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Astrocytes and microglia are the main cell population besides neurons in the central
nervous system (CNS). Astrocytes support the neuronal network via maintenance of
transmitter and ion homeostasis. They are part of the tripartite synapse, composed of
pre- and postsynaptic neurons and perisynaptic astrocytic processes as a functional
unit. There is an increasing evidence that astroglia are involved in the pathophysiology
of CNS disorders such as epilepsy, autoimmune CNS diseases or neuropsychiatric
disorders, especially with regard to glia-mediated inflammation. In addition to astrocytes,
investigations on microglial cells, the main immune cells of the CNS, offer a whole
network approach leading to better understanding of non-neuronal cells and their
pathological role in CNS diseases and treatment. An in vitro astrocyte-microglia co-
culture model of inflammation was developed by Faustmann et al. (2003), which allows
to study the endogenous inflammatory reaction and the cytokine expression under
drugs in a differentiated manner. Commonly used antiepileptic drugs (e.g., levetiracetam,
valproic acid, carbamazepine, phenytoin, and gabapentin), immunomodulatory drugs
(e.g., dexamethasone and interferon-beta), hormones and psychotropic drugs (e.g.,
venlafaxine) were already investigated, contributing to better understanding mechanisms
of actions of CNS drugs and their pro- or anti-inflammatory properties concerning
glial cells. Furthermore, the effects of drugs on glial cell viability, proliferation and
astrocytic network were demonstrated. The in vitro astrocyte-microglia co-culture model
of inflammation proved to be suitable as unique in vitro model for pharmacological
investigations on astrocytes and microglia with future potential (e.g., cancer drugs,
antidementia drugs, and toxicologic studies).

Keywords: astrocyte-microglia co-culture model, M5/M30 conditions, inflammation, pharmacology,
immunomodulatory drugs, psychotropic drugs, antiepileptic drugs (AEDs)

INTRODUCTION

Astrocytes and microglia are the main cell population besides neurons in the central nervous system
(CNS). Astrocytes represent the largest glia cell population. They are involved in the formation
of the blood–brain barrier, support of the ion, water and neurotransmitter homeostasis as well
as regulation of neuronal synaptogenesis (Giovannoni and Quintana, 2020). They are part of
the tripartite synapse, which includes pre- and postsynaptic neurons and perisynaptic astrocytic
processes as a functional unit (Araque et al., 1999; Möller et al., 2007). Importantly, astrocytes
can form a syncytium by connecting individual cells to a large network using connexin 43 (Cx43),
the main gap junctional protein (Reuss and Unsicker, 1998). Microglia, another type of glia cells,
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are the main immune cells of the CNS. They respond to changes
of brain homeostasis under neuroinflammatory conditions with
proliferation, activation and release of inflammatory mediators
(Gehrmann et al., 1995; Voet et al., 2019).

Moreover, astrocytes and microglia play an important role
in neurological diseases such as multiple sclerosis (MS) (Perriot
et al., 2018; van der Poel et al., 2019; Wheeler and Quintana, 2019;
Cignarella et al., 2020) and epilepsy (Coulter and Steinhäuser,
2015; Çavdar et al., 2019; Fu et al., 2021), but also in psychiatric
diseases such as bipolar disorder and schizophrenia (Réus et al.,
2015; Peng et al., 2016; Petrasch-Parwez et al., 2020). There is
an increasing evidence that glia-mediated neuroinflammation is
involved in the pathomechanism of these diseases (Vezzani et al.,
2008; Réus et al., 2015; Perriot et al., 2018; Voet et al., 2019).

The involvement of astrocytes and microglia in
neuropsychiatric disorders raises the question how these cells
besides neurons might be responsive to current pharmacological
treatments, especially with link to inflammation. Therefore,
this focused mini review will summarize and discuss the major
findings of pharmacological investigations in glia culture model
of inflammation.

