indicating that
the microbiome can affect astrocytic contributions to brain
energy metabolism (Margineanu et al., 2020). Additionally, the
application of neuroprotective metabolites including sodium
butyrate and indole-3-propionic acid to human primary
astrocyte cultures showed that both bacterial metabolites
could prevent LPS-induced inflammation and mitigate
pro-inflammatory cytokine release following an LPS challenge
(Garcez et al., 2020). There is also some evidence suggesting that
the microbiome impacts processes that microglia and astrocytes
are associated with, including adult hippocampal neurogenesis

(Ogbonnaya et al., 2015). Likewise, the microbiome influences
pro-inflammatory mechanisms within the hippocampus, fear
extinction learning, and BBB permeability, all of which microglia
or astrocytes are implicated in, through the immune system via
monocytes or other microbiota-derived signals (Braniste et al.,
2014; Campos et al., 2016; Möhle et al., 2016; Chu et al., 2019).
Taken together, these findings demonstrate that the microbiome
is important for maintaining the homeostatic functions of
microglia and astrocytes.

MICROBIOME INFLUENCES ON
MICROGLIA AND ASTROCYTE FUNCTION
IN AGING

The microbiome also displays compositional differences with
age but work exploring the effects of an aging microbiome,
outside of a disease context, on glia remains limited. However,
the effects of a short-term high-fat diet on microglia in the
amygdala given to young and old rats was recently investigated,
paralleling microglial changes identified in aging studies alone
(Spencer et al., 2019). Upon receiving the high-fat diet, microglia
in the amygdala in aged rats displayed reduced microglial
complexity and suppressed phagocytic capacity compared to
their younger counterparts (Spencer et al., 2019). Additionally,
transcriptional analysis on microglia isolated from aged mouse
brains with or without antibiotic-induced gut dysbiosis revealed
that aged groups in both treatment conditions were enriched
with gene pathways involved in dendritic cell interaction
and macrophage cytokine production (Golomb et al., 2020).
Microglia from aged mice in both cohorts also exhibited an
upregulation of mitochondrial genes and a decreased expression
of microglial homeostatic genes such as Trem2 (Golomb et al.,
2020). Though there were similar trends in both the antibiotic-
treated and non-antibiotic-treated aged cohorts, microglia with
these properties were slightly more prevalent in aged mice
receiving antibiotics (Golomb et al., 2020). Together, this data
suggests that gut dysbiosis increases the likelihood of developing
neuroinflammation during aging.

Similarly, shifts in astrocyte function have been linked with
microbiome modulations in aged mice and humans. In a recent
study exploring the potential role of TMAO in modulating
neuroinflammation and cognitive function, both middle-aged to
older adults (65 ± 7 years old) and aged mouse plasma TMAO
levels were higher compared to their younger counterparts
(Brunt et al., 2021). Likewise, circulating plasma TMAO levels
were inversely correlated with working and episodic memory
as well as fluid cognition in humans as measured through
the NIH Toolbox Cognition Battery Test (Brunt et al., 2021).
TMAO levels in 27-month-old mice were also increased in
the brain compared to 6-month-old mice, suggesting that
TMAO crosses the BBB, and is associated with increased
neuroinflammation as well as astrocyte reactivity (Brunt et al.,
2021). Furthermore, young mice supplemented with TMAO
exhibited similar impairments in memory and spatial learning
as observed in aging compared to young control mice (Brunt
et al., 2021). In total, these findings suggest elevated TMAO levels
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that accompany aging are correlated with astrocyte reactivity
and increased neuroinflammation associated with cognitive
impairments (Brunt et al., 2021). Another approach isolated the
microbiome in young and aged mice to broadly explore the
effects of age on the microbiome and brain (Lee et al., 2020). In
this study, fecal transplant gavages from aged or young SPF mice
into young GF mice revealed that the aged microbiome alone was
sufficient to produce a cognitive decline in the recipient mice who
exhibited depressive-like behavior as well as impaired short–term
and spatial memory (Lee et al., 2020). Though this approach did
not directly implicate microglia or astrocytes specifically, it was
an elegant study design illustrating that the aging gut microbiome
impacts the brain and can influence cognitive performance. More
research needs to be done to better understand how an aging
microbiome directly or indirectly impacts both microglia and
astrocyte functions and what that may mean for human health.

