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As the world population ages, the burden of age-related health problems
grows, creating a greater demand for new novel interventions for healthy
aging. Advancing aging is related to a loss of beneficial mutualistic microbes
in the gut microbiota caused by extrinsic and intrinsic factors such as
diet, sedentary lifestyle, sleep deprivation, circadian rhythms, and oxidative
stress, which emerge as essential elements in controlling and prolonging
life expectancy of healthy aging. This condition is known as gut dysbiosis,
and it affects normal brain function via the brain-gut microbiota (BGM)
axis, which is a bidirectional link between the gastrointestinal tract (GIT)
and the central nervous system (CNS) that leads to the emergence
of brain disorders such as Alzheimer's disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia
(FTD). Here, we reviewed the role of the gut microbiome in aging and
neurodegenerative diseases, as well as provided a comprehensive review
of recent findings from preclinical and clinical studies to present an up-
to-date overview of recent advances in developing strategies to modulate
the intestinal microbiome by probiotic administration, dietary intervention,
fecal microbiota transplantation (FMT), and physical activity to address the
aging process and prevent neurodegenerative diseases. The findings of this
review will provide researchers in the fields of aging and the gut microbiome
design innovative studies that leverage results from preclinical and clinical
studies to better understand the nuances of aging, gut microbiome, and
neurodegenerative diseases.

aging, gut microbiome, brain-gut-microbiota axis, neurodegenerative diseases,
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Introduction

Aging is unavoidable in the human life cycle, characterized
by progressive physiological decline, leading to increased frailty,
disease, and decreased longevity (Hou et al., 2019). Gerontology
is the study of the aging process, which involves a complex
interaction of behavior, chemistry, genetics, and physiology.
There are now dozens of aging theories explaining why aging
is inevitable. The free radical theory of aging (FRTA), which
Denham Harman first proposed in the 1950s, has become one
of the most prominent theories to explain aging (Figure 1;
Harman, 1956). This theory proposes that the rate of oxidative
damage to mitochondrial DNA determines life span primarily.
For many decades, FRTA has established a theoretical basis
for extensive studies and received abundant support from
scientific research, resulting in significant advancements in our
knowledge of aging. Past studies revealed a correlation between
reducing oxidative stress and extending the lifespan in various
model organisms, including nematodes (Han et al, 2017),
African turquoise killifish (Smith et al., 2017), naked mole-rat
(Debebe et al., 2017), fruit flies (Shenghua et al., 2020), and mice
(Wang et al., 2020). Extensive scientific evidence supports the
FRTA, which is manifested in the levels of oxidative stress to
the damage in specific molecules including lipids, proteins, and
mitochondrial DNA (Hajam et al,, 2022). As a result, with regard
to free radicals in aging, it has advanced to the point of becoming
one of the more reasonable theories of the aging process.

Free radicals such as reactive oxygen species (ROS)
are essential electron donors in normal metabolism. ROS
is produced by both exogenous and endogenous sources,
such as mitochondrial oxidative metabolism and ionizing
radiation. ROS promotes inflammation, accelerates aging, and
increases the risk of neurodegenerative diseases (Thanan
2014).
needed for primary biological responses, including gene

et al, Under a normal state, free radicals are
transcription, leukocyte adherence, platelet accumulation, signal
transduction, and smooth muscle relaxation. Cells produce
excess free radicals when exposed to ROS, which can
be neutralized by cell-induced antioxidants, for instance,
superoxide dismutase (SOD). When the production of free
radicals exceeds detoxification capacity, oxidative damage
occurs, which can amplify DNA mutations and lead to
mitochondrial dysfunction or apoptosis (Buehler, 2012).

has of

neurodegeneration, and aggregation of oxidative damage

Aging become a significant predictor
to mitochondrial DNA may be related to neurodegenerative
diseases (Hou et al,, 2019). As part of the ATP production
process, mitochondria are involved in several intercellular
signaling pathways, including calcium signaling, biosynthesis
of lipids, and programmed cell death (Keogh and Chinnery,
2015). Furthermore, tissues made predominantly of postmitotic
cells (e.g., the brain) are vulnerable to the development of

aging because they are more susceptible to DNA damage than
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accumulating cells (Hou et al, 2019). Interestingly, organ
function decline with age, resulting in a gradual decline in
physical and mental function, such as blurred vision, hearing
loss, and muscle atrophy (Inouye et al.,, 2007).

