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Editorial on the Research Topic

The known, the unknown, and the future of glutamate transporters

Glutamate is the main excitatory neurotransmitter in the central nervous system

(Fonnum, 1984). It is required for essentially all cognitive functions, however, is also

a neurotoxin. Therefore, maintenance of the glutamate extracellular concentration

involves tight control of its release and uptake. Several glutamate transport proteins

contribute to this regulation. Vesicular glutamate transporters (VGLUTs) package

glutamate into synaptic vesicles (Omote et al., 2011). The excitatory amino acid

transporters (EAATs), under physiological conditions, remove glutamate from the

synaptic cleft (Danbolt et al., 2016). Lastly, the cystine/glutamate exchanger, also known

as system x−c , exports glutamate in exchange for cystine (Jabaudon et al., 1999;Warr et al.,

1999; Featherstone and Shippy, 2008). In this Research Topic, we assemble a review of

current literature and new research on these transporters.

VGLUTs

Glutamate is packaged into synaptic vesicles via one of three VGLUTs. As part of our

collection, Hori and Takamori describe a novel method to monitor glutamate transport

in living nerve terminals using the rodent giant synapse, the calyx of Held. In addition,

they discuss what is presently known about factors that alter the amount and rate of

glutamate refilling of synaptic vesicles and the relevance of these findings to central

nervous system disorders (Hori and Takamori).
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EAATs

Termination of glutamate signaling is mediated via uptake

by one of five EAATs (Hediger et al., 2013). Not surprisingly,

impaired expression and/or activity of EAATs have negative

repercussions on health. EAAT2 (GLT-1a,b) is predominately

expressed by astrocytes, although a small portion of GLT-1a can

be found on axon terminals (Chen et al., 2004; Furness et al.,

2008; Melone et al., 2009; Zhou et al., 2018).

In this article collection, Yeung et al. examined the

expression of EAAT2 in several brain regions from postmortem

tissue of patients with Alzheimer’s disease (AD) or control

(Yeung et al.). The authors found no significant change in

EAAT2 density but did observe spatial differences in EAAT2

expression in AD tissue with less immunoreactivity detected

in main astrocyte branches, especially on those surrounding

neuronal cell bodies (Yeung et al.). Whether this altered

expression pattern has implications for glutamate recycling in

AD remains to be determined. Direct evidence for pathological

loss of function of EAAT2 in a mouse model of Huntington’s

disease (HD) comes from the paper of Hirschberg et al.

Therein they report that abnormal protein-protein interactions

of mutant huntingtin (mHTT) with EAAT2 binding partners

reduce glutamate uptake in striatal astrocytes and mediate some

of the HD-associated deficits studied. Abnormalities in uptake

and motor function were alleviated via over-expression of a

C-terminal truncated EAAT2 protein (Hirschberg et al.).

Because most of the glutamate clearance (80–90%) is

mediated by astrocytic EAAT2/GLT-1, the function of GLT-

1 in other cell types has remained largely unexplored.

In this collection, two groups report interesting findings

concerning the physiological function of GLT-1 in neurons and

oligodendrocytes using cell-specific knockout mouse lines. The

Rosenberg group found that hippocampal slices prepared from

neuronal GLT-1 KO (synGLT-1 KO)mice aremore vulnerable to

excitotoxicity than slices from wild-type mice (Rimmele et al.).

Whether this is due to metabolic compromise, or a disturbance

of glutamate homeostasis is still unknown. Meanwhile, the Fuss

group reports that deletion of GLT-1 (GLT1Plp1icKO mice)

in maturing oligodendrocytes leads to hypomyelination in the

corpus callosum of male, but not female, mice (Thomason et al.).

The exact mechanism responsible for these abnormalities is at

present unknown.

Finally, the Robinson group used pharmacological

inhibition of EAAT function to demonstrate their importance

to arteriole patency (Jackson et al.), highlighting another

important function of EAATs, which is to act as a bridge

between local neuronal activity and increases in blood

flow. One can speculate that the dysfunction of EAATs

observed in several neuropathologies could negatively affect

neurovascular coupling.

It is worth nothing that EAATs not only transport

glutamate but act as anion channels (Wadiche et al., 1995;

Bergles et al., 2002; Jen et al., 2005). Herein, Kovermann

et al. review what is known about this function of the

EAATs in both health and disease (Kovermann et al.).

For example, they discuss the relationship between EAAT

mutations that alter anion channel activity (but not glutamate

uptake) resulting in chloride dyshomeostasis and symptoms of

neurological disease.

System x–c

System x−c (Sx−c ) is a Na+-independent, Cl− -dependent

heteromeric amino acid transporter — formed by two

polypeptides, xCT, the subunit responsible for the transport

function, and 4F2hc, the subunit required for membrane

localization— that functions physiologically to export glutamate

while importing cystine in a 1:1 ratio (Bannai and Kitamura,

1980; Bannai, 1986). Astrocytes appear to be the main cell

type expressing Sxc- in the mature brain (Zhang et al., 2014;

Ottestad-Hansen et al., 2018). Sx−c activity contributes to the

maintenance of redox homeostasis (Banjac et al., 2008), is

important for the synthesis of glutathione (Sato et al., 1998),

and is a major source of ambient extracellular glutamate in

vivo (Baker et al., 2002; De Bundel et al., 2011) However,

under pathological conditions, glutamate release through Sx−c
contributes to neurological diseases/disorders [for review see

Lewerenz et al. (2013)].

In this article collection, the Hermans group describes and

validates a method using tritiated glutamate as a substrate

for reversed transport to evaluate the activity of system x−c
(Beckers et al.) both in cultured cells and in synaptosomal

preparations. Meanwhile, Bentea et al. investigated the effect

of genetic deletion of xCT on two models of Parkinson’s

disease (PD) (Bentea et al.). They found protection against

proteasome inhibition-induced nigrostriatal degeneration, —

but not MPTP-induced striatal toxicity — in xCT−/− mice. Last

but not least, He and Hewett evaluated the contribution of Sx−c
to ischemic stroke (He and Hewett). Their results demonstrate

that Sx−c contributes to cortical ischemic damage when blood

flow is moderately but not severely reduced.

Altogether, in this Research Topic, the authors review

current literature or provide original research centered

on understanding more fully the physiological and/or

pathophysiological function of glutamate transport. The work

presented here highlights the need for further research on

the myriad of roles glutamate transporters play in health and

pathology. Therefore, we hope that this collection encourages

additional research in this field.
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