
REVIEW
published: 21 January 2022

doi: 10.3389/fncel.2021.787258

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 January 2022 | Volume 15 | Article 787258

Edited by:

Ulises Gomez-Pinedo,

Instituto de Investigación Sanitaria del

Hospital Clínico San Carlos, Spain

Reviewed by:

Aaron Del Pozo Sanz,

University of Washington,

United States

Leyre Sanchez Sanchez De Rojas,

Agencia Española de Medicamentos y

Productos Sanitarios, Spain

Mª Salomé Sirerol Piquer,

Center for Biomedical Research on

Neurodegenerative Diseases

(CIBERNED), Spain

*Correspondence:

Sarmistha Saha

sarmistha_pharmacol@yahoo.com

Specialty section:

This article was submitted to

Cellular Neuropathology,

a section of the journal

Frontiers in Cellular Neuroscience

Received: 30 September 2021

Accepted: 13 December 2021

Published: 21 January 2022

Citation:

Saha S, Buttari B, Profumo E, Tucci P

and Saso L (2022) A Perspective on

Nrf2 Signaling Pathway for

Neuroinflammation: A Potential

Therapeutic Target in Alzheimer’s and

Parkinson’s Diseases.

Front. Cell. Neurosci. 15:787258.

doi: 10.3389/fncel.2021.787258

A Perspective on Nrf2 Signaling
Pathway for Neuroinflammation: A
Potential Therapeutic Target in
Alzheimer’s and Parkinson’s
Diseases
Sarmistha Saha 1*, Brigitta Buttari 1, Elisabetta Profumo 1, Paolo Tucci 2 and Luciano Saso 3

1Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy,
2Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy, 3Department of Physiology and

Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy

Neuroinflammation plays a pivotal role in Alzheimer’s disease (AD) and Parkinson’s

disease (PD), the leading causes of dementia. These neurological disorders are

characterized by the accumulation of misfolded proteins such as amyloid-ß (Aß),

tau protein and α-synuclein, contributing to mitochondrial fragmentation, oxidative

stress, and neuroinflammation. Misfolded proteins activate microglia, which induces

neuroinflammation, expression of pro-inflammatory cytokines and subsequently

facilitates synaptic damage and neuronal loss. So far, all the proposed drugs were

based on the inhibition of protein aggregation and were failed in clinical trials. Therefore,

the treatment options of dementia are still a challenging issue. Thus, it is worthwhile

to study alternative therapeutic strategies. In this context, there is increasing data

on the pivotal role of transcription factor NF- E2 p45-related factor 2 (Nrf2) on the

redox homeostasis and anti-inflammatory functions in neurodegenerative disorders.

Interestingly, Nrf2 signaling pathway has shown upregulation of antioxidant genes,

inhibition of microglia-mediated inflammation, and improved mitochondrial function in

neurodegenerative diseases, suggesting Nrf2 activation could be a novel therapeutic

approach to target pathogenesis. The present review will examine the correlation

between Nrf2 signaling with neuroinflammation in AD and PD.

Keywords: Alzheimer’s disease, Parkinson’s disease, Nrf2 signaling pathway, neuroinflammation, oxidative stress,

Keap1

INTRODUCTION

Neuroinflammation is a crucial hallmark in the progression of neurodegenerative conditions such
as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, multiple sclerosis,
Friedrich’s ataxia, and stroke (Stephenson et al., 2018). Alzheimer’s disease (AD), the most common
neurological disorder is an irreversible progressive neurodegenerative disease characterized by
abnormal aggregation of amyloid β-peptide (Aβ), and hyperphosphorylated tau protein (p-tau)
accumulation leading to the neuroinflammation, oxidative stress and a gradual loss in cholinergic,
synaptic and cognitive functions (Li and Götz, 2017). Parkinson’s disease (PD), the second
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most common neurological disorder, is characterized by
progressive degeneration and death of dopaminergic neurons
and the characteristic feature is the formation of fibrillar
aggregates into intraneuronal inclusions, called Lewy bodies
(LBs) which constitute more than 70% of a-synuclein (Mahul-
Mellier et al., 2020). Protein misfolding, mitochondrial damages,
oxidative stress and inflammation are the primary risk factors in
AD and PD.

A common feature of all neurodegenerative diseases is
immense oxidative stress leading to the dysfunction of neuronal
cells. Oxidative stress is a biological condition driven by the
imbalance between reactive oxygen species (ROS) production
and cellular antioxidant defense response. Oxidative stress cause
membrane lipid oxidation, ROS attack cellular membranes
leading to functional and/or structural impairment of the
membranes and to the formation of toxic lipid products as
4-hydroxy-2,3-nonenal (HNE), malondialdehyde, acrolein, and
F2-isoprostanes. In respect of their oxidative-induced damage
properties, these compounds are considered as disease mediators
and due to their more stable forms their measure render
quantifiable the magnitude of oxidative stress in biological
samples (Erejuwa et al., 2013; Sultana et al., 2013). Indeed, the
brain tissue in AD and PD and the cerebrospinal fluid (CSF)
of ALS patients showed high levels of HNE (Dexter et al., 1989;
Pedersen et al., 1998; Selley et al., 2002). Similarly, thiobarbituric
acid-reactive substances (TBARs), acrolein, and F2-isoprostanes
are all found to be elevated in AD (Arlt et al., 2002) and
PD brains (Dexter et al., 1989), whereas elevated TBARs have
been observed in the plasma of amyotrophic lateral sclerosis
(ALS) patients (Sayre et al., 2001). As an endogenous defense
mechanism, the activity of the antioxidant proteins such as
catalase, superoxide dismutase (SOD), glutathione peroxidase
and glutathione reductase are significantly up-regulated in the
hippocampus and amygdala of AD brains (Pappolla et al., 1992).
Furthermore, Aβ42 binds copper (I) ions forming Aβ42-Cu+

complex which could reduce oxygen to generate H2O2 and free
radicals (Jiang et al., 2007).

It is well established that the development and progression
of PD involved oxidative stress, mitochondrial dysfunction, and
also neuroinflammation (Di Filippo et al., 2010). In vivo and in
vitro studies have shown disruption of mitochondrial function
in the dopamine neurons in the substantia nigra in early stages
of PD (Hattingen et al., 2009), and decreased enzymes activity
in the electron transport chain has been observed throughout
the course of the disease (Schapira et al., 1989, 1990; Trimmer
et al., 2000; Tysnes and Storstein, 2017). Moreover, increased
mutations in mitochondrial DNA (mtDNA) with impaired
Complex I and consequently increased oxidative stress was
observed in later stages of PD patients, (Schapira, 2008; Moon
and Paek, 2015).

