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Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-
rare genetic disease characterized by global hypomyelination and brain atrophy,
caused by mutations in the SLC25A12 gene leading to a reduction in AGC1
activity. In both neuronal precursor cells and oligodendrocytes precursor cells
(NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated
differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic
regulation of gene expression through histone acetylation plays a crucial role in the
proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial
metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered
expression of transcription factors involved in the proliferation/differentiation of brain
precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel
alteration in the expression and activity of histone acetyltransferases (HATs) and
histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have
been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs
(neurospheres), in physiological conditions and following pharmacological treatments.
The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their
differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has
only a limited effect on proliferation, but it significantly stimulates the differentiation
of OPCs. In NPCs, both treatments determine an alteration in the commitment
toward glial cells. These data contribute to clarifying the molecular and epigenetic
mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will
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help to identify potential targets for new therapeutic approaches that are able to
increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and
to myelination/remyelination processes in AGC1 deficiency, as well as in other white
matter neuropathologies.

Keywords: white matter disorder, mitochondria, epigenetics, oligodendrocytes, neurons,
SLC25A12/aralar1/AGC1 deficiency

INTRODUCTION

Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1)
deficiency (DEE39; OMIM #612949; ICD-10 Code: G31.8;
ORPHA Nr: ORPHA353217) is an ultra-rare (less than 10 cases
known worldwide) developmental and epileptic encephalopathy
caused by mutations in SLC25A12 gene encoding the AGC1, a
member of the SLC25 family of transport proteins of the inner
mitochondrial membrane. Young patients develop normally
during the first months of life, and subsequently begin to have
seizures, muscular hypotonia, and psychomotor retardation. MRI
showed decreased cerebral volume and hypomyelination with
reduced content of N-acetyl aspartate (NAA), which is an acetate
donor for myelin lipid synthesis (Wibom et al., 2009; Falk et al.,
2014; Pfeiffer et al., 2020). More recent MRI support for the
classification of SLC25A12-related disease as leukodystrophy, but
this is still debated (Kavanaugh et al., 2019).

In humans, AGC1/SLC25A12 (also named, aralar1) is
expressed in the brain and muscles, while the second isoform,
AGC2/SLC25A13 (also named, citrin) is mainly expressed in the
liver. Both the AGC isoforms catalyze the import of cytosolic
glutamate plus a proton in the matrix, in exchange for aspartate,
and they are components of the malate-aspartate shuttle (MAS)
that allows for the entry of the glycolysis-derived NADH to the
mitochondria essential for correct pyruvate oxidation (Llorente-
Folch et al., 2013). Different mutations in the SLC25A12 gene
have been identified, all leading to the impairment of AGC1
activity and reduced NAA content in the patients’ brain, along
with the onset of pathological features similar to other white
matter diseases (Wibom et al., 2009; Falk et al., 2014; Pfeiffer
et al., 2020). Neurons are the primary producers of NAA
in the Central Nervous System (CNS) and they deliver this
metabolite to oligodendrocytes as a source of acetyl moieties
that are needed to produce myelin-associated lipids. This implies
a continuous cross-talk between neurons and oligodendrocytes,
with an exchange of NAA to support myelination (Moffett et al.,
2007; Nave and Werner, 2014).

Until now, studies have mainly focused to mature neurons
in the murine model of AGC1 deficiency, showing profound
neuronal metabolic disturbances with a limited NAA production
especially affecting the nigrostriatal pathway (Ramos et al.,
2011; Llorente-Folch et al., 2013; Juaristi et al., 2017). More
recently, it has been demonstrated that the downregulation of
AGC1 inhibits proliferation and NAA synthesis in neuronal
precursor cells (NPCs), as well as reduces the proliferation
of oligodendrocytes precursor cells (OPCs) leading to their
spontaneous and precocious differentiation in both in vitro and
in vivo murine models. Interestingly, while the proliferation

defects in NPCs are associated with a reduced mitochondrial
respiration causing energy fault (Profilo et al., 2017), in OPCs,
this appears related to a dysregulation in the expression of trophic
factors and receptors involved in the proliferation/differentiation
processes (Petralla et al., 2019). Since epigenetic regulation
of gene expression through histone acetylation is involved
in the proliferation/differentiation of both NPCs and OPCs
(Juliandi et al., 2010; Emery and Lu, 2015; Hernandez
and Casaccia, 2015) and NAA can act as a source of
acetate for histone acetylation (Long et al., 2013; Bogner-
Strauss, 2017), a reduced AGC1 activity may be linked to
epigenetic/transcriptional changes affecting the OPCs pool
maintenance, their differentiation toward oligodendrocytes and,
therefore, lead to the myelination/remyelination processes. To
test our hypothesis, in this study, we focused on the transcription
factors known to be involved in the proliferation/differentiation
of OPCs and NPCs, as well as on histone post-translational
modifications (PTMs), histone acetyltransferases (HATs), and
histone deacetylates (HDACs) in two different in vitro models of
AGC1 deficiency: a stable clone of immortalized murine OPCs
(Oli-Neu) with a partial silencing of AGC1 and the relative
control and neurospheres from the sub-ventricular zone (SVZ) of
AGC1± and AGC1+/+ mice, as a model of NPCs (Petralla et al.,
2019). Finally, to better clarify HATs and HDACs implication in
the unbalance regulation of brain cells in the biological processes,
we performed pharmacological inhibitions through the general
HDAC inhibitor, suberanilohydroxamic acid (SAHA; Zhou et al.,
2011), approved by FDA for cancer therapy, and the natural
compound, curcumin, a specific HAT p-300 activity inhibitor
(Sunagawa et al., 2018), in both the AGC1 deficiency models of
siAGC1 Oli-neu cells and AGC1± mice-derived neurospheres.

MATERIALS AND METHODS

Cell Cultures
Oli-Neu cells (kindly provided by Jacqueline Trotter, University
of Mainz, Germany, RRID:CVCL_IZ82) stably transfected with
a scrambled control, shRNA, or an shRNA targeting the AGC1
coding sequence, which induces a 60% reduction of carrier
expression, were obtained as previously published (Petralla et al.,
2019). Cells were grown at 37◦C and 5% CO2 on poly-L-
lysine (10 µg/ml; Sigma-Aldrich, St Louis, MO, United States)
coated Petri dishes in SATO medium [DMEM basal medium,
2 mM of glutamine, 10 µg/ml of insulin, 5.5 µg/ml of
transferrin, 38.72 nM of sodium selenite, 100 µM of putrescine,
520 nM of L-thyroxine (T4), 500 nM of triiodo-L-thyronine
(T3), 200 nM of progesterone, 25 µg/ml of gentamycin;
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all from Sigma-Aldrich, excluding insulin-transferrin-sodium
selenite 100X supplement, Thermo Fisher Scientific, Waltham,
Massachusetts, United States], supplemented with 1% heat-
inactivated Horse Serum (HS; Sigma-Aldrich, St Louis, MO,
United States) and 1 µg/ml of puromycin (Sigma-Aldrich,
St Louis, MO, United States). Once confluent, the cells were
detached with 0.01% trypsin–0.02% ethylenediaminetetraacetic
acid (EDTA)-Hank’s Balanced Salt Solution (HBSS; Sigma-
Aldrich, St Louis, MO, United States).

Oxygen Consumption Rates
Measurements
Oxygen consumption rates (OCRs) were measured with an
XF96 Extracellular Flux analyzer (Agilent Technologies, MA,
United States). The 30,000 cells/well were incubated for 1 h in
a humidified incubator at 37◦C in the presence of unbuffered
XF base medium supplemented with 1 g/l glucose, 1 g/l glucose
with 1 mM pyruvate, 1 g/l glucose with 2 mM glutamine,
or 1 g/l glucose with 1 mM pyruvate and 2 mM glutamine.
After incubation, OCRs were measured as previously described
(Brand and Nicholls, 2011). More in the detail, basal OCRs
were recorded, prior to the sequential injections of 2 µM of
oligomycin, as an inhibitor of ATP synthase and indicating
the oxygen consumption associated with mitochondrial ATP
production (three measurements for total 15 min), 0.5 µM of
FCCP, as mitochondrial uncoupler to collapse the mitochondrial
membrane potential and to determine the maximal respiratory
capacity (four measurements for total 15 min), and 1 µM
antimycin A with 1 µM of rotenone, as mitochondrial respiratory
chain inhibitors to evaluate the non-mitochondrial oxygen
consumption (three measurements for total 15 min).

Extraction and Isolation of Histones
The histone component of Oli-Neu nuclei was isolated and
purified by using the acid extraction protocol (Shechter et al.,
2007). The 5 × 106 cells were lysed in 1 ml of hypotonic lysis
buffer (10 mM of Tris-Cl pH 8.0, 1 mM of KCl, 1.5 mM of
MgCl2, 1 mM of DTT, and 1X protease and phosphatase inhibitor
cocktails; all from Sigma-Aldrich, St Louis, MO, United States).
After 30 min at 4◦C in mild shaking to favor hypotonic swelling
and lysis, intact nuclei were pelleted 10,000 × g for 10 min at
4◦C, resuspended in 400 µL of 0. N H2SO4, and incubated for
30 min in rotation. After centrifugation at 16,000 × g for10 min
at 4◦C, 100% of trichloroacetic acid (TCA; Sigma-Aldrich, St
Louis, MO, United States) was added dropwise to the supernatant
to allow histones precipitation overnight at 4◦C. The following
day, the solution was centrifuged at 16,000 × g for 10 min at
4◦C and the pellet was washed twice in glacial acetone, dried at
room temperature, and resuspended in phosphate-buffered saline
(PBS) with 1X protease and phosphatase inhibitor cocktails. All
samples were sonicated with a Branson 250 digital sonifier, before
quantification for subsequent Western Blot (WB) analysis.

