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Exosomes are a subset of extracellular vesicles that act as messengers to facilitate

communication between cells. Non-coding RNAs, proteins, lipids, and microRNAs are

delivered by the exosomes to target molecules (such as proteins, mRNAs, or DNA) of host

cells, thereby playing a key role in the maintenance of normal brain function. However,

exosomes are also involved in the occurrence, prognosis, and clinical treatment of

brain diseases, such as Alzheimer’s disease, Parkinson’s disease, stroke, and traumatic

brain injury. In this review, we have summarized novel findings that elucidate the role of

exosomes in the occurrence, prognosis, and treatment of brain diseases.
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INTRODUCTION

Extracellular vesicles are vesicles with a diameter range of 3 nm−1µm secreted by cells into
the extracellular space, which can be divided into exosomes (30–100 nm), microvesicles (100
nm−1µm in diameter), and apoptotic bodies (50–5,000 nm) (Beeraka et al., 2020). According to
the MISEV guidelines, extracellular vesicles measuring <100 nm in diameter, are termed as small
extracellular vesicles (sEVs). Small extracellular vesicles (SEVs) originating from late endosomes
are termed as exosomes, whereas other Small extracellular vesicles (SEVs) originate from the cell
surface (plasma membrane) (Thery et al., 2018). Traditional methods of vesicle extraction and
isolation are limited to in their ability to isolate different subtypes of EVs. Therefore, the terms
“EV,” “sEV,” and “exosome” are used interchangeably in some studies (He et al., 2021b). This review
focused on the function of exosomes.

Exosomes originate from the endomembrane system, and their envelope is continuously
invaginated during early endosomal maturation to form intraluminal vesicles within the endosome.
During this time, proteins, nucleic acids, and lipids are screened and enter the intraluminal vesicles.
Late endosomes containing a large number of intraluminal vesicles are also called multivesicular
bodies (Zhang et al., 2020; Nieland et al., 2021). Multivesicular bodies have twometabolic pathways.
One is to be degraded by binding to lysosomes, and the other is to be transported to cell membranes,
where the multivesicular membrane fuses with cell membranes and releases the inner vesicles into
the extracellular space to form exosomes, which are loaded with proteins, non-coding RNAs, lipids
and other biologically active substances (Ratajczak and Ratajczak, 2020). The endosome sorting
complex is required for transport, with tetraspanins, ALG2-interacting protein X (Alix), heat shock
protein (Hsp70), tumor susceptibility gene 101 protein, etc. being the accepted biomarkers for
identifying exosomes (Budnik et al., 2016).

Exosomes carry various bioactive compounds as cargo, such as proteins, non-coding RNAs,
lipids, etc. after being secreted from cells, thus facilitating communication between cells (Nieland
et al., 2021). This function of exosomes forms the basis for their role in the development of various
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diseases, and altering the cargoes carried by exosomes or
changing their surface molecules may hold therapeutic potential
(Jafari et al., 2020). Exosomes are secreted by different types of
cells and since the cargoes of exosomes secreted by the same type
of cells differ in different disease processes suggests that studying
the cargo of exosomes may be beneficial in predicting the course
of a disease and for disease diagnosis (Zhang et al., 2020).

The brain is considerably intricate in its structure and
function. The study of the molecular mechanisms underlying
the development of brain disease is still in its infancy, creating
limitations for clinical treatment. Brain diseases impose many
social and economic burdens on society (Wang et al., 2020b). In
recent years, exosomes have attracted considerable interest in the
study of brain diseases, such as Alzheimer’s disease, Parkinson’s
disease, stroke, and traumatic brain injury, due to their critical
importance in the disease process and potential value for clinical
application. The role and molecular mechanisms of exosomes
carrying proteins related to the brain diseases [amyloid precursor
protein (APP), α-synuclein (α-syn), mHtt, PrPsc] have been
emphatically explored (Hartmann et al., 2017; Leblanc et al.,
2017; Wang J. K. T. et al., 2017; Hill, 2019; Li B. et al., 2020;
Pan et al., 2020; Perez-Gonzalez et al., 2020; Singh and Muqit,
2020; Tsunemi et al., 2020, 2021; Ananbeh et al., 2021; Soares
Martins et al., 2021a). Notably, their ability to transport cargo is
a key mechanism involved in the spread of disease. Compared
to traditional therapeutic drugs, exosomes carrying drugs are
more likely to pass through the blood-brain barrier (BBB), which
helps the drugs to reach the target tissue (Azarmi et al., 2020).
Due to the prevalence and easy availability of exosomes in the
organism, as well as their involvement in various biomodulatory
effects, exosomes have been considered as potential biomarker
candidates for the clinical diagnosis and prognosis of diseases
(He et al., 2021b). Over recent years, an increasing number
of studies have explored the specific mechanisms of exosome
involvement in brain disease (Soares Martins et al., 2021b). Here,
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we summarize novel findings that elucidate the role of exosomes
in the occurrence, prognosis, and treatment of brain disease.

EXOSOMES AND NEURAL TUMORS

Nervous system tumors include primary and metastatic tumors
that originate in the brain, spinal cord, or meninges. As a highly
malignant neural tumor, glioblastoma (GBM) has a high clinical
mortality rate due to its poor prognosis, drug resistance, and
susceptibility to hematologic metastasis. In recent years it has
been closely studied in the field of exosome researches (De Leo
et al., 2020; Ou et al., 2020).