In PD, α-synuclein has a mitochondrial targeted amino-
terminal sequence which is responsible for the interactions with
the inner mitochondrial membrane and disruption of complex
I function, thereby triggers oxidative stress (Chinta et al., 2010).
Moreover, the parkin protein, which is constitutively expressed
in normal mitochondria, reportedly found to be inhibited
with impaired complex I activity in oxidative stress conditions

(Muftuoglu et al., 2004). In addition, DJ-1, a protein with
antioxidant properties, is a well-known oxidative stress sensor
as excess oxidation of DJ-1, renders this protein inactive. The
oxidized form of DJ-1 protein has been observed in patients with
sporadic PD and AD, suggesting the role of DJ-1 in the onset
and pathogenesis of sporadic PD as well as familial PD (Cookson,
2010). In response to oxidative stress, nuclear factor (erythroid-
derived 2)-like2 (Nrf2) plays a crucial role by inducing expression
of a wide range of cytoprotective genes. Overexpression of DJ-
1 has been reported to increase the Nrf2 protein levels and
enhances its antioxidant role to improve the phase II response
(Im et al., 2012).

Nrf2 plays a crucial role in regulation of cellular redox
homeostasis and neuroinflammation. Accumulating evidences
indicated the expression of Nrf2 in neurons, astrocytes, and glial
cells (Cuadrado et al., 2019). Interestingly, Nrf2 expression is
found to be higher in astrocytes than in neurons and activation
of Nrf2 triggers Nrf2 target genes in astrocytes (Lee et al., 2003).
Furthermore, astrocytes overexpressing Nrf2 protects neurons
from oxidative stress (Johnson et al., 2008).

NRF2-KEAP1 SIGNALING PATHWAY

Nrf2 (NF-E2-related factor 2), is a member of the Cap’n’collar
(CNC) transcription factor family and involved in redox
signaling, xenobiotic metabolism (Lin et al., 2015), metabolism of
carbohydrates (Heiss et al., 2013), lipids and iron (Chambel et al.,
2015), antioxidant responses, and anti-inflammatory responses.
Nrf2 protein consists of 605 amino acids and is divided into
seven highly conserved functional domains, namely Neh1-Neh7
(Figure 1A). The Neh1 domain has a cap “n” collar basic-region
leucine zipper (bZIP) domain, which is responsible for DNA-
binding (Sun et al., 2009) and a nuclear localization signal (NLS)
that regulates nuclear translocation of Nrf2 (Theodore et al.,
2008). The Neh3, Neh4, and Neh5 are transactivation domains
which regulates the binding of Nrf2 with other coactivators (Nioi
et al., 2005). The Neh6 domain acts as a negative regulatory
domain and binds with a β-transducin repeat-containing protein
(β-TrCP) for Nrf2 ubiquitination (Rada et al., 2012). The Neh7
domain is involved in the direct binding to the retinoic X
receptor α (RXRα), a repressor of NRF2, thus contributing to
the inhibition of Nrf2-ARE signaling pathway (Wang et al.,
2013). On the other hand, the Neh2 domain constitutes an N-
terminal regulatory domain and regulates the stability of Nrf2
by influencing binding with different proteins. Neh2 domain
consists of seven lysine residues which are responsible for
ubiquitin conjugation. In addition, it also consists of two peptide-
binding motifs (DLG and ETGE), which interact with Keap1
and is responsible for Nrf2 ubiquitination and its proteasomal
degradation under normal physiological conditions (Lin et al.,
2015).

Keap1, the main intracellular regulator of Nrf2, is a cysteine-
rich protein, which is divided into five domains (Figure 1B),
an N-terminal region (NTR), a Tramtrack-Bric-a-Brac (BTB)
domain, a central intervening region (IVR) with a nuclear export
signal (NES) regulating the cytoplasmic localization of Keap1,
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FIGURE 1 | The fundamental structures of Nrf2 (A) and Keap1 (B). In (C) is reported a surface presentation of the N-terminal region of the Nrf2 (purple color in mesh)

in complexed with the Keap1 protein (green color in carton) from crystal structures: 2DYH.

six Kelch repeats, and a C-terminal domain (CTR) (Ogura et al.,
2010).

Under normal conditions, Nrf2 is sequestered by cytoplasmic
Keap1 and targeted to proteasomal degradation (Wakabayashi
et al., 2003). During homeostasis, the BTB domain regulates
Keap1 homodimerization and its binding to the cullin-based
(Cul3) E3 ligase, forming Keap1-Cul3-RBX1 (Ring box protein-
1) (Figure 1C) E3 ligase complex (Zipper and Mulcahy, 2002),
whereas Kelch repeats are reportedly regulate the binding of
Keap1 to Nrf2 and p62 (Hayes and McMahon, 2009; Komatsu
et al., 2010).

During oxidative stress conditions, the DLG motif dissociates
from Keap1 protein leading to a disruption in the alignment
of Nrf2 lysine residues that prevents its ubiquitination and
consequently, Nrf2 is released from Keap1-Cul3-RBX1 complex,
translocate into the nucleus and heterodimerizes with one of
the sMaf (musculoaponeurotic fibrosarcoma oncogene homolog)
proteins (Suzuki and Yamamoto, 2015) and up-regulates
electrophile response element (EpRE)-mediated transcription
(Itoh et al., 1999). This activates the transcription of a cascade
of genes containing an antioxidant response element (ARE)
within their promoter region (Hayes et al., 2010). However,
the binding of DGR domain to Nrf2 is competitively inhibited
by proteins with specific motifs, such as p62 and localizer of
BRCA2 (Keum and Choi, 2014; Canning et al., 2015; Lu et al.,
2016), thus responsible for sensing of cellular stress (Rachakonda
et al., 2008). A non-canonical pathway for activation of Nrf2
involves competitive inhibition of the Keap1-Nrf2 interaction
via p62/Sqstm1 (Komatsu et al., 2010; Figure 2). In case of p62-
Keap1-Nrf2 axis, p62 acts as a modulator of Nrf2 activation.
The Keap1-interacting region (KIR) of p62 interacts with Keap1,
preventing Keap1 from trapping Nrf2, which leads to the Nrf2
stabilization following its activation (Komatsu et al., 2010). The
KIR region of p62 consists of serine 349, which is phosphorylated
during oxidative stress conditions. The phosphorylated p62 in
turn has a higher affinity for Keap1 (Ichimura et al., 2013),
and is responsible for the interference of Keap1-mediated
Nrf2 ubiquitination.

Another model, Nrf2-EpRE pathway regulation via nicotinic
receptors postulates that in oxidative stress conditions, after

receptor activation, post-translational modifications occurs in
Nrf2 which stimulates nuclear translocation and binding of Nrf2
with the EpRE sequences (Parada et al., 2014). Interestingly,
this model represents a correlation between anti-inflammatory
pathway and the Nrf2-dependent phase II antioxidant regulation
(Martelli et al., 2014). The phosphorylation of Nrf2 by different
kinases has been reported to affect the Nrf2 translocation.
Phosphorylation of Ser40 residue of Nrf2 by atypical PKC iota
(aPKCι) releases Nrf2 from Keap1 (Bloom and Jaiswal, 2003),
allowing Nrf2 transport to the nucleus (Bloom and Jaiswal,
2003; Numazawa et al., 2003). Similarly, other kinases such as
casein kinase-2 (CK2) (Pi et al., 2007), c-Jun N-terminal kinase
(JNK) and extracellular regulated kinase (ERK) (Keum et al.,
2006), and phosphatidylinositide-3-kinases (PI3K) (Nakaso et al.,
2003) are also involved in the activation of Nrf2 translocation to
the nucleus.