IN VITRO ASTROCYTE-MICROGLIA
CO-CULTURE MODEL OF
INFLAMMATION

Since astrocytes and microglia are important players in healthy
and diseased brain, Faustmann et al. (2003) developed an
astrocyte-microglia co-culture model to study the physiological
as well as pathological inflammatory states in the brain depending
on the percentage and activation of microglia (Faustmann et al.,
2003). Microglia play an important role in the maintenance
of normal brain function (Ling and Wong, 1993). In health
brain, they can be found as inactive ramified type (RRT), which
represents the primary existing phenotype under physiological
conditions (Ling and Wong, 1993; Faustmann et al., 2003;
Kettenmann et al., 2011). Acute CNS lesions and pathologic
changes lead to proliferation and activation of microglia,
transitioning from the inactive ramified state via an intermediate
form (INT) to the activated form (round phagocytic type,
RPT) (Figure 1; Faustmann et al., 2003; Block et al., 2007;
Kettenmann et al., 2011). The RRT has small cell bodies (5–
10 µm) with a small perinuclear, cytoplasmic rim and thin
branching processes longer than the diameter of the cell body
(Figure 1C); a large cellular diameter, rare short processes,
and several cytoplasmic vacuoles are typical for the activated
RPT (Figure 1E); the INT is characterized by some thick
pseudopodia longer than the diameter of the cell body and a
perinuclear cytoplasmic rim with a few vesicles and vacuoles
(Figure 1D; Faustmann et al., 2003). Under physiological
conditions, the amount of microglia varies between 5 and
20% (Faustmann et al., 2003). The pathological activation of
microglia occurs through several steps and is mediated by
incoming stimuli such as ATP, adenosine, complement factors,
cytokines, chemokines and changes in potassium concentration
(Chang et al., 2009). As a result of activation, increased astrocyte

mobility and a chemotactic gradient, microglia actively migrate
to the pathological origin and exert curative or destructive
effects depending on various factors (Walter and Neumann,
2009; Kettenmann et al., 2011). Under inflammatory conditions,
activated microglia are able to produce neurotrophic factors,
pro-inflammatory substances such as interleukin (IL)-6, tumor
necrosis factor (TNF)-α, interferon (IFN)-γ as well as anti-
inflammatory cytokines such as IL-10, transforming growth
factor (TGF)-β (Ledeboer et al., 2000; Meeuwsen et al., 2003,
2005; Cartier et al., 2005). The effect exerted by microglia
seems to depend in particular on stimulation and interaction
with other molecules (Czeh et al., 2011; Biber et al., 2014;
Chen and Trapp, 2016). The interactions between astrocytes
and microglia have a crucial impact on neuroinflammation
in the CNS and are not well understood. Murine in vitro
astrocyte and microglia cultures are powerful tools to study
molecular signaling pathways involved in neuroinflammation
(Barbierato et al., 2013; Dambach et al., 2014; Facci et al.,
2018; Ismail et al., 2021). In the astrocyte-microglia co-culture
model developed by Faustmann et al., 2003, the physiological
state is characterized by a microglia fraction of 5–10% (referred
to as M5 co-culture) (Figure 1A), this fraction increases to
30–40% (M30 co-culture) (Figure 1B) under pathological,
inflammatory conditions. In addition to the percentage, the M5-
or M30-experimental paradigms also produce different microglia
phenotypes. While the M5 co-culture contains predominantly
resting ramified microglial cells (Figure 1A), more activated
microglia are found in the M30 co-culture (Figure 1B;
Faustmann et al., 2003; Hinkerohe et al., 2005). Moreover,
a positive correlation of percent activated microglia with
reduced astroglial Cx43 expression was demonstrated, suggesting
a functional relationship between microglial activation and
coupling efficiency in the astroglial network under in vitro
conditions (Faustmann et al., 2003). Incubation of the M5 co-
cultures with the pro-inflammatory cytokines further resulted in
microglial activation itself (Hinkerohe et al., 2005). In contrast,
incubation of pathological M30 co-cultures with TGF-ß1 resulted
in a decrease of microglial activation including restoration
of functional coupling via gap-junctions. Furthermore, IFN-ß
prevented the effects of the pro-inflammatory cytokines TNF-
α, IL-1β, and IFN-γ in M5 co-cultures (Hinkerohe et al., 2005).
Since the presence of microglia under in vivo conditions is
considered crucial for the extent of inflammation in various
neurological diseases such as MS (Bogie et al., 2014; Giunti
et al., 2014) or Alzheimer’s disease (Gold and El Khoury, 2015;
Heppner et al., 2015; Malik et al., 2015; ElAli and Rivest, 2016),
this simple but efficient co-culture model, compared to classical
monocultures, allows the mimicking of inflammatory conditions
in a defined in vitro assay, thus not only the activation of
microglia, but also the response of astrocytes to this activation
in terms of bidirectional interactions can be studied (Faustmann
et al., 2003; Hinkerohe et al., 2005). Besides the obvious advantage
of this established cell culture model over monocultures,
which do not take the interactions between astrocytes and
microglia into account, the advantage over other co-cultures
must also be considered. Most astrocyte-microglia co-cultures
are based on two primary cultures (astrocytes and microglia)
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FIGURE 1 | Immunocytochemistry of microglia morphology in M5 und M30 astrocyte-microglia co-cultures. Physiological M5 co-cultures containing 5% microglia
(red) (A). Pathological, inflammatory M30 co-cultures containing 30% microglia (B) (published by Dambach et al., 2014). Staining with the monoclonal antibody ED-1
allowed the classification of microglia (white arrows) as resting ramified (C), intermediate (D) and activated rounded phagocytic (E) phenotype (published by
Ismail et al., 2021). Nuclei (blue) were counterstained with DAPI to visualize the total glial cell number.