Subcellular Fractionation
Cytosolic, mitochondrial, and nucleic extracts were
obtained from a modified Grove BD and Bruckey protocol

(Grove and Bruchey, 2001). Oli-Neu cells were lysed with a
Potter homogenizer (B. Braun, Melsungen AG) in an isotonic
buffer (10 mM of Hepes, 200 mM of mannitol, 70 mM of sucrose,
1 mM of EDTA pH 7.6, 1X protease and phosphatase inhibitor
cocktails; all from Sigma-Aldrich, St Louis, MO, United States)
and centrifuged at 800 × g for 10 min at 4◦C. The supernatant
(cytoplasmic fraction; CF) was separated from the pellet (nucleic
fraction) that was washed two times with buffer A (2 mM
of Hepes pH 7.9, 1 mM of NaCl, 3 mM of MgCl2, 0.1% of
NP40, 10% of glycerol, 0.2 mM of EDTA, 1 mM of DTT, 1X
protease and phosphatase inhibitor cocktails) and then with
buffer B (20 mM of Hepes pH 7.9, 0.2 mM of EDTA, 200 mM of
glycerol, 1 mM of DTT, 1X protease and phosphatase inhibitor
cocktails). Washed nuclei were resuspended in the extraction
buffer with salt (20 mM of Hepes, pH 7.9, 400 mM of NaCl, 2%
of sodium dodecyl sulfate (SDS), 0.2 mM of EDTA, 20 mM of
glycerol, 1 mM of DTT, 1X protease and phosphatase inhibitor
cocktails). To obtain mitochondria, CF was centrifuged at 14,000
× g/20 min/4◦C and the pellet (mitochondria) was resuspended
in isotonic buffer with 1X protease and phosphatase inhibitor
cocktails. The total protein contents were quantified (Lowry
et al., 1951) and stored at−80◦C until used.

Activities of Histone Acetyltransferase
and Histone Deacetylases Assay
To quantify the activities of HATs and HDACs in Oli-
Neu cells, the HAT Activity Assay Kit (Abcam, Cambridge,
United Kingdom) and the Epigenase HDAC Activity/Inhibition
Direct Assay Kit (EpigGenetek, NY, United States) were
respectively used, according to the manufacturer’s instruction.
For HATs activity assays, 50 µg of nuclear extract in 40 µL of
water (final volume) were added in a 96-well plate; 40 µL of
water instead of samples were used for background reading; 10
µL of cell nuclear extract (NE) were added to 30 µL of water as
a positive control. Depending on color development, the plates
were incubated 1/4 h at 37◦C and read OD440 nm at different
times during incubation. To measure the activity of the HDACs,
5 µg of nuclear extracts were diluted with kit-specific reagents
up to 50 µL/well (final volume). Only the reagents were used as a
blank sample. The signal was detected at 450 nm with a Multiplate
Spectrophotometric Reader (Bio-rad Laboratories, Milano, Italy)
after 1–2 h of incubation.

Neurospheres Preparation
Neurospheres were initially acquired from the SVZ of 8-
months-old C57BL/6N wild-type and heterozygous SLC25A12
male mice (Mus musculus), generated by the Texas A&M
Institute for Genomic Medicine (Houston, Texas, United States),
as previously described (Petralla et al., 2019). Animals were
fed ad libitum with the 2018 Teklad global diet (Envigo,
United States), in a 12/12-h light-dark cycle at 20 ± 2◦C and
set at humidity; appropriate environmental enrichments were
placed to guarantee their well-being. All animal experiments
were authorized by a local bioethical committee (Protocol no
3/79/2014) and performed in agreement with the Italian and
European Community law (Directive 2010/63/EU) on the use
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of animals for experimental purposes, and adherence to the
ARRIVE Reporting Guidelines. Neurospheres were obtained
through SVZ microdissection on three AGC1+/+ and three
AGC1± mice, respectively, previously anesthetized through
intraperitoneal injection of 10 mg/kg xylazine followed by
cervical dislocation. Fresh tissue was mechanically dissociated
in HBSS, 3.9 mg/ml of N-2-hydroxyethylpiperazine-N-2-ethane
sulfonic acid (HEPES), 0.5 mg/ml of NaHCO3, 0.9 mg/ml of
glucose, 0.5% penicillin/streptomycin, and centrifuged for 5 min
at 1,000 rpm. The pellet was resuspended in papain solution
(0.2 mg/ml of EDTA, 0.66 mg/ml of Papain, 0.2 mg/ml of cysteine
in HBSS) and placed for 20 min at 37◦C shaking at every 5 min.
For further dissociation, the tissue was resuspended in HBSS and
left for another 10 min at 3◦C. Papain reaction was then inhibited
by adding DMEM F-12 (Gibco Life Technologies, Waltham, MA,
United States), and samples were centrifuged at 100 rpm for
5 min. The cells were plated in 35 mm dishes in a complete culture
medium: DMEM-F12 (Gibco Life Technologies, Waltham, MA,
United States) was supplemented with 2 mM of glutamine,
10 µg/ml of insulin from bovine pancreas (Sigma-Aldrich, St
Louis, MO, United States), 20 ng/ml of epidermal growth factor
(EGF; PeproTech EC, London, United Kingdom), 20 ng/ml
of fibroblast growth factor-2 (FGF2; PeproTech), 1% of N2
(Thermo Fisher Scientific, Waltham, MA, United States), 1% of
B27 (Thermo Fisher Scientific, Waltham, MA, United States), 10
units/ml of penicillin and 10 µg of streptomycin. Neo-formed
neurospheres were cultured and passed every week (5/7 days of
growth). For this purpose, the cells were collected and pelleted
for 5 min at 1,000 rpm, washed in PBS, and centrifuged again
for 5 min at 1,000 rpm. The neurospheres were dissociated
through 5 min incubation in Accutase (Aurogene Srl, Roma,
Italy) at 37◦C, and basal DMEM F-12 was added to stop the
reaction. Following centrifugation for 5 min at 1,000 rpm,
single cells were resuspended in a complete culture medium to
proceed with cell count in order to obtain a final cell density
of 5 × 103 cells/cm2 in 35 mm dishes. After passage 3, the
neurospheres were stabilized as stable clones to be used for
the experiments.

Curcumin and Suberanilohydroxamic
Acid Treatments
To act on HATs and HDACs activity, Oli-Neu cells and the
neurospheres were treated with the specific HAT p300 inhibitor,
curcumin (Sunagawa et al., 2018) and the general HDAC
inhibitor, SAHA (Zhou et al., 2011) that has been approved by
FDA for cancer therapy, respectively. For WB and microscopy
analysis on Oli-Neu cells, 2× 105 cells/well were plated in a 6-well
plate or 24 mm diameter glass coverslips, both previously treated
with poly-L-lysine (10 µg/ml). After 2 h, complete SATO medium
was replaced with a fresh medium containing SAHA (0.5 µM; 1
µM) or curcumin (10 µM; 20 µM), and the cells were incubated
at 37◦C in 5% CO2 for 24 or 48 h depending on the proliferation
or differentiation assays. The same dimethyl sulfoxide (DMSO)
volume that was required to dissolve the molecules was used
as a control. For immunostainings, the cells on glass coverslips
were then fixed with 4% of paraformaldehyde (PFA) in PBS 0.1%
pH 7.4 for 30 min, washed with PBS, and stored at 4◦C in PBS.

For WB analysis, the Oli-Neu on dishes were collected with the
lysis buffer (50 mM of Tris pH7.4, 1% SDS, 1 mM of EDTA, 1X
protease and phosphatase inhibitor cocktails) and kept at−80◦C
until use. In parallel, to study HATs and HDACs inhibition on
neurospheres proliferation, the cells were plated as single stem
cells in 96-well plates (5 × 103cells/well) in presence of SAHA
(0.5 µM; 1 µM) or curcumin (5 µM; 10 µM) in complete
DMEM F-12 culture medium; same DMSO volumes were used
as control. Depending on the inhibitor’s toxicity after a long-
time in culture, the neurospheres were let grown 5 days in the
presence of SAHA and 7 days with curcumin. In contrast, to
evaluate the differentiation of neurospheres, 75 or 30 spheres
were plated on 35 mm Petri dishes or 13 mm glass coverslips
in complete DMEM F-12 medium and inhibitors, for subsequent
WB or immunofluorescence analysis, respectively. To allow for
stem cell adhesion and neuronal differentiation, both the dishes
and coverslips previously treated with poly-L-lysine (10 µg/ml)
were incubated at 37◦C with fibronectin (1 µg/ml) for at least
3 h. After 7 days in culture, the differentiated neurospheres were
collected in a lysis buffer and stored at−80◦C, or fixed for 30 min
with 4% of PFA in PBS 0.1% pH 7.4 and kept at 4◦C in PBS.