Exosomes take part in the complicated inflammatory and
immune responses of GBM. The inflammatory response present
in GBM can alter the tumor microenvironment and promote
tumor angiogenesis, cell proliferation, and invasive metastasis
through a variety of active factors (Baig et al., 2020). Meanwhile,
exosomes have been found to be involved in the inflammatory
response in GBM and can alter the tumor microenvironment
in GBM and promote tumor aggressiveness (Azambuja et al.,
2020). Brain tumor-initiating cells transport tenascin-C through
exosomes, which interacts with integrin α5β1 and αVβ6 to inhibit
the mammalian target of rapamycin (mTOR) signaling pathway
and further inhibit T cell activity (Mirzaei R. et al., 2018).
LGALS9, a protein found in cerebrospinal fluid (CSF) exosomes
derived from patients with GBM inhibits dendritic cell antigen
presentation and cytotoxic T cell immunity (Yang et al., 2020).
GBM cell-derived exosomes can promote the conversion of
normal macrophages to tumor-associated macrophages (TAM),
and TAM subsequently release large amounts of tumor growth-
promoting exosomes. It has been further revealed that the
inhibition of arginase-1+ TAM is a potential therapeutic target
for GBM (Azambuja et al., 2020).

Exosomes and their cargo boost tumor proliferation and
invasion in addition to altering the tumor microenvironment.
Exosomes with cell adhesion molecule L1 (L1CAM) have been
observed to stimulate the invasiveness and proliferation of GBM
cells (Pace et al., 2019). The antisense transcript of hypoxia-
inducible factor-1α is upregulated in exosomes of GBM cells,
which can promote tumor viability, invasiveness, and radiation
resistance (Dai et al., 2019). Polymerase I and transcript release
factor (PTRF) in GBM cells accelerates the secretion of exosomes
to transform the microenvironment and induces malignancy
of adjacent cells. In both tumor tissue exosomes and blood
exosomes isolated from GBM patients, tumor grade is positively
correlated with the expression of PTRF in exosomes, and the
expression of PTRF in blood exosomes decreases in patients after
surgery (Huang K. et al., 2018).

Exosomal miR-301a derived from hypoxia-treated GBM
cells can target TCEAL7 genes, thereby activating the Wnt/β-
catenin signaling pathway and promoting the anti-radiation
ability of the tumor (Yue et al., 2019). miR-182-5p is
significantly upregulated in exosomes produced by GBM cells
in a hypoxic environment, and this microRNA (miRNA)
can inhibit the expression of Kruppel-like factors 2 and 4
(KLF2 and KLF4), leading to the accumulation of vascular
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endothelial growth factor (VEGF) receptor and promotion
of tumor angiogenesis. Additionally, exosome-mediated miR-
182-5p inhibits tight junction-related proteins (such as ZO-1,
occludin, and claudin-5), thereby boosting vascular permeability
and tumor transendothelial migration. Moreover, knockdown of
miR-182-5p reduces angiogenesis and tumor proliferation (Li J.
et al., 2020).

An abundance of abnormal nucleic acids in exosomes has been
reported in GBM patients. A fragment of SOX2 DNA can be
detected in exosomes, which is an important gene in embryonic
stem cells (Vaidya and Sugaya, 2020). By measuring the serum
exosomes in several patients with GBM, researchers found that
the long non-coding RNA (lncRNA) HOTAIR 12q13 fragment,
an RNA associated with GBM proliferation, is upregulated
in exosomes, demonstrating that this RNA could be a new
biomarker for GBM (Tan et al., 2018). However, these effects need
to be explored further.

Temozolomide (TMZ) is an oral capsule preparation for the
treatment of GBM and overcoming resistance to this drug is of
paramount importance. After treatment with TMZ, GBM cells
produce exosomes containing miR-93 and miR-193 to target
cyclinD1, which shortens the cell cycle and accelerates cell
proliferation, thereby leading to drug resistance (Munoz et al.,
2019). Exosomal miR-151a in vitro can improve the sensitivity
of GBM cells to TMZ and have a therapeutic effect (Zeng et al.,
2018). Recent studies have revealed that exosomes released from
human bone marrow-derived mesenchymal stem cells (BMSCs)
that are loaded with miR-34a alleviate the malignancy of tumors
by silencing MYCN, thus promoting the sensitivity of GBM cells
to TMZ (Wang et al., 2019a) (Figure 1A).

EXOSOMES AND ALZHEIMER’S DISEASE

Among brain diseases, Alzheimer’s disease is one of the most
popular diseases studied in the field of exosome researches.
The disparate modification of Amyloid beta (Aβ) peptide and
tau protein in the damaged brain regions are considered
characteristic features of Alzheimer’s disease (AD). The former
is degraded by APP (Luciunaite et al., 2020; Zhao et al., 2020).
Over phosphorylation of tau proteins can lead to dissociation of
tau proteins from microtubules and aggregation with each other,
forming neurofibrillary tangles and deposition in neuronal cell
bodies as well as axons and dendrites (Vandendriessche et al.,
2020). The aggregation of abnormal proteins activates microglia
and astrocytes, which in turn triggers a chronic inflammatory
response, producing a variety of cytokines that can directly
induce neuronal apoptosis and further Aβ accumulation in
neurons. Therefore, neuroinflammation is an important factor in
the development of AD disease (Soares Martins et al., 2021b).

Exosomes are involved in the complex mechanisms of
secretion, spread, and degradation of Aβ or tau proteins.
Researchers have investigated the physical properties of
individual exosomes using electrostatic force microscopy, and
observed that when higher concentrations of Aβ42 oligomers
are fed to the neuroblastoma cells, the exosomes contained
more Aβ42, implying that exosomes act as transport vesicles for

Aβ42 (Choi et al., 2021). By constructing tau-containing N2a
neurons, the researchers found that tau propagation between
neuronal cells is facilitated by exosomes, and tau-containing
exosomes are taken up by neurons and microglia, but not
astrocytes. Additionally, on analyzing the CSF of patients with
AD, it was discovered that the CSF exosomes contained tau in
monomeric and oligomeric forms (Wang Y. et al., 2017). Among
the exosomes generated from human induced pluripotent stem
cell (iPSC)-derived neurons expressing mutant tau (mTau),
there were a variety of unique proteins not found in normal
exosomes, such as acidic nuclear phosphoprotein 32 family
member A (ANP32A). In electrophysiological studies in human
tau transgenic mice, knockdown of ANP32A rescued memory
deficits and restored synaptic neurotransmission (Podvin et al.,
2020).