MICROBIOME INFLUENCES ON
MICROGLIA AND ASTROCYTE FUNCTION
IN NEURODEGENERATIVE DISEASE

The microbiome can also modulate microglia and astrocyte
function in neurodegenerative disease as explored in the context
of AD and PD mouse models. For example, comparisons of
gut microbiota in APP/PS1, an early-onset AD mouse model
with Aβ pathology, to wild-type mice spanning 1–9 months old
demonstrated distinct changes in bacterial taxa that preceded
the development of key features indicative of AD pathology
(Chen et al., 2020). The divergence in microbiota composition
between wild-type and APP/PS1 mice was noted at 1–3 months
of age, before amyloid deposition and plaque-localized microglial
activation are apparent (Chen et al., 2020). In addition to
reporting decreased microbial richness and diversity in older
mice, this study also demonstrated that 6 and 9 months old mice
had increased abundances of inflammation-related bacterial
taxa (Chen et al., 2020). Microbial products such as short
chain fatty acids were also recently identified as modulators
of microglial function in vivo, increasing microglial reactivity
and hindering microglial phagocytosis (Colombo et al., 2021).
Likewise, microbiome modulations in 5xFAD mice were shown
to differentially control microglial Aβ clearance mechanisms and
influence plaque deposition (Mezö et al., 2020). In both GF
and antibiotic-treated 5xFAD mice, there was less microglial
accumulation around compact Aβ plaques and attenuated
plaque pathology in the hippocampi compared to SPF 5xFAD
controls (Mezö et al., 2020). These findings are congruent with
previous studies that administered an antibiotic cocktail to
transgenic APP/PS1 AD mice and showed a reduction in Aβ

plaque pathology and plaque-associated microgliosis as well as
increased cytokine and chemokine circulation (Minter et al.,
2016, 2017; Harach et al., 2017; Dodiya et al., 2019). Though
recent literature notes that the reduced plaque deposition
trends previously established in two transgenic APP/PS1 mice
were only replicable when administered an antibiotic cocktail
and that individual antibiotic did not affect cerebral Aβ

amyloidosis (Dodiya et al., 2020). AD pathology was also

curtailed in 5xFAD mice through the dietary supplementation
of β-hydroxybutyrate (BHB), a ketone body produced during
ketogenesis, which reduced Aβ plaque formation, microgliosis,
and Asc speck formation (Shippy et al., 2020). Similarly, the
colonization of a curli-producing gut bacteria, Escherichia coli
(E. Coli), in mice overexpressing α-synuclein, a hallmark of
synucleinopathies such as PD, was demonstrated to exacerbate
disease progression (Chen et al., 2016; Sampson et al., 2020).
Curli are microbial amyloid proteins expressed specifically by
gut bacteria, which is not to be confused with amyloidogenic
proteins found within the brain such as amyloid-β found in
AD plaques (Barnhart and Chapman, 2006). Gut-associated
microbial amyloid produced by Pseudomonas aeruginosa was
recently shown to exacerbate Aβ amyloidosis (Javed et al., 2020).
For instance, mice receiving a mono-colonization of amyloid-
producing E. Coli showed significantly impaired motor and
gastrointestinal performance compared to mice with a complex
microbiota lacking the amyloid-producing strain (Sampson
et al., 2020). Morphometric analysis of midbrain microglia in
mice harboring the amyloid-producing strain further displayed
concomitant alterations indicative of increased inflammation
in the midbrain (Sampson et al., 2020). Using in vitro assays,
another study illustrated that chlorogenic acid (CGA), a coffee
component with antioxidant properties, significantly suppressed
the release of inflammatory products from primary microglia
and prevented microglia-induced neurotoxicity in dopaminergic
neurons (Shen et al., 2012). Collectively, these studies suggest that
microbiome products or perturbations can alter microglia and
therefore, neurological outcomes in a disease.