Western Blot
The samples of oli-Neu cells and neurospheres in lysis buffer
(50 mM Tris pH 7.4, 1% of SDS, 1 mM of EDTA, 1X protease and
phosphatase inhibitor cocktails), were sonicated with a Branson
250 sonifier. Each sample (20 µg) was resolved in SDS–PAGE
with Laemli loading buffer (Sigma-Aldrich, St Louis, MO,
United States) and transferred onto a nitrocellulose membrane
(GE Healthcare Life Sciences, Little Chalfont, United Kingdom)
for the reaction with the following primary antibodies: Anti-
acetyl-Histone H3 (Millipore, Burlington, Massachusetts,
United States; Cat# 06-599, RRID:AB_2115283), CBP (D6C5)
(Cell Signaling Technology, Danvers, Massachusetts; Cat#
7389, RRID:AB_2616020), CNPase (Cell Signaling; Cat# 5664,
RRID:AB_10705455), CREB (48H2) (Cell Signaling; Cat# 9197,
RRID:AB_331277), c-Myc (N-262) (SantaCruz Biotechnology,
Dallas, Texas, United States; Cat# sc-764, RRID:AB_631276),
Anti-Doublecortin (Abcam; Cat# ab18723, RRID:AB_732011),
GAPDH (SantaCruz Biotechnology, Dallas, Texas, United States;
Cat# sc-32233, RRID:AB_627679), GFAP (Dakopatts (Agilent
Technologies), Santa Clara, California, United States; Cat# sc-
33673, RRID:AB_627673), Histone Deacetylase 1 (HDAC1) (Cell
Signaling; Cat# 2062, RRID:AB_2118523), HDAC2 (D6S5P) (Cell
Signaling; Cat# 2540, RRID:AB_2116822), Histone Deacetylase
3 (HDAC3) (Cell Signaling; Cat# 2632, RRID:AB_331545),
Histone Deacetylase 4 (HDAC4) (Cell Signaling; Cat# 2072,
RRID:AB_2232915), Histone H3 (SantaCruz Biotechnology,
Dallas, Texas, United States,; Cat# sc-10809, RRID:AB_2115276),
HSP60 (Bioss, Woburn, Massachusetts, United States; Cat# bs-
0191R-HRP, RRID:AB_11117391), MAX (H-2) (SantaCruz
Biotechnology, Dallas, Texas, United States; Cat# sc-
8011, RRID:AB_627913), Anti-NG2 (Abcam, Cambridge,
United Kingdom; Cat# ab83178, RRID:AB_10672215),
NRSF (P-18) (SantaCruz Biotechnology, Dallas, Texas,
United States; Cat# sc-15120, RRID:AB_2179628), Olig2
(SantaCruz Biotechnology, Dallas, Texas, United States; Cat#
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sc-48817, RRID:AB_2157550), PanMetH3 (MBL International,
Woburn, Massachusetts, United States; Cat# LS-A4069,
RRID:AB_591306), PDGFRα (SantaCruz Biotechnology, Dallas,
Texas, United States; Cat# sc-338, RRID:AB_631064), Phospho-
CREB (Ser133) (Cell Signaling; Cat# 9198, RRID:AB_2561044).
The following specific HRP-linked secondary antibodies
(horseradish peroxidase conjugated) were used: Goat anti-
Mouse (Jackson ImmunoResearch, West Grove, Pennsylvania,
United States; Cat# 115-035-146, RRID:AB_2307392), Goat
anti-Rabbit (Jackson ImmunoResearch; Cat# 111-035-
144, RRID:AB_230739), and Mouse anti-Goat (SantaCruz
Biotechnology, Dallas, Texas, United States; Cat# sc-2354,
RRID:AB_628490). Labeled proteins were then detected by using
ClarityTM Western ECL Substrate (Bio-Rad). Densitometric
analysis were performed by using Biorad Image Lab software
6.0.0 (RRID:SCR_014210). All primary antibodies were diluted
1:1,000 excl. GAPDH 1:20,000, whereas secondary antibodies
were diluted at 1:5,000 in 0.1% Tween-20/PBS.

Immunofluorescence Analysis
Oli-Neu cells and neurospheres fixed on coverslips were
permeabilized in 0.1% Triton X-100/PBS and then incubated
with the following primary antibodies: AGC1/Aralar1
(SantaCruz Biotechnology, Dallas, Texas, United States;
Cat# sc-271056, RRID:AB_10608837), CBP (D6C5) (Cell
Signaling T; Cat# 7389, RRID:AB_2616020), CNPase (Cell
Signaling; Cat# 5664, RRID:AB_10705455), c-Myc (9E10)
(SantaCruz Biotechnology, Dallas, Texas, United States; Cat#
sc-764, RRID:AB_631276), Anti-Doublecortin (Abcam; Cat#
ab18723, RRID:AB_732011), GFAP (Dakopatts; Cat# sc-33673,
RRID:AB_627673), HDAC2 (D6S5P) (Cell Signaling; Cat#
2540, RRID:AB_2116822), Histone Deacetylase 3 (HDAC3)
(Cell Signaling; Cat# 2632, RRID:AB_331545), HSP60 (Bioss;
Cat# bs-0191R-HRP, RRID:AB_11117391), anti-Ki67 (Abcam
Cambridge, United Kingdom; Cat# ab15580, RRID:AB_443209),
MAX (H-2) (SantaCruz Biotechnology, Dallas, Texas,
United States; Cat# sc-8011, RRID:AB_627913), NRSF (P-
18) (SantaCruz; Cat# sc-15120, RRID:AB_2179628), Olig2
(SantaCruz Biotechnology, Dallas, Texas, United States; Cat#
sc-48817, RRID:AB_2157550), and Phospho-CREB (Ser133)
(Cell Signaling; Cat# 9198, RRID:AB_2561044). The fluorescent
secondary antibodies used were as follows: Donkey anti-Mouse
IgG Alexafluor 555 (Abcam, Cambridge, United Kingdom;
Cat# ab150106, RRID:AB_2857373), Goat anti-Mouse IgG
Alexafluor 488 (Abcam Cambridge, United Kingdom; Cat#
ab150113, RRID:AB_2576208), Goat anti-Rabbit IgG Alexafluor
488 (Abcam, Cambridge, United Kingdom; Cat# ab150077,
RRID:AB_2630356), and Goat anti-Rabbit IgG Alexafluor 555
(Abcam; Cat# ab150078, RRID:AB_2722519). Nuclei were
stained with Hoechst 33258 (Sigma-Aldrich) or DAPI (Santa
Cruz Biotechnology, Dallas, Texas, United States, Cat#. sc-
24941). For cell counting, stained Oli-Neu cells, three randomly
selected fields/coverslip were acquired by using the Nikon EZ-C1
microscope (10X or 100X objective); positive cells were counted
and the labeling index was expressed as the ratio of positive/total
cells using Fiji software (ImageJ2, Fiji; RRID:SCR_002285). The
confocal images of the neurospheres were obtained with 10 X

or 60 X objective and the z-stack function (40 total stacks), and
3D image reconstruction were performed by using Fiji ImageJ2
software z-project plugin. The fluorescence intensity index was
estimated as the ratio of the markers’ positive cells intensity/total
cells fluorescence intensity stained with DAPI.

Neurospheres Proliferation
To evaluate the growth rate of AGC1+/+ and AGC1±
neurospheres, following HATs and HDACs inhibition, five
different images were acquired in bright field mode (10 X
objective) for each 96-well (5× 103 cells/well) by using an Eclipse
TE2000-s—Nikon microscope. The images were analyzed with
Fiji ImageJ2 using the publicly available colony and cell counting
method (Choudhry, 2016) and only aggregates with areas greater
than 400 µm2 were considered.

Oli-Neu Cells Extensions Number and
Length Measurement
To analyze the extension number and length of Oli-Neu cells in
the presence or absence of inhibitors, five randomly selected fields
for each 6-well (2× 105 cells/well) were acquired (20× objective)
with an Eclipse TS100—Nikon microscope. The length of the
processes was measured with Fiji ImageJ2 software. Scale bar
distance in pixels and the corresponding distance in micrometers
were set by using the reference scale bar and the SET SCALE
function (Analyze menu). Each cell process was traced with the
segmented-line function and the MEASURE function (Analyze
menu) was used to determine the length of the extensions in
micrometers. The number of processes was directly determined
from individual processes of length measurement.

Statistical Analysis
All results were subjected to statistical analysis by using
Student’s t-test or one-way ANOVA followed by Bonferroni’s
post hoc comparison test. In drug treatments, to evaluate
both AGC1 silencing and HATs/HDACs inhibition, two-way
ANOVA followed by Dunnett’s post hoc comparison test, was
used. Statistical analysis was performed with GraphPad Prism
4 software (GraphPad Prism, San Diego, CA, United States;
RRID:SCR_002798), and only p-values < 0.05 were considered
statistically significant.