Exosomes may play a role in the neuroinflammation observed
in AD. Compared with healthy controls, patients with AD
have higher levels of complement proteins in astrocyte-derived
exosomes (ADEs), such as C1q, C46, and factor B. The mean
levels of complement proteins in ADEs are significantly higher
in the moderate dementia stage than in the preclinical stage.
However, the complement regulatory proteins CD59, CD46,
decay accelerating factor, and complement receptor type 1
(CR1) are lower in the ADEs of patients with AD than in
healthy controls and decrease further with disease progression.
This study suggests that measuring complement protein level
in the exosomes may predict the progression of the disease
(Goetzl et al., 2018). The exosomes produced by SHSWe cells
contain miR-21 and can be internalized by microglia to promote
an inflammatory response (Fernandes et al., 2018). AD mice
demonstrate a high expression of glutaminase C (GAC) in their
microglia, and previous studies have shown that GAC promotes
exosome secretion and changes the exosome content to pro-
inflammatory miRNAs, thereby activating the microglia (Gao
et al., 2019).

Nucleic acids and proteins contained in the exosomes can be
used as biomarkers for AD. miR-125b-5p, miR-451a, and miR-
605-5p in CSF exosomes of patients with early dementia and
elderly dementia are different from those in normal individuals
(Mckeever et al., 2018). Additionally, miR-212 and miR-132
levels are decreased in the neural derived plasma exosomes
from patients with AD (Cha et al., 2019). Synaptosomal-
associated-protein-25 and the receptor for advanced glycation
end products are expected to become the new biomarkers
for AD (Agliardi et al., 2019). Additionally, some researchers
are considering PIWI-interacting RNAs (piRNAs) as candidate
biomarkers for AD (Jain et al., 2019). Growth associated
protein 43 (GAP43), neurogranin, synaptotagmins, Rab3A,
and synaptosome associated protein 25 in neuronal-derived
exosomes are expected to serve as blood biomarkers for AD
and mild cognitive impairment. Those proteins when used in
combination can detect preclinical AD 5–7 years before the onset
of cognitive impairment (Jia et al., 2021).

Many experiments have demonstrated that exosomes and
the cargoes they carry can improve the symptoms of AD, but
the specific molecular mechanisms still need to be investigated
further (Soares Martins et al., 2021b). The expression of miR-21
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FIGURE 1 | The role of exosomes in brain diseases. (A–J) Exosomes loading with vital cargoes promote or inhibit the occurrence of disease and play a therapeutic

role in nervous system diseases.
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was increased in exosomes produced by hypoxia pretreated
mesenchymal stem cells (MSCs) suggesting that miR-21 can
restore cognitive deficits in mice and prevent pathological
features of AD (Cui et al., 2018). Delivery of MSC-derived EVs
(including exosomes and microvesicles) to the brain via the
intranasal route of administration (a non-invasive modality) can
result in the inhibition of microglial activation and increase
the density of dendritic spines (Losurdo et al., 2020). The
exosomes produced by hippocampal neural stem cells protect
the synapses in the hippocampus against the toxicity of Aβ

oligomers and restore their long-term potentiation (LTP) and
memory functions, which is a new method for the treatment
of AD (Kim et al., 2020). Interestingly, exosomes produced
by mature hippocampal neurons do not have this therapeutic
function (Micci et al., 2019). Researchers have developed a
neutral sphingomyelinase 2 inhibitor, called PDDC, which
inhibits exosome release and is associated with the pathologic
processes of exosomes (Sala et al., 2020). The oral administration
of P2X purinoceptor 7 inhibitors in AD mice led to a significant
improvement in the working and environmental memory, which
may be due to inhibition of the release of microglial exosomes
(Ruan et al., 2020). Injection of exosomes carrying miR-29b into
the cornu ammonis 1 (CA1) region of the brains of AD mice
resulted in reduced Aβ and improved performance in spatial
learning andmemory (Jahangard et al., 2020). Exosomes carrying
quercetin demonstrate superior alleviation of the AD symptoms
of mice than free quercetin by inhibiting cyclin-dependent kinase
5-mediated tau phosphorylation and reducing the formation of
insoluble neurofibrillary tangles (Qi et al., 2020) (Figure 1B).

EXOSOMES AND PARKINSON’S DISEASE

The prominent pathological changes in Parkinson’s disease (PD)
are the degenerative death of dopaminergic neurons (DA) in the
substantia nigra, a significant decrease in striatal DA content,
and the appearance of Lewy bodies in the cytoplasm of residual
nigrostriatal neurons (Singh and Muqit, 2020). α-synis a soluble
protein expressed presynaptically and perinuclearly in the central
nervous system and is associated with the pathogenesis and
dysfunction of PD, and is a major component of Lewy bodies
(Pinnell et al., 2021). α-syn is secreted in an exosome-dependent
or non-exosome-dependent manner (Sun et al., 2020; Pinnell
et al., 2021).

There is substantial evidence suggesting a strong link between
exosomes and the development of PD. New research has revealed
that exosomes can contribute to the intercellular spread of Fas-
associated factor 1, which leads to the death of adjacent dopamine
neurons, and is closely related to the disease progression of
PD (Park et al., 2020). More direct evidence suggests that the
presence of α-syn oligomers in CD11b+ exosomes produced by
microglia/macrophages in the CSF of patients with PD induces
α-syn aggregation within neurons (Guo et al., 2020).

