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INTRODUCTION

The Neurotropism of the SARS-CoV-2
The coronavirus disease (COVID)-19, caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), was initially regarded as a specific lung disease. In the course of pandemic
evidence for extrapulmonary manifestations has mounted. In particular, neurologic symptoms
include anosmia and ageusia, encephalitis, seizures, stroke, confusion and delirium (Desforges
et al., 2019; Asadi-Pooya and Simani, 2020; Vaira et al., 2020; Deng et al., 2021; Hugon et al., 2021).
Neurological and psychiatric also accompany long-lasting complications of the disease, occurring
in patients during the first 6 months after viral infection, while the risk for such sequelae seems
to be greatest in case of severe COVID-19 (Fernandez-de-Las-Penas, 2021; Taquet et al., 2021). It
has been proposed that the human immune response induced by SARS-CoV-2 develops in two
phases. The constitutive adaptive immune response is mobilised at the beginning of the disease
confronting actively replicating virus (Shi et al., 2020). A second phase, that occurs in severe cases
of COVID-19, is defined as severe acute respiratory distress syndrome (ARDS), characterised by the
hyperactivation of the immune system, commonly referred to as “cytokine storm,” with a massive
systemic release of proinflammatory mediators, cytokines, and chemokines (Polidoro et al., 2020).
This hyperactive immune response and the subsequent cytokine load are now considered among
major pathophysiological hallmarks in COVID-19 patients (Abdin et al., 2020). Their impact upon
organs, brain including, contributes to the multi-system pathology observed in patients (Gerges
Harb et al., 2020; Moore and June, 2020).

Similarly to other members of the group 2 of the β-coronavirus family, SARS-CoV-2 can
enter and infest the central nervous system (CNS) (Lau et al., 2004; Bergmann et al., 2006;
Steardo et al., 2020a; Zhou et al., 2020). The most studied and acknowledged route for viral
entry is through binding to the angiotensin-converting enzyme 2 (ACE2), expressed in the
CNS, mostly by endothelial cells, but also found in neurones and neuroglia (Zeisel et al., 2015;
Gowrisankar and Clark, 2016; Nemoto et al., 2020). Consistent with the frequent alterations
of smell and taste perception reported in COVID-19, SARS-CoV-2 is thought to invade
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the olfactory system and spread to the brain stem, possibly
compromising the respiratory centres (Giacomelli et al., 2020;
Lechien et al., 2020; Spinato et al., 2020; Wolfel et al.,
2020). The virus could penetrate also through the median
eminence, where endotheliocytes and tanycytes express ACE2,
thus reaching the hypothalamus (Satarker and Nampoothiri,
2020), and from there spreading to the entire brain. Another
possible route is the infiltration of immune cells carrying
the virus into the brain [a “viral reservoir” (Iadecola et al.,
2020; Tavcar et al., 2021)]. Vessels, meninges, and the
choroid plexus have been proposed to act as entry points
for infected monocytes, neutrophils, and T cells (Merad and
Martin, 2020). However, conclusive evidence of infection
through this route is yet to be provided. Lastly, a leaky or
dysfunctional blood-brain barrier (BBB) could facilitate the
entry of the virus, as seen for other infections (Cisneros
and Ghorpade, 2012). Systemic inflammation damages glia
limitans and the BBB, thus the hyperreactive immune response
triggered by SARS-CoV-2 could compromise the integrity of
the BBB (Valenza et al., 2020). Moreover, comorbidities often
associated with severe COVID-19, e.g., CNS hypoxia due
to respiratory failure, thrombotic microangiopathy, or pre-
existing neurological diseases, could have already altered the
BBB permeability facilitating SARS-CoV-2 invasion of the brain
(Erickson et al., 2021).

Astrocytes Response to Viral Infections,
Including SARS-CoV-2
Any insult to the CNS, including viruses, triggers glial reactivity
(Verkhratsky et al., 2017; Zorec et al., 2019; Escartin et al.,
2021) aimed at restoring the lost homeostasis. At the same
time, during viral infections, astrocytes and microglia may also
become long-term viral reservoirs in the absence of efficient
innate immune-mediated clearance. Viruses-induced rise in IL-
1β and TNF-α may change astrocyte metabolism, thus impairing
neuronal energy support (Gavillet et al., 2008; Soung and
Klein, 2018). In human immunodeficiency virus (HIV) infection,
reactive astrocytes overproduce cytokines and chemokines able
to reduce viral replication (Zhou et al., 2004; Li et al., 2011).
Broad hyperplasia of glial cells, with necrosis of neurones, and
encephalic oedema have been reported in a SARS-CoV-1 patient
(Xu et al., 2005). Several case reports indicate that SARS-CoV-
2 affects astrocytes. A rise in the glial fibrillary acidic protein
(GFAP), commonly regarded as a marker of astrocyte reactivity,
was found in the white matter of a COVID-19 patient with
encephalomyelitis-like brain damage (Reichard et al., 2020).
Plasma levels of GFAP were elevated in moderate/severe stages of
COVID-19 suggesting that astrogliosis is an early CNS response
to SARS-CoV-2 infection (Kanberg et al., 2020). In a COVID-19-
related acute necrotising encephalopathy, 19 days after the onset
of symptoms and even after testing negative twice for COVID-19,
the SARS-CoV-2 was detected in the CSF together with extremely
high levels of both the neurofilament light-chain protein (NfL),
a biomarker predictive of intra-axonal neuronal injury, and
GFAP (Virhammar et al., 2020). These clinical data indicate