RESULTS

Expression of Transcription Factors in
Aspartate-Glutamate Carrier Isoform
1-Deficient Oligodendrocytes Precursor
Cells and Neuronal Precursor Cells
In order to understand whether the dysregulation in trophic
factors and receptors involved in the proliferation deficit
of OPCs with AGC1 deficiency could be related to a
transcriptional alteration, we evaluated the expression of
transcription factors that are known to play a role in the
proliferation/differentiation of BPCs, such as c-Myc (Magri
et al., 2014; Palazuelos et al., 2014) and its co-factor, Max
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(Carroll et al., 2018), Olig2 (Meijer et al., 2012), the Repressor
element 1 silencing transcription factor/neuron-restrictive
silencing factor (REST/NRSF) (Song et al., 2015), as well as
the cAMP response element binding protein (CREB) (Yan
et al., 2013). We initially performed WB analysis on Oli-Neu
(immortalized mouse OPCs) cells, with a stable downregulation
of the SLC25A12 gene (siAGC1) and on control cells, as well
on the NPCs model of neurospheres, derived from the SVZ
of C57BL/6N wild-type (AGC1+/+) and AGC1± mice, both
generated as previously described (Petralla et al., 2019). Oxygen
consumption rate (OCR) measurements confirmed that siAGC1

Oli-Neu cells do not exhibit a mitochondrial respiratory deficit
compared to the control cells (Figure 1). However, siAGC1
Oli-Neu cells revealed an altered transcriptional profile with
a significant reduction in both c-Myc and Max, as well as in
Olig2 expression, together with a marked increase in CREB
activation through its phosphorylation on serine 133. Differently,
no significant changes in total CREB and REST/NRSF were
observed (Figures 2A–G). Similar data were obtained in
immunofluorescence experiments with double staining for
AGC1 and transcription factors. As shown in Figure 2H, we
detected lower c-Myc and Olig2 labeling in siAGC1 Oli-Neu

FIGURE 1 | Downregulation of AGC1 does not inhibit mitochondrial respiration in Oli-Neu cells. Oxygen consumption rates (OCRs) were measured with XF96

extracellular flux analyzer (SeaHorse; Agilent Technologies, MA, United States) in control (�) and siAGC1 Oli-Neu (�) cells incubated for 1 h in XF base medium
supplemented with 1 g/l glucose (A), 1 g/l glucose with 1 mM pyruvate (B), 1 g/l glucose with 2 mM glutamine (C), or 1 g/l glucose with 1 mM pyruvate with 2 mM
glutamine (D). Oli-Neu cells were exposed to sequential additions of 2 µM oligomycin, 0.5 µM FCCP, and 1 µM antimycin A with 1 µM rotenone. OCR data were
normalized to cell protein content. Mean values ± SD from three independent experiments each including 5–6 replicates per cell type are shown.
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cells compared to the control cells, with no relevant differences
in REST intensity, whereas phospho-CREB staining resulted
increased, thus indicating an altered transcriptional profile
when AGC1 is downregulated. Parallel experiments have been
carried on neurospheres from AGC1+/+ and AGC1± mice
used as a near-perfect in vitro model to provide a consistent
and self-renewable source of NSPs, which can lead to neuronal-
restricted precursor cells, OPCs, and astrocytes (Tropepe et al.,
1999; Petralla et al., 2019). We previously demonstrated that
neurospheres from AGC1± mice display a reduction in OPCs
with a parallel increase in oligodendrocytes, neuronal-restricted
progenitors, and astrocytes compared to those from AGC1+/+

animals (Petralla et al., 2019). In this study, in AGC1± mice
neurospheres, we found a reduction in c-Myc, but not in its
co-factor Max, and a decrease in Olig2 expression. Instead, no
changes were observed in total CREB and REST/NRSF, whereas
CREB phosphorylation turned out the significant reduction in
AGC1± neurospheres compared to AGC1+/+ (Figures 2I–O).

Taken together, these data pointed out that, in both the
models with reduced AGC1 levels, the expression pattern of
transcription factors involved in the proliferation/differentiation
of BPCs is altered. Olig2 and c-Myc were strongly downregulated,
whereas pCREB increases in siAGC1 Oli-Neu cells and decreases
in AGC1± neurospheres, probably as a consequence of t more
heterogeneous cellular composition of the NSCs model.

Histone Acetylation, Histone
Deacetylases, and Histone
Acetyltransferases in
Aspartate-Glutamate Carrier Isoform
1-Deficient Oligodendrocytes Precursor
Cells and Neuronal Precursor Cells
It is well known that epigenetic mechanisms related
to histone modification may have an impact on the
proliferation/differentiation of OPCs and NPCs (Tiane et al.,
2019; Zhang et al., 2020). Therefore, in OPCs and NPCs with
AGC1 deficiency, we evaluated histone PTMs, as well as the
activity and the expression profiles of the two classes of enzymes
promoting histone acetylation, i.e., HATs, or deacetylation
processes, i.e., HDACs. From WB and immunofluorescence
analysis, siAGC1 Oli-Neu cells displayed a significant reduction
in both histone H3 acetylation and methylation, with a
parallel increase in its phosphorylation (Figures 3A–D). In
siAGC1 Oli-Neu cells, the resultant HATs activity was not
significantly lower than the control cells (Figure 3E), whereas
the p300/CREB-Binding Protein (CBP), the most important
protein of HATs family for brain development (Sheikh, 2014;
Lipinski et al., 2019), came out significantly downregulated
(Figures 3F,G). Differently, the total HDACs activity proved
to be significantly reduced in siAGC1 Oli-Neu cells compared
to the controls (Figure 3H). Therefore, we further investigated
the expression of the HDACs isoforms mainly involved in
CNS development, i.e., the nuclear isoform 1, 2, and 3 of class
I HDAC and the isoform 4 of the class II HDAC (Morris
and Monteggia, 2013; D’Mello, 2020; Figures 3I–N). The
WB analysis demonstrated that HDAC2 (Figure 3L) and

HDAC3 (Figure 3K) levels were significantly lower in siAGC1
Oli-Neu cells compared to the controls, whereas HDAC1
(Figure 3J) and HDAC4 (Figure 3M) expression remained
unchanged. Similar data were obtained in immunofluorescence
experiments, where both HDAC2 and HDAC3 costained
with AGC1 turned out to be weaker in cells where AGC1 is
downregulated (Figure 3N), suggesting that AGC1 inhibition
affects the balance between acetylation and deacetylation
pathways in OPCs.

Histone acetylation and the expression of the related enzymes
were also investigated in neurospheres derived from AGC1±
and AGC1+/+ mice (Figure 4). In AGC1± neurospheres, we
observed lower levels of histone H3 acetylation (Figures 4A,B)
vs. higher levels of histone H3 methylation (Figures 4A,C) and
phosphorylation (Figures 4A,D), while CBP turned out strongly
downregulated (Figures 4E,F).

Concerning HDAC isoforms, HDAC2 (Figures 4G,I),
which regulates together with HDAC1 (Figures 4G,H) the
oligodendorcyte and astrocytes lineage fate switch (Ye et al.,
2009), and HDAC4 (Figures 4G,K) resulted downregulated
in AGC1± neurospheres compared to AGC1+/+, whereas
HDAC3 (Figures 4G,J) revealed an opposite expression profile.
Data were confirmed through immunofluorescence analysis
(Figure 4L), where AGC1± neurospheres showed lower HDAC2
labeling and higher levels of HDAC3 compared to AGC1+/+.
Additionally, after subcellular fractionation on Oli-neu cells,
no relevant differences were observed for HDAC2 and HDAC3
localization in siAGC1 cells compared to the control, whereas
CBP appeared mainly localized in the cytosolic compartment
and less represented in the nuclear fraction, probably as part of
other different multimeric complexes (Figure 5).

Overall, these data revealed that histone PTMs are affected by
AGC1 downregulation in both immortalized OPCs and NPCs,
in which acetylation appeared reduced with significantly low
levels of the HAT CBP. In addition, although HDACs pathways
turned out differently impaired in the two distinct models, our
data suggest an altered balance of HATs/HDACs expression and
activity following AGC1 inhibition.

Histone Acetyltransferases Inhibition
Through Curcumin in the
Proliferation/Differentiation of
Oligodendrocytes Precursor Cells and
Neuronal Precursor Cells
In order to clarify the role of histone acetylation in the
proliferation/differentiation OPCs and NPCs, and how
this biological process is involved in AGC1-deficiency
brain cells proliferation defects, we further performed a
pharmacological inhibition of either HATs or HDACs in both
the control and siAGC1 Oli-Neu cells, as well as AGC1+/+ and
AGC1± neurospheres.

