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Accumulating evidence indicate that astrocytes are essential players of the excitatory
and inhibitory signaling during normal and epileptiform activity via uptake and release
of gliotransmitters, ions, and other substances. Polyamines can be regarded as
gliotransmitters since they are almost exclusively stored in astrocytes and can be
released by various mechanisms. The polyamine putrescine (PUT) is utilized to
synthesize GABA, which can also be released from astrocytes and provide tonic
inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through
spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and
therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes
may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence,
astrocytic polyamines possess the capability to significantly modulate epileptiform
activity. In this study, we investigated different steps in polyamine metabolism and
coupled GABA release to assess their potential to control seizure generation and
maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe
epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that
SPM is a gliotransmitter that is released from astrocytes and significantly contributes
to network excitation. Importantly, we found that inhibition of SPD synthesis completely
prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic
effect is attributed to the subsequent enhancement of PUT to GABA conversion in
astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation
is supported by the observation that antiepileptic potential of the Food and Drug
Administration (FDA)-approved drug levetiracetam can be diminished by specifically
blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its
effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest
that the major pathway through which astrocytic polyamines contribute to epileptiform
activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore,
may serve for a more effective antiepileptic drug development in the future.

Keywords: absence epilepsy, WAG/Rij rat model, APCHA/spermine synthase inhibitor, 4-MCHA/spermidine
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INTRODUCTION

Polyamines are polycationic molecules that perform various
functions in the brain from maintenance of redox balance
(Murray-Stewart et al., 2018), through direct regulation of ion
channels (Herman et al., 1993; Biedermann et al., 1998; Weiger
et al., 1998; Skatchkov et al., 2006; Kucheryavykh et al., 2008;
Nichols and Lee, 2018) and various subtypes of glutamate
receptors (GluR) (Benveniste and Mayer, 1993; Williams, 1997;
Mott et al., 2003), to modulation of higher cognitive functions
(Guerra et al., 2016). Polyamines have biphasic effects on
GluRs: they either block AMPAR and NMDAR channels at
high doses (reviewed by Williams, 1997) or activate NMDAR
and kainate receptor channels by low doses (Benveniste and
Mayer, 1993; Mott et al., 2003). Therefore, direct release of
polyamines (as alternative gliotransmitters) from astrocytes may
lead to neuronal activity switch (Skatchkov et al., 2014, 2016;
Olsen et al., 2015). Indeed, in hippocampal (Ferchmin et al.,
1995) and cortical (Rozov and Burnashev, 1999) brain slices,
spermine (SPM) produced dramatic changes in the activity of
neuronal networks, but understanding of the results was diverse.
Polyamines have been suggested to either directly target AMPARs
(Rozov and Burnashev, 1999), Ca2+ channels (Herman et al.,
1993; Ferchmin et al., 1995), NMDARs (Benveniste and Mayer,
1993), Kir channels (Lopatin et al., 1994, 1995; Nichols and
Lopatin, 1997; Skatchkov et al., 2000, 2002; Kucheryavykh et al.,
2007, 2008), TRPV channels (Ahern et al., 2006), Cx43 GJCs
(Skatchkov et al., 2015; Kucheryavykh et al., 2017), or ASIC
channels (Duan et al., 2011). Spermidine (SPD) protects from
age-related alterations of synapses via autophagy mechanism
(Sigrist et al., 2014; Maglione et al., 2019), however, data on
the release of polyamines from astrocytes with consequent effect
on neighboring inhibitory interneurons were reported only in
astrocyte culture (Malpica-Nieves et al., 2021).

Importantly, polyamines are predominantly accumulated in
astrocytes and other glial cells (Ingoglia et al., 1982; Laube and
Veh, 1997; Biedermann et al., 1998; Gilad et al., 1999; Skatchkov
et al., 2000). Uptake system for all polyamines, putrescine (PUT),
SPD, and SPM, are present in astrocytes (Dot et al., 2000, 2002;
Malpica-Nieves et al., 2020, 2021). The accumulated polyamines
can also be released from astrocytes through multiple pathways:
astrocytic connexin Cx43 hemichannels (Cx43 HCs) (Skatchkov
et al., 2010, 2014, 2016; Kirichenko et al., 2021; Malpica-
Nieves et al., 2021), vesicular uptake/release mechanisms (Soulet
et al., 2004; Hiasa et al., 2014; Takeuchi et al., 2017; Zorec
et al., 2018), or by reverse transport via polyamine transporters
(Makarov et al., 2013).

Putrescine is predominantly converted to SPD and SPM
by SPD synthase and SPM synthase, respectively. In addition,
polyamines may also be the source of astrocytic GABA synthesis
either directly from PUT or when SPD and SPM are catabolized
to PUT. Such conversion proceeds via a two-step cascade of
events: (i) by SPD-SPM acetyl transferase (SSAT) or (ii) by
polyamine oxidase and then from PUT via monoamine oxidase
B (MAOB) and diamine oxidase (DAO) to GABA (Seiler et al.,
1973; Testore et al., 1995; Sequerra et al., 2007; Skatchkov et al.,
2014; Olsen et al., 2015; Pegg, 2016; Kwak et al., 2020). Since the

production of GABA by its common pathway from glutamate via
glutamic acid decarboxylase is declined by age (Sequerra et al.,
2007; Kim et al., 2017), the PUT-derived GABA synthesis is vital
in adult (Olsen et al., 2015). Conversion from PUT to GABA was
shown in both newborn progenitor cells of subventricular zone
(Sequerra et al., 2007) and in adult astrocytes (Kwak et al., 2020).

Previously we revealed (Héja et al., 2009, 2012) that the
release of PUT-derived GABA by the reverse operation of
astrocytic GABA transporters GAT-2/3 activates extrasynaptic
GABA receptors and contributes to tonic inhibition under
epileptic conditions. According to this mechanism, the PUT-
derived astrocytic GABA provides a negative feedback that
combats overexcitation and shortens epileptic seizures (Héja
et al., 2012). This Glu/GABA exchange mechanism could be
prevented by blocking MAOB and DAO (Héja et al., 2012),
suggesting that PUT is a key player in the mechanism. In
addition, MAOB and DAO activity may also be decreased
by limiting the astrocytic copper concentration as blockade
of copper transporter was shown to decrease tonic inhibitory
currents (Szabó et al., 2021). Moreover, not only tonic (Héja
et al., 2012), but also induced inhibitory synaptic transmission
in hippocampal brain slices was depressed by applying alfa-
difluoromethylornithine (DFMO), known to block production of
PUT (Ferchmin et al., 1995). These data conclusively suggest that
PUT significantly modulates seizure generation and maintenance
by producing astrocytic GABA, which in turn after released by
GAT-2/3 reversal (Héja et al., 2009, 2012; Kirischuk et al., 2012,
2016) or via Bestrophin-1 channels (Olsen et al., 2015; Kim
et al., 2017; Kwak et al., 2020) significantly contributes to seizure
generation and maintenance. It is to note that decreased GABA
level in astrocytes produces decreased tonic inhibition not only in
epilepsy (but be aware of the altered activity of KCC2 in epilepsy;
di Cristo et al., 2018), but also in a mouse model for attention-
deficit/hyperactivity disorder (Kim et al., 2017) and Huntington
disease (Wójtowicz et al., 2013).