cultivated together in different ratios, whereas in the system
developed by Faustmann et al. (2003) a much more natural
inflammation model is obtained by activation of microglia and
concomitant proliferation (Bohatschek et al., 2001; Faustmann
et al., 2003; Zhao et al., 2017). Of course, the limitation of
the model to tricultures, which include neurons in addition
to astrocytes and microglia, must also be considered (Goshi
et al., 2020). Such a triculture model mimics neuroinflammatory
responses correspondingly more accurately, but overall, due to
its uniqueness and ease of reproducibility, the co-culture system
established by Faustmann et al., 2003 is an excellent model
for studying neuroinflammatory responses between astrocytes
and microglia, cell-cell communication and their interaction on
pharmaceuticals (Table 1; Hinkerohe et al., 2005, 2010, 2011;
Haghikia et al., 2008; Vollmar et al., 2008; Stienen et al., 2011;
Dambach et al., 2014; Moinfar et al., 2014; Ismail et al., 2021).

PHARMACOLOGICAL INVESTIGATIONS

Antiepileptic Drugs
Several studies provide evidence that astrocytes and microglia
are involved in the pathophysiology of epilepsy (Bedner
et al., 2015; Berger et al., 2019; Patel et al., 2019; Heuser
et al., 2021). Clinical and experimental research showed that
epileptic activity can be associated with inflammation due

