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Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components
of the auditory system. However, they are vulnerable to genetic defects, noise exposure,
ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent
hearing loss due to their limited capacity for spontaneous regeneration in mammals.
Many efforts have been made to combat hearing loss including cochlear implants, HC
regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy
in sensorineural hearing loss and the potential targets related to autophagy for the
treatment of hearing loss.
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INTRODUCTION

According to the World Health Organization (WHO, 2021), about 5% of the world’s population
(or 430 million people) suffer from hearing impairment, and it is expected that the number of
people with disabling hearing loss will be around 700 million by 2050. Hearing loss is not only a
physical and financial burden in social life, but also causes psychological problems and psychiatric
disorders, including cognitive decline and depression (Strawbridge et al., 2000; Steffens et al., 20065
Lin et al., 2013). Indeed, hearing loss has become a serious threat to global population health and
economic development.

Genetic alterations, noise, ototoxic drugs, and aging can all contribute to hearing loss.
Although the causes vary, the most common causes of deafness are damage or loss of
hair cells (HCs) and degeneration of spiral ganglion neurons (SGNs). HCs are responsible
for converting external sound signals into electrical signals that are transmitted to the
brainstem through SGNs (Groves and Fekete, 2012). Recent studies have shown that these sensory
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cells cannot spontaneously regenerate in adult mammals
(Stone et al., 1998; Brigande and Heller, 2009; Cox et al., 2014),
so damage or loss of HCs and degeneration of SGNs can result
in permanent deafness.

Cochlear implants offer strategies to mitigate hearing loss, but
their effectiveness has been reported to be highly correlated with
the remaining HCs and SGNs in the cochlea. Efforts have been
made to protect HCs and SGNs against noise or ototoxic drugs-
induced death, and N-acetylcysteine and neurotrophins have
been shown to prevent HC death and SGN degeneration to some
extent (Aladag et al., 2016; Chen et al., 2018; Wu et al., 2020).
Recently, autophagy has been reported to play an antioxidative
role in preventing sensorineural hearing loss (SNHL) (Ye et al.,
2019a). In this review, we present the role of autophagy in
hearing loss induced by noise exposure, ototoxic drugs and aging,
and describe the molecules and signaling pathways involved in
autophagy in the inner ear.

THE MECHANISM AND PROCESS OF
AUTOPHAGY

Autophagy is a highly conserved degradation system in
eukaryotic cells that maintains cellular homeostasis, and
autophagy can be induced by nutrient deficiency and
reactive oxygen species (ROS) accumulation (Mizushima,
2007; Eskelinen, 2019). Through the autophagy pathway,
damaged cytoplasmic components are absorbed and transferred
to lysosomes, where they are degraded and recycled. There are
three main types of autophagy, the most common form being
macroautophagy, which is the form generally being referred to
by the term “autophagy.” In this process, bilayer organelles called
autophagosomes carry cytoplasmic products to lysosomes for
degradation (Mizushima, 2007; Mizushima and Komatsu, 2011).
This dynamic process generally comprises the following four
steps: first is the initiation of autophagy through the envelopment
of the cytosolic contents within phagophores; second is the
formation of the autophagosome, which is a double-membrane
vesicle; third is the fusion of autophagosomes with lysosomes
to form autolysosomes; and fourth is the degradation of the
contents of the autolysosomes (Feng et al., 2014). The second
form is microautophagy, in which the cytoplasmic contents
enter the lysosome through direct invagination or through
deformation of the lysosomal membrane (Li et al., 2012). The
third form is molecular chaperone-mediated autophagy, which is
a highly specific process in which proteins containing a KFERQ
motif are recognized and transported to the lysosomal membrane
(Kaushik and Cuervo, 2018; Yang et al., 2019).