Simultaneously, aging is associated with the inability to
accelerate a robust immune response, a condition known
as immunosenescence, and with age-related inflammation,
a condition known as inflammaging (Conway and Duggal,
2021). Mild inflammation (inflammaging) is associated with a
chronic inflammatory disease affected by changes in intestinal
microbiome composition, which is defined by its instability and
diversity (Dinan and Cryan, 2017). This causes the breakdown
of the gut barrier, increased pro-inflammatory cytokines levels
and bacterial byproducts in the bloodstream, damage to the
blood-brain barrier (BBB) and neuroinflammation (Kohler
et al,, 2016) that leads to cognitive decline, frailty, metabolic
disease, and mortality (Ferrucci and Fabbri, 2018).

A substantial amount of research has been conducted on
the role and abundance of the intestinal microbiome as well as
the implications for maintaining a healthy state. Gut microbiota
(GM) is an ecosystem metabolic of a million different
microorganisms living in the gastrointestinal tract (GIT) and
forming a symbiotic connection with the host (Cornejo-Pareja
et al, 2019). Because GM helps to maintain physiological
homeostasis, alterations in microbiome abundance taxa cause
intestinal dysbiosis related to numerous pathological conditions,
including neurodegenerative diseases (Westfall et al, 2017;
Judrez-Fernandez etal., 2021). Thus, microbiota-based therapies
emerge as a potential therapeutic target, including prebiotic
or probiotic administration, nutrition and physical activity to
reshape the GM (Judrez-Ferndndez et al., 2021). In the present
review, we aim to address the role of gut microbiome in aging
and neurodegenerative diseases, with a particular focus on
targeting the gut microbiome as an intervention to slow the
aging progression and prevent neurodegenerative diseases.

The role of gut microbiome in
aging

Gut microbiota is a diverse group of microorganisms
present in the GIT, and its genes are known as the microbiome
(Salazar et al., 2020). Each individual has a unique microbiota
composition that is very diverse and complex in nature (Balan
et al,, 2021), which is influenced by biological factors such as
genetics and lifestyle factors including dietary (Salazar et al,
2019), exercise (Huang et al., 2019), sleep deprivation (Smith
et al, 2019), drugs (Sun et al, 2019c), and mental health
(Barandouzi et al, 2020). The Human Microbiome Project
(HMP) and Metagenomics of the Human Intestinal Tract
(MetaHIT) have currently revealed an extensive view of the
intestinal microbiota in healthy people, which is made up of
permanent and transient microbial species and subspecies from
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Free radical theory of ageing (FRTA)
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FIGURE 1

Schematic representation of the premise behind the Free Radical Theory of Aging (FRTA). Oxygen toxicity is the basis of FRTA. By-radical
molecular oxygen can generate partially depleted molecules and ROS (Balaban et al.,, 2005). ROS are primarily produced during oxidative
phosphorylation in the mitochondria, but they are also produced by other exogenous and endogenous factors such as ultraviolet light, air
pollution, etc. Catalase, vitamin A, SOD, and other antioxidants can detoxify ROS within the cell (Davies, 2000). When these antioxidants are
depleted, ROS accumulates, disrupting the cell's normal redox state and resulting in oxidative stress. ROS-induced oxidative stress causes
overproduction of MDA and HNE, which act as a second messenger of oxidative stress and a major bioactive marker of lipid peroxidation
(Barrera, 2012). Additionally, oxidative stress causes protein degradation or proteolysis via the ubiquitin-proteosome pathway (Cooper, 2000).
Moreover, oxidative stress also causes DNA base modification via yH2AX, a molecular marker of DNA damage and repair (Mah et al., 2010).
Despite mechanisms for repairing oxidatively damaged biomolecules, several damages remain. According to FRTA, oxidative stress causes
aging, physiological decline, and age-related disorders (Selman et al,, 2012). ROS, reactive oxygen species; SOD, superoxide dismutase; GPx,
glutathione peroxidase; MDA, malondialdehyde; HNE, 4-hydroxynonenal; yH2AX, phosphorylated histone H2AX. This figure was created with