To inhibit HATs activity, we used curcumin, a well-known
inhibitor of p300/CBP (Balasubramanyam et al., 2004). In cells,
it promotes proteasome-dependent degradation of p300 and
the closely related CBP protein without affecting the HATs
PCAF or GCN5, in addition to inhibiting the acetyltransferase
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FIGURE 2 | Different expression of proliferation/differentiation transcription factors characterizes both Oli-Neu and neurospheres AGC1 deficiency in vitro models.
WB and relative densitometries of c-Myc (A,B), MAX (A,C), Olig2 (A,D), REST (A,E), pCREB (A,F), and total CREB (A,G) expression in Oli-Neu cells; GAPDH was
used for endogenous normalization. Confocal microscopy images (100X) of the transcription factors (H) in Oli-Neu cells; nuclei were labeled with DAPI. Scale bars:
20 and 10 µm. WB analysis and relative densitometries of c-Myc (I,J), MAX (I,K), Olig2 (I,L), REST (I,M), pCREB (I,N), and total CREB (I,O) expression in
neurospheres; GAPDH was used for endogenous normalization. Values are mean ± SD of at least 3 independent experiments; **p < 0.01, *p < 0.05, compared to
controls; Student’s t-test.

activity of purified p300 as assessed using either histone
H3 or p53 as a substrate. Radiolabeled curcumin formed
a covalent association with p300, and tetrahydrocurcumin

displayed no p300 inhibitory activity, consistent with a Michael
reaction-dependent mechanism (Marcu et al., 2006). We first
evaluated the curcumin effect on Oli-Neu cells. Cell counting
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FIGURE 3 | Altered histone PTMs, HAT CBP, and HDAC isoforms expression/activities in AGC1-silenced Oli-Neu cells. WB analysis and relative densitometries of
panAcH3 (A,B), panMetH3 (A,C), pH3 (A,D), CBP (F), HDAC1 (I,J), HDAC2 (I,K), HDAC3 (I,L) and HDAC4 (I,M) expression in Oli-Neu cells; GAPDH was used for
endogenous normalization. Activity assay of CBP (E) and HDAC (H) in Oli-Neu cells. Histone deacetylases (HDACs) activity mean ± SEM of control Oli-neu:
1.083 ± 0.0535, Mean ± SEM of siAGC1 Oli-neu: 0.8000 ± 0.0608, N = 3. Difference between means 0.2830 ± 0.04676. Confocal microscopy images (100X) of
CBP (G) and HDAC2 and HDAC3 (N) (green) and AGC1 (red) in Oli-Neu cells; nuclei were labeled with DAPI. 20 and 10 µm scale bar. Values are mean ± SD of at
least 3 independent experiments; ***p < 0.001, **p < 0.01, *p < 0.05, compared to control; Student’s t-test.

after staining for the proliferation marker, Ki67 (Gerdes
et al., 1991; Figures 6A,B) confirmed the lower proliferation
rate of siAGC1 Oli-Neu compared to control cells (DMSO

treated cells) (Petralla et al., 2019) and demonstrated that 24 h
curcumin treatment (used at 10 and 20 µM on the basis of
preliminary did not show MTT cytotoxicity assays) induced
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FIGURE 4 | Histone H3 PTMs, HAT, and HDACs expression in AGC1+/+ and AGC1± neurospheres. WB analysis and relative densitometries of panAcH3 (A,B),
panMetH3 (A,C), pH3 (A,D), CBP (E), HDAC1 (G,H), HDAC2 (G,I), HDAC3 (G,J), and HDAC4 (G,K) expression in AGC1± and AGC1+/+ spontaneously
differentiated neurospheres; GAPDH was used for endogenous normalizations. Confocal microscopy images (60X and 100X) of CBP (F), HDAC2, and HDAC3 (L) in
neurospheres; nuclei were labeled with DAPI. 50 and 10 µm scale bar. Values are mean ± SD of at least 3 independent experiments; **p < 0.01, *p < 0.05,
compared to control; Student’s t-test.

a global reduction in proliferation levels, leading to control
cells similar to Oli-Neu cells with AGC1 downregulation.
This effect seemed related to HATs inhibition, as curcumin
significantly reduced histone H3 acetylation in both control and

siAGC1 Oli-Neu cells (Figures 6C,D). To better investigate the
effect of HATs inhibition on the proliferation/differentiation
of OPCs, several markers have been further evaluated after
48 h of curcumin treatment. In particular, platelet-derived
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FIGURE 5 | Proliferation factor c-Myc, acetyltransferase CBP and HDAC
isoform 2 and 3 do not show alterations in the subcellular localization in
siAGC1 Oli-Neu cells. WB analysis of c-Myc, HAT–CBP and HDAC2 and
HDAC3 expression in the whole homogenate (WH), cytosolic, nuclear, and
mitochondrial fractions from siAGC1 and control Oli-Neu cells; HSP60,
GAPDH, and totH3 were used as mitochondrial, cytosolic, and nuclear
specific markers, respectively.

growth factor receptor α (PDGFRα; Figures 6C,E), a
marker of pre-progenitors and oligodendrocytes precursors
(Nishiyama et al., 2021b), and the oligodendrocyte-specific
transcription factor, Olig2 (Figures 6C,G), whose expression
decreases during differentiation (Grinspan, 2002), appeared
significantly less expressed in the control and siAGC1 Oli-Neu
cells treated with curcumin compared to DMSO cells, with
no more significant differences among the treated cells. In
addition, curcumin significantly decreased the level of neuron
glial antigen 2 (NG2; Polito and Reynolds, 2005) in the control
and siAGC1 Oli-neu, to suggest a reduction in OPCs pool
compared to untreated controls (Figures 6C,F). In order to
exclude apoptosis and cell death, we then verified through WB
analysis, the expression of the pro-apoptotic marker, caspase3
(both precursor and cleaved versions of the enzyme) (Widmann,
2007), and no differences were observed in treated vs. control
cells (Figures 6C,J). Additionally, we performed WB for the
full length PARP1 (116 kDa) and the large fragment (89 kDa)
of PARP1 resulting from caspase cleavage (Mashimo et al.,
2021; Figures 6C,I), as well as for the anti-apoptotic protein,
BCL-2 (Chipuk et al., 2010) (data not shown). In parallel, in
Oli-Neu cells with AGC1 downregulation, the marker of mature
oligodendrocytes CNPase (Scherer et al., 1994) showed higher
expression as compared to the control cells and was further
induced by curcumin treatment (Figures 6C,H). This CNPase
over-expression was then confirmed by immunofluorescence
and cell counting (Figures 6K,L). To deepen the possible
induction of differentiation by curcumin, the Oli-Neu cells
were also evaluated through the protrusion number and length
counting after microscopic morphology analysis. Curcumin 10
µM induced a significant increase in protrusions number both
after 24 h (Figures 7A,B) and 48 h (Figures 7A,D) in control
Oli-Neu cells, whereas relevant effects were observed only at 48 h
in siAGC1 cells (Figures 7A,D). Differently, protrusions length

significantly increased only in the control Oli-Neu cells after 48 h
of treatment (Figures 7A,E). Thus, these data demonstrate that
the lower AGC1 expression in immortalized OPCs determines a
reduction in histone acetylation probably related to the reduction
in CBP expression, as previously shown. Additionally, the
pharmacological inhibition of HATs through curcumin affects
proliferation, especially in the control Oli-Neu cells, leading to
proliferation levels comparable to siAGC1 Oli-Neu.

Similar treatments have been performed on neurospheres
from the SVZ of AGC1± and AGC1+/+ mice. Neurospheres
have been allowed to grow in culture for 7 days with 5 or
10 µM curcumin (based on MTT assay, not shown) and
their number and diameter have been evaluated (Gil-Perotín
et al., 2013). As already demonstrated, AGC1± neurospheres
appeared smaller, but in greater number compared to AGC1+/+

ones (DMSO cells) (Petralla et al., 2019). Curcumin treatments
induced a significant reduction in neurospheres diameter in both
AGC1± and AGC1+/+ cells. However, the treatment increased
the number of AGC1+/+ neurospheres, while it decreased the
number of AGC1± ones, probably due to an earlier arrest
in the proliferation as a consequence of their lower intrinsic
proliferation rate (Figures 8A–C).

To further study the effect of HAT inhibition on
NPCs spontaneous differentiation, AGC1± and AGC1+/+

neurospheres have been plated on fibronectin and exposed to 5
or 10 µM curcumin for 7 days. Fluorescence quantification after
staining with Olig2 (oligodendrocyte lineage marker), CNPase
(myelinating oligodendrocytes marker), DCX (neural precursor
cells marker; Francis et al., 1999), and GFAP (astrocytes
marker; Nolte et al., 2001) confirmed AGC1± neurospheres
being characterized by reduced Olig2+ cells and increased
CNPase+, DCX+, and GFAP+ cells compared to AGC1+/+

neurospheres (Figures 8D–H; Petralla et al., 2019). Curcumin
treatment-induced almost no change in AGC1+/+ neurospheres
differentiation, besides a little, but significant reduction in
GFAP+ cells after 10 µM treatment (Figure 8H). Conversely,
it leads to a significant reduction in CNPase+ (Figures 8D,F)
and GFAP+ (Figures 8D,H) cells in AGC1± neurospheres,
with no relevant changes in both Olig2+ (Figures 8D,E) and
DCX+ (Figures 8D,G) cells. Further confirmation has been
obtained by WB analysis (Figures 8I–N). As previously shown,
in DMSO-treated controls, the Olig2 expression turned out
lower, while CNPase, GFAP, and even DCX resulted in a
significant increase in AGC1± than in AGC1+/+ neurospheres.
Curcumin treatment has no significant effect on Olig2 and DCX
expression in both AGC1± and AGC1+/+ neurospheres, but
it significantly decreases both CNPase and GFAP expression in
AGC1± neurospheres.