to increased levels of inflammatory mediators in the brain
(e.g., IL-1β, TNF-α, and IL-6), which are produced by glia,
neurons, endothelial cells of the blood–brain barrier and
peripheral immune cells (Vezzani and Granata, 2005; Vezzani
et al., 2011). Additional cellular mechanisms of inflammation
such as reactive astrocytosis and activated microglia are well
known (Vezzani and Granata, 2005; Vezzani et al., 2011).
The anticonvulsant effect of immunomodulatory drugs with
anti-inflammatory actions such as adrenocorticotropic hormone
(ACTH) and steroids has been demonstrated (Brunson et al.,
2002; Granata et al., 2003; Vezzani and Granata, 2005). However,
the question remained whether available antiepileptic drugs
(AEDs) may have anti-inflammatory effects. For this reason,
we have investigated pro-and anti-inflammatory effects of
conventional and second-generation AEDs in our astrocyte-
microglia co-culture model of inflammation (Table 1). We
showed a significant microglial activation in physiological
M5 and inflammatory M30 co-cultures after concentration-
dependent incubation with valproic acid (VPA) (Dambach
et al., 2014). Incubation with gabapentin (GBT) induced no
significant alterations in the microglial activation state. Phenytoin
(PHE) led to increase of amount of activated microglia (RPT)
in M5 co-cultures, whereas incubation of M30 co-cultures
with PHE did not affect the microglial phenotypes (Dambach
et al., 2014). In another study, sodium channel blockade
with PHE significantly reduced the phagocytic activity of
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TABLE 1 | Pharmacological investigations in astrocyte-microglia co-culture model of inflammation.

M5 (physiological) co-cultures M30 (pathological, inflammatory) co-cultures

Microglia
phenotypes

Cytokine
expression

Cx43
expression

Gap-junctional
communication

Microglia
phenotypes

Cytokine
expression

Cx43
expression

Gap-junctional
communication

References

Levetiracetam – TGF-β1 ↑ After IL-1β and
LPS treatment

Cx43↔

After IL-1β and
LPS treatment

↔

– IL-1β ↓

TGF-β1 ↑
Cx43 ↑ ↑ Haghikia et al.,

2008; Stienen
et al., 2011

Valproic acid Activated
microglia ↑

TGF-β1↔
TNF-α↔

Cx43↔ – Activated
microglia ↑

TGF-β1↔
TNF-α↔

Cx43↔ – Dambach et al.,
2014

Carbamazepine Microglia↔ TGF-β1↔
TNF-α↔

Cx43↔ – Activated
microglia ↓
Inactivated
microglia ↑

TGF-β1↔
TNF-α↔

Cx43↔ – Dambach et al.,
2014

Phenytoin Activated
microglia ↑
Inactivated
microglia ↓

TGF-β1 ↑*
TNF-α↔

Cx43↔ – Microglia↔ TGF-β1 ↑
TNF-α ↑

Cx43↔ – Dambach et al.,
2014

Gabapentin Microglia↔ TGF-β1 ↑*
TNF-α

undetectable

Cx43↔ – Microglia↔ TGF-β1 ↑*
TNF-α↔

Cx43↔ – Dambach et al.,
2014

Dexamethasone After LPS
treatment
Activated
microglia↓

– After LPS
treatment
Cx43 ↑

After LPS
treatment ↑

Activated
microglia ↓*
Inactivated
microglia ↑

– Cx43 ↑ ↑* Hinkerohe
et al., 2010,

2011

Interferon-β After TNF-α,
IL-1β, IFN-γ
treatment
Activated
microglia↓

– – After TNF-α,
IL-1β, IFN-γ
treatment ↑

– – – – Hinkerohe
et al., 2005

Venlafaxine – – – ↔ Activated
microglia ↓
Inactivated
microglia↑

TGF-β↑
IL-6↓

IFN-γ↓
IL-10↔

– ↑* Vollmar et al.,
2008

Ammonia Activated
microglia ↑
Inactivated
microglia ↓

– Cx43↔ – Activated
microglia ↑
Inactivated
microglia ↓

– Cx43 ↑ – Ismail et al.,
2021

Cx43, connexin 43; IFN-γ, interferon-γ; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, interleukin-10; TGF-β1 transforming growth factor-β1; TNF-α, tumor necrosis factor-
α; IFN-β, interferon-β; LPS, lipopolysaccharide.
↑, increase; ↓, decrease;↔, unchanged; –, not available; ∗, at higher concentration.