Besides providing GABA, PUT also forms SPD and SPM.
Although this process occurs in synapses and some deep brain
neurons (Krauss et al., 2006, 2007), the synthesized SPD and
SPM are accumulated in glia. In astrocytes, SPM specifically
opens astrocytic Cx43 gap junction channels (Cx43 GJCs)
(Benedikt et al., 2012) by removal of proton and calcium
blocks in Cx43 channels (Skatchkov et al., 2015; Kucheryavykh
et al., 2017). These channels, formed from two coupled Cx43
HCs (Contreras et al., 2003), enable physical coupling between
adjacent astrocytes and allow synchronization of the astrocytic
syncytium. Also, SPM passes through the open Cx43 GJCs
(Benedikt et al., 2012), thereby including additional astrocytes
in the iso-potential network (Ma et al., 2016) due to SPM-
dependent coupling. This observation points to a crucial role for
SPM in astrocytic syncytium formation. Cx43 GJCs play a pro-
epileptic role in the in vitro low-[Mg2+] temporal lobe epilepsy
(TLE) model, but intriguingly they play an antiepileptic role
in the in vivo absence epilepsy model WAG/Rij rats (Vincze
et al., 2019). It is therefore plausible to hypothesize that the
astrocytic syncytium synchronized by SPM signaling through
Cx43 GJCs may contribute to the genesis of epileptic activity
(Russo et al., 2016).
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Using several approaches in this work, we asked how
polyamines may affect neuron-glia coupling, interact with
GABA transmissions, and modulate neuronal excitation
and synaptic activity under epileptic conditions. We used
different agents to (i) inhibit the synthesis of SPM and SPD
by 3-(aminopropyl)cyclohexylamine (APCHA) and trans-4-
methylcyclohexylamine (4-MCHA), respectively; (ii) activate
Cx43 GJC coupling and probably GluRs by exogenous SPM; (iii)
stimulate the release of polyamines by specific depolarization of
astrocytes with the specific gliotoxin mono-fluoroacetate (FA);
(iv) increase the surface expression of GAT-2/3 by levetiracetam
in the presence and absence of GAT-2/3 blocker [(S)-1-[2-
[tris(4-methoxyphenyl)methoxy]ethyl]-3-piperidinecarboxylic
acid (SNAP-5114).

MATERIALS AND METHODS

Animals
Animals were kept and used in accordance with standard ethical
guidelines and approved by the local Animal Care Committee,
the Government Office for Pest County (reference numbers
PEI/001/3671-4/2015 and PE/EA/3840-4/2016), the Hungarian
Act of Animal Care and Experimentation (1998, XXVIII, section
243), European Communities Council Directive 24 November
1986 (86/609/EEC), and EU Directive 2010/63/EU on the use
and treatment of animals in experimental laboratories. The
experiments on WAG/Rij rats were approved by the Animal
Care and Experimentation Committee of the Eötvös Loránd
University (Savaria University Centre) and National Scientific
Ethical Committee on Animal Experimentation (Hungary) under
license number VA/ÉBNTF02/85-8/2016. All efforts were made
to reduce animal suffering and the number of animals used.
The experiments on Sprague-Dawley rats were carried out in
accordance with a protocol approved by the Universidad Central
del Caribe Institutional Animal Care and Use Committee (UCC,
Bayamon, PR, United States) (protocol numbers: #018-2021-
05-010 and #018-2021-04-00, approval date: March 2021). All
animals were housed in groups of 3–4 under standard laboratory
conditions (free access to water and food; 12:12 h light-dark
cycle, light was on from 08.00 a.m. to 08.00 p.m.; air-conditioned
room at 22 ± 2◦C). In total, 6 Sprague-Dawley rats were used
to determine the effect of SPM on network activity, 23 Wistar
rats were used for the in vitro epilepsy measurements and 48
WAG/Rij rats were used for the in vivo epilepsy measurements.

Solutions
Artificial Cerebrospinal Fluid
Artificial cerebrospinal fluid (ACSF) contained in mM: 129 NaCl;
3 KCl; 1.6 CaCl2; 1.8 MgSO4; 1.25 NaH2PO4; 21 NaHCO3; 10
glucose. To induce epilepsy, MgSO4 was eliminated and 2 mM
KCl was added (low-[Mg2+] ACSF). In the in vitro experiments,
SPM (SPM 200 µM) and FA sodium salt (1 mM) were diluted in
ACSF or low-[Mg2+] ACSF. The pH value of 7.4 was not affected
by the applied concentrations. All solutions were continuously
oxygenated (95% O2, 5% CO2). In the in vivo experiments
on WAG/Rij rats, levetiracetam (intraperitoneal/i.p. 200 mg/kg;

TCI, Tokyo, Japan), DFMO (i.p. 150 mg/kg; TCI, Tokyo, Japan),
4-MCHA (i.p. 25 mg/kg), and APCHA (i.p. 25 mg/kg; TCI,
Tokyo, Japan) were dissolved in saline. It was demonstrated
previously that 1–30% dimethyl sulfoxide (DMSO) solution did
not change absence epileptic activity in WAG/Rij rats (Kovács
et al., 2011), thus, SNAP-5114 (i.p. 20 mg/kg; TOCRIS, Bristol,
United Kingdom) was dissolved in 10% DMSO solution. Unless
otherwise stated, all drugs were purchased from Sigma-Aldrich,
Budapest, Hungary, and Saint Louis, MO, United States.