Several kinases are constitutively activated or over-expressed
in chronic inflammation or oxidative stress conditions. Glycogen
synthase kinase 3-beta (GSK3β) can phosphorylate Nrf2 leading
to the recognition of Nrf2 by an E3 ligase receptor and the F-
box protein β-TrCP followed by its degradation in a Keap1-
independent manner (Chowdhry et al., 2013). It has been shown
that the Neh6 domain of Nrf2 consists of two motifs, the
activity of one of which, DSGIS, is significantly up-regulated
by GSK3β activity (Chowdhry et al., 2013). On the other hand,
accumulating evidences also indicated that, GSK3β activation
could phosphorylate Fyn, which in turn regulates Nrf2 via
phosphorylation, nuclear export and proteasomal degradation
during pathological conditions (Jain and Jaiswal, 2007). Another
kinase, MAPK p38 reportedly stabilizes the interaction between
Keap1 and Nrf2 thereby induces the Nrf2 breakdown (Keum
et al., 2006).

ROLE OF NRF2 IN ALZHEIMER’S DISEASE

AD affects more than 50 million people, and medical
management is still a challenge as its pathogenesis still needs to be
explored (Zhang et al., 2021). The pathogenesis in AD is related to
the aggregation of Aß plaques and hyperphosphorylation of the
microtubule-associated protein, tau resulting in neurofibrillary
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FIGURE 2 | The regulatory mechanism of Nrf2 in AD. Under oxidative stress (electrophiles or ROS conditions) Nrf2 is released from Keap1-Cul3-RBX1 complex for

translocation into the nucleus followed by its heterodimerization with sMaf which leads to its binding with the antioxidant response elements (AREs), and transcription

of ARE-driven genes. Nrf2 activation may increase the levels of p62 which is responsible for the autophagic process and inhibit the BACE1 that generate amyloid-β

peptides in the neurons. Moreover, Nrf2 counteracts neurofibrillary, tau proteins tangle and amyloid-β plaques.

tangles (NFTs). The AßPP processing by proteases leads to
the generation of Aß, which is then transferred from the brain
to the cerebrospinal fluid (CSF) and is engulfed by microglia
by phagocytosis (Heneka et al., 2015). On the other hand,
hyperphosphorylated tau protein forms oligomeric paired
helical fragments (PHFs), leading to intracellular NFTs, forming
abnormal aggregates.

The level of Nrf2 is reportedly decrease as a function of age
(Zhang et al., 2015) and observed to be reduced in AD patients
(Ramsey et al., 2007). Accumulating evidences also suggested a
significant negative correlation between Nrf2 deficits and AD
(Zhang et al., 2015; Rojo et al., 2017), which might be due to
the fact that the transcription factor, Nrf2 is responsible for
the amelioration of oxidative stress and inflammation. Also,
Nrf2 directly and indirectly influences changes in autophagy in
vivo and in vitro (Riley et al., 2014; Joshi et al., 2015). Some
other reports have shown the cognitive deficits in AD animal
models and aggravates AD-like pathology via Nrf2 ablation
(Joshi et al., 2015; Rojo et al., 2017). Furthermore, activation
of Nrf2 by genetic and pharmaceutical inteventions leads to a
neuroprotective role in AD patients (Bahn and Jo, 2019).

Nrf2 target genes such as NADPH quinone oxidoreductase
I (NQO1), Heme oxygenase-1 (HO-1), and glutamate-cysteine
ligase catalytic subunit (GCLC) expressions were observed in AD
brains (Silva-Palacios et al., 2018). Nrf2-regulated target genes,
NQO1 and NQO2, are two cytosolic flavoproteins responsible

for the catalysis of two-electron mediated reduction of quinones
to hydroquinones (Ross and Siegel, 2017). NQO1 maintains
the reduced form of CoQ9 and CoQ10 inside the lipid vesicles
and thus protects the plasma membrane from membrane lipid
peroxidation and free radicals. A number of evidence suggest a
NQO1 role in development and progression of AD (Chhetri et al.,
2018). In this respect, it was reported that NQO1 enzyme activity
is up-regulated in the brain areas involved in AD pathology such
as frontal cortex (SantaCruz et al., 2004). Another recent study
showed the elevation in NQO1 expression in 3xTg-AD mice
preceded any intraneuronal Aβ immunoreactivity suggesting that
up-regulation of NQO1 in AD pathology (Bahn et al., 2019).
In contrast, in another study performed in AD human and
mouse models, it has been demonstrated that Nrf2 activation was
not able to regulate some of its target genes thus determining
repressed expression of antioxidant defenses (Mota et al., 2015).
This discordance could depend on the stage of disease. In fact,
during the initial phases of AD, Nrf2-dependent gene expression
is up-regulated due to the initial defensive cellular mechanism
against ROS, however in the latter stages, as oxidative stress
increases, Nrf2-dependent gene expression was shown to either
reduced or remains stationary (Ansari and Scheff, 2010). The
protective role of Nrf2 in AD is supported by results derived from
Nrf2-deficient mice. In fact, Nrf2−/− mice crossed with mutant
APP/PS1 mice leads to the increase in Aβ and AβPP intracellular
levels compared to mutant AβPP/PS1 mice (Joshi et al., 2015). A
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significant increase was also observed in the insoluble p-tau and
Aβ levels in Nrf2-deficient mice was observed (Rojo et al., 2017).
It was shown that the lack of Nrf2 significantly worsens cognitive
deficits in the APP/PS1 mouse model of AD (Branca et al., 2017).

Impaired proteostasis is a crucial hallmark of
neurodegenerative diseases (Hara et al., 2006; Inoue et al.,
2012). Macroautophagy is one of the main mechanisms that
ensure timely degradation of misfolded, oxidized or altered
proteins that otherwise develop proteinopathy (Ciechanover
and Kwon, 2015). A functional connection between Nrf2 and
macroautophagy gene expression was shown in a mouse model
of AD that reproduces impaired APP (amyloid β precursor
protein) and human (Hs)MAPT/Tau processing, clearance and
aggregation (Pajares et al., 2016). Nrf2-regulated autophagy
marker SQSTM1/p62 was observed to be reduced in the absence
of Nrf2 (Pajares et al., 2016). Other reports stated that Nrf2
has an impact on chaperone-mediated autophagy (Pajares
et al., 2018). Nrf2 binding sequences were identified in the
LAMP2 (lysosomal associated membrane protein 2A) gene in
several human and mouse cell types and Nrf2 deficiency and
overexpression was found to be correlated with reduced and
increased LAMP2A levels, respectively (Pajares et al., 2018).