The biogenesis of autophagy requires many autophagy-related
(ATG) proteins. So far more than 30 ATGs have been shown to be
involved in the initiation and maturation of autophagy (Klionsky
et al., 2003; Xie and Klionsky, 2007; Mizushima et al., 2011;
Wesselborg and Stork, 2015), and the ATGs that are required
for autophagosome formation are divided into several functional
units. The autophagy-related 2 (ATG1)-Unc51-like kinase (ULK)
complex (ULK1) plays a vital role during the initiation stage, and
because this complex is negatively regulated by mammalian target

of rapamycin complex 1 (mTORC1) (Noda and Ohsumi, 1998;
Kamada et al., 2010), the inactivation of mMTORCI by rapamycin
stimulates autophagy. Alternatively, the activation of autophagy
can also be regulated by AMP-activated protein kinase (AMPK)
(Kim et al., 2011; Li and Chen, 2019). The phosphatidylinositol 3-
kinase complex (PI3KC), which is activated by ULK1, participates
in the formation of autophagic vesicle membranes. ATG9 is
the only known transmembrane protein shown to be involved
in the delivery of membrane particles to form autophagosomes
(Noda et al., 2000; Webber and Tooze, 2010). During the
maturation stage, two ubiquitin-like conjugation systems, the
ATG5-ATGI2 system and the LC3-PE system, play vital roles in
the elongation of autophagosomes (Geng and Klionsky, 2008).
After the autophagosome is encapsulated, the autophagosome
and lysosome fuse to form the autolysosome through the function
of proteins such as SNARE (Itakura et al., 2012).

THE PROTECTIVE EFFECT OF
AUTOPHAGY AGAINST SNHL

Autophagy is responsible for normal cell survival and
homeostasis. A variety of human conditions, such as
neurodegenerative diseases, cancer, and inflammation, have
been reported to be associated with dysregulated autophagic
processes (Levine et al., 2011; White, 2012; Kochergin and
Zakharova, 2016). In the inner ear, many studies have shown
that autophagy played an important role in cell development,
differentiation, and survival (Fujimoto et al., 2017; Magarinos
et al., 2017), and recently there has been renewed interest in
regulating autophagy to prevent SNHL.

Noise and ototoxic drugs increased the levels of oxidative
stress in HCs, which contributed to cell death (Warchol, 2010;
Tabuchi et al., 2011; Sheth et al., 2017; Wu et al., 2020), and in a
mouse model that was exposed to noise, the level of autophagy
was increased in HCs (Xu et al., 2021). It is worth noting that the
oxidative stress level in response to noise was dose dependent,
and moderate noise induced temporary threshold shifts and
increased the level of autophagy in outer hair cells, while severe
noise produced excess ROS that induced permanent threshold
shifts (Yuan et al., 2015). Increasing autophagy with rapamycin
can reduce the accumulation of ROS and prevent cell death
from noise exposure. In contrast, blocking autophagy through
the autophagy inhibitor 3-methyladenine (3-MA) or knocking
down LC3 can increase the accumulation of ROS and promote
cell death (Yuan et al,, 2015). More recently, a study reported
that treatment with FK506 (tacrolimus), a calcineurin inhibitor,
increased autophagy and inhibited ROS and alleviated moderate
noise-induced HC damage and hearing loss (He et al., 2021b).

Ototoxic drugs such as aminoglycoside antibiotics and
cisplatin can also result in HC damage and hearing loss.
He et al. (2017) found that autophagy activity was increased
in neomycin or gentamicin-treated HCs and HEI-OC1 cells.
Treatment with rapamycin increased autophagy activity and
decreased ROS accumulation and apoptosis, while treatment
with 3-MA or knockdown of ATG5 resulted in reduced
autophagy activity and increased ROS levels and apoptosis. Other
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studies also showed that upregulation of autophagy alleviated
cisplatin-induced ototoxicity in HCs (Fang and Xiao, 2014;
Liu et al,, 2019;Liang et al., 2021).

Presbycusis (age-related hearing loss) is a common sensory
disorder associated with aging. The level of autophagy decreased
with age, and the upregulation of autophagy can promote
aging HC survival and slow the degeneration of auditory cells
(Yuan et al., 2018; He et al., 2021a).

Autophagy also exerts a protective effect in SGNs against
ototoxic drug-induced damage. Administration of kanamycin
and furosemide induced HC loss and subsequent SGN
degeneration by impairing autophagic flux and lysosomal
biogenesis, and restoration of autophagy by promoting
transcription factor EB (TFEB) translocation into the nucleus
attenuated SGN degeneration (Ye et al,, 2019b). In cisplatin-
induced SGN damage, activation of autophagy by rapamycin
alleviated SGN apoptosis and hearing loss, and inhibition of
autophagy by 3-MA aggravated the degeneration of SGNs (Liu
et al,, 2021). Thus, autophagy has a protective effect against HC
loss, SGN degeneration and subsequent hearing impairment.