Slice Preparation
Rat Brain Slices for Low-[Mg2+] Epilepsy Model
Measurements
Transverse, 400 µm thick, hippocampal-entorhinal slices from
10 to 15 day old Wistar rats (Toxicoop, Budapest, Hungary)
were prepared in modified ACSF (75 mM sucrose; 87 mM
NaCl; 2.5 mM KCl; 0.5 mM CaCl2; 7 mM MgSO4; 1.25 mM
NaH2PO4; 25 mM NaHCO3; 25 mM glucose) at 4◦C. The slices
were incubated in an interface-type chamber in continuously
oxygenated ACSF for 1 h at 37◦C followed by incubation in room
temperature before performing the experiments.

Rat Brain Slices for Extracellular Paired-Pulse
Facilitation Recordings
Female Sprague-Dawley rats of about 145 g were used. The
rats were bred and sacrificed following procedures approved
by the Institutional Animal Care and Use Committee. After
decapitation, the brains were removed and the hippocampi
dissected on ice while irrigated with ice-cold ACSF. The
composition of the ACSF was (in mM): NaCl 125, KCI 2.5
(and 5 mM KCl for PPF induction), NaH2PO4 1.25, MgSO4
2, CaC12 1.8, and glucose 10. Transverse slices (400 µM) were
obtained using a manual slicer with micrometer scale adjustment.
The slices were promptly transferred to an interface recording
chamber where they were incubated 1 h before recording on a
nylon support at the interface of humidified 95% O2, 5% CO2,
and ACSF. The temperature of the chamber was kept at 34.5◦C.

Sprague-Dawley Rat Brain Slices for Patch Clamp
Recordings
Transverse, 300 µm thick hippocampal slices were prepared from
the brains of Sprague-Dawley rats of both sexes (age P20-P30)
and were dissected in ice-cold ACSF saturated with 95% O2, 5%
CO2. The slices were cut using a vibratome (VT1000S; Leica,
Nussloch, Germany) and incubated for recovery in a standard
ACSF solution containing (mM) 127 NaCl, 2.5 KCl, 1 MgCl2,
2 CaCl2, 1.25 NaH2PO4, 10 glucose, 26 NaHCO3, gassed with
5% CO2/95% O2, pH 7.4, at 35◦C for 20 min, and then at room
temperature (osmolarity: 305 mOsm/l). After 30 min of total
incubation, the slices were placed in a recording flow chamber
(0.5 mL volume) and superfused continuously with oxygenated
ACSF at room temperature (23–24◦C, 1 mL/min). Whole cell
recording and fluorescent dye tracing studies were performed as
described previously (Benedikt et al., 2012).

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 787319

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-787319 December 31, 2021 Time: 12:3 # 4

Kovács et al. Polyamines and GABA in Epilepsy

Immunocytochemistry in Brain Slices
Subsequent to extracellular paired-pulse facilitation recordings,
the slices were fixed by immersion into a solution of 4%
paraformaldehyde, 0.05% glutaraldehyde, and 0.2% picric acid
in 0.1 M phosphate buffer, pH 7.4 (Somogyi and Takagi,
1982). Fixation was followed by 0.15 M sucrose in 0.1 M
phosphate buffer, pH 7.4. The slices were then shock-frozen
after 48 h pretreatment with 0.8 M sucrose and stored for
up to 12 months at −80◦C. Immunoenzymatic staining was
performed as described previously for brain (Laube and Veh,
1997) and retina (Biedermann et al., 1998; Skatchkov et al.,
2000). In short, from fixed and frozen brain 400 µm slices,
25 µm sections were obtained using a cryostat. The sections
were pretreated with 1% sodium borohydride in PBS for 15 min
and subsequently permeabilized with 0.3% Triton X-100 for
30 min. After incubation with primary antibody (affinity purified
anti-SPM antibody) for 24 h at room temperature, free floating
sections were treated with secondary antibody (biotinylated
goat anti-rabbit IgG, 1:2,000, Vector/Camon, Wiesbaden) for
18 h and with an ABC complex (Vectastain Elite, 1:1,000,
Vector/Camon, Wiesbaden) for 6 h. Peroxidase activity was
revealed with 1.4 mM 3,3’-diaminobenzidine, 10 mM imidazole,
0.3% nickelous ammonium sulfate, and 0.015% H2O2 in
50 mM Tris/HCl, pH 7.6 for 3 min at room temperature.
For immunization, a bovine serum albumin (BSA) hapten
conjugate (Meyer et al., 1991) was obtained by coupling SPM
to BSA using glutaraldehyde. The anti-SPM antibody was raised
in rabbits, affinity purified, and characterized as described
previously (Laube and Veh, 1997). It recognizes glutaraldehyde-
linked/fixed SPM and SPD with similar efficiency, cross reacts
weakly with fixed put, and shows negligible activity against
lysine, arginine, ornithine, histamine, and ethanolamine (Laube
and Veh, 1997). In controls, the sections were incubated
either without primary antibody or antisera were blocked by
preincubation with the SPM-BSA conjugate (10 µg/ml), 2 h
prior to addition to sections. In some sections cell bodies
were counterstained with 0.8% methyl green in 20% aqueous
ethanol for 30 min at room temperature. This procedure was
also used in retina of different species including human retinas
(Biedermann et al., 1998; Skatchkov et al., 2000) and in brain
slices (Skatchkov et al., 2014, 2016).

Electrophyisology
In vitro Population Spike Recording
We used modified method from Teyler (1980) and Ferchmin
et al. (1993, 1995). Briefly, brain 400 µm slices after 1 h
incubation were used for the stimulation that was delivered
with concentric bipolar electrodes. Constant current stimuli were
generated by a S48 stimulator and PSIU6 stimulus isolation
unit (Grass, United States). The recording electrodes were filled
with 2 M NaCI glass micropipettes with impedance ranging
from 3 to 5 MOhm. Paired stimuli of 0.2 ms duration and
20 ms interpulse interval were delivered in stratum (s.) radiatum
Schaeffer collaterals every minute. The average strength of the
stimuli was set to obtain 50–60% of the maximal response, values
ranged from 50 to 170 µA. The recording electrodes were placed

in s. radiatum and in s. pyramidale. The PS responses were
amplified (P511 Grass amplifier), digitized, and stored for further
analysis with the LABMAN system. The area (ms × mV) of
the PS, recorded in s. pyramidale, and the initial slope of the
field EPSP (mV/ms) from s. radiatum are the variables presented
(Figures 1B,C).