Altogether, these data demonstrate that HATs inhibition
arrests proliferation and stimulates differentiation of
immortalized OPCs toward myelinating oligodendrocytes. This
pro-differentiating effect is more evident in control cells than
after AGC1 downregulation, thus creating a condition similar
to AGC1 deficiency. In NPCs represented by neurospheres,
AGC1 silencing induces the differentiation toward both
differentiated glial and neuronal cells. HATs inhibition has
almost no effect on AGC1+/+ neurospheres, while it reduces
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FIGURE 6 | Curcumin-mediated HAT inhibition differentially affects proliferation in both control and siAGC1 Oli-Neu cells. Immunofluorescence staining of Ki67
proliferation marker (A) and Ki67+ cell count analysis (B) in Oli-Neu cells after 24 h treatment with 10 or 20 µM curcumin. Values are expressed as the ratio of Ki67+

cells (green)/total cells; nuclei were labeled with DAPI. Values are mean ± SD of 3 independent experiments; 3 different fields were acquired for each condition. 40X
objective; 50 and 100 µm bar scale. WB and relative densitometries of panAcH3 (C,D), PDGFRα (C,E), NG2 (C,F), Olig2 (C,G), CNPase (C,H), PARP1 (C,I), and
pro-caspase3 (C,J) expression in OliNeu cells after 48 h treatment with 10 µM curcumin. Immunofluorescence staining of CNPase (K) and CNPase+ cell count
analysis (L) in Oli-Neu cells after 48 h treatment with 10 µM curcumin. Values are expressed as the ratio of CNPase+ cells (red)/total cells; nuclei were labeled with
DAPI. Three different fields were acquired for each condition. Values are mean ± D of at least 3 independent experiments. 40X objective; 50 and 10 µm bar scale.
#p < 0.05, ##p < 0.01, ###p < 0.001, compared to DMSO control, respectively; *p < 0.05, **p < 0.01, ***p < 0.001, compared to each treated control; two-way
ANOVA (Bonferroni’s post hoc test).
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FIGURE 7 | After acetyltransferase CBP inhibition, cells appeared more elongated and branched, index of oligodendrocytes maturation, showing an increase in both
processes number and average length compared to DMSO-treated controls. Optical microscope proliferation/differentiation analysis in control and siAGC1 Oli-Neu
cells following 24 and 48 h of treatment with curcumin 10 and 20 µM (A). Filaments number and lengths were counted and measured, respectively, and analyses
were carried out with Fuji Imagej2 software. Given the potential toxicity of curcumin 20 µM, statistical analyses were executed only at 10 µM (B–E). Values are
mean ± SD of 3 independent experiments; 3 different fields were acquired for each condition. 20X objective; 200 µM bar scale. ###p < 0.001, #p < 0.05, compared
to DMSO control, respectively; two-way ANOVA (Bonferroni’s post hoc test).
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FIGURE 8 | Curcumin-mediated HAT inhibition differentially affects proliferation and glial commitment in spontaneously differentiated AGC1+/+ and AGC1±

neurospheres. Optical microscope images (A) and counting of number (B), and diameter (C) of neurospheres after 7 days of culture in presence of curcumin 5 and
10 µM. Average number and size were measured with Fuji Imagej2 software using an automated colony and cell counting method; only aggregates bigger than 400
µm2 were considered. Values are mean ± SD of 5 different fields acquired for each condition. 10X objective; 500 and 200 µm bar scale. Immunofluorescence
staining and cell counting of Olig2 (D,E), CNPase (D,F), DCX (D,G), and GFAP (D,H) on AGC1+/+ and AGC1± 7DIV spontaneously differentiated neurospheres
following HAT inhibition with curcumin 5 and 10 µM. Values are mean ± SD of 3 different fields acquired for each condition. 60X objective; 50 µm bar scale. WB and
relative densitometries of panAcH3 (I,J), Olig2 (I,K), CNPase (I,L), DCX (I,M), and GFAP (I,N) expression in AGC1+/+ and AGC1± differentiated neurospheres
following HAT inhibition with curcumin 5 and 10 µM. Values are mean ± SD of 3 independent experiments. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to
DMSO control, respectively; *p < 0.05, **p < 0.01, ***p < 0.001, compared to each treated control; two-way ANOVA (Bonferroni’s post hoc test).
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the differentiation toward both oligodendrocytes and astrocytes,
with no effect on OPCs and the commitment toward neurons in
AGC1± cells.

Histone Deacetylases Inhibition Through
Suberanilohydroxamic Acid in the
Proliferation/Differentiation of
Oligodendrocytes Precursor Cells and
Neuronal Precursor Cells
The role of HDACs in the proliferation/differentiation of OPCs
and NPCs, as well as their alteration in AGC1 deficiency, was
investigated in Oli-Neu cells and neurospheres treated with
SAHA, a broad-spectrum HDAC inhibitor suppressing the family
members in multiple HDAC classes (Xu et al., 2007) and
approved by FDA for cancer therapy. In cells, SAHA is known to
be involved in several processes i.e., it induces the accumulation
of acetylated histones and acetylated non-histone proteins in
transcription factor TF complexes (e.g., TFIIB), which alter gene
expression; it promotes acetylation of proteins regulating cell
proliferation (e.g., Rb), protein stability (e.g., Hsp90), apoptosis
(e.g., Bcl-2 family of proteins), cell motility (e.g., tubulin), and
angiogenesis (HIF-1α); it alters the expression of proteins (e.g.,
Trx), which modulate the accumulation of reactive oxygen
species (ROS) that facilitated cell death (Johnstone and Licht,
2003; Rosato et al., 2003; Shao et al., 2004; Bhalla, 2005;
Dokmanovic and Marks, 2005; Minucci and Pelicci, 2006;
Yoo and Jones, 2006).

Control and siAGC1 Oli-Neu cells have been treated with
SAHA 0.5 and 1.0 µM for 24 h. Counting of Ki67+ cells showed
lower proliferation in siAGC1 cells compared to the control
(DMSO-treated cells), whereas SAHA treatment significantly
reduced proliferation in both the cell lines, at both concentrations
(Figures 9A,B). The WB analysis confirmed a strong induction
of histone H3 acetylation following HDACs inhibition, which is
more evident in the control Oli-Neu cells than in siAGC1 ones
(Figures 9C,D). PDGFαR, Olig2, and NG2, as expected, were less
expressed in siAGC1 Oli-Neu cells, but only PDGFαR and NG2
significantly decreased after SAHA treatment only in the control
cells, indicating a decrease in the OPCs pool (Figures 9C,E–
G). Conversely, CNPase expression significantly increased in
both cell lines following HDACs inhibition (Figures 9C–H), as
confirmed in immunofluorescence (Figures 9K,L), to suggest a
stimulated differentiation in OPCs when HDACs is inhibited.
Additionally, through WB analysis, no differences were observed
for the pro-apoptotic marker, caspase3 (both precursor and
cleaved versions of the enzyme) (Figures 9C,J), the full length
PARP1 (116 kDa), and the large fragment (89 kDa) of PARP1
resulting from caspase cleavage (Figures 9C,I), and the anti-
apoptotic protein, BCL-2 (data not shown) in treated vs. control
cells, excluding apoptosis and cell death in the reduction of OPCs
pool. From microscopic morphology analysis, protrusion length,
but not the protrusion number, significantly increased in siAGC1
Oli-Neu cells after 24 h with 1.0 µM SAHA (Figures 10A–
C). However, at 48 h, greater effects were obtained from both
cell lines with 0.5 µM SAHA, where protrusion number and

length turned out significantly higher compared to DMSO-
treated controls, respectively (Figures 10A,D,E). These data
demonstrated that the inhibition of HDACs, and the consequent
increase of histone H3 acetylation, limits the proliferation of
OPCs with a parallel increase in their differentiation, being this
effect more evident in control cells, where it leads to a condition
similar to AGC1 deficiency.

Suberanilohydroxamic acid treatment has been also evaluated
on the proliferation/differentiation of AGC1± and AGC1+/+

neurospheres. AGC1+/+ neurospheres treated with the culture
of SAHA of 0.5 or 1.0 µM (DMSO as control) for 5 days (not
7 days as for curcumin, because of its toxicity in long-time
culture; Zhou et al., 2011), revealed a significant decrease in
average diameter, with a parallel increase in number. In the same
experimental conditions, DMSO-treated AGC1± neurospheres
confirmed their higher number and smaller size compared
to AGC1+/+ controls, and after SAHA treatment, showed a
further significant increase in number and decrease in size
(Figures 11A–C). Therefore, pharmacological HDACs inhibition
seems to determine a reduction in the proliferation of NPCs
in neurospheres with a more limited effect on AGC1± ones
compared to AGC1+/+, probably due to the pathological
reduction in HDACs expression and histone acetylation.