Canva.com.
over 17 different phyla belonging to Firmicutes [Clostridium, Bacteroides, Bifidobacterium, and Lactobacilli, decreases in old
Eubacterium, Faecalibacterium, Lactobacillus, Roseburia, and people (Santoro et al, 2018; Salazar et al, 2019). Rahayu
Ruminococcus], Bacteroidetes [Bacteroides and Prevotella], et al. (2019) studied the GM of 80 healthy Indonesians,
Proteobacteria [Escherichia, Helicobacter, Salmonella, and divided into two groups: young (25-45 years) and elderly
Shigella], Actinobacteria [Bifidobacterium], Fusobacteria, (70 years). The findings revealed that the gut microbiome
Spirochaetes, Verrucomicrobia, Lentispherae, and other phyla composition was higher in the young than in the elderly,
(Lloyd-Price et al., 2016, 2017; Parks et al., 2017). with Atopobium, Bifidobacterium, Bacteroides, Clostridium, and

Several research revealed that the composition and stability Prevotella being the most common bacterial groups, while an
of the intestinal microbiome change significantly with aging increase in Enterobacteriaceae and Escherichia coli was found
(Salazar et al, 2017; Nagpal et al, 2018). Firmicutes are in the elderly. Moreover, Kim B. S. et al. (2019) studied 56
enriched during childhood and adolescence, while with South Korean subjects divided into centenarians, elderly, and
increasing age, Bacteroidetes become the dominant phylum adults, and discovered that centenarians had a higher abundance
(O’'Toole and Jeffery, 2018). Several studies have reported of Firmicutes than the elderly and adults, while Bacteroidetes
that the prevalence of major commensal organisms, including were lower. Furthermore, a shift in the centenarian’s microbiota,
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with lower abundances of Faecalibacterium and Prevotella and
higher proportions of Akkermansia, Clostridium, Collinsella,
and Escherichia. Similarly, Wang N. et al. (2019) showed that
the GM of East China centenarians is composed of several
microbes that may influence their lifespan, including Bacteroides
fragilis, Clostridium perfringens, Parabacteroides merdae, and
Ruminococcus gnavus. Indeed, the gut microbiome is dynamic
across a lifetime.

In general, these alterations are known as “gut dysbiosis,”
which is distinguished by a decrease in a plethora of beneficial
microorganisms, including bacteria that generate short-
chain fatty acids (SCFAs), e.g., Clostridium, Bifidobacterium,
Lactobacillus, and Roseburia (Kim and Jazwinski, 2018).
Gut microbes produce lots of SCFAs, mainly butyrate,
acetate, and propionate, which are immunomodulatory
bacterial metabolites. SCFAs act as messengers between the
gut microbiome and the immune response by transmitting
signals through free fatty acid receptors (FFARs), which
are members of the G protein-coupled receptors (GPCRs)
(Ratajczak et al, 2019). SCFAs bind to GPCRs, including
GPR109A, GPR41, and GPR43, expressed on the membrane
of epithelial and immune cells. SCFA is transported within
host cells and inhibits histone deacetylase (HDAC) activity.
SCFAs improved gut barrier function and immune sensitivity
via several mechanisms, including: (i) increased mucus
production by gut goblet cells, (ii) nuclear factor-kB (NF-«B)
repression, (iii) activation of inflammasomes, (iv) production
of interleukin-18 (IL-18), (v) increased secretory IgA (sIgA) by
B cells, (vi) decreased T cell-activating molecules expression
on dendritic cells, (vii) increased FOXP3 expression, (viii)
increase anti-inflammatory cytokines such as interleukin 10
(IL-10) and transforming growth factor-p (TGFB) (Rooks and
Garrett, 2016). Furthermore, these SCFA properties influence
their immunomodulatory activity, such as maintaining the
stability of pro-and anti-inflammatory immune biomarkers.
They also have antioxidant, anticancer, and anti-inflammatory
properties, which help to maintain immune homeostasis in
the CNS (Corréa-Oliveira et al., 2016; Riaz Rajoka et al., 2018;
Ratajczak et al., 2019).