lipopolysaccharide (LPS)-activated microglia (Black et al., 2009).
Furthermore, carbamazepine (CBZ) significantly reduced the
amount of activated microglial cells in M30 co-cultures. This
finding is consistent with anti-inflammatory properties of CBZ in
rat models with regard to pain/hyperalgesia (Bianchi et al., 1995;
Iwamoto et al., 2011). In addition, increased TGF-β1 and TNF-α
cytokine levels were detected after incubation with PHE in M30
co-cultures. The other AEDs VPA, GBT, and CBZ did not alter the
TNF-α cytokine expression in our co-culture model. The glial cell
viability was reduced after concentration-dependent incubation
with PHE and CBZ, especially in M30 co-cultures (Dambach
et al., 2014). Another in vitro study focusing on metabolic effects
of AEDs showed CBZ-induced stress on primary astrocytes at all
concentrations, but low concentrations of GBP did not change
the metabolic activities of astrocytes and did not have toxic effects
on these cells (Pavone and Cardile, 2003).

Moreover, Haghikia et al. (2008) showed that treatment
of inflammatory glia co-culture model with levetiracetam

(LEV), an established second-generation AED, reconstituted
the impaired astroglial gap junction coupling and membrane
resting potential (MRP) to non-inflammatory level. In another
study, LEV restored IL-1β-mediated MRP depolarization to
physiological levels and promoted anti-inflammatory TGF-β1
expression in inflammatory and control astrocyte-microglia
co-cultures (Stienen et al., 2011). LEV and TGF-β1 induced
comparable effects on the generation of astrocyte voltage-gated
currents in inflammatory co-cultures and the effects of LEV
were prevented by antibody to TGF-β1, indicating that the
anti-inflammatory effects of LEV on astroglia are mediated
via TGF-β1 regulation. In addition, LEV suppressed microglial
activation including morphological changes, phagocytic activity
and cytokine expression in contrast to VPA and CBZ during
epileptogenesis (Itoh et al., 2019). Other study findings suggested
neuroprotective effects of LEV via anti-angiogenesis and anti-
inflammatory activities against blood–brain barrier dysfunction
in the acute phase of epileptogenesis after status epilepticus
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(Itoh et al., 2016; Ismail and Faustmann, 2021). In addition, LEV
reduced reactive gliosis and expression levels of IL-1β in the
hippocampus and the piriform cortex of chronic epileptic rats
unlike VPA (Kim et al., 2010).

In summary, these data suggest that astrocyte dysfunction and
glia-mediated inflammation play an important role in epilepsy.
So, astrocytes and microglia are potential novel targets for
alternative anti-epileptogenic therapies.

Psychotropic Drugs
According to the hypothesis that cytokines may play a role
in the pathophysiology of psychiatric disorders (Na et al.,
2014; Kim et al., 2016; van den Ameele et al., 2016), further
investigations on glia cells offer new findings with regard to
CNS inflammation, psychiatric disorders and pharmacological
treatment. Venlafaxine, a norepinephrine-serotonin reuptake
inhibitor and frequently used drug in mood disorders, revealed
anti-inflammatory effects in our astroglia-microglia co-culture
model (Table 1). In M30 co-cultures, microglia changed to
the RRT, depolarization of membrane resting potential was
reversed and an increase of TGF-β level was found in parallel
with a reduction of IFN-γ and IL-6 (Vollmar et al., 2008).
Corresponding, IL-6 is a major cytokine under pathological
conditions in the CNS such as MS, Alzheimer’s disease, trauma,
and meningitis (Gruol and Nelson, 1997). Consistent with these
findings, venlafaxine was found to be neuroprotective after stroke
events in rats (Zepeda et al., 2016) and a decreased microglia
staining was described in dorsal root ganglia in a rat model of
neuropathic pain (Zychowska et al., 2015). Metabolic profiling
of astrocytes treated with venlafaxine revealed effects on amino
acids metabolism, cellular growth and proliferation (Sun et al.,
2017). In addition, a hyper-ramification of microglia was found in
a mice-model of depression and could be reversed by venlafaxine
(Hellwig et al., 2016). In a prenatal stress model in Wistar rats,
venlafaxine showed protective effects on microglia (Obuchowicz
et al., 2020). Further, venlafaxine had inhibitory effects on
superoxide generation in LPS-stimulated BV-2 microglia cell line
(Dubovický et al., 2014). In conclusion, these findings indicate
significant effects of the psychotropic drug venlafaxine on glial
cells, underlying additional pharmacological mechanisms.