Nrf2 deletion in APP/PS1 mice reportedly enhanced
inflammatory response and increase in intracellular APP, Aβ42
and Aβ40 levels. Mechanistically, neurons from Nrf2-deficient
APP/PS1 mice shows enhanced accumulation of endosomes,
lysosomes, and multivesicular bodies (Joshi et al., 2015). These
findings indicated Nrf2-dependent processing and accumulation
of APP/Aβ, and autophagic dysfunction. In agreement with
these findings, in vivo Nrf2 activation in response to the AD-
initiating Aβ42 peptide, was shown to prevent neuronal toxicity
(Kerr et al., 2017). Another study in the AD animal model
reported the reduction in Aβ42 level and p-tau after treatment
with Nrf2 activator, isoastilbin (Yu et al., 2019). Accordingly,
further analysis revealed that Nrf2 inhibits the beta-site amyloid
precursor protein cleaving enzyme 1 (BACE1) expression by
binding to the AREs in the promoter of BACE1 in AD animal
models. This further inhibits Aβ production, and ameliorates
cognitive deficits, however, Nrf2-dependent regulation of BACE1
is independent of ROS repression (Bahn et al., 2019). BACE1 is a
beta secretase that generate amyloid-β peptides in the neurons.

Importantly, Nrf2 could reduce the levels of p-tau in AD
by inducing nuclear dot protein 52 (NDP52) by binding
to the AREs in the promoter of NDP52 (Jo et al., 2014).
NDP52, is an autophagy-associated protein which facilitates
autophagy-mediated degradation of p-tau (Jo et al., 2014).
Consistent with this, another study reported the Nrf2-dependent
modulation of selective autophagy processes which facilitates
the clearance of tau species (Tang et al., 2018). The down-
regulation in the expression of BAG3, NBR1, NDP52, and p62
genes were observed in aged Nrf2−/− animals compared to
those in young Nrf2−/− animals, suggesting the role of Nrf2
in gene expressions during aging (Tang et al., 2018). In the
hippocampus of mice expressing human TAUP301L protein and
AD patients with tauopathy, the TAU-injured neurons release
the chemokine fractalkine CX3CL1 and an increase in the
Nrf2 and HO-1 proteins levels (Lastres-Becker et al., 2014),

suggesting an attempt of the diseased brain to limit microgliosis.
The plasma and CSF levels of soluble CX3CL1 was reportedly
found to be elevated in cognitive impairment and AD (Kim
et al., 2008; Shi et al., 2011). The interconnection between
CX3CL1 and NRF2 in the modulation of neuroinflammation
was elucidated by Lastres-Becker et al. (2014) using the murine
microglia (BV-2 microglial cell lines). The authors showed that
CX3CL1 stimulation increases theNRF2-ARE gene expression by
activating AKT (phospho-AKTSer473), leading to the inhibition
of GSK3B by phosphorylation of Ser9 (phospho-GSK-3βSer9).
On the contrary, by using primary microglia from mouse strains
that lack either NRF2 (Nrf2−/−) or CX3CR1 (Cx3cr1−/−) in
vitro stimulation with CX3CL1 failed to induce the HO-1
expression. Of note, both knockout mice showed microgliosis
and astrogliosis in case of neuronal TAUP301L expression,
suggesting the CXCL1/NRF2/HO-1-dependent mitigation of the
pro-inflammatory phenotype. Moreover, inhibition of GSK3β
correlated with a stability in the Nrf2 levels, indicating that
inhibition of GSK3β prevents Nrf2 degradation bypassing
the KEAP1. Indeed, GSK3β activity in the Neh6 domain of
NRF2 creates a degradation domain that is then recognized
by β-TrCP (Rada et al., 2011, 2012). Therefore, the lack of
CX3CR1/PI3K/AKT signaling results in the non-phosphorylated
active conformation of GSK3β which in turn leads to the Nrf2
downregulation via GSK3β/β-TrCP pathway. A summary of the
regulatory mechanism of Nrf2 in AD is reported in Figure 2.

ROLE OF NRF2 IN PARKINSON’S DISEASE

Parkinson’s Disease (PD) is another common neurodegenerative
disorder affecting 1-4% of people above 65 (Miller and
O’Callaghan, 2015). The pathological feature of PD includes
the loss of dopaminergic neurons in the substantia nigra pars
compacta and intraneuronal accumulations of a-synuclein into
Lewy body inclusions (Figure 3). PD patients show resting
tremor, postural instability, gait imbalance, bradykinesia, and
dementia in some cases as the most characteristic symptoms
(Vranová et al., 2014). Microglia, a cell type of the monocyte-
macrophage linage, is mainly responsible for inflammation in the
brain. PD is observed to be associated with the up-regulation of
the free radical generating enzymes and the accumulation of CA-
MO microglia (Pajares et al., 2020). The Nrf2 activity was found
to be significantly reduced in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)model of PD, and loss of Nrf2 further
exacerbated the phenotype (Chen et al., 2009).Mice andmonkeys
when treated with MPTP showed astroglial HO-1 expression in
striatum and elevated iron deposition (Youdim et al., 2004). In
support of these, several studies have demonstrated increased
markers of oxidative damage along with decreased levels of
antioxidants in the blood and CSF of PD patients, which was
found to be linked with Nrf2 pathway (Dias et al., 2013;Wei et al.,
2018).

Expression of Nrf2 was strongly nuclear in PD nigral
neurons, whereas it is cytoplasmic in normal conditions (Ramsey
et al., 2007). Furthermore, Nrf2 signature, represented by
NQO1 and HO-1 expressions are up-regulated, suggesting
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FIGURE 3 | Schematic representation of the role of Nrf2 in PD. An upregulation in the dopamine release could result into the oxidative stress, increased ROS

production and neuroinflammation. However, when astrocytes and microglia produces Nrf2, it activates the antioxidant and anti-inflammatory gene expressions.

Nrf2-dependent brain protection (van Muiswinkel et al.,
2004; Cuadrado et al., 2009; Yoo et al., 2013). Another
report showed the sequestering of NQO1 and p62 protein
expressions in Lewy bodies in postmortem samples of PD
patients, suggesting Nrf2-dependent neuroprotection (Lastres-
Becker et al., 2016). Similarly, in a PD Drosophila model,
Nrf2 overexpression and Keap1 knockdown attenuated
the reduced locomotor activity and dopaminergic neuron
degeneration (Nakabeppu et al., 2007; Barone et al.,
2011).