In vitro Patch Clamp Recording From Pyramidal
Neurons
Two micromanipulators [MX7500 with MC-1000 drive (Siskiyou
Inc., Grants Pass, Oregon, United States)] were used for
whole cell voltage-clamp and current-clamp recording and for
positioning micropipettes. Pyramidal neurons from CA1 area
were clamped using patch pipettes made from borosilicate
glass tubing OD 1.5 mm, ID 1.0 mm (World Precision
Instruments, Sarasota, Florida, United States) pulled in four steps
using a Faming-Brown P-97 pipette puller (Sutter Instruments
Corporation, Novato, California, United States) and filled
with intracellular solution (ICS) containing in mM: 117 K-
gluconate, 13 KCl, 2 MgCl2, 10 HEPES, pH adjusted to 7.2
with KOH (osmolarity 275 mOsm/l). After filling with ICS,
the final micropipette resistance was close to 6 M�, which
was optimized for recordings to achieve seals of more than 3
G� on cell membranes. Cells were visualized and identified
using several procedures: infrared, black and white, and color
confocal microscopy. We used an Olympus infrared microscope
(BX51WI; Olympus, Shinjuku-ku, Tokyo, Japan) equipped
with a 40X water immersion objective and two cameras: for
infrared differential interference contrast (IR-DIC) with DIC
optics and camera (IC-73) and for fluorescent images with a
second camera (DP30BW digital, Olympus, Shinjuku-ku, Tokyo,
Japan). DP controller software (Olympus) was used to visualize
and to record black and white images. Morphologically and
electrophysiologically distinguished pyramidal cells were used.
We used Multiclamp 700A patch clamp amplifier with a DigiData
1440A interface (Molecular Devices Inc., Sunnyvale, California,
United States). The pClamp 10 software package (Molecular
Devices Inc.) was used for data acquisition and analysis. These
patch clamp recordings are presented in Figure 1C.

Low-[Mg2+] Epilepsy Model
The electrophysiological field potential (FP) recordings were
performed at 31◦C. For FP recordings, glass microelectrodes (1–
4 M�) were filled with ACSF solution and were inserted in
the CA3 stratum pyramidale. The signals were recorded with
Multiclamp 700A amplifiers (Axon Instruments, Foster City, CA,
United States), low-pass filtered at 2 kHz and digitized at 10
or 20 kHz (Digidata 1320A, Axon Instruments). The recordings
were analyzed after high pass filtering at 1 or 2 Hz. Epileptiform
activity was induced by switching the perfusing solution (ACSF)
to low-[Mg2+] ACSF (ACSF with no added MgSO4 and KCl
elevated to 5 mM). To test the effect of the drugs on the
appearance of seizure-like events (SLEs), they were continuously
present in the ACSF and low-[Mg2+] ACSF solutions. First,
normal ACSF solution was applied for 20 min as control
condition. Then normal ACSF solution with 4-MCHA, APCHA,
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FIGURE 1 | Glial status determines neuronal behavior in Sprague-Dawley rat brain slices. (A) Immunocytochemical localization of spermine (SPM) in the CA1 region
of the hippocampus under control conditions (left) and following 40 min perfusion with 1 mM of the gliotoxin monofluoroacetate (FA) (right). Note that in the left
image, the pyramidal cell layer (s.p.) is rather empty, the stratum radiatum (s.r.) displays numerous SPM-positive astrocytes. In the right image, after perfusion with
gliotoxin FA, SPM-positive astrocytes have completely disappeared in the stratum radiatum, leaving back only a few weakly positive cell bodies (arrows). S.o.:
stratum oriens. Bar indicates 30 µm for both images. (B) Time course of the area of first (open circles) and second (black circles) population spikes (PSs) recorded
from CA1 pyramidal cell layer in response to paired-pulse stimulation (20 ms inter-pulse intervals each minute) in the presence of 1 mM FA. Individual field potential
recordings are shown in the inset. (C) Average of 10 whole cell patch clamp recordings from CA1 pyramidal cells in response to paired-pulse stimulation (15 ms
inter-pulse intervals each minute) under control conditions (top), in the presence of 200 µM spermine (middle) and during washout (bottom).

or SPM was applied for further 20 min. Finally, low-[Mg2+]
ACSF, containing the same concentration of drugs was applied.

Electroencephalogram Recording in the WAG/Rij Rat
Model of Absence Epilepsy
Female WAG/Rij rats (8–9 months old, 179–198 g; breeding
colony of WAG/Rij rats at ELTE Savaria University Centre,
Szombathely, Hungary) were implanted in isoflurane-air mixture
(2.0–2.5%) anesthesia for in vivo experiments. Screw electrodes
were implanted into the bone above frontal cortex (AP: 2.0 mm
and L: 2.1 mm) and parietal cortex (AP: -6.5 mm and L: 2.1 mm)
(Paxinos and Watson, 2007) for EEG recording. A ground
electrode was placed above the cerebellar cortex, whereas the
one side insulated reference electrode (a 3 × 4 mm stainless
steel plate) was implanted under the skin and over the masseter
muscle. The plate and electrodes were soldered to a 10-pin
socket and fixed to the skull by dentacrylate cement (Ivoclar,
Liechtenstein). Lidocaine ointment (5%; EGIS, Hungary) was
used for postoperative pain relief (Kovács et al., 2006). After
implantations, all the rats were allowed to recover for 2 weeks.

Electroencephalogram (EEG) was recorded by a differential
biological amplifier (Bioamp4, Supertech Ltd., Pécs, Hungary),
which was attached to a data capture and analysis device (CED
1401 mkII, Cambridge Electronic Design Ltd., United Kingdom).
The bandwidth of the EEG recording was 0.16–150 Hz and
it was sampled at 1 kHz sampling rate (Kovács et al., 2014).
Handling may evoke stress-induced changes in behavior for
about 30 min, which can modify SWD number (Coenen and
van Luijtelaar, 2003; Kovács et al., 2015). Thus, the evaluation
of SWD parameters was carried out between 30 and 210 min
of recording period between 3:00 p.m. and 6:00 p.m. Normal
grooming and behavior were observed in all animals 20–25 min
after the drug administration and the connection of rats to the
biological amplifier.