Mechanisms of Action of Neurotrophic
Drugs on Glial Cells
In recent years, more and more studies focused on mechanisms
of action of neurotrophic drugs on glial cells. In our
astrocyte-microglia co-culture model of inflammation, the anti-
inflammatory properties of the AED LEV on electrophysiological
properties of astroglia have been shown to be mediated via
TGFβ1 regulation (Stienen et al., 2011). Combination of a
µ-opioid receptor antagonist at ultralow concentrations and a
µ-opioid receptor agonist with LEV managed to activate the
Gi/o protein and Na+/K+-ATPase activity, inhibit the Gs protein,
and decrease the release of IL-1β, contributing to restoration of
inflammation-reactive astrocytes (Block et al., 2013). In addition,
this combination with LEV downregulated also the glutamate-
evoked intracellular Ca2+ release and toll-like receptor 4 (TLR4)

expression on inflammatory active astrocyte cultures (Hansson
et al., 2018). Another study showed combined mechanisms
of LEV in rat cortical primary cultured astrocytes including
inhibition of AMPA- and adenophostin A (AdA)-induced
astroglial release of kynurenine-pathway metabolites, inhibition
of IFN-γ-induced inositol 1,4,5-trisphosphate (IP3) receptor
activation. Further, LEV reduced the IFN-γ-induced release of
cinnabarinic and quinolinic acid, and enhanced the stimulatory
effects of IFN-γ on kynurenic acid (Fukuyama and Okada, 2018).
Kynurenic acid is known as anti-absence and anti-convulsive
metabolite, whereas cinnabarinic acid is a pro-absence and
quinolinic acid a pro-convulsive metabolite. Further, it has been
demonstrated that LEV inhibits Aβ-induced vesicular glutamate
release from human astrocytes (Sanz-Blasco et al., 2016).
Another study observed that treatment with LEV stimulated the
expression of both brain-derived neurotrophic factor (BDNF)
and inducible nitric oxide synthase (iNOS) in a concentration-
dependent manner on rat cortical astrocyte cultures, suggesting
neuroprotective and anti-inflammatory effects (Cardile et al.,
2003). LEV reduced reactive astrogliosis and microgliosis via
attenuation of IL-1β and IL-1RI expression levels in chronic
epileptic rats (Kim et al., 2010). The IL-1β function was linked
to inhibition of gap junctions in astrocytes and epileptic activity.
These results support multiple anti-inflammatory mechanisms of
actions of LEV in neuroglia, especially with regard to epileptic
brains. In contrast, VPA did not change the IL-1β and IL-1RI
expression levels in astrocytes and microglia (Kim et al., 2010).
LEV also attenuated the expression of TNF-α and IL-1β in animal
model of status epilepticus. In this model, VPA also inhibited
the pro-inflammatory cytokine expression, whereas CBZ did not
have effects on cytokines. Moreover, LEV was able to suppress
mononuclear phagocyte activation in contrast to VPA and CBZ.
The BV-2 microglial activation was also not affected by VPA
and CBZ compared to LEV (Itoh et al., 2019). A recent study
demonstrated that the number of GABAergic synapses is reduced
by VPA-exposed astrocytes, indicating impaired synaptogenesis
of inhibitory neurons by VPA-exposed astrocytes (Takeda et al.,
2021). It has been discussed that the altered GABAergic synapse
formation and synaptic transmission may be caused by a
reduced level of protein tyrosine phosphatase receptor type
delta (PTPRD), because PTPRD is involved in GABAergic
presynaptic differentiation (Takeda et al., 2021). This may
indicate an impaired astrocyte-mediated neurodevelopment in
case of maternal use of VPA. With regard to treatment with CBZ,
upregulated A1-receptor mRNA expression in primary astrocyte
cultures from brain regions with low receptor expression was
detected and linked to phosphoinositol signaling pathway (Biber
et al., 1999). Otherwise, CBZ attenuated LPS-induced iNOS
expression predominantly by inhibiting phosphatidylinositol
3-kinase (PI-3K)/Akt signaling pathway in activated BV-
2 microglial cells (Wang et al., 2014). Acute and chronic
treatment of primary cultured astrocytes with CBZ inhibited
excitatory astroglial glutamatergic transmission associated with
IP3-R and AMPA-R. Further, the pro-inflammatory cytokines
IFN-γ and TNF-α induced astroglial L-glutamate release was
inhibited by CBZ via chronically activation of adenosine A2A
receptor, suggesting potential anti-inflammatory effects of CBZ
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in neuropsychiatric disorders associated with pro-inflammatory
cytokines (Okada et al., 2019).