Non-coding RNAs and proteins are abnormally expressed
in the serum and CSF of patients with PD. Exosomal
lnc-MKRN2-42:1 in the plasma has been positively correlated
with the MDS-UPDRS III score in patients with PD (Wang et al.,

2019b). lncRNA POU3F3 and α-syn in plasma L1CAM exosomes
of patients with PD are increased, and this increase is related to
a decrease in β-Glucocerebrosidase, as well as the disease severity
of PD. The discovery of these three molecules may shed light
on the mechanism of the autophagic-lysosomal system involved
in PD pathogenesis (Zou et al., 2020). A new study shows that
the exosomes released from neurons in the serum can be used
to distinguish PD from atypical parkinsonism. Meanwhile, the
concentration of α-syn in exosomes shows an increase with the
disease progression of PD. This method of differential diagnosis
can precede the clinical presentation (Jiang et al., 2020).

Some new findings demonstrate that exosomes may be
beneficial in the treatment of PD (Sun et al., 2020; Yang et al.,
2021). Some researchers have designed shRNA minicircles to
treat PD (Li et al., 2020a). These RNAs are delivered by RVG-
exosomes to act on the dopaminergic neurons and halt α-syn
aggregation. Their data demonstrate that this kind of therapy is a
long-term treatment for PD. Among the several PD treatments,
the ideal treatment should be minimally invasive and effective
in the long-term. Consequently, exosomal transport genes and
the blocking of α-syn hold clear potential in this regard (Izco
et al., 2019). Blood-derived exosomes from healthy volunteers
attenuated dopaminergic neuronal damage in the substantia
nigra and striatum of PD mice, resulting in improved motor
coordination (Sun et al., 2020). Intracerebroventricular injection
of exosomes loaded with antisense oligonucleotides (ASO)-4
into PD mice significantly ameliorated α-syn aggregation while
attenuating the degeneration of dopaminergic neurons, resulting
in significant improvements in motor function (Yang et al., 2021)
(Figure 1C).

EXOSOMES AND AMYOTROPHIC
LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a disease that causes
muscle weakness and atrophy of the limbs, trunk, and
chest after a motor neuron injury. The pathogenesis of ALS
includes an imbalance of protein homeostasis in the nervous
system, prion-like proliferation and propagation of abnormal
proteins, mitochondrial dysfunction, and an inflammatory
cascade response. Mutations in the SOD1 gene lead to abnormal
folding of superoxide dismutase 1 (SOD1) mutants in vivo and
the eventual formation of toxic aggregates is responsible for the
pathogenesis of ALS. TDP (TDR DNA-binding protein)-43 is the
pathological marker protein of ALS, which causes re-entry of
mature motor neurons into the cell cycle and induces apoptosis
(Andjus et al., 2020).

Exosomes are engaged in the neuroinflammation observed in
ALS. Interleukin (IL)-6 levels in plasma exosomes of astrocytes
have been shown to be increased in patients with ALS, and
IL-6 is positively correlated with disease progression within 12
months (Chen et al., 2019b). Motor neurons transfected with
SOD1 can secrete exosomes containing inflammatory miR-124,
and their co-culture with microglia in vitro can cause microglia
to transform into the M1 type (Pinto et al., 2017). Exosomes
produced by MSCs suppress the microglial pro-inflammatory
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phenotype in ALSmice viamiR-467f andmiR-466q (Giunti et al.,
2021).

New studies have identified biomarkers in the exosomes
of patients with ALS (Iguchi et al., 2016). TDP-43, a
major component of ubiquitinated and hyper phosphorylated
cytoplasmic aggregates observed in postmortem tissues of
patients with ALS, is commonly found in the brains and is amajor
protein in the pathogenesis of ALS (De Boer et al., 2020; Suk and
Rousseaux, 2020). The ratio of TAR DNA-binding protein-43 in
the plasma exosomes demonstrated an increase with increasing
follow-up time in patients with ALS (Chen P. C. et al., 2020). EVs,
which contain exosomes, produced by the spinal cord tissue in
ALS mouse models and ALS patients are rich in misfolded and
non-native disulfide-cross-linked aggregates of SOD1, and the
central nervous system-derived EVs in ALS mouse models are
secreted by astrocytes and neurons, but not microglia (Silverman
et al., 2019). The gene CUEDC2 in the CSF exosomes of patients
serves as a biomarker for ALS (Otake et al., 2019). Proteomic
analysis of CSF exosomes fromALS patients demonstrated a high
level of novel INHAT repressor (NIR), while NIR is reduced in
the nucleus of motor neurons (Hayashi et al., 2019) (Figure 1D).

Exosomes also play a role in the treatment of ALS. Exosomes
derived from adipose-derived stem cells (ADSCs) could recover
coupling efficiency, complex I activity, and mitochondrial
membrane potential in an in vitro experiment related to ALS
(Calabria et al., 2019). Repeated administration of ADSC-derived
exosomes by intravenous and intranasal administration to ALS
mice improved their motor performance, protected the lumbar
motor neurons and neuromuscular junctions, and reduced
microglial activation (Bonafede et al., 2020).

EXOSOMES AND MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is a type of autoimmune demyelinating
disease caused by the loss of tolerance to a self-protein
(myelin antigen) (Jackle et al., 2020). Its main pathological
manifestations are the disruption of BBB integrity and infiltration
of peripheral immune cells into the central nervous system to
form inflammatory lesions, which in turn initiate autoimmune
mechanisms leading to myelin destruction and axonal damage,
as well as motor, sensory, and autonomic dysfunction (Martinez
and Peplow, 2020).