THE PRO-APOPTOTIC EFFECT OF
AUTOPHAGY IN SNHL

Autophagy has a dual function of pro-survival and pro-apoptotic,
which has been demonstrated in many diseases, especially
cancers, and the role of autophagy depends on the developmental
stage and tumor type (Singh et al., 2018). Several reports have
demonstrated the pro-apoptotic role of autophagy in SNHL.
In a model of cisplatin-induced HC damage, exposure to
15 wM cisplatin for 48 h induced excessive autophagy, while co-
treatment of cisplatin with meclofenamic acid, a highly selective
inhibitor of fatmass and obesity-associated enzyme, inhibited
the cisplatin-induced excessive autophagy in HEI-OC1 cells and
reduced oxidative stress and cell apoptosis (Li et al., 2018).
Another study indicated that pretreatment with U0126, an
inhibitor of the ERK1/2 signaling pathway, can reduce the level of
cisplatin-induced autophagy in HEI-OC1 cells and HCs and can
reduce cisplatin-induced ROS and apoptosis (Wang et al., 2021).
Interestingly, a study showed that in cisplatin-treated HEI-OC1
cells, autophagy promoted cell survival in the early phase (during
the first 8 h) of cisplatin treatment, while autophagy induced cell
death in the late phase (Youn et al., 2015).

MITOPHAGY IN SNHL

Autophagy is considered to be a non-selective process in the
degradation of a large number of cytoplasmic components.
However, recent studies have shown that there are many types
of selective autophagy. Some types of selective autophagy have
recently been found in the inner ear, for example, mitophagy
and pexophagy. Defective, excessive, and aged mitochondria
produce toxic byproducts, particularly ROS, and mitophagy
is a specific autophagic process that selectively removes these
redundant or damaged mitochondria in order to reduce ROS

levels and to maintain the normal function of the mitochondria
(Kroemer et al., 2007; Novak, 2012). Mitophagy has been linked
to neurodegenerative diseases, cancer, and aging (Bernardini
et al, 2017; Chu, 2019; Tran and Reddy, 2021). Recent
studies have indicated potential associations between mitophagy
and age-related hearing loss, and in the cochlea of aged
mice, mitophagy was reduced along with decreased expression
of mitophagy-related genes and proteins (Oh et al, 2020;
Youn et al., 2020). Damaged mitochondria were increased in
HCs and SGNs in aged mice, and activation of mitophagy
alleviated cellular senescence by promoting mitochondrial
protein degradation (Kim et al., 2021). The same phenomenon
was observed in carbonyl cyanide m-chlorophenyl hydrazone-
induced cytotoxicity in HEI-OC1 cells and in the organ of
Corti, and the protein level of mitochondrial cytochrome
¢ oxidase subunit 4 was downregulated (Setz et al., 2018).
However, in aminoglycoside-induced HC loss, neither neomycin
nor gentamicin exposure had an impact on the level of
mitophagy, thus suggesting a mitophagy-independent pathway of
aminoglycoside ototoxicity (He et al., 2017; Setz et al., 2018).

PEXOPHAGY IN SNHL

Pexophagy is another selective autophagy pathway, in which
peroxisomes are selectively degraded in vacuoles in response
to environmental stimuli (Farre et al, 2009; Germain and
Kim, 2020). It has been reported that pexophagy was related
to inflammation induced by lipopolysaccharide exposure,
and impaired pexophagy resulted in the accumulation of
impaired peroxisomes and redox disequilibrium (Vasko et al,
2013). Pexophagy was associated with noise-induced HC
damage, overexposure to noise led to an increased level
of peroxisome in HCs and SGNs, and defective pexophagy
led to noise-induced hearing loss (Delmaghani et al., 2015;
Defourny et al., 2019). Pejvakin was a peroxisome-associated
protein that directly recruited LC3B to promote pexophagy in
order to protect cochlear HCs against noise-induced damage
(Defourny et al., 2019).