that astrocytes enter a reactive state in COVID-19 patients.
Moreover, the damage to the BBB and the strong lymphopenia
observed during COVID-19 could promote the persistence of
the virus into the brain, thus sustaining neuroinflammation and
reactive gliosis. The resulting brain tissue alteration could explain
some of the clinical features observed in COVID-19 patients
who, despite resolved pneumonia, present cognitive impairments
associated with behavioural changes (Sasannejad et al., 2019;
Steardo et al., 2020b, 2021; Tremblay et al., 2020; Boldrini et al.,
2021).

COVID-19 During Pregnancy
Pregnant women are considered at high risk to develop
severe COVID-19, despite case reports indicate that the
disease severity is similar to the general population (Mullins
et al., 2020; Rasmussen et al., 2020; Zaigham and Andersson,
2020). Infections with SARS-CoV-2 during pregnancy have
been associated with preterm delivery, intrauterine growth
retardation, and perinatal deaths (Diriba et al., 2020; Huntley
et al., 2020; Woodworth et al., 2020; Bellos et al., 2021). A
retrospective study shows that SARS-CoV-2 infection during
pregnancy is not associated with an increased risk of spontaneous
abortion and spontaneous preterm birth (Yan et al., 2020).
Studies reported zero to very low rate of vertical transmission
from the mother to the foetus. Some case reports highlighted
the presence of both M and G immunoglobulins against SARS-
CoV-2 at birth in three neonates whose mothers presented with
COVID-19 23 days before delivery (Dong et al., 2020; Zeng
et al., 2020). In a cohort of 64 pregnant women who tested
positive for SARS-CoV-2, 12 had severe to critical COVID-
19, but neither placental infection nor vertical transmission
occurred (Edlow et al., 2020). In contrast, one case of
SARS-CoV-2 transplacental transmission has been reported, in
which both the placental tissue and the amniotic fluid were
positive as maternal and neonatal blood samples. Of note,
mother’s infection occurred at the last weeks of gestation
(Vivanti et al., 2020).

COVID-19 and Neuropsychiatric Sequelae:
Focus on Autism Spectrum Disorders
Epidemiologic data correlate maternal infections with several
neuropsychiatric disorders, including autism spectrum
disorders (ASD) (Minakova and Warner, 2018). Autism
and ASD are terms indistinctively used to define a group
of heterogeneous neurodevelopmental disorders affecting
about 1% of the world’s population (Elsabbagh et al.,
2012; Ilieva and Lau, 2020). Precise aetiology of ASD is
still unknown. Both genetic and environmental factors are
thought to contribute, including an increase of inflammatory
cytokines, abnormal immune responses, and the presence of
autoantibodies (Ormstad et al., 2018; Mazon-Cabrera et al.,
2019). Some of these features are in common with those
considered risk factors for severe COVID-19. Therefore,
some authors have speculated that ASD could be a risk
factor for SARS-CoV-2 infection and COVID-19 outcome
(Lima et al., 2020; Brown et al., 2021).
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FIGURE 1 | Key facts on SARS-CoV-2 infection and COVID-19 pandemic (upper panel). Key facts on ASD (middle panel). Hypothesis (lower panel):

COVID-19-induced hyperreactive immune response in pregnant women could trigger astroglia reactivity in the baby’s brain, altering its development and favouring

neurodevelopment disorders, including ASD.
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Numerous environmental factors are thought to increase the
risk for ASD, as neurotoxins, air pollutants, and drugs (Riley
and McGee, 2005; Grandjean and Landrigan, 2006; Brown,
2012; Krakowiak et al., 2012; Saxena et al., 2020) as well
as perinatal infections (Hornig and Lipkin, 2001). Evidence
supporting a link between infection during pregnancy and
ASD incidence is increasing (Bilbo et al., 2018). A two-fold
increase of ASD has been documented following maternal
infection with influenza virus, but not with common infections,
such as cystitis or genital herpes (Atladottir et al., 2012;
Croen et al., 2019). Maternal diagnosis of viral or bacterial
infection, regardless of the timing of the infection during
pregnancy, has been associated with approximately a 30%
increase in ASD risk for their children (Lee et al., 2015).
Thus, some authors suggested that prenatal viral infection
could represent the principal non-genetic cause of autism
(Ciaranello and Ciaranello, 1995; Depino, 2018). To date,
there is no evidence documenting a causal link between
COVID-19 and ASD. However, this neurodevelopmental disease
could be diagnosed few years after birth, thus upcoming
reports could provide data for ASD incidence in SARS-CoV-2
infected mothers.