Proteins and nucleic acids are connected with the
pathogenesis of MS. Let-7i in circulating exosomes inhibits
insulin like growth factor 1 receptor (IGF1R) and transforming
growth factor beta receptor 1, thus inhibiting the differentiation
of regulatory T cells and promoting the development of
MS (Kimura et al., 2018). Exosomes in the CSF of patients
with MS may contain high levels of ceramide and acid
phosphatase, which are associated with axonal neurological
dysfunction (Pieragostino et al., 2018). Myelin basic protein,
proteolipid protein, and myelin oligodendrocyte glycoprotein
are expressed in the serum exosomes of patients. Accordingly,
exosomes may enhance and/or maintain the antimyelin immune
response in MS (Galazka et al., 2018). Several researchers

have summarized the miRNAs that are abnormally up or
down regulated in the exosomes present in the CSF or
blood of patients with MS, and have indicated that further
studies will investigate their usefulness as biomarkers
for determining the prognosis and therapeutic effects
of MS.

Recently, researchers have also explored the role of
exosomes in the treatment of MS. Exosomes secreted by
human MSCs [stimulated by interferon gamma (IFN-
γ)] can alleviate demyelination in MS mice, decrease
the levels of proinflammatory Th1 and Th17 cytokines
(including IL-6, IL-12p70, IL-17AF, and IL-22), increase
the levels of immunosuppressive cytokines, and upregulate
CD4+CD25+FOXP3+ regulatory T cells in the spinal cord of
MS mice. These findings make cell-free therapy for MS a distinct
possibility (Riazifar et al., 2019). It has been shown that exosomes
produced by human umbilical cord blood-derived MSCs can
inhibit the proliferation of peripheral mononuclear blood cells
(PBMCs) when co-cultured with PBMCs in vitro (Baharlooi
et al., 2021) (Figure 1E).

EXOSOMES AND HUNTINGTON’S
DISEASE

Huntington’s disease (HD) is caused by a mis-expression of
multiple CAG repeats (thus leading to Htt protein variation) on
the HTT gene (He et al., 2021a).

The delivery of pathological proteins and miRNAs in different
species is carried out through exosomes (a non-cell form),
and these proteins and miRNAs trigger or inhibit HD-related
behavior and pathology (Jeon et al., 2016). When fibroblasts
from patients with HD were injected into the ventricles of
newborn mice and induced pluripotent stem cells carrying
CAG repeat sequences, researchers found the specific exosomal
mHtt derived from the fibroblasts of patients with HD in
these mice (Didiot et al., 2016). Meanwhile, mouse embryonic
fibroblasts (MEFs) overexpressing exon 1 of the HTT gene
showed that mHTT was found to be present in glutaminase 2-
mediated exosomes when bound to exosomal structural proteins
Alix and TSG101(Beatriz et al., 2021). Exosomal miRNAs have
been found in HD, such as miR-22, miR-214, miR-150, miR-
146a, and miR-125b (Wang J. K. T. et al., 2017; Reed et al.,
2018). However, the mechanism of these miRNAs needs to be
further investigated.

Exosomes can cross the blood-brain barrier and affect the
nervous system to regulate mHtt aggregation, mitochondrial
dysfunction, cell death and cell viability in HD (Lee et al.,
2021). Exosomes secreted by ADSCs are considered critical for
relieving HD phenotypes, which up-regulate phosphorylated
CREB, PGC-1, and expedite non-apoptotic protein levels (Lee
et al., 2016), notably alleviating mHtt aggregation in R6/2 mouse
neurons (Deng et al., 2019; Lee et al., 2021). Thus, exosome-
carried mHTT propagation is thought to be a novel mechanism
for HD pathology, providing a potential therapeutic target for
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alleviating this neurodegenerative disease (Ananbeh et al., 2021)
(Figure 1F).

EXOSOMES AND PRION DISEASES

Prion diseases are a group of neurodegenerative diseases caused
by mutated prions. Prions protein-infecting factors, virulent
prions or infectious proteins, and the cellular prion protein
(PrPc), a cell surface protein encoded by the PRNP gene, is most
abundantly expressed in the nervous system, and its misfolded
isomer PrP (PrPSc) is key to the development of prion diseases
(Ryskalin et al., 2019; Lopez-Perez et al., 2020).

There is plenty of evidence that supports the intercellular
transfer of prion proteins via exosomes (Cheng et al.,
2018). Cellular prion protein (Prpc) regulates cell adhesion
and signaling in the brain (Hartmann et al., 2017). Prpc
binds to dynein, muskelin, and KIF5C in exosomes, while
muskelin coordinates the bidirectional transport of Prpc
between the extracellular space and lysosomes. Accumulation
of Prpc on the neuronal surface and in secretory exosomes
is increased in Muskelin knockout mice. When researchers
injected pathogenic prions into Muskelin knockout mice,
they found that the onset of prion disease was accelerated
(Heisler et al., 2018). On performing miRNA sequencing of
the exosomes released from prion-infected neurons, it was
revealed that the expression of let-7b, let-7i, miR-21, miR-
222, miR-29b, miR-342-3p, and miR-424 were upregulated,
whereas miR-146 expression was downregulated (Bellingham
et al., 2012; Boese et al., 2016). However, biomarkers for
the diagnosis of prion diseases need to be explored further
(Figure 1G).

EXOSOMES AND CEREBROVASCULAR
DISEASES

Cerebrovascular diseases are divided into cerebral hemorrhagic
diseases and cerebral ischemic diseases according to their
pathogenesis. Stroke is a cerebrovascular disease that is
characterized by a focal neurological deficit due to impaired brain
blood circulation. Energy depletion and a hypoxic state after
stroke can lead to neuronal damage, which activates resident
glial cells and promotes the invasion of peripheral immune cells
into the ischemic area of the brain; these immune cells can
further necrotize neurons and exacerbate ischemic brain injury,
and likewise promote neuronal repair, differentiation, and neural
regeneration (Wang et al., 2020a; Xing and Bai, 2020).