Activated microglia play a key role in neuroinflammation
by release of cytokines. Microglia are resident innate immune
cells of the brain that act as macrophages, which ranges from
pro-inflammatory M1 phenotype to immunosuppressive
M2 phenotype. Activated microglia encompasses multiple
functions: clearance of accumulated or deteriorated neuronal
and tissue elements, dynamic interaction with neurons whilst
regulating the synaptic pruning process, and maintaining
overall brain homeostasis as well as maintenance of chronic
inflammation (Moehle and West, 2015). A significant
increase was observed in proinflammatory cytokines in
the experimental models and cerebrospinal fluid of PD
patients (Mogi et al., 1994, 1999; Blum-Degen et al.,
1995; Starhof et al., 2018). In vivo findings confirmed that
widespread microglial activation is associated with the
pathological process in PD thus supporting the hypothesis
that inflammation is a significant component of progressive
dopaminergic degeneration via cytokine release (Cicchetti et al.,
2002).

Evidence for a role of NRF2 in the modulation of microglial
dynamics between pro-inflammatory M1 and anti-inflammatory
M2 phenotypes was reported by Cuadrado’s group (Rojo et al.,
2010). In Nrf2-knockout mice with MPTP treatment, basal
ganglia show a more severe dopaminergic dysfunction than
wild type. Nrf2-deficient mice exhibited intense astrogliosis and
microgliosis indicated by an increase in expressions of GFAP
and F4/80, respectively. These changes were also associated with
an increase in the levels of COX-2, iNOS, IL-6, and TNF-α
with a significant decrease in anti-inflammatory markers such as
FIZZ-1, YM-1, Arginase-1, and IL-4. These results were further
confirmed in microglial cultures stimulated with apoptotic
conditioned medium from MPP1-treated dopaminergic cells.
These findings indicated a role of Nrf2 in tuning microglial
activation in PD progression (Rojo et al., 2010).

Multiple studies investigated expression profiles at cellular
levels and reports showed selective expression of Nrf2 in
astrocytes as compared with neurons (Shih et al., 2003).
Additionally, it has also been shown that astrocyte specific Nrf2
pathway activation confers protection to vulnerable neurons
(Kraft et al., 2004).

Using a cell model derived from biopsies of the olfactory
mucosa termed, human olfactory neurosphere-derived cells
(hONS), it has been observed that a significant alteration of
“Nrf2-dependent antioxidant response pathway” was associated
to reduced levels of glutathione and salt, a measure of cellular
metabolic activity based on reduction by NAD(P)H-dependent
dehydrogenase enzymes in PD patient-derived hONS cell lines
when compared with control-donor derived cells (Matigian
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et al., 2010). Another study, reported that knocking down Nrf2
with siRNA in control-donor derived hONS cells leads to the
cellular phenotypes seen in PD cell lines (Cook et al., 2011).
In this hONS model, Nrf2 pathway activation by treatment
with L-Sulforaphane, restored disease-specific deficits in cellular
functions (glutathione content and MTS metabolism) (Cook
et al., 2011).

Reports showed the up-regulation in Nrf2 expression in the
hippocampal cells of AD brain tissue (Lastres-Becker et al.,
2014; Joshi et al., 2015; Liddell, 2017). DJ-1 (gene; PARK7)
a recessively inherited Parkinson’s gene, prevents oxidative
stress in a Nrf2-dependent manner by preventing Keap1-
mediated ubiquitination (Clements et al., 2006). In addition
to this, a short, cell penetrating, peptide derivative of DJ-
1 prevents H2O2, 6-OHDA, and DA-induced oxidative stress
in Nrf2-dependent pathway in neuroblastoma cell lines (Lev
et al., 2015). Furthermore, mutant isoforms, knockdown, and
knockoutmodels of DJ-1 have shown to prevent the expression of
the Nrf2-mediated redox signaling molecules, thioredoxin 1 (Im
et al., 2012) and glutathione (Zhou and Freed, 2005). Therefore,
a strong relationship between Nrf2 and PD is well established
till date and it has been proposed that intervening oxidative
stress through the Nrf2-dependent pathway could be useful in the
treatment of PD.

Another line of evidence revealed the key role of
phosphatidylinositol 3-kinase (PI3K) and Akt kinases in
the activation of the Nrf2-mediated antioxidant response
(Martin et al., 2004; Salazar et al., 2006; Lim et al., 2008; Rojo
et al., 2008). The regulation of neuroprotection in PD involving
PI3K/Akt/GSK3β signaling axis is supported by the fact that
Akt activity declines with age, which is the main risk factor for
sporadic PD (Ikeyama et al., 2002). Additionally, an association
between PD and single nucleotide polymorphism has been
reported in the GSK3B gene leading to the elevation of GSK3β
expression and activity (Kwok et al., 2005). Furthermore,
inhibition of GSK3β enhanced Nrf2 activity and increased
expression of Phase II antioxidant genes, thereby protecting
against oxidants such as H2O2, 6-hydroxydopamine (6-OHDA)
and MPP + (Salazar et al., 2006; Jain and Jaiswal, 2007; Rojo
et al., 2008). A summary of the regulatory mechanism of Nrf2 in
PD is reported in Figure 3.

CROSS-TALK BETWEEN NRF2 AND
NEUROINFLAMMATION IN AD AND PD

It is assumed that Nrf2 and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling pathways
cooperate for the maintenance of the physiological tissue
homeostasis and for the regulation of the cellular response to
stress and inflammation. Several pro-inflammatory cytokines
regulated by NF-κB, such as TNF-α, IL-1β, IL-6 and matrix
metallopeptidase 9 (MMP9), have been shown to be enhanced
in Nrf2-deficient mice in neuroinflammation as compared with
wild-type mice, indicating that Nrf2 silencing promotes NF-κB
-mediated inflammation (Mao et al., 2010).

Since a bidirectional connection occurs between the brain
and the peripheral immune system, therefore, Nrf2 plays
a crucial role in neuroinflammation (Jarrott and Williams,
2016). In neurodegenerative disorders, microglial cells become
activated, leading to the release of pro-inflammatory cytokines
and the production of ROS and reactive nitrogen species
(RNS) (Hoenen et al., 2016). To circumvent the damaging
effect of oxidative stress and inflammation, cells have developed
several defense mechanisms. Nrf2/ARE signaling influences anti-
inflammatory changes in many kinds of brain injuries, such as
subarachnoid hemorrhage, traumatic brain injury, ischemia and
neurodegenerative disease (Yan et al., 2008; Zhang et al., 2010;
Wu et al., 2014). The Nrf2 activation pathway promotes the
expression of antioxidative response elements, whereas nuclear
factor kappa B (NF-κB), a protein complex which influences
cytokine production and cell survival, also promotes cellular
responses to neuronal injury and synaptic plasticity (Shih et al.,
2015). Aging per se is associated with Nrf2 dysfunction and
continuous, low-grade inflammation. These processes further
contribute to neurodegeneration. So far, results have shown
that neuroinflammation has a vital role in the progression and
development of AD and PD and the imbalance between Nrf2
and Nuclear factor kappa B (NF-κB) could contribute to their
pathogenesis of neuroinflammation.