The effect of the inhibition of HDACs by SAHA on the
differentiation of NPCs has been then tested on both AGC1±
and AGC1+/+ neurospheres spontaneously differentiated on
fibronectin. Unlike AGC1+/+, the fewer number of Olig2+
cells in AGC1± neurospheres were not further reduced by
SAHA treatments (Figures 11D,E), whereas the higher number
of CNPase+ cells significantly decreased, with no change
in AGC1+/+ control (Figures 11D,F). Neuronal-restricted
progenitors, which express DCX as a specific marker and
are more present in AGC1± neurospheres compared to
AGC1+/+ ones (Petralla et al., 2019), did not reveal any
change (Figures 11D,G). Astrocytes, however, were identified as
GFAP+ cells and significantly more expressed in AGC1± than
in AGC1+/+ neurospheres+/+ (Petralla et al., 2019), showed a
strong reduction in treated AGC1± but not in the control cells
(Figures 11D,H).

Western Blot analysis confirmed a significant increase in
histone H3 acetylation in NPCs following SAHA treatment
(Figures 11I,J). As observed through immunostaining, while
SAHA did not change Olig2 and DCX expression, the former
lower (Figures 11I,K) and the latter higher (Figures 11I,M) in
AGC1± neurospheres as compared to AGC1+/+, respectively,
the pharmacological HDACs inhibition determined a significant
reduction in CNPase (Figures 11I,L) and GFAP (Figures 11I,N)
expression in AGC1± neurospheres only, where these markers
have a basal significant higher level compared to control
conditions, as previously demonstrated (Petralla et al., 2019).
Therefore, the inhibition of HDACs has only a limited effect
on the proliferation of OPCs, while it significantly induces
the differentiation of OPCs, both in cells with downregulated
AGC1 and in controls, being this effect more evident in the
latter ones. The SAHA effect on the proliferation of OPCs has
been observed in both Oli-Neu cells and neurospheres. On the
contrary, in AGC1± neurospheres, in which the number of
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FIGURE 9 | Suberanilohydroxamic acid (SAHA)-mediated HDACs inhibition differentially reduces proliferation and promotes differentiation in control and
AGC1-silenced Oli-Neu cells. Immunofluorescence staining of Ki67 proliferation marker (A) and Ki67+ cell count analysis (B) in Oli-Neu cells after 24 h treatment with
0.5 or 1.0 µM SAHA. Values are expressed as the ratio of Ki67+ cells (red)/total cells; nuclei were labeled with DAPI. Values are mean ± SD of 3 independent
experiments; 3 different fields were acquired for each condition. 40X objective; 50 and 100 µm bar scale. WB and relative densitometries of panAcH3 (C,D),
PDGFRα (C,E), NG2 (C,F), Olig2 (C,G), CNPase (C,H), PARP1 (C,I), and pro-caspase3 (C,J) expression in OliNeu cells after 48 h treatment with 0.5 µM SAHA.
Immunofluorescence staining of CNPase (K) and CNPase+ cell count analysis (L) in OliNeu cells after 48 h treatment with 0.5 µM SAHA. Values are expressed as
the ratio of CNPase+ cells (red)/total cells; nuclei were labeled with DAPI. Three different fields were acquired for each condition. Values are mean ± SD of at least 3
independent experiments. 40X objective; 50 and 10 µm bar scale. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to DMSO control, respectively; *p < 0.05,
**p < 0.01, ***p < 0.001, compared to each treated control; two-way ANOVA (Bonferroni’s post hoc test).
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FIGURE 10 | Histone deacetylases inhibition leads to Oli-Neu cells differentiation with a decrease in filament number and increases in filaments length in siAGC1
cells compared to control ones after 48 h SAHA treatment. Optical microscope proliferation/differentiation analysis in siAGC1 and control Oli-Neu cells following 24
and 48 h of SAHA treatment (A). The number and lengths of filaments were counted and measured, respectively, and analyses were carried out with Fuji Imagej2
software (B–E). Analysis was carried out with Fuji Imagej2 software. Values are mean ± SD of 3 independent experiments; 3 different fields were acquired for each
condition. 20X objective; 200 µM bar scale. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to DMSO control, respectively; *p < 0.05, **p < 0.01, compared to
each treated control; two-way ANOVA (Bonferroni’s post hoc test).

oligodendrocytes and astrocytes is significantly higher than in
AGC1+/+ cells, the inhibition of HDACs determines a reduction
in both differentiated glial cells number, with no effects on the
neural progenitors.

DISCUSSION

The deficiency of AGC1 is a mitochondrial disorder manifesting
with developmental epileptic encephalopathy, recently defined
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FIGURE 11 | Suberanilohydroxamic acid-mediated HDACs inhibition affects proliferation and commitment through glial cells in spontaneously differentiated
AGC1+/+ and AGC1± neurospheres. Optical microscope images (A) and counting of number (B) and diameter (C) of neurospheres after 7 days of culture in
presence of SAHA 0.5 and 1 µM. Average number and size were measured with Fuji Imagej2 software using an automated colony and cell counting method; only
aggregates bigger than 400 µm2 were considered. Values are mean ± SD of 5 different fields acquired for each condition. 10X objective; 500 and 200 µm bar scale.
Immunofluorescence staining and cell counting of Olig2 (D,E), CNPase (D,F), DCX (D,G), and GFAP (D,H) on AGC1+/+ and AGC1± 7DIV spontaneously
differentiated neurospheres following HDACs inhibition with SAHA 0.5 and 1 µM. Values are mean ± SD of 3 different fields acquired for each condition. 60X
objective; 50 µm bar scale. WB and relative densitometries of panAcH3 (I,J), Olig2 (I,K), CNPase (I,L), DCX (I,M), and GFAP (I,N) expression in AGC1+/+ and
AGC1± differentiated neurospheres following HDAC inhibition with SAHA 0.5 and 1 µM. Values are mean ± D of 3 independent experiments. #p < 0.05, ##p < 0.01,
###p < 0.001, compared to DMSO control, respectively; *p < 0.05, **p < 0.01, ***p < 0.001, compared to each treated control; two-way ANOVA (Bonferroni’s
post hoc test).

Frontiers in Cellular Neuroscience | www.frontiersin.org 18 January 2022 | Volume 15 | Article 773709

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-773709 January 7, 2022 Time: 12:40 # 19

Poeta et al. Epigenetics Defects in AGC1 Deficiency Hypomyelination

as a leukodystrophy (Kavanaugh et al., 2019). These childhood
white matter disorders (WMDs) display neurologic features, such
as motor deficits, hypotonia, and epileptic seizures associated
with important systemic symptoms, and involve a wide range
of heterogeneous genetic and metabolic disorders, also including
mitochondrial encephalopathies (Ashrafi and Tavasoli, 2017;
Ashrafi et al., 2020). This is the reason why the study of
the ultra-rare, genetic AGC1 deficiency can provide useful
information to understand the pathogenic mechanisms at the
basis of the wide family of leukodystrophies. Besides, WMDs,
leukodystrophy, and leukoencephalopathy have been recently
involved in dementia (Lok and Kwok, 2021), further increasing
the interest in understanding the molecular mechanisms
underlying these disorders.

White matter is composed of myelinated neuronal axons and
glial cells, mainly OPCs and oligodendrocytes, but astrocytes and
microglia are also present. Myelination and remyelination are the
main processes that modulate the correct functioning of the white
matter, both during development and in adulthood. In CNS,
myelin is formed by oligodendrocytes that wrap axons through
multiple concentric membranous layers. Oligodendrocytes,
derived from the maturation of OPCs, are highly migratory and
are actively proliferative glial progenitors, representing about 5%
of mouse brain cells. OPCs in turn originates from the gliogenic
commitment of NPCs, mostly localized in the SVZ (Goldman
and Kuypers, 2015). The NPCs can give rise to different cells
in CNS: neurons, astrocytes, and oligodendrocytes, both during
brain development and in adulthood (Gage, 2000). Formerly
published data from our lab have previously shown a deficit in
the proliferation of OPCs with low AGC1 expression (siAGC1
Oli-Neu cells), with no change in their differentiation into
oligodendrocytes. This proliferation defect correlated with the
dysregulation in the expression of growth factors involved in
the proliferation/differentiation of OPCs and these data were
confirmed in AGC1± mice. Furthermore, in the neurospheres
from SVZ of the murine model, we observed a reduced
number of OPCs with a parallel increase in oligodendrocytes,
astrocytes, and precursor neurons, as well as an imbalance
in the proliferation/differentiation pathways (Petralla et al.,
2019). It is noteworthy that in our model of OPCs with
downregulated AGC1, we do not observe any mitochondrial
respiration deficit, thus suggesting that the alterations in the
proliferation/differentiation pathways may be not directly due
to a bioenergetic dysfunction, but due to a different molecular
mechanism (Petralla et al., 2019).