The non-coding RNA in exosomes of stroke patients show
significant changes. The level of lnc-CRKL-2 and lnc-NTRK3-
4 in the serum exosomes of patients with acute minor stroke
are increased, while those of RPS6KA2-AS1 and lnc-CALM1-
7 are decreased (Xu et al., 2020). Studies have identified
important roles for miRNAs in anti-angiogenic mechanisms
and cerebrovascular disease (Xin et al., 2017). Some researchers
sequenced the blood exosomes from patients with intracranial
atherosclerotic disease (associated with high susceptibility to
strokes) who did not respond to intensive medical management

and found the specific expression of 10 miRNAs, including miR-
122-5p, miR-192-5p, and miR-27b-3p. These miRNAs have the
potential to be molecular markers for cerebrovascular diseases
(Jiang et al., 2019).

Increasing evidence shows that exosomes can play a
therapeutic role in stroke (Mirzaei H. et al., 2018; Jafarzadeh-
Esfehani et al., 2020; Rahmani et al., 2020). ADEs can mitigate
neuronal damage inmice by inhibiting the autophagy of neurons,
suggesting that these exosomes can alleviate ischemic stroke
(Pei et al., 2019). A similar study revealed that exosomes
from MSCs can alleviate the inflammation of astrocytes
stimulated by lipopolysaccharides (LPS) in mice, and exosomes
can also mitigate LPS-induced abnormal calcium signaling
and mitochondrial dysfunction (Xian et al., 2019). Exosomes
from BMSCs with high expression of the chemokine receptor
CXCR4 promote proliferation and angiogenesis of microvascular
endothelial cells in rats with stroke and exert anti-apoptotic
effects via theWnt-3a/β-linked protein pathway (Li et al., 2020b).

Increasing number of miRNAs therapeutic targets have
been discovered in exosomes. Researchers have attempted
to treat stroke by improving the hypoxic state of neuronal
cells, promoting vascular regeneration, and modulating the
inflammatory response (Chamorro et al., 2021). A recent
study has uncovered that exosomes derived from mouse
brain vascular endothelial cells can deliver higher levels of
miR-126 that can be used to treat mice stroke models
with type 2 diabetes, and ease their cognitive function and
inflammatory response (Rahmani et al., 2020). Additionally,
endothelium-derived exosomes containing miR-126 enrichment
are more therapeutically effective than exosomes without miR-
126 enrichment (Venkat et al., 2019; Ueno et al., 2020). The
exosomes produced by astrocytes carry miR-190b and inhibit
the autophagy of nerve cells (from the mouse hippocampus)
that are deprived of oxygen and glucose by targeting Atg7
(Pei et al., 2020). In an in vitro experiment, the targeting of
transient receptor potential melastatin 7 resulted in ADSC-
derived exosomal miR-181b-5p inducing an increase in the levels
of hypoxia-inducible factor 1α and VEGF, while decreasing the
protein expression of the tissue inhibitor of metalloproteinase
3, thereby improving angiogenesis (Yang et al., 2018). BMSCs
secrete exosomes loaded with miR-134 that targets caspase-
8 to prevent rat oligodendrocyte apoptosis in vitro, and it
might be a new potential therapeutic target for the treatment
of ischemic stroke (Xiao et al., 2018). Exosomes derived from
human urine-derived stem cells carry miR-26a (Ling et al.,
2020). Researchers injected them into the vein of mice stroke
models and found that they can promote functional recovery
of stroke by inhibiting histone deacetylase 6 via miR-26a (Ling
et al., 2020). Secretion of exosomes in multipotent mesenchymal
stromal cells transfected withmiR-17-92 enhances axonal-myelin
remodeling and electrophysiological recovery in mice when
injected intravenously, probably due to the downregulation
of PTEN by miR-17-92 leading to the activation of the
PI3K/Akt/mTOR pathway (Xin et al., 2021) (Figure 1H).

A few studies have attempted to treat an animal stroke
model using manually assembled exosomes. They constructed
RVG-exosomes loaded with HMGBM1 (high-mobility group
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box 1) -siRNA and delivered them into the ischemic brain
of animal models by intravenous administration. This method
could alleviate the inflammation associated with stroke (Kim
et al., 2019). The use of macrophage-derived exosomes to deliver
edaravone makes it easier to reach ischemic sites. Furthermore,
the use of exosomes to deliver edaravone significantly increases
its bioavailability, prolongs its half-life, and enhances its original
therapeutic effects (Li F. et al., 2020).

EXOSOMES AND TRAUMATIC BRAIN
INJURY

Traumatic brain injury (TBI), also referred to as brain injury or
head injury, is a kind of brain tissue damage caused by trauma
(Beard et al., 2020).

In recent years, the changes in the exosomal content during
the development of disease in patients with TBI have been
extensively studied. Brain-injury biomarkers were detected in
the CSF exosomes of patients with TBI, such as αII-spectrin
breakdown products (BDPs), glial fibrillary acidic protein and
its BDPs, ubiquitin C-terminal hydrolase-L1, synaptophysin,
and Alix (Manek et al., 2018). This study found that after the
occurrence of TBI, changes in the levels of exosomes and their
markers in the plasma or CSF does not just diagnose TBI but
also stages patients with TBI (Beard et al., 2020; Peltz et al.,
2020). In patients with mild TBI (mTBI), the concentration of
neuron-derived exosomes in the plasma is reduced by 45% in
the acute phase but not in the chronic phase, and the elevation
of neuropathological proteins in these exosomes depicts phase-
specificity (Peltz et al., 2020). This study suggested that exosomal
proteins differed during different periods of TBI (Goetzl et al.,
2019). An updated study on exosomes from 195 army veterans
showed that compared to controls without TBI, the number of
times the veteran was subjected to mTBI correlated with the NfL
levels in plasma exosomes. An increase in the number of years
since the most recent trauma was correlated with higher plasma
exosomal NfL levels, and an increase in the number of years since
the first trauma was also correlated with higher plasma exosomal
NfL levels. Therefore, NfL level in plasma exosomes can act as a
prognostic biomarker for remote symptoms after mTBI (Guedes
et al., 2020).