To adapt the WAG/Rij rats to the experimental procedures,
all the animals were handled daily and were connected to the
biological amplifier for 3 days (adaptation period) after 2 weeks
recovery period. After the adaptation period, the rats were
assigned into six groups. To establish averaged control SWD
number and SWD time, the rats were i.p. injected once per
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day by saline (1 ml/kg body weight; first, second and sixth
group) or twice per day by saline (1 ml/kg body weight/1st
injection and, 30 min later, it was followed by a same saline
injection/2nd injection; third, fourth and fifth group) on 3-day
control period. After 3-day control periods, the first group of
animals (n = 8) received i.p. APCHA (25 mg/kg in 1 ml/kg saline)
on the fourth day, whereas a mixture of APCHA (25 mg/kg)
and 4-MCHA (25 mg/kg) in 1 ml/kg saline was i.p. injected
on the fifth day. In relation to second group (n = 8), the
treatment of animals was similar to first group on the fifth
day but the i.p. injection contained 4-MCHA (25 mg/kg in
1 ml/kg saline) on the fourth day. After control periods, the
animals in third and fourth group received two i.p. injections
(1st injections were followed by 2nd injections 30 min later)
for 5 consecutive days. In relation to third group (n = 12),
i.p. saline (1 ml/kg, 1st injection) and levetiracetam (200 mg/kg
in 1 ml/kg saline; 2nd injection) were injected. In the fourth
group (n = 12), similar treatment to third group was carried out
between 1st and 4th treatment days, but a combined injection
of SNAP-5114 (i.p. 20 mg/kg in 1 ml/kg 10% DMSO solution;
1st injection) with levetiracetam (200 mg/kg in 1 ml/kg saline;
2nd injection) were used on the 5th treatment day. To investigate
the effect of SNAP-5114 alone on SWD number, after 3-day
control periods, the fifth group of animals (n = 8) received
SNAP-5114 (i.p. 20 mg/kg in 1 ml/kg 10% DMSO solution; 1st
injection) and, 30 min later, 1 ml/kg saline was i.p. injected
(2nd injection) on the fourth day. After control period, the
animals in group 6 (n = 6) were i.p. injected by DFMO
(150 mg/kg in 1 ml/kg saline) on the fourth day. EEGs were
recorded every day.

Mass Spectrometry
After preincubation for 1 h in an interface-type incubation
chamber, five 300 µm hippocampal-entorhinal slices from 10 to
15 day old Wistar rats were placed on the bottom of a well in
a 24-well plate. Following 1 h incubation in 300 µl of either
normal ACSF or low-[Mg2+] ACSF in the absence or presence of
250 µM 4-MCHA, the bath solution was removed and used as a
measure of the extracellular solution. The slices were transferred
to an eppendorf tube. The remaining small amount of buffer was
removed from the tube and the slices were weighted to obtain the
wet tissue weight.

A QTRAP 6500 triple quadrupole, linear ion trap mass
spectrometer equipped with a Turbo V Source (Sciex, MA,
United States), and an Agilent 1100 Series HPLC (Agilent,
CA, United States) were used for LC-MS/MS analysis.
Chromatographic separation was carried out on an Agilent
Zorbax Rx-SIL column (250 × 4.6 mm, 5 µm, Kromat Ltd.,
Hungary). Water containing formic acid in 0.1 V/V% and
acetonitrile containing formic acid in 0.1 V/V% was used
in inverse gradient mode for separation. The flow rate was
1 ml/min and 5 µl of the samples were injected. The column
temperature was ambient, and the samples were kept at 10◦C in
the autosampler during the acquisition. Electrospray ionization
was performed in positive mode. The MS/MS was operated
under multiple reaction monitoring (MRM) mode with nitrogen
as collision gas. The MRM quantifier transitions (Q1/Q3) for

the components are: GABA: 104.0/86.9, SPD: 146.1/71.8, SPM:
203.1/111.9, and PUT: 89.0/29.9.

Data Digitization and Processing
The Clampfit (Axon Instruments) program was used to evaluate
electrophysiological data. The recordings were analyzed after
high pass filtering at 1 or 2 Hz. SLE onset was determined by
the negative FP deflection and a high-frequency oscillation at
the start of discharges. This is the paroxysmal initiation period,
which is followed by the tonic and clonic periods of paroxysmal
spike discharges (Lasztóczi et al., 2004). The interictal period
was determined as the time from the end of a given SLE to the
beginning of the next SLE. Being not fully developed, the first
SLE in each slice (SLE0) was discarded from data evaluation.
Data are shown as mean ± SEM and were analyzed with
one-way ANOVA (OriginPro, 2018). Statistical significance was
considered at p < 0.05.

SWDs can be characterized by 7–11 Hz discharge frequency
within SWDs, 1–50 s duration and 0.2–1.0 mV amplitude
(Coenen and van Luijtelaar, 2003). Moreover, the SWDs contain
a train of asymmetric spikes and slow waves starting and ending
with sharp spikes and the average amplitude of SWDs is at
least twice as high as the basal EEG activity. EEG recordings
were split into 30 min sections and the features of SWDs above
were used for automated separation of SWDs in the EEG files
(all of automatically selected SWDs were confirmed by manual
supervision). All results are expressed as means ± SEM and data
analysis was performed similar to the in vitro results.

Statistics
All statistical analyses were performed using Matlab, Origin 2021,
Sigma Plot, and GraphPad Prism [version 8.4.3 (471), San Diego,
CA, United States]. Data are reported as mean± SEM. Significant
differences between groups were evaluated using Student’s paired
t-test or two-way ANOVA. Statistical significance was accepted
for P < 0.05.

RESULTS

Exogenous Spermine Facilitates
Neuronal Activity in vitro Under
Physiological Conditions
Since extracellular SPM significantly changes neurotransmission
in brain slices by converting paired-pulses inhibition (PPI) to
facilitation (PPF) (Ferchmin et al., 1995; Rozov and Burnashev,
1999; Shin et al., 2005; Skatchkov et al., 2014, 2016; Hülsmann
et al., 2017) and the metabolic status of astrocytes produces
strong changes in synaptic neuronal activity (Keyser and Pellmar,
1994, 1997; Fonnum et al., 1997), we assessed whether these
mechanisms are mediated by polyamines. In this study, we
show that SPM is exclusively localized to astrocytes in the CA1
region of the hippocampus (Figure 1A left panel). Perfusion
with the gliotoxin FA triggered the release of astrocytic SPM
(Figure 1A right panel). To evaluate the effect of the released
SPM, we measured PPI and PPF. When Schaffer collaterals were
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stimulated by 10–25 ms interval in normal ACSF containing
2.5 mM K+, pyramidal cells showed normal first response (PS)
and depressed second one due to the activation of inhibitory
GABAergic interneurons in stratum radiatum, which block
pyramidal cells. Such network is developed after six postnatal
days (Harris and Teyler, 1983) and is sensitive to polyamine
synthesis, particularly when PUT synthesis was blocked by
DFMO (Ferchmin et al., 1993). Application of the specific
gliotoxin FA (1 mM) (Keyser and Pellmar, 1994, 1997; Fonnum
et al., 1997) resulted in disinhibition by converting PPI to PPF
(Figure 1B), most probably due to SPM release (Figure 1A).
Indeed, direct application of 200 µM SPM (Figure 1C) also
had a strong disinhibitory effect, transforming PPI into PPF.
Note that the first PS(1st PS) and population excitatory synaptic
potentials were not affected by FA application (Figure 1B,
dotted lines in inset), demonstrating that it does not directly
affect excitatory inputs on pyramidal cells. Therefore, these data
suggest that depolarized glial cells rapidly release a modulator
to neighboring inhibitory interneurons that regulate inhibitory
feedback to pyramidal cells.