Considerable evidence has revealed oxidative stress as well
as chronic inflammation and autophagy in the brain correlated
with the slow deterioration of AD (Prasad, 2017). In addition,
experimental data so far suggest that all these changes are
associated with impaired Nrf2 activity (Pajares et al., 2016;
Zhang et al., 2019). The impaired spatial learning and memory
abilities of mice and the accumulation of Aβ and p-tauS404 in
the hippocampus were observed to be aggravated in a mouse
model of AD (APP/PS1 transgenic (AT) mice with genetic
removal of Nrf2 (Ren et al., 2020). Furthermore, astroglial and
microglial activation was exacerbated along with upregulation
of the proinflammatory cytokines IL-1β, IL-6, and TNF-α (Ren
et al., 2020).

Since, inflammation is implicated as the key mechanism
that actively contributes to neurodegeneration, by influencing
the responses of microglia and astrocytes. Nrf2 is the key
regulator for the two important cytoprotective pathways,
anti-inflammation and anti-oxidation. Nrf2, which is essential
for protection against oxidative/xenobiotic stresses, has
been shown to block transcriptional upregulation of the
proinflammatory cytokines IL-6 and IL-1β in myeloid cells by
binding to the proximity of proinflammatory genes that guide
the macrophage activation toward the M1 proinflammatory
phenotype (Kobayashi et al., 2016). Treatment of neural
stem/progenitor cells with Aβ induced reduction of neuronal
differentiation which was prevented by Nrf2 over-expression,
while Nrf2 deficiency enhanced impairment of neuronal
differentiation (Kärkkäinen et al., 2014). In the same study, the
Aβ40 treatment had no direct effect on neurosphere proliferation,
however, when associated with Nrf2 overexpression it led to
an enhanced proliferation of neurospheres and Nrf2 deficiency
reduced neurospheres proliferation. Knockout of Nrf2 in mice
crossed with AT or mutant HsAPPV717I/HsMAPTP301L mice
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showed exacerbated astrocyte and microglial activation (Lastres-
Becker et al., 2014; Joshi et al., 2015). However, treatment with
the kavalactone methysticin, an Nrf2 activator, significantly
reduced microglial infiltration, astrogliosis, and the secretion of
the proinflammatory cytokines TNF-α and IL-17A in APP/Psen1
mice (Rojo et al., 2010). Furthermore, Nrf2 deletion exacerbated
the inflammatory response in AT mice as shown by increased
proinflammatory factors and hippocampal astrogliosis and
activation of microglia surrounding the Aβ plaque, and NFTs
(neurofibrillary tangles) in AD animal models or human patients
(Griffin et al., 1989; Simard and Rivest, 2006; Lok et al., 2013;
Licht-Murava et al., 2016). Indeed, hyperphosphorylated tau
protein and fibrillar Aβ lead to inflammatory processes and the
release of IL-1β in vivo and in vitro (Halle et al., 2008; Sarlus
and Heneka, 2017). Other reports showed that Aβ accumulation
induced progressive impairment in microglial cells in their
ability to phagocytize Aβ (Shi and Holtzman, 2018). However,
Nrf2 absence induced more aggressive activation of astroglia and
inflammation in AT mice, which might be through activation of
the NF-κB pathway (Fragoulis et al., 2012; Buendia et al., 2016).

Microglia-mediated neuroinflammation is also a crucial
pathological process and the key factor is glial activation,
especially microglial activation. It has already been reported that
chronic Nrf2 deficient microglia leads to neuroinflammation and
AD, and loss of Nrf2 primed microglia toward inflammatory
phenotype with an increase in Clec7a and CD68 markers (Yu
et al., 2019). Nrf2 knockout in aged mice leads to increased
reactive microglia, proinflammatory cytokines, and infiltrating
immune cells in the brain with AD-like impairment. Nrf2
knockout microglia showed increased NF-κB p65 and CD86
suggesting inflammatory phenotypes. Moreover, loss of Nrf2
leads to the reduction in microglial expressions of P2ry12,
Tmem119, Gpr34, Tgfbr1, and Mafb, suggesting the Nrf2-
dependent regulation of microglial homeostasis.

On the other hand, astrocytes are also well-known for
active involvement in AD disease progression by influencing
accumulation of amyloid plaques, neuroinflammation, and
oxidative stress. It has been shown that Presenilin 1 mutated
(PSEN11E9) AD patient astrocytes have altered cytokine
secretion upon inflammatory stimulation and exploits higher
oxidative metabolism, thereby leading to the high production of
ROS than healthy control astrocytes (Oksanen et al., 2017). The
same study shows that inflammation activates the metabolism
of human astrocytes. In a consecutive study, it has been shown
that Nrf2 activation reduces amyloid secretion, cytokine release,
with a subsequent increase in GSH secretion in AD astrocytes
(Oksanen et al., 2020). Activation of Nrf2 also enhances
the metabolism of astrocytes and increases the utilization
of glycolysis.

It is well established that inflammation is a complex interplay
of different pathways. In this context, heme oxygenase-1 (HO-
1, HMOX1, EC 1.14.99.3), is an inducible 32 kDa protein
which is responsible for the catalysis of the rate-limiting step
of oxidative heme degradation which converts heme into three
bioactive products namely free iron, carbon monoxide (CO) and
biliverdin. Biliverdin is further rapidly converted into bilirubin
and plays crucial roles in inflammation, apoptosis and oxidative

stress (Wunder and Potter, 2003). Nrf2 directly regulates the
expression of the HMOX1 gene responsible for the activity of
HO-1 enzyme. Several in vitro and in vivo experiments have
shown the role of Nrf2-dependent HO-1 expression for the anti-
inflammatory activity. In presence of AD, HO-1 is observed
to be increased in the temporal cortex and hippocampus in
human brains (SantaCruz et al., 2004). Hippocampal expression
of mutated tau induces increase in HO-1 and GCLC transcripts
in wild type mice but not in Nrf2 knockout mice, indicating
the crucial role of Nrf2 in the reduction of oxidative stress and
inflammation (SantaCruz et al., 2004).

Apart from this, NF-κB p65 subunit downregulated the Nrf2-
ARE pathway at transcriptional level by competitive interaction
with the CH1-KIX domain of CREB-binding protein (CBP),
which results in Nrf2 inactivation, or by the recruitment of the
corepressor histone deacetylase 3 to ARE, thus promoting local
histone hypoacetylation (Liu et al., 2008). Accordingly, silencing
of p65 by knockdown promotes Nrf2 complex formation with
CBP (Liu et al., 2008).