The neuronal mechanism of action of the antidepressant
venlafaxine is believed to be mediated by uptake inhibition
of norepinephrine and serotonin. Serotonin uptake is already
inhibited at low doses, whereas at high doses norepinephrine
and serotonin uptakes are inhibited (Harvey et al., 2000).
Astrocytes express norepinephrine transporters and could
inactivate norepinephrine that escapes neuronal re-uptake.
This effect seems to be inactivated by antidepressants such
as venlafaxine (Inazu et al., 2003). On intracellular level,
the selective serotonin and serotonin norepinephrine reuptake
inhibitors (SSRI and SNRI) decreased TNF-α and nitric oxide
production in microglia. This mechanism is suggested to be
cAMP mediated, suggesting that cAMP signaling is involved
in regulation of the anti-inflammatory response. This effect
was induced more by fluoxetine and paroxetine compared to
venlafaxine (Tynan et al., 2012). Further, venlafaxine regulated
inflammation in astrocytes by inhibition of JNK1 activity
and STAT3 basal activity, which reduces the production of
IL-6 and IL-1β. This effect on STAT3 was independently
from a previous induction by a cytokine mixture (comprising
complement component 1q, TNF-α, IL-1α). Venlafaxine here
revealed a low cytotoxicity on astrocytes compared to other
antidepressants (He et al., 2021). Additionally, glioma cells
pretreated with venlafaxine and isoproterenol revealed an
increased p90Rsk phosphorylation compared to isoproterenol
alone, indicating further intracellular effects of venlafaxine on
neuro-glial pathways (Khawaja et al., 2004).

In summary, future studies are necessary to reveal further
mechanisms of action of neurotrophic drugs with regard to glial
cells, because not only neuronal modification and excitability
are crucial, but also aspects of glia-mediated pathomechanisms,
especially glia-induced inflammation.

Immunomodulatory Drugs
A link between inflammation and glial cells in inflammatory
CNS diseases, e.g., autoimmune diseases such as MS or infection
diseases such as meningitis suggested a potential regulatory effect
of dexamethasone and IFN-β on glial cells. In our glial co-
culture model of inflammation, dexamethasone reversed an LPS-
induced microglial activation, compromised astroglia membrane
potential, cellular coupling and Cx43 expression (Hinkerohe
et al., 2010), indicating anti-inflammatory and regulatory
effects on glial network (Table 1). Consistent with these
findings, dexamethasone reduced neuroinflammatory response
and migration of LPS-activated microglia BV2 cells (Hui et al.,
2020). Interestingly, Park et al., 2019 showed that dexamethasone
induces a specific form of ramified microglia with missing
microglia signature genes, e.g., TMEM119 or P2RY12, leading
to the conclusion of a dexamethasone-induced dysfunctional
microglia type (Park et al., 2019). Further, β2-adrenoreceptor-
mediated inflammation can be reduced by dexamethasone in
astrocytes and microglia (Ryan et al., 2020). Dexamethasone
significantly reduced seizure-induced microglia activation in rats
and could reduce the long-term effects of first-time seizures (Fox
et al., 2020). In an experimental autoimmune encephalomyelitis