Reactive Astrocytes in the Foetal Brain:
Possible Link to Autism Spectrum
Disorders?
Despite the lack of evidence, a link between maternal SARS-
CoV-2 infection and ASD can be speculated. It is well
known that the perinatal environment markedly affects brain
development and function, and, for this reason, some of
the cellular and molecular alterations caused by SARS-CoV-2
could hypothetically promote ASD (Figure 1) (Steinman, 2020a;
Rasile et al., 2021). Above all, the activation of the maternal
immune system with the subsequent exposure of the foetus to
high levels of cytokines, chemokines, and other mediators of
inflammation through maternal serum, placenta, and amniotic
fluid may impact on the brain (Knuesel et al., 2014). Foetal
exposure to infections is accompanied by modifications in the
expression of proinflammatory mediators, reactive gliosis and
altered expression of genes involved in brain development, all
previously linked with ASD (Pardo and Eberhart, 2007; Li et al.,
2009; Zeidan-Chulia et al., 2014; Liao et al., 2020). Among
several cytokines, IL-6 has attracted much attention mainly
because it is elevated in cases of complicated forms of COVID-
19 and correlates with adverse clinical outcomes (Chen et al.,
2020; Zhu et al., 2020). Incidentally, IL-6 plays a key role
also in ASD. Data correlated the in utero exposure to IL-6
and ASD-related features (Smith et al., 2007). Increased IL-6
levels were detected in the brains of ASD patients compared
with controls subjects (Li et al., 2009). An increase in IL-6
placental levels was found to negatively correlate with insulin-
like growth factor 1 (IGF-1) (Patterson, 2009). This is relevant
to ASD since autistic children below four years old show lower
concentrations of IGF-1 than age-matched controls (Riikonen
et al., 2006). IGF-1 participates in several physiologically relevant

neuroprotective mechanisms and exerts significant effects on
foetal and perinatal brain growth, including neurogenesis
and synaptogenesis (Steinman, 2020b). The hyperactivation of
systemic immune response and specifically the increase in
circulating IL-6 in a mother infected by SARS-CoV-2 could
expose the foetus to an aberrant inflammatory environment,
which is deleterious for the developing brain. As we mentioned
before, SARS-CoV-2 triggers astrogliosis and microgliosis
fostering remodelling of brain circuits through the synthesis
and release of numerous mediators. Compromised glial activity
coupled with a predisposing genetic background has been
proposed to contribute to ASD pathogenesis (Zeidan-Chulia
et al., 2014; Petrelli et al., 2016). Furthermore, studies on animal
models are consistent with human observations demonstrating
astrocyte abnormalities in ASD (Boldrini et al., 2018; Scuderi and
Verkhratsky, 2020). For instance, some of the genes contributing
to brain development and conferring susceptibility to ASD are
highly expressed in astrocytes (Stogsdill et al., 2017; Sakers and
Eroglu, 2019). Post-mortem brain samples of ASD subjects show
abnormal levels of cytokines and chemokines together with signs
of astrogliosis and microgliosis (Liao et al., 2020). Given the role
of glia in regulating synaptic activity, a sustained presence of
reactive glia could explain the region-specific altered connectivity
seen in ASD patients, as well as their cognitive and behavioural
traits (Just et al., 2007; Assaf et al., 2010; Supekar et al., 2013).

CONCLUSIONS

Although COVID-19 and ASD differ in their aetiology and
pathobiology, they share a single common feature: both are
associated with the aberrant activation of the immune system
and establishment of a pro-inflammatory environment. Growing
evidence indicates the role of glial cells in both pathologies. The
involvement of glia in the neurological consequences of COVID-
19 has recently been documented, whereas the neuropathological
potential of glia in ASD is established. No data are available
yet on the consequences of foetal exposure to SARS-CoV-2
infection. However, coronaviruses, like SARS-CoV-2, have the
potential to provoke adverse maternal or perinatal outcomes.
Generally, maternal infection and fever during pregnancy double
the risk of ASD in infants. Foetal exposure to infections
is accompanied by an increased expression of markers of
glia reactivity and proinflammatory mediators as well as an
altered expression of genes involved in brain development.
Therefore, at least hypothetically, SARS-CoV-2 infection may
impair the baby’s brain development by boosting cytokines
circulation in the pregnant mother, potentially increasing the
risk for ASD. The reactivity of neuroglia and in particular
of astrocytes could mediate these adverse effects on the
foetal brain.

The validity of this hypothesis is yet impossible to confirm
because of the scarcity of data, and yet it is crucial to monitor
babies born from mothers who suffered from COVID-19 during
pregnancy, for the potential risk for ASD as well as other
neurodevelopment pathologies.
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