Some exosomal miRNAs play a protective role in TBI
(Zhang et al., 2021). Microglial exosomes with upregulated
miR-124-3p can improve the neurodegeneration after repetitive
mTBI. Microglia have a dual role in the inflammatory
response after TBI, inducing a rapid shift from M1 to M2
microglia after the start of the recovery process or promoting
microglia M2 polarization, which can suppress the brain
inflammatory response and improve neuroprognosis. Microglia
exhibited M1 pro-inflammatory phenotype and M2 anti-
inflammatory phenotype. miRNA microarray analysis revealed
that the expression level of miR-124-3p was most significantly
increased. In the TBI mouse model, exosomal miR-124-
3p levels gradually increased from the acute to chronic
phase. The upregulated exosomal miR-124-3p derived from
microglial cells improved the neurodegeneration after repetitive
mTBI, promoted microglia anti-inflammatory M2 polarization,

inhibited neuronal inflammation, and promoted axonal growth
by targeting Rela, which is an inhibitory transcription factor
for apolipoprotein E (ApoE) (Huang S. et al., 2018; Li et al.,
2019). Exosomal miR-124-3p has been considered a potential
treatment option for TBI, and various studies have explored
its therapeutic effects (Ge et al., 2020). Recent studies proved
that miR-21-5p containing exosomes secreted by neurons
mitigate neuroinflammation after TBI by boosting microglial M2
polarization (Yin et al., 2020). miR-873a-5p carried by ADEs
inhibits neuroinflammation by inhibiting the NF-κB signaling
pathway of neurons after TBI (Long et al., 2020). Researchers
co-cultured exosomes from microglia with artificially stretched
neurons in vitro, while in vivo exosomes were administered into
the tail vein of mice that had undergone fluid shock damage. The
results showed that exosomes from the microglia were absorbed,
the dendritic complexity of exosome-treated injured neurons
was reduced in vivo and in vitro, motor function in mice was
improved, and the protein levels of GAP43, PSD-95, GluR1, and
synaptophysin were reduced in the neurons in vitro. However,
exosomes produced by the stretch-injured microglia were found
to impair motor coordination in TBI mice, which was largely
associated with decreased miR-5121 in the exosomes (Zhao et al.,
2021).

Meanwhile, the nucleic acids and proteins carried by
exosomes can enter the BBB to exert therapeutic effects (Andjus
et al., 2020). Damage to the BBB by TBI can be repaired by
exosomes derived from human umbilical cord blood-derived
endothelial colony-forming cells. These exosomes can also
promote the migration of tissue-resident endothelial cells and
reduce PTEN expression in endothelial cells incubated under
hypoxic conditions, as well as increase AKT phosphorylation
and tight junction protein expression (Gao et al., 2018). The
exosomes of ADSCs contain MALAT1, a long-chain non-
coding RNA, which is required for regulating the cell cycle,
cell death, regenerative molecular pathways, and expression of
snoRNAs, and is capable of significantly restoring the motor
function in mice and reducing cortical brain damage (Patel
et al., 2018). ADEs contain GJA1 (gap junction Alpha 1)-20k
which they deliver to TBI neurons, thereby decreasing the
apoptosis rate, increasingmitochondrial function, and alleviating
neuron damage (Chen et al., 2019a). Swine models of TBI that
were administered early single-dose exosomes shed from human
MSCs showed reduced brain swelling, decreased lesion size, and
improved BBB integrity (Williams et al., 2020).

Researchers have utilized modified exosomes to alleviate the
symptoms of TBI. Exosomes incorporating plasmids expressing
Bcl-2 and Bax shRNA (which can cause Bcl-2 overexpression and
inhibit Bax expression) can reduce the levels of Mcl-1, XIAP, and
survivin proteins in the brain and release cytochrome C from
the mitochondria. Meanwhile, they can also reduce the damage
to miniature excitatory postsynaptic current in mice and LTP
after TBI, and enhance the motor and cognitive behavior of mice
(Wang and Han, 2019) (Figure 1I).

In short, there is sufficient evidence to assert the therapeutic
role of exosomes in stroke and TBI. However, before practical
clinical applications, the mechanisms by which the exosomes
participate in treatment and their exact contents need to
be further elucidated. Multiple exosome-related human trials
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related to the use of exosomes for transporting drugs in stroke
models should be performed in the future.

EXOSOMES AND MENTAL DISEASE

Depression, schizophrenia (SCZ), bipolar disorder (BD), autism,
etc. comprise the mental diseases discussed in this section.

Intravenous injection of blood exosomes from patients with
major depression into the tail of healthy mice causes them to
show depression-like behaviors. It has been shown that this effect
is mediated by hsa-miR-139-5p (which decreases hippocampal
neurogenesis) in the exosomes (Wei et al., 2020). Exosomal miR-
207 derived from natural killer cells alleviates the symptoms
of depression in mice by targeting the TLR4 interaction with
leucine-rich repeats and decreasing NF-κB signaling of astrocytes
(Li D. et al., 2020). In one study, brain-derived neurotrophic
factor (BDNF) in the serum exosomes of the experimental
group (patients with major depression) was significantly reduced
compared to healthy controls; however, after 7 weeks of
antidepressant treatment, BDNF in the serum exosomes of
patients in the experimental group was not significantly different
from that in healthy controls. Contrastingly, pro-BDNF was
higher in the experimental group compared to the control
group before treatment, but was not significantly different
after treatment. This study suggests that BDNF may be an
effective biomarker for the treatment of depression (Gelle
et al., 2021). Compared to healthy controls, the number
of L1CAM rich exosomes was increased in patients with
major depressive disorder (MDD), and these patients had
increased concentrations of insulin receptor substrate −1 (IRS-
1) in L1CAM+ exosomes, which is associated with suicidality
and anhedonia. Sex differences were observed in serine-312
phosphorylation of IRS-1 in L1CAM+ exosomes of patients
with MDD. These findings may provide a basis for the effective
treatment of MDD (Nasca et al., 2020).