Both Spermine Application and
Spermine Synthesis Inhibition Attenuate
Epileptiform Activity in the Low-Mg2+

Temporal Lobe Epilepsy Model in vitro
Astrocytic concentrations of polyamines may impact epileptic
activity in various ways. PUT acts as a precursor for
astrocytic GABA synthesis. Since astrocytic GABA can be
released through GABA transporters GAT-2 and GAT-3
during epileptiform activity (Héja et al., 2009, 2012), PUT
catabolism to GABA is expected to be anticonvulsive. In
contrast, conversion of PUT to SPD and SPM is expected
to be pro-convulsive due to the dis-inhibitory effect of SPM
(Figure 1) and its ability to keep astrocytic Cx43 GJCs open
(Skatchkov et al., 2015), which may facilitate epileptogenesis
in the low-[Mg2+] TLE model in vitro (Kékesi et al., 2015;
Vincze et al., 2019).

To assess the contribution of these routes to epileptogenesis,
we measured the effect of exogenously applied SPM as well as
inhibition of SPM synthesis on the appearance of SLEs in the
low-[Mg2+] TLE model in vitro. We observed that inhibition
of SPM synthesis by APCHA (250 µM) significantly (p = 0.04)
reduced SLE length (Figure 2), possibly due to the resulting
enhancement of PUT to GABA conversion and consequent
GABA release (Héja et al., 2012). It is also plausible that
the decreasing SPM concentration leads to reduced opening
of astrocytic gap junctions (Kucheryavykh et al., 2017), which
diminishes astrocytic and neuronal synchronization (Vincze
et al., 2019). Interestingly, however, application of exogenous
SPM also resulted in decreased SLE activity (Figure 2) (p = 0.02),
despite the excitatory nature of direct SPM application under
physiological conditions (Figure 1C). This observation suggests
that the major route by which polyamines modulate network
activity under epileptic conditions is the enhancement of
astrocytic GABA concentration that can be achieved both
by inhibiting SPM synthesis and by enhancing the SPM to

FIGURE 2 | Inhibition of spermine synthesis and exogenous spermine
addition both inhibits seizure-like events in the in vitro low-[Mg2+] model of
temporal lobe epilepsy. Length of seizure-like events (SLEs), measured in the
CA3 pyramidal layer of hippocampal slices under control conditions and in the
presence of the spermine synthase inhibitor 3-(aminopropyl)cyclohexylamine
(APCHA) (200 µM) or exogenous spermine (200 µM) (n = 4–6 animals). Drugs
were applied after two fully developed SLEs in the low-[Mg2+] ACSF. Bar
shows the application period of APCHA or spermine. Asterisks denote
significant (p < 0.05) difference from the control.

PUT to GABA catabolic pathway in response to increased
SPM concentration.

Effect of Polyamine Metabolism on
Epileptiform Activity in the WAG/Rij Rat
Model of Absence Epilepsy
To assess the impact of polyamine metabolism on epileptic
activity in vivo, we investigated SWDs in WAG/Rij rats under
control conditions and in the presence of SPD synthase or SPM
synthase inhibitors. WAG/Rij rats were chosen because they are
well-studied (Coenen and van Luijtelaar, 2003; Russo et al., 2016),
extensively used for investigation of not only pathophysiology
of absence epilepsy but also effects of drugs and therapeutic
tools on different central nervous system (CNS) diseases, and
they generate seizures spontaneously, thus drug treatment is not
needed to trigger epileptic seizures (Coenen and van Luijtelaar,
2003; Russo and Citraro, 2018). Since SPD forms both by de
novo synthesis from PUT and by catabolic degradation of SPM
to SPD (Seiler, 1990), we also applied the SPD and SPM synthase
inhibitors in combination to effectively reduce the concentration
of both polyamines.

We observed that 4-MCHA, a selective SPD synthase inhibitor
(Shirahata et al., 1993), almost completely eliminated SWD
activity and significantly reduced the duration of the remaining
few seizures (Figure 3A). In contrast, the selective SPM synthase
inhibitor APCHA (Shirahata et al., 1993) temporarily increased
SWD activity without affecting their durations (Figure 3B).
Since the combined application of 4-MCHA and APCHA also
resulted in the blockade of SWDs, the transient pro-epileptic
effect of APCHA may be attributed to the increased SPD
level that compensates the decrease in SPM concentration.
In addition, inhibition of SPM synthase may also lead to a
reduction in SPM-mediated opening of astrocytic Cx43 GJCs,
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FIGURE 3 | Inhibition of spermidine synthesis blocks, inhibition of spermine synthesis enhances the appearance of spike-wave discharges in the in vivo WAG/Rij rat
model of absence epilepsy. (A) Effect of the spermidine synthase inhibitor 4-MCHA (25 mg/kg) on SWD number (top), total SWD time (center), and average SWD
duration (bottom). (B) Effect of the spermine synthase inhibitor APCHA (25 mg/kg) on SWD number (top), total SWD time (center), and average SWD duration
(bottom) (n = 8 animals in each group). Asterisks denote significant (p < 0.05) difference from the control.

which is known to contribute to epileptic activity in WAG/Rij rats
(Vincze et al., 2019).