model, dexamethasone delayed the inflammatory activation of
microglia and astrocytes in the white matter of spinal cord
(Nam et al., 2021). In our co-culture model, pre-incubation with
IFN-β prevented microglial activation in the physiological M5
co-culture despite use of TNF-α, IL-1β, and IFN-γ as activators
(Hinkerohe et al., 2005). In addition, IFN-β mediated the release
of anti-inflammatory IL-10 from microglia in mice (Lobo-Silva
et al., 2017) and reduced the number of reactivated microglia in a
retinal model (Behnke and Langmann, 2020).

In terms of connectivity, rapidly proliferating astrocytes
exposed to dexamethasone failed to express any assemblies
(Landis et al., 1991). Interestingly, dexamethasone increased
the gap junctional intercellular communication in our M30
co-cultures and reduced it in rat and human glioma cell
lines (Hinkerohe et al., 2011). Further, the hetero-cellular
gap-junctional coupling between F98 glioma cells and glia
cells was reduced by dexamethasone in our co-culture model
(Ismail et al., 2017).

Taken together, several studies strongly indicate regulatory
effects on inflammatory activation, cytokine release
and functional coupling by dexamethasone and IFN-β
in glial networks.

Others
Hepatic encephalopathy (HE) is a neuropathological condition
caused by acute or chronic liver failure due to hyperammonemia
and impaired detoxification of ammonia by the astrocytic
glutamine synthetase, resulting in astrocyte swelling (Brusilow
et al., 2010). It is known that microglia may contribute to
the astrocyte swelling induced by ammonia (Rao et al., 2013).
In our M30 co-culture model, ammonia reduced the glia-cell
viability (Ismail et al., 2021). Furthermore, microglial activation
was detected after incubation with ammonia under physiological
and pathological conditions (Table 1). Ammonia effects on
Cx43 and aquaporin 4 expression were limited (Ismail et al.,
2021). The microglial activation was consistent with previously
described findings of up-regulated microglia activation marker
ionized calcium-binding adaptor molecule-1 (Iba-1) in post-
mortem brain tissues (from HE patients) and cultured microglia
(treated with ammonia) (Zemtsova et al., 2011). In another study,
ammonia attenuated LPS-induced microglia reactivity including
upregulation of pro-inflammatory cytokines in an astrocyte-
dependent way (Karababa et al., 2017). Studies about effects
of ammonia on astrocytes and microglia contribute to better
understanding of pathophysiological mechanisms of HE.

CONCLUSION

The in vitro astrocyte-microglia co-culture model of
inflammation developed by Faustmann et al. (2003) allowed to
study the endogenous inflammatory reaction and the cytokine
expression under drugs in a differentiated manner. In addition
to astrocytes, investigations on microglia offer a whole network
approach leading to better understanding of non-neuronal
cells and their pathological role in CNS diseases and treatment.
Effects of commonly used AEDs (e.g., LEV, VPA, CBZ, GBP, and
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PHE), immunomodulatory drugs (e.g., dexamethasone, IFN-β)
and psychotropic drugs (e.g., venlafaxine) have been already
demonstrated, contributing to better understanding mechanisms
of actions of CNS drugs and their pro- or anti-inflammatory
properties concerning glial cells. Furthermore, influence of drugs
on glial cell viability, proliferation and astrocytic network has
been shown. The in vitro astrocyte-microglia co-culture model
of inflammation proved to be suitable as unique in vitro model
for pharmacological investigations on astrocytes and microglia
with future potential (e.g., cancer drugs, antidementia drugs,
and toxicologic studies). Even more, astrocytes and microglia as
main glia cells are novel therapeutic targets for future treatment
perspectives using the glia co-culture model of inflammation.
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