A study in primary cultured astrocytes from Nrf2 wild type
or knockout mice exposed with oxyhemoglobin (OxyHb) has
shown activation of NF-κB and an up-regulation of downstream
pro-inflammatory cytokines in astrocytes. Moreover, this up-
regulation was much greater in knockout astrocytes than in
wild type astrocytes (Pan et al., 2011). Recently a study was
conducted in a transgenic mouse that combines amyloidopathy
and tauopathy with either wild type (AT-Nrf2-WT) or Nrf2-
deficiency (AT-Nrf2-KO) (Rojo et al., 2017, Rojo et al., 2018).
The results showed that AT-Nrf2-WT mice died prematurely, at
around 14 months of age, due to motor deficits and a terminal
spinal deformity, whereas AT-Nrf2-KO mice died roughly
2 months earlier. Nrf2-deficiency mice showed exacerbated
astrogliosis and microgliosis, with a significant increase in
GFAP, IBA1 and CD11b levels. However, treatment with Nrf2
activator, dimethyl fumarate (DMF) showed a reduction in pro-
inflammatory mediators COX2 and NOS2, as well as the gliosis
markers GFAP, IBA1 and MHCII with a significant increase
in the expression of Nrf2, Nqo1, Osgin1, and Gstm1 in the
brain, thereby preventing cognition and motor complications
(Rojo et al., 2017, 2018). With aging, the cerebral blood vessels
of Nrf2-deficient mice showed enhanced senescence markers,
aging-induced vascular inflammation and blood-brain barrier
leakage (Fulop et al., 2018; Tarantini et al., 2018) along with white
matter leukoencephalopathy (Hubbs et al., 2007).

Astrocytes provide trophic support for neurons, promote
formation and function of synapses, and prune synapses
by phagocytosis, in addition to fulfilling a range of other
homeostatic maintenance functions (Sofroniew and Vinters,
2010). Astrocytes undergo a dramatic transformation called
“reactive astrocytosis” after brain injury and disease. Liddelow
and colleagues have shown that activated microglia is able to
induce pro-inflammatory astrocytes, designated as A1-astrocytes,
via secretion of IL-1α, TNFα, and C1q both in vitro and in
vivo. This subset of astrocytes changes their expression profile
and phenotype to form neurotoxic reactive astrocytes. Indeed,
A1s lose the ability to promote neuronal survival, outgrowth,
synaptogenesis and phagocytosis, and induce death of neurons
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and oligodendrocytes (Liddelow et al., 2017). The authors also
show that A1s are highly present in human neurodegenerative
diseases including AD and PD. Silencing by either knockout gene
or antibody drugs for IL-1α, TNFα, and C1q inhibit A1 reactive
astrocyte formation, therefore, this pathway has a therapeutic
value in neurodegenerative diseases (Liddelow et al., 2017). A
prolonged dysfunction of astrocytes and microglia activation
reportedly accelerate the degeneration of SNpc dopaminergic
neurons during early dysfunction induced by 6-OHDA lesion
in rats (Kuter et al., 2018). Upon activation to the M1
phenotype, microglia secrete pro-inflammatory cytokines and
neurotoxic molecules leading to the inflammation and cytotoxic
responses. In contrast, the M2 polarized microglia secrete anti-
inflammatory cytokines such as IL-4 and IL-10, neurotrophic
factors (e.g., BDNF and IGF-1), and extracellular matrix proteins
such as fibronectin (Subramaniam and Federoff, 2017).

With age, the failure of the astrocytic Nrf2-antioxidant axis
response upon inflammation and oxidative stress significantly
influences VM astrocyte-microglia-neuron interactions (Chinta
et al., 2013; L’Episcopo et al., 2013; Silva-Palacios et al., 2018;
Serapide et al., 2020). At the SNpc level, aging-induced decline
of astrocytic Nrf2 gene expression promotes an up-regulation
of major microglial proinflammatory gene expressions, such as
TNF-α, IL1β, IL-6 andNos2 both at striatal (Okamoto et al., 2011;
L’Episcopo et al., 2013) and SNpc (L’Episcopo et al., 2011, 2018)
levels, further accelerates oxidative stress and inflammation.

In a very recent study, NRF2 knockout and wild-type mice
that overexpress human α-Syn (hα-Syn+/Nrf2−/− and hα-
Syn+/Nrf2+/+ respectively) were developed and an increased
phosphorylation and oligomerization of α-Syn was observed
in hα-Syn+/Nrf2−/− mice. Further analysis showed a loss
of tyrosine hydroxylase expressing dopaminergic neurons in
the substantia nigra with amplified oxidative stress, higher
inflammatory markers including COX-2 and iNOS-2 levels and
an increased autophagic burden, especially in the midbrain,
striatum and cortical brain regions (Anandhan et al., 2021).

POTENTIAL NRF2 ACTIVATORS TOWARD
NEUROINFLAMMATION CLINICAL TRIALS

So far, we discussed different aspects of Nrf2 signaling pathway
in oxidative stress and inflammation in neurodegenerative
diseases, therefore, it is also worthwhile to discuss compounds
and natural products which could modulate Nrf2-dependent
treatment of neuroinflammation. Extensive research has been
focused till date on identifying the agents/factors that regulate
the association between Nrf2 and Keap1 and there are many
chemical compounds, and natural products that have been
identified as Nrf2 activators in neuroinflammation (Cuadrado
et al., 2019). In this context, dimethyl fumarate (DMF), is the
only drug so far approved by US Food and Drug Administration
and marketed by Biogen, as an anti-inflammatory therapeutic
agent inmultiple sclerosis with the ability to inhibit inflammation
via Nrf2 antioxidant pathway (Linker et al., 2011; Gold et al.,
2012). More importantly, in a pre-clinical study performed
in an animal model of PD, it was observed that the oral

administration of DMF protected nigral dopaminergic neurons
against α-synuclein toxicity and reduced astrocytosis and
microgliosis from stereotaxic delivery to the ventral midbrain
of recombinant adeno-associated viral vector expressing human
α-synuclein (Lastres-Becker et al., 2016). Furthermore, in vitro
studies showed that the neuroprotective effect of DMF was
associated with the altered regulation of autophagy markers
SQTSM1/p62 and LC3 in MN9D, BV2 and IMA 2.1 and a
switch in microglial phenotype toward a less pro-inflammatory
type (Lastres-Becker et al., 2016). DMF and its bioactive
metabolite monomethylfumarate (MMF) activate in vitro the
Nrf2 pathway by promoting S-alkylation of Keap1 and by
determining nuclear exit of the Nrf2 repressor Bach1 (Ahuja
et al., 2016). Nrf2 activation by DMF was associated with
glutathione depletion, decreased cell viability, and inhibition of
mitochondrial oxygen consumption and glycolysis rates, whereas
MMF determined an increase of these activities. However, despite
these differences, both DMF and MMF showed neuroprotective
effects and blocked neurotoxicity in a mouse model of PD.
Interestingly, this effect was not observed in Nrf2 null mice
(Ahuja et al., 2016). Mechanistically, Linker and colleagues
demonstrated that in an animal model of chronic multiple
sclerosis DMF treatment improved preservation of myelin, axons
and neurons (Linker et al., 2011). In the same study, in vitro
experiments demonstrated that fumarates were able to increase
murine neuronal survival and to protect human or rodent
astrocytes against oxidative stress. Moreover, it was observed
that MMF was able to promote Nrf2 activation by determining
a direct modification of Keap1 at cysteine residue 151 (Linker
et al., 2011). More recently, a study performed in human
astrocytes demonstrated that cytoprotective activity of MMF is
mediated by the upregulation of the oxidative stress induced
growth inhibitor 1 (OSGIN1)-61 kDa isoform (Brennan et al.,
2017). MMF-induced OSGIN1 expression is NRF2-dependent
and modulates inflammatory markers thus contributing to cell
protection against oxidative challenge (Brennan et al., 2017).