PROTEINS THAT MODULATE
AUTOPHAGY IN SNHL

A number of molecules have been reported to respond to cell
damage by regulating autophagy. TFEB is a major regulator of
autophagy and lysosomal biogenesis, and phosphorylated TFEB
is inactive and remains in the cytoplasm, while dephosphorylated
TFEB is translocated to the nucleus where it promotes the
transcription of its target genes (Martina et al., 2012; Settembre
et al,, 2012). In kanamycin-induced degenerated SGNs, TFEB
remained in the cytoplasm and the autophagic flux was impaired,
while the mTOR inhibitor temsirolimus (CCI-779) promoted the
translocation of TFEB to the nucleus thus restoring autophagic
flux and ameliorating SGN degeneration (Ye et al, 2019b).
Phosphatase and tensin homolog (PTEN)-induced putative
kinase 1 (PINK1) also shown a protective effect against
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FIGURE 1 | Summary diagram of the role of autophagy in noise, ototoxic drug, and age-induced sensorineural hearing loss. (The picture is created in

BioRender.com).

gentamicin and cisplatin-induced ototoxicity. PINK1 promoted
autophagy and inhibited the P53 pathway in gentamicin-induced
HC damage (Yang et al., 2018b), while in response to cisplatin-
induced HC and SGN damage, PINK1 induced autophagy
and inhibited the JNK signaling pathway (Yang et al., 2018a).
Peroxiredoxin 1 (PRDXI1) also played a protective role in
cisplatin-induced SGN damage by activating autophagy through
the activation of the PTEN-AKT signaling pathway (Liu et al.,
2021). FoxGl1 protected HC and delayed age-related hearing loss
via autophagy making it be used as a strategy to delay age-related
hearing loss (He et al., 2021a).

In addition, some proteins have detrimental effects regarding
ototoxicity. For example, STAT1 is a regulator of cell death
and has been reported to participate in cisplatin-induced HC
damage. Knockdown of STAT1 by siRNA reduced cisplatin-
induced ototoxicity (Kaur et al., 2011), and Levano et al. found
that STAT1 played a role in modulating the autophagy pathway,
with higher levels of autophagy seen in STAT1—/— explants in
response to gentamicin and cisplatin (Levano and Bodmer, 2015).
Thus, different molecules and pathways regulate the occurrence
and development of SNHL in different contexts.

miRNAs RELATED TO AUTOPHAGY IN
SNHL

miRNAs are a class of small endogenous RNAs with a
length of about 21-23 nucleotides, and they play a variety of
important regulatory roles in cells (Rupaimoole and Slack, 2017).

miRNAs are potential therapeutic targets for treating cancer
and other diseases, and miRNAs are also involved in SNHL
(Chen et al., 2019). miR-34a was shown to be associated with
age-related hearing loss in mice and humans (Pang et al., 2016,
2017), and miR-34a was activated with aging and overexpression
of miR-34a significantly decreased the level of ATG9A thus
inhibiting autophagic flux and inducing cell death (Pang et al.,
2017). A considerable number of miRNAs have been found to be
involved in autophagy cascades, such as miR-204, miR-216a, and
miR-375 etc. (Su et al., 2015), but the roles of these miRNAs are
poorly studied in relation to SNHL (Figure 1).

CONCLUSION

There is no doubt that autophagy plays an important role in
SNHL. Although excessive autophagy can lead to cell death under
some conditions, activation of autophagy protects HCs and SGNs
against oxidative stress-induced death. It is important to be clear
that the mechanisms of autophagy are complex and that different
stimuli may lead to activation of different pathways. Though we
have known that some proteins and miRNAs participate in the
autophagic pathways involved in SNHL making them potential
targets for treatment of SNHL, however, the specific signaling
pathways they participate in remain unclear, let alone the known
connections between these proteins and miRNAs. Furthermore,
there are potential proteins and miRNAs whose functions in
SNHL have not yet been identified. Future studies should thus

Frontiers in Cellular Neuroscience | www.frontiersin.org

October 2021 | Volume 15 | Article 760422


http://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Guo et al.

Autophagy in Sensorineural Hearing Loss

further clarify the mechanism of autophagy in response to
different stimuli in order to develop ways to regulate autophagy
and thus protect HCs and SGNs. However, the application
of autophagy as a treatment for deafness is still a long way
off. Current research has been limited to cell lines, explants
and animals, and few clinical trials have examined the role of
autophagy. Given the complexity of mechanisms and functions of
autophagy, the safest and most effective strategies must be studied
in future research.
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