The miRNA sequencing of plasma exosomes from BD
patients and healthy individuals identified 13 abnormal miRNAs.
Among them, the level of miR-484, miR-652-3p, and miR-
142-3p were significantly decreased, while that of miR-185-
5p was significantly increased (Ceylan et al., 2020). On
transplanting exosomes secreted by human BMSCs into the
lateral ventricles of BTBR mice, their autism-like behavior was
reported to be attenuated. These exosomes were found to
be capable of ameliorating the symptoms of autism spectrum
disorder effectively by nasal injection (Perets et al., 2018). The
Shank3B knockout model of autism was treated by intranasal
administration of exosomes secreted from MSCs, and after 3
weeks of treatment, it was found that the mice had improved
social behavior, increased vocalization, and reduced repetitive
behaviors (Perets et al., 2020). This finding may be useful in
patients with Shank3B-deficient autism (Perets et al., 2020).
Additionally, miR-206, which suppresses the expression of BDNF
mRNA and protein, and is used as a latent biomarker for SCZ,
was found to be significantly up-regulated in the blood exosomes
of patients with SCZ (Du et al., 2019).

Despite numerous studies on the mechanisms of these
mental diseases, few have investigated the role of exosomes
in depth.

EXOSOMES AND EPILEPSY

Epilepsy is a chronic disease in which sudden abnormal
discharges of neurons in the brain lead to transient brain
dysfunction (Perucca et al., 2020).

Researchers have found that 42 exosomal miRNAs are
differentially expressed in patients with mesial temporal lobe
epilepsy with hippocampal sclerosis. Among them, hsa-miR-129-
5p,−214-3p,−219a-5p, and−34c-5p are increased, while hsa-
miR-421 and−184 are decreased. These aberrantly expressed
miRNAs can be used as potential targets for disease diagnosis
and treatment (Chen S. D. et al., 2020; Huang et al., 2020).
Measurement of proteins in serum exosomes from patients
with epilepsy revealed that coagulation factor IX (F9) and
thrombospondin-1 represent potential new markers for the
diagnosis of epilepsy (Lin et al., 2020). This was the first time
that exosomal proteins have been measured in epileptic patients,
and conducting further exosomal studies in the field of epilepsy
is essential (Lin et al., 2020) (Figure 1J).

EXOSOMES AND MENINGITIS

Meningitis, which is caused by multiple biological pathogenic
factors invading the pia mater and spinal membranes, is
considered a diffuse inflammation of the meninges. Long-term
sequelae comprise the primary concern during the treatment of
this disease.

Researchers have shown that proteins that take part in the
immune response and exosome signal transduction are enriched
in the CSF of patients with streptococcal meningitis, supporting
the potential role of exosomes in the progression of meningitis.
Exosomes can potentially provide a non-invasive and accurate
method for detecting variations in the central nervous system
after meningitis, and guide optimal treatment. However, little
relevant research has been undertaken thus far in this area
(Gomez-Baena et al., 2017).

FUTURE PERSPECTIVES

Exosomes are inextricably linked to the progression of nervous
system disease, as they can convey pathological proteins to
various neurons and accelerate the progression of disease.
Exosomes are also involved in the self-rescue of neurons, and
neurons can remove detrimental substances by the secretion of
exosomes. Nevertheless, whether exosomes allow neurons to save
themselves or transmit proteins to other neurons to resulting in
more serious consequences, needs to be explored further.

Exosomes have been used as a diagnostic and treatment
tool in animal experiments. Due to their ability to reflect the
course of the disease, exosomes in the blood, CSF, urine, and
saliva, which contain diverse biomarkers, are convenient and
non-invasive tools for the early detection of diseases as well as
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for developing therapeutic strategies. Recent studies have shown
that Aβ42, T-tau, and P-T181-tau in blood exosomes can be
used to diagnose AD and amnestic mild cognitive impairment
(Jia et al., 2019). Exosomes can also serve as carriers for drug
delivery, and some studies havemodified their surface to improve
their targeting ability, which enables better drug absorption
compared to the traditional routes of administration. Compared
to a direct injection of MSCs, exosomes can pass through the
BBB and minimize immune rejection, leading to improved drug
absorption and treatment in patients with AD or PD (Jin et al.,
2021).

However, there are some problems that need to be
conclusively resolved in this field. Although exosomes
transporting drugs were found to be fully absorbed by the
target cells in vitro and achieved the desired results, whether
this effect is the same in vivo, and is not associated with any
side-effects, is an issue that still needs further exploration.
The artificial synthesis of exosome-like nanovesicles with
the retention of the key exosome molecules can help avoid
the disadvantages mentioned above and make better use of
exosomes; moreover, this has become a research hotspot (Lu and
Huang, 2020). Furthermore, the modification of the exosome
surface to increase its targeting ability and the construction
of a better exosome separation and purification system have
also been attracting research interest recently. Furthermore,
prior to using the cargo carried by exosomes as biomarkers for
clinical diagnosis, we require more supporting data with higher
accuracy. Beyond this, the relationship between the abnormal

rise or decline of biomarkers and disease progression needs
further study, and it is hoped that exosomes can provide a
foundation for clinical staging of certain diseases.
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