To interpret the above results, we measured the changes
in the extracellular concentrations of polyamines and GABA
in response to inhibition of SPD synthesis in brain slices
during SLEs. Previously, we demonstrated that under this
condition, GABA is released from astrocytes through GAT-
2/3 transporters (Héja et al., 2012). In this study, we applied
250 µM 4-MCHA and determined the extracellular level
of PUT, SPD, SPM, and GABA by mass spectrometry.
We observed that 4-MCHA significantly decreased the

extracellular concentration of SPD (Figure 4A, p = 0.007),
while extracellular SPM concentration was not affected
(Figure 4B). Interestingly, PUT concentration also significantly
decreased following SPD synthase blockade (Figure 4C,
p < 0.001), despite the reduced PUT to SPD conversion. This
observation can be explained by the enhanced conversion of
PUT to GABA, as indicated by the increased extracellular
GABA level (Figure 4D). In summary, 4-MCHA application
leads to increased GABA concentration and consequently
enhanced tonic inhibition, which may explain its antiepileptic
effect (Figure 3A).
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GAT-2/3-Mediated Astrocytic GABA
Release Significantly Contributes to the
Emergence of Seizures in the WAG/Rij
Rat Model of Absence Epilepsy
Since the inhibition of SPD synthase inevitably leads to
accumulation of PUT, and this PUT may contribute to GABA
formation and its release through GAT-2/3 transporters, we
evaluated the effect of the FDA-approved antiepileptic drug
levetiracetam that is known to increase the surface expression of
GAT-2/3. Treatment of WAG/Rij rats with levetiracetam through
a course of 5 days significantly suppressed epileptic activity
(Figure 5A top panel). To confirm that the observed antiepileptic
effect of levetiracetam is due to its ability to increase GAT-2/3
expression, in a separate experiment, we blocked GAT-2/3 by
their specific inhibitor SNAP-5114. Application of SNAP-5114
only slightly increased SWD appearance when applied alone
(Figure 5A center panel). However, in levetiracetam-treated
animals, SNAP-5114 completely reversed the antiepileptic effect
of levetiracetam, leading to significantly increased appearance of
seizures (Figure 5A bottom panel), indicating that levetiracetam
largely increased GAT-2/3 expression and overexpression of
GAT-2/3 has been anticonvulsive.

After concluding that the PUT to GABA conversion plays
a prominent role in the absence epilepsy as well, we also
investigated whether direct modulation of PUT concentration
is an effective way to adjust seizure activity. To this end, we
blocked ornithine decarboxylase activity by DFMO. Interestingly,
however, direct inhibition of PUT synthesis did not affect SWDs
significantly (Figure 5B). These findings suggest that PUT is not
synthesized from ornithine in these adult animals, instead, it was
made available from external sources.

DISCUSSION

Although several studies have reported correlation between brain
SPD/SPM levels and epileptic activity (Laschet et al., 1992,
1999; Leonetti et al., 2020), the molecular mechanisms by which
polyamine metabolism contributes to the generation and/or
maintenance of seizures are not detailed as yet. In this study, we
explored whether various interventions modifying the astrocytic
polyamine concentrations can be effective against epileptiform
discharges in the low-[Mg2+] in vitro model of TLE and in the
in vivo WAG/Rij rat model of absence epilepsy. We showed that
inhibiting the conversion of PUT to SPD drastically suppresses
epileptic seizures, most likely by stimulating astrocytic GABA
synthesis from PUT. To interpret these results, we propose a
scheme that elucidates how astrocytic polyamine metabolism and
the coupled GABA release may shape epileptogenesis (Figure 6).

The polyamines SPD and SPM are synthesized from low
molecular weight polyamines, agmatine, and PUT (Krauss
et al., 2006; Peters et al., 2013; Piletz et al., 2013; Pegg,
2014). Intracellularly, the brain contains high amounts of
SPD/SPM while PUT is present at much lower concentrations,
approximately 2% of total polyamine content (Shaw and
Pateman, 1973; Shaw, 1979), which is further declining with age

(Shaskan, 1977). Majority of SPD is found in zones enriched with
glial cells such as white matter and brainstem (Shaw and Pateman,
1973). SPD is arranged at a central position in the polyamine
metabolism. It is synthesized from PUT by SPD synthase and
can be converted to SPM by SPM synthase. Since PUT can
be converted to GABA, which increases tonic inhibition (Héja
et al., 2009, 2012; Unichenko et al., 2013; Wójtowicz et al.,
2013), amplification of polyamine metabolism upstream to SPD
is inhibitory in nature. In contrast, downstream metabolism of
SPD produces SPM, which directly increases excitation (Figure 1)
and also enhances synchronization by opening gap junctions
(Benedikt et al., 2012). The upstream and downstream metabolic
pathways, therefore, are expected to play anticonvulsive and
pro-convulsive roles, respectively (Figure 6). It is to note,
however, that opening of astrocytic gap junctions and subsequent
enhancement of synchronization, surprisingly attenuates seizures
in absence epilepsy (Vincze et al., 2019). Therefore, in WAG/Rij
rats, even the downstream SPD metabolism can induce enhanced
epileptiform activity.

By blocking SPD synthesis with the SPD synthase inhibitor
4-MCHA, we observed complete elimination of seizures in
WAG/Rij rats (Figure 3A). This observation can be explained
by either the increased GABA production or the antiepileptic
effect of decreased gap junction opening due to reduced SPM
concentration (Figure 6). To differentiate between the two
explanations, we specifically blocked SPM synthase activity with
APCHA. Since this approach did not lead to SWD reduction (it
even temporarily increased the frequency of seizures), we suggest
that 4-MCHA exerted its effect mainly by increasing astrocytic
PUT level and corresponding enhancement of tonic inhibition.
This hypothesis is also supported by the identified mechanism of
the antiepileptic action of the FDA-approved drug levetiracetam.
Levetiracetam is effective against absence epilepsy, but the
mechanism by which it attenuates seizures is not well-understood
(Surges et al., 2008). Importantly, levetiracetam has been shown
to increase the surface expression of GAT-2/3 transporters,
through which GABA is released from astrocytes (Doi et al., 2005;
Ueda et al., 2007). In this study, we show that the application
of the specific GAT-2/3 transporter blocker SNAP-5114 reversed
the antiepileptic effect of levetiracetam (Figure 5), suggesting that
the GAT-2/3 expression enhancement is the major route through
which levetiracetam exerts its antiepileptic effect.

It is noteworthy to mention that the source of astrocytic
PUT is likely different in our low-[Mg2+] and WAG/Rij seizure
models due to the different age of the animals used. We have
previously showed (Héja et al., 2012) that ornithine to PUT
conversion is increased in the low-[Mg2+] model in juvenile
(P11-15) rats. In contrast, inhibition of this route by DFMO
did not significantly alter SWD appearance in adult (>8 month)
WAG/Rij rats. This observation most likely corresponds to
the declined metabolic production of PUT in older animals
(Ramos-Molina et al., 2019) and critical dependence of astrocytic
polyamines on transport, observed in adults.