It is widely recognized that transcriptional (Meijer et al.,
2012; Yan et al., 2013; Magri et al., 2014; Palazuelos et al.,
2014; Song et al., 2015; Carroll et al., 2018) and epigenetic
mechanisms, especially histone acetylation (Juliandi et al., 2010;
Emery and Lu, 2015; Hernandez and Casaccia, 2015; Tiane
et al., 2019; Zhang et al., 2020), are major contributors to
OPCs and NPCs proliferation and differentiation and that their
dysregulation is involved in demyelinating disorders (Hsieh
and Gage, 2004; Podobinska et al., 2017). Acetylation and
deacetylation of histones are highly dynamic processes that
depend on the activity of two groups of enzymes: HATs and
HDACs. HDAC1, 2, 3, and 4 are the most relevant isoforms in

CNS (D’Mello, 2020), while, among the HATs, CBP is mainly
active in CNS. The CBP, by binding with the transcription
factor CREB (Sheikh, 2014; Lipinski et al., 2019), creates a direct
link between transcriptional and epigenetic regulation of gene
expression in the development, differentiation, and function of
the brain cells (Bito and Takemoto-Kimura, 2003). CREB, which
is activated by its phosphorylation, is known to be involved in
neuronal differentiation and survival, as well as in many other
brain functions (Yan et al., 2013).

In both the investigated in vitro models of AGC1 deficiency,
we observed a strong reduction in the expression of the
transcription factors, Olig2 and Myc, which can be related to
the reduction in the proliferation of OPCs. Instead, CREB is
increased in siAGC1 Oli-Neu cells and reduced in AGC1±
neurospheres, compared to the controls, experimental evidence
that could be explained by the multicellular composition of the
NPCs model, in which we previously demonstrated a shift in the
spontaneous differentiation of both the neuronal and glial cells
(Petralla et al., 2019). Moreover, the altered expression pattern
of the TFs, investigated in this study, is accompanied by changes
of HATs enzyme and in particular of CBP, found significantly
reduced in both OPCs and NPCs with downregulated AGC1.
As a consequence, histone acetylation is reduced, and the
parallel reduction in HDACs activity and expression appears not
sufficient to sustain the necessary histone acetylation and in turn
the proliferation of our models of AGC1 deficiency.

The role of histone acetylation/deacetylation in the
proliferation deficit of OPCs and NPCs with low AGC1
was then investigated in the presence of the HATs inhibitor,
curcumin (Balasubramanyam et al., 2004; Sunagawa et al., 2018),
and the HDACs inhibitor, SAHA (Xu et al., 2007; Zhou et al.,
2011). Curcumin, by decreasing histone acetylation, reduces
the proliferation of OPCs in the control and stimulates their
differentiation toward oligodendrocytes, hence mimicking the
condition described in siAGC1 Oli-Neu cells. Furthermore,
curcumin has greater effects also on NPCs commitment, where
it reduces the gliogenic differentiation toward both astrocytes
and oligodendrocytes, without changing neurogenesis and
the proliferation of OPCs. The data here presented, therefore,
suggest that the lower CBP level and in turn HATs activity in
OPCs with impaired AGC1 may cause their proliferation deficit,
as well as the precocious differentiation of OPCs to mature
oligodendrocytes, whereas, in NPCs, it determines an alteration
in the commitment toward glial cells and limited effect on
NPCs neuronal commitment, in line with what was previously
hypothesized (Hernandez and Casaccia, 2015).

The pharmacological inhibition of HDACs by SAHA has
only a limited effect on the proliferation of OPCs, inducing a
slight differentiation toward oligodendrocytes, especially in the
control cells, whereas in NPCs, it produces a strong reduction
in differentiated astrocytes with almost no effect on neural
progenitors (Figure 12).

Overall, our data showed that changes in HATs and HDACs
activity and consequently in histone PTMs may underly
the altered balance between proliferation and differentiation
in the investigated models with downregulated AGC1. On
the other hand, and more in general, our data pointed
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FIGURE 12 | Summary table of increased/decreased markers involved in OPCs and NSCs proliferation/differentiation following curcumin-mediated CBP inhibition
and SAHA-mediated HDACs inhibition in control and siAGC1 Oli-neu and WT and AGC1± neurospheres.

out that pharmacological inhibition or pathologic conditions
impairing histone acetylation could be responsible for the
proliferation deficit of brain progenitors with HATs likely
more involved in the gliogenic commitment of NPCs and the
proliferation/differentiation balance of OPCs, while HDACs may
play a later role in the differentiation of glial precursor cells
toward astrocytes.

An important issue arising from the data presented here
shows the role of mitochondria, and in particular of AGC1, for
the generation of acetyl groups. Histone acetylation by HATs
requires acetyl-CoA produced by mitochondrial activity, and
cellular levels of this metabolite depend on energy status. The
AGC1 regulates and preserves mitochondrial pyruvate oxidation
through the malate/aspartate, NADH shuttle (Kerkhofs, 2020),
a biochemical pathway essential to supply the energy demands
of the brain cells by feeding the tricarboxylic acid (TCA)
cycle. In addition, the import of pyruvate in the mitochondrial
matrix allows for the synthesis of citrate that releases acetyl-
CoA via citrate lyase once exported to the cytosol. Therefore,
AGC1 function may be determinant for histone acetylation,
thus representing an important link between mitochondrial
metabolism and gene expression (Menzies et al., 2016; Matilainen
et al., 2017). It has been previously demonstrated that chronic
mitochondrial dysfunction leads to a reduced mitochondrial
output of acetyl-CoA, which in turn limits the HATs activity
and histone acetylation, overall contributing to the regulation
of gene expression in the nucleus (Lozoya et al., 2019; Santos,
2021). This evidence resembles what we have observed in
our models of BPCs with AGC1 deficiency. Indeed, our data
revealed no significant reduction of mitochondrial respiration
in the OPCs model with low AGC1. We can speculate that
the residual activity of the carrier is sufficient to sustain
the mitochondrial pyruvate oxidation and in turn OXPHOS
(Llorente-Folch et al., 2013; Szibor et al., 2020). However, AGC1

silencing may limit the amount of the citrate synthesized in
the TCA cycle that is exported in the cytosol, hence providing
less acetyl-CoA for the whole OPCs and in turn affecting
the histone acetylation. It should also be considered that a
further important physiological source of acetyl groups in
OPCs is the NAA synthesized in neurons and transaxonally
transported to oligodendrocytes (Wibom et al., 2009) for myelin
synthesis. In control OPCs here investigated, the AGC1 may
compensate for the absence of the neuronal-derived NAA with
minor consequences in histone acetylation than in OPCs with
silenced AGC1. Whether exogenous NAA may have a role in
the proliferation/differentiation of OPCs will deserve further
experimentation.

Overall, the data presented in this study suggested a new
role for the mitochondrial aspartate-glutamate carrier that links
metabolism, epigenetics, and gene expression regulation in the
brain precursor cells (BPCs). This connection is particularly
remarkable if we take into consideration, the positive effect
produced in patients with AGC1 deficiency in which NAA
levels and myelination significantly increase (Dahlin et al.,
2015; Pérez-Liébana et al., 2020; Broeks et al., 2021). This
nutritional intervention is based on a high fat, low-carbohydrate
diet that uses lipids and ketone bodies (β-hydroxybutyrate
and acetoacetate), rather than glucose, as primary fuels, thus
inducing favorable metabolic adaptions. KD is effectively utilized
as a metabolic treatment in a wide range of neurological
metabolic diseases, as it is neuroprotective and strongly improves
myelination in drug-refractory epilepsy, mitochondrial diseases,
leukodystrophies, and multiple sclerosis (Finsterer, 2011; Stumpf
et al., 2019; Bahr et al., 2020; Norwitz et al., 2020; Rudy et al.,
2020). KD may alternatively fulfill the energetic demands of the
cells, but its beneficial effects could also be attributed to epigenetic
mechanisms, that might be consequential to the increased
intracellular acetyl-CoA pool formed by the administration of
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ketone bodies and to the debated HDACs inhibitory potential of
β-hydroxybutyrate, both sustaining histone acetylation (Chriett
et al., 2019; Dąbek et al., 2020). The pro-acetylating effect
of KD could also improve the proliferation of BPCs, thus
providing cells that can differentiate between oligodendrocytes
and support myelination.

Similar to AGC1 deficiency, dysfunctions in OPCs and NSCs
are now widely recognized in many neuropathologies. The OPCs
have been involved in demyelinating conditions, where these cells
are the main source of regenerating oligodendrocytes and the
inadequate expansion of the OPCs pool may be a limiting factor
for successful remyelination.

Oligodendrocyte precursor cells may also change in response
to acute injuries, such as ischemia and trauma, and white
matter abnormalities with OPCs changes have been observed
in neuropsychiatric disorders, including depression and
schizophrenia (Nishiyama et al., 2021a).

In conclusion, our study in models of the ultra-rare
genetic disease, AGC1 deficiency provided new information
to describe the pathogenetic mechanisms of the disease that
could also be useful to clarify the role of histone acetylation
in the regulation of gene expression in the BPCs in other
neuropathologies affecting white matter. The comprehension of
the molecular pathways and epigenetic mechanisms regulating
proliferation and/or differentiation of OPCs could lead to
the identification of new targets for potential therapeutic
approaches acting on histone-modifying enzymes may increase
the OPCs pool and adequately sustain their differentiation
toward oligodendrocytes for correct myelination/remyelination
processes (Monti, 2021) in neurodegenerative, neuropsychiatric,

and neurodevelopmental diseases (Ganguly and Seth, 2018;
D’Mello, 2020; Gupta et al., 2020).
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