More recently, Bach1 inhibitor by vTv Therapeutics (High
Point NC, USA) proved to be effective against MPTP-induced
dopinergic neurodegeneration via Nrf2 activation (Ahuja et al.,
2016). Another compound has been identified to bind Keap1
in the in vitro assay in the low micromolar range, by Biogen
Idec, Merrimack Pharmaceuticals, Celgene Corporation (USA),
Evotec AG (Germany), and NoValix (France) (Marcotte et al.,
2013). Another compound within the isothiocyanate group
of organosulfur compounds, Sulforaphane (SFN), activates
Nrf2 in the basal ganglia leading to the upregulation of
phase II antioxidant enzymes HO-1 and NQO1 (Jazwa et al.,
2011). Importantly, SFN treatment activates Nrf2-dependent
pathway to restore glutathione and MTS metabolism in
PD hONS cultures (Cook et al., 2011). In wild-type mice,
SFN protected against parkinsonian toxin methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced death of nigral
dopaminergic neurons by reducing astrogliosis, microgliosis,
and release of pro-inflammatory cytokines (Jazwa et al., 2011).
Similar effects have also been shown by SFN treatment in
other animal models of PD (Trinh et al., 2008; Morroni
et al., 2013; Advedissian et al., 2016). Sulforaphane, originally
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isolated from Brassicaceae plants, has been enrolled in clinical
trials (NCT04213391) for the treatment of AD based on Nrf2
activation. However, sulforaphane is relatively unstable at room
temperature. In this context, its synthetic analogs such as SFX-
01 (Evgen Pharma developed drug) are attracting considerable
attention for AD drug development.

The expression of HO-1 in microglial cells was observed to
be responsible for the anti-inflammatory effect of compounds
such as schizandrin C (Park et al., 2013) and several other
compounds (Foresti et al., 2013). Moreover, in tauopathy,
NRF2- and fractalkine receptor-knock out mice did not
express HO-1 in microglia, suggesting their crucial role in the
mitigation of neuroinflammation (Lastres-Becker et al., 2014).
Cryptotanshinone, a monomer compound, can attenuate LPS-
induced neuroinflammation via Nrf2/ HO-1 signaling pathway
in BV-2 microglial cells (Zhou et al., 2019).

Quercetin, a natural flavonoid, significantly attenuated the
LPS-induced synaptic loss in the cortex and hippocampus of
the adult mouse brain (Khan et al., 2018). Quercetin protects
against mitochondria dysfunction and progressive dopaminergic
degeneration of neurons in experimental models of PD (Ay
et al., 2017). Quercetin also shows an improvement in cognitive
impairment in 6-OHDA-induced PD (Korczyn, 2001). In another
study, quercetin prevents NO and iNOS over-expression in PC12
cells and down-regulates pro-inflammatory genes expressions
(IL-1ß, COX-2 and TNF-α) in zebrafish (Zhang et al., 2011).

Treatment with synthetic triterpenoids such as CDDO-methyl
amide (2-cyano-N-methyl-3,12-dioxooleana-1,9(11)-dien-28
amide; CDDO-MA) of neuroblastoma SH-SY5Y cells resulted
in Nrf2 activation and translocation from cytosol to nucleus
and significant protection against MPTP-induced nigrostriatal
dopaminergic neurodegeneration, pathological α-synuclein
accumulation and oxidative damage in mice (Yang et al., 2009).
CDDO-MA treatment of fibroblasts from wild type, but not
from Nrf2 knockout mice, inhibited ROS production induced
by t-butylhydroperoxide by promoting the activation of ARE
genes (Yang et al., 2009). The two structural analogs of CDDO
(TP-319 and TP-500), obtained by the cyclization of squalene,
have demonstrated improved blood-brain-barrier permeability,
and protected against oxidative stress and inflammation in
MPTP-induced dopaminergic neurotoxicity in mice (Kaidery
et al., 2013). This activity was Nrf2-dependent as treatment
of Nrf2 knockout mice with these CDDO analogs failed to
inhibit MPTP neurotoxicity and to induce Nrf2-dependent
cytoprotective genes (Kaidery et al., 2013). Another potent Nrf2
activator, KKPA4026 was identified by virtual screening of the
Asinex and Chemdiv databases (Kim et al., 2020). KKPA4026 was
demonstrated to induce the expression of the Nrf2-dependent

antioxidant enzymes heme oxygenase-1, glutamate-cysteine
ligase catalytic subunit, glutamate-cysteine ligase regulatory
subunit, and NAD(P)H:quinone oxidoreductase 1 in BV-
2 cells. Furthermore, in the MPTP-induced mouse model
of PD, KKPA4026 was able to reduce behavioral deficits
and protected dopaminergic neurons in an Nrf2-dependent
manner. Similarly, a recent report showed a novel therapeutic
candidate ALGERNON2 (altered generation of neurons 2)
reduced the proinflammatory cytokines secretion and stabilized
cyclinD1/p21 complex by inhibiting Dyrk1A activity, leading to
Nrf2-dependent antioxidant and anti-inflammatory responses
in a MPTP-induced PD model (Kobayashi et al., 2016).
Interestingly, this compound enhanced neuronal survival also
in other neuroinflammatory conditions, particularly in the
transplantation of pluripotent stem cell–derived dopaminergic
neurons into murine brains, thus confirming the therapeutic
potential of ALGERNON2 in neuroinflammation-triggered
neurodegeneration conditions (Kobayashi et al., 2016).

CONCLUSIONS

Oxidative damage and neuroinflammation are the key regulators
in the pathogenesis of AD and PD. Therefore, one way to
prevent these oxidative stress and inflammation is to upregulate
the endogenous protection system in the neuronal cells. Nrf2-
Keap1 signaling pathway is the hallmark of redox signaling
and controlled neuroinflammation. Here, we reviewed ongoing
scientific literature about regulation of Nrf2 signaling pathway
in different aspects of neuroinflammation and related cognitive
impairment. However, there are still some mechanisms such as
interactions between Nrf2 and JAK/STAT signaling in neuronal
cells that needs to be studied. Although many clinical studies and
pharmaceutical companies are currently targeting Keap1, the key
regulator of Nrf2, it is still challenging to enhance the targeting
of these compounds against neurodegenerative disorders due to
the targeted Nrf2 dissociation from Keap1 and its persistence in
the nucleus as well as the permeability through the blood brain
barrier as well as their proper biotransformation.

Furthermore, new chemical entities which have entered
clinical trials for AD and PD therapy should be analyzed for Nrf2
response to determine their advantages in neuroinflammation.
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