It has been demonstrated that absence epileptic activity can
be provoked by increasing the inhibitory tone by GABAergic
agonists or GABA uptake blockers (Peeters et al., 1989; Coenen
et al., 1995). This mechanism likely occurs via membrane
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FIGURE 4 | Inhibition of spermidine synthesis decreases extracellular polyamine concentrations, but increases extracellular GABA concentration in brain slices.
(A–D) Concentrations of spermidine (A), spermine (B), putrescine (C), and GABA (D) in the bathing medium of hippocampal slices following 1 h incubation in normal
ACSF (control) or in low-[Mg2+] ACSF in the absence and presence of 250 µM 4-MCHA as determined by LC-MS (n = 8 animals). Asterisks denote significant
difference (p < 0.05).

hyperpolarization in thalamic relay neurons, which process is
necessary to evoke SWDs through burst firing mode (Murray-
Sherman, 2001; Cope et al., 2009). However, according to
the cortical focus theory of absence epilepsy genesis (Meeren
et al., 2002), spontaneously occurring SWDs in WAG/Rij rats
are triggered by hyperexcitable neurons in the somatosensory
cortex. Therefore, although increased tonic inhibition in the
thalamus may be pro-epileptic, enhanced GABA release from
astrocytes can hyperpolarize the neuronal membrane and
decrease excessive hyperexcitability in the somatosensory cortex
and consequently can eliminate seizure generation even before
the thalamic network became activated. Indeed, increase in
astrocytic GABA level (Figure 4) combined with GAT-2/3
transporter overexpression (Figure 5) can enhance GABA release
and decrease SWD number (Figures 3, 5) in WAG/Rij rats. The
total elimination of seizures by inhibition of SPD synthase activity
(Figure 3A) also supports this hypothesis.

In summary, we identified the inhibition of PUT to SPD
conversion and the enhancement of the corresponding GABA
synthesis from PUT (Figure 6) as an effective target mechanism
to combat both convulsive (TLE) and non-convulsive (absence
epilepsy) seizures.

Theoretically, modulation of glial PUT-SPD-SPM metabolism
may be a promising therapeutic tool in the treatment of
not only epilepsy but also other CNS diseases. In this
study, we showed (Figure 1) that metabolic inhibition of
astrocytes by the specific gliotoxin FA (Keyser and Pellmar,
1994, 1997; Fonnum et al., 1997) resulted in massive loss
of SPM in astrocytes, indicating astrocytic SPM release.
This observation is consistent with a switch of PPI to PPF
by SPM in neuronal network (Figures 1B,C), resulting in
disinhibitory (proconvulsant) SPM effect. Noteworthily,
animals over-expressing SPM oxidase (SMOX) (Cervelli
et al., 2013) developed epileptic seizures and oxidative
stress (Leonetti et al., 2020). Reportedly, over-expression
of SMOX caused robustly increased activity most probably
associated with the release of Glu from Bergman gliosomes
(Cervetto et al., 2015, 2016) and release of SPM (Cervetto
et al., 2021). We may raise the possibility that clinical
seizures and Snyder-Robinson syndrome, which is the only
known genetic disorder is associated with the polyamine
metabolic pathway. Explicitly, the syndrome features SPM
synthase deficiency, thus excessive SPD catabolism may
generate toxic metabolites, lysosomal defects and oxidative
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FIGURE 5 | Increased astrocytic GABA release through GAT-2/3 transporters suppresses spike-wave discharges in the in vivo absence epilepsy model WAG/Rij rat.
(A) Effect of the levetiracetam treatment (i.p. 200 mg/kg/day, 5 consecutive days, top, n = 12 animals) and the specific GAT-2/3 inhibitor SNAP-5114 (i.p. 20 mg/kg,
center, n = 8 animals) on SWD numbers. Effect of SNAP-5114 (i.p. 20 mg/kg) applied on 5th day of levetiracetam treatment (i.p. 200 mg/kg, bottom, n = 12 animals)
on SWD number. (B) Effect of the ornithine decarboxylase inhibitor alpha-difluoromethylornithine (DFMO, 150 mg/kg) on SWD number (n = 6 animals). Asterisks
denote significant difference from control (p < 0.05).

stress (Li et al., 2017). Intriguingly, depressive/suicidal
completers also show disturbance in polyamine machinery,
particularly in the level of expression and mutations of
SSAT enzyme degrading polyamines (Sequeira et al., 2006).
Using sufficient statistics (181 male suicide completers and
80 male controls), the authors found mutation in SSAT342C
allele among suicide cases, suggesting that this allele may
increase predisposition to suicide (Sequeira et al., 2006).

SSAT produces acetylated polyamines, and the increase of
acetylated polyamines with decline in blood plasm SPM
content and SPM/SPD ratio were found in aging and
specifically in patients with Parkinson’s disease (Saiki et al.,
2019). On the other hand, supplements with SPD delay
brain aging and improve cognitive functions (Sigrist et al.,
2014; Wirth et al., 2018, 2019, 2021; Maglione et al., 2019;
Xu et al., 2020). Dietary SPD intake increases brain volume
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FIGURE 6 | Modulation of polyamine metabolism and astrocytic GABA pathway can attenuate epileptiform activity through multiple pathways. (A) Astrocytic
polyamine metabolism affects network excitation by multitude of ways. Putrescine (PUT) can be converted to GABA by monoamino oxidases (MAO). The astrocytic
GABA is subsequently released by the reverse operation of GAT-2/3 transporters and increases tonic inhibition on neurons. PUT can also be metabolized to
spermidine (SPD) and spermine (SPM). SPM, on the other hand, keeps open astrocytic gap junctions, formed from connexin hemichannels (HCs) and can also
release and facilitate neuronal activity. (B) Inhibition of SPD synthase would increase astrocytic PUT concentration. However, according to measurements of
extracellular polyamine levels (Figure 4), PUT is converted to GABA, which is released into the extracellular space (denoted by larger font sizes). SPD synthase
inhibition also reduces SPD concentration (denoted by smaller font size). Levetiracetam, on the other hand, can increase the surface expression of GAT-2/3
transporters through which astrocytic GABA is released from astrocytes, generating larger tonic currents.

specifically in brainstem, hippocampus, and cortex of old
human (Schwarz et al., 2020), and in mice, dietary SPD passes
the blood-brain barrier and increases hippocampal eIF5A
hypusination, mitochondrial function, improves spatial learning,
and increases hippocampal respiratory competence. Since glial
cells are major holders of polyamines and are participants of
neuronal-glial network, the role of glial polyamines can be
reconsidered in stress and aging (Skatchkov et al., 2014, 2016;
Kirichenko et al., 2021).
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