While the impact of the gut microbiome on astrocyte function
in neurodegenerative disease is not well understood, a few
reports using Multiple sclerosis (Ms) and PD mouse models have
begun to establish this connection. In experimental autoimmune
encephalomyelitis (EAE), a common mouse model of Ms, gut
metabolites derived from dietary tryptophan (Trp) were shown
to activate astrocytic aryl hydrocarbon receptor (AHR) signaling,
which limits NF-κB signaling and suppresses CNS inflammation
(Rothhammer et al., 2016). The favorable effects of dietary Trp
were observed in wild-type and GFAP-AHR knock-out EAE
mice fed a tryptophan-depleted diet (TDD), which both had
increased EAE clinical scores, indicative of disease progression
(Rothhammer et al., 2016). However, EAE scores could be
improved through Trp supplementation in wild-type but not
GFAP-AHR knock-out EAE mice, suggesting that Trp-derived
ligands of AHR signaling function through astrocytes and serve
a beneficial role in hindering disease progression (Rothhammer
et al., 2016). AHR signaling mechanisms established in the
EAE model were also verified in human brain samples from
individuals with Ms, suggesting this signaling mechanism
has some clinical relevance and could contribute to Ms
pathogenesis (Rothhammer et al., 2016). Microbial-derived
tryptophan metabolites were also shown to influence astrocyte
function indirectly through microglia (Rothhammer et al.,
2018). Specifically, administration of a TDD modulated AHR
signaling in microglia, impacting microglial VEGF-B and TGFα
expression, which in turn regulated astrocytic pathogenic
responses in EAE via NF-κB signaling (Rothhammer et al., 2018).
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Microglial control of astrocytes via VEGF-B and TGFα were
further verified in human samples and found to contribute to
Ms pathogenesis (Rothhammer et al., 2018). Indirect effects of
the microbiome on astrocytes have also been observed in a
subset of astrocytes expressing TRAIL, a gene that can induce the
apoptosis of other cells (Sanmarco et al., 2021). Gut microbiota
depletion via antibiotics in SPF IfngEYFP reporter mice, a
mouse model that fluorescently labels the pro-inflammatory
cytokine interferon gamma (IFN-Γ), reduced TRAIL+ astrocytes
relative to mice receiving a vehicle or an antibiotic treatment
followed by a fecal microbiota transfer (Sanmarco et al.,
2021). With lower TRAIL+ astrocytes, the reporter mice were
unable to limit CNS inflammation and therefore, succumbed
faster to EAE (Sanmarco et al., 2021). Additionally, PD mice
receiving a fecal microbiota transplant (FMT) from healthy
control mice exhibited less astrocyte and microglial reactivity
(Sun et al., 2018). PD mice that regularly received coffee
components, caffeic, acid and CGA, also displayed enhanced
antioxidative properties in striatal astrocytes and exhibited
less neurodegeneration of dopaminergic and intestinal enteric
neurons (Miyazaki et al., 2019). Though the current literature
is limited and the results here do not comprehensively explore
the impact of the microbiome on glia in neurodegenerative
diseases, these data indicate that the microbiome can favorably
or detrimentally modulate neurodegeneration. This data also
presents a promising new frontier to explore therapeutic
interventions that hinder disease progression through the
modification of the microbiome.

SUMMARY

Overall, microglia and astrocytes, two immunocompetent glial
cells that normally perform vital support roles in the brain, are
crucial for responding to injury or pathogenic insults. However,
factors including one’s microbiome composition, age, and
neurodegenerative disease can alter their physiological functions.
By exploring how inflammatory processes or functions of
microglia and astrocytes can be manipulated or altered through
the microbiome, during aging, and in neurogenerative diseases,
we can gain more insight into potential disease mechanisms and
discover methods to better regulate age-and disease-associated
pathology.

CONCLUDING REMARKS

Though glial cells were initially identified in the very early years
of neuroscience research, we have only recently begun to grasp
the full scope of glial contribution to brain health, aging, and

disease. Although the function of both microglia and astrocytes
are dramatically impacted in aging and neurodegenerative
disease, it remains unclear whether these functional changes
are detrimental or beneficial. Complex interactions between the
gut microbiome and brain in health, aging, and disease have
also been shown to modulate glial function although literature
addressing how the microbiome affects astrocyte function
remains especially limited. To better understand the contribution
of glia to age and disease, new in vivo and in vitro techniques
need to be employed. Novel, promising approaches including
2Phatal and the use of tri-cultures supporting neurons, microglia,
and astrocytes may enable such opportunities, allowing multi-
cellular interactions to be observed in vivo and in vitro (Goshi
et al., 2020; Guttikonda et al., 2021). Furthermore, the recent
development of an in vitro all-human physiomimetic model has
exciting implications for how we understand neurodegenerative
diseases, broadening the questions that can be asked about
how microglia and astrocytes are impacted by or contribute
to aging and disease (Trapecar et al., 2021). This model
links three complex microphysiological systems including the
gut/immune, liver/immune, and cerebral/immune systems in a
common culture media containing circulating immune cells in
continuous coculture (Trapecar et al., 2021). Using an in vitro
human physiomimetic model enables a controlled systems
approach that will allow organ-organ and organ-immune system
interactions mimicking in vivo like behavior to be explored.
These techniques utilizing multiple cells and systems can more
realistically recapitulate in vivo inflammatory responses that will
allow us to further expand the questions that can be asked and
knowledge that can be collected about microglia and astrocytes
in the next decade.
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