Lipopolysaccharide (LPS) is an inflammatory toxin
produced by certain microbes, such as Bacteroides and
Prevotella. LPS stimulates the TLR4 receptor by interacting with
CD14 and MD-2 proteins, triggering an inflammatory response
(Zhao etal,, 2015). According to other studies, LPS produced by
Bacteroides fragilis activates the pro-inflammatory transcription
factor NFkB, which is responsible for the progression of AD
in microglial cells. NFkB stimulates the pro-inflammatory
micro RNA (miRNAs) transcription, including miRNA-155,
miRNA-146a, miRNA-125b, miRNA-34a, and miRNA-9,
which activates neuroinflammatory mediators and prevents
phagocytosis (Zhao and Lukiw, 2018). For instance, it was
recognized that miRNA-34a reduces the expression of TREM2,
which is the activating receptor expressed on microglia cells,
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impairing microglia phagocytosis and enhancing amyloid p-42
(Ap42) aggregation (Bhattacharjee et al, 2016). Recently, a
clinical trial in Alzheimer’s disease (AD) patients revealed that
the present bacterial LPS in the brain causes LPS levels in the
neocortex and hippocampus to increase by two and three-folds,
respectively (Zhao et al, 2017). However, excess LPS from
the gut entering the bloodstream may cause inflammation by
breakdown of the gut barrier (“leaky gut”), allowing LPS and
pathogenic microbes to enter the bloodstream. Thus, elevated
LPS levels and blood inflammation have been linked to a variety
of brain disorders, such as dementia, major depression, and
schizophrenia (Kelly et al., 2015).

Bacterial amyloids such as curli secreted by pathogenic
bacteria such as Escherichia coli, Salmonella enterica, and
Bacillus subtilis (Hufnagel et al., 2013; Schwartz and Boles,
2013) may prime the immune system, increasing immune
response to endogenous neuronal amyloid production in the
brain (Friedland and Chapman, 2017). Amyloid peptide is in
charged of a number of physiological mechanisms, such as
bacterial cell binding and biofilm formation, and resistance to
immune factors (Evans et al, 2018). Curli peptide has a f-
folded sheet secondary structure and stains with Congo red and
thioflavin, which are dyes used to stain the amyloid deposits
in the brain. It has been discovered that the precursor of
amyloid gA has a structure similar to AB42 and is able to be
identified by the TLR2 receptor. Therefore, binding of TLR2
with curli peptide activates macrophages and produces the
pro-inflammatory cytokines IL-18 and IL-6 (Rapsinski et al,
2015). Similarly, microbial amyloid has been found to stimulate
T-lymphocytes and trigger the production of pro-inflammatory
interleukins IL-17A and IL-22 (Nishimori et al.,, 2012). Both
cytokines have the ability to cross the blood brain barrier (BBB)
and trigger ROS production as well as activate TLR2/1 and
NFkB signaling pathways in microglia and astrocytes, leading
to neuroinflammation and neurodegeneration (Perriard et al,
2015; Sun et al,, 2015; Zhan et al., 2018). According to Chen et al.
(2016), oral infectious disease of aged rats with curli-producing
E. coli resulted in increased o-syn deposits in brain tissue
microgliosis and astrogliosis as well as enhanced expression of
TLR2, IL6, and TNF.

Several studies have revealed that the gut microbiome
modulates Th17 cells and Treg cells, implying that the
microbiome composition has a significant impact on
the immune responses against pathogenic microbes and
inflammatory responses (Park et al,, 2015). The involvement of
segmented filamentous bacteria (SFB) such as Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria phyla in the
gut has been linked to the induction of Thl7-mediated
autoimmune disorders (Vi et al.,, 2010; Lee et al,, 2011). SFB
protects against pathogenic microbes such as Citrobacter
rodentium by triggering production of IL-22 by Th17, which
inhibits its growth (Ivanov et al,, 2009). Similarly, SFB protects
non-obese diabetes (NOD) mice from developing type-1

frontiersin.org


https://doi.org/10.3389/fncel.2022.1007166
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Hashim and Makpol

diabetes (T1D) in an IL-17-dependent manner (Kriegel et al,
2011). Furthermore, SCFAs also promote the differentiation
of T lymphocytes into Thl and Thl17, which play a role in
pathogen defense and mediate the inflammatory response
(Ratajczak et al, 2019). Acetate and propionate have been
shown to induce naive T lymphocytes into T helper 17 (Th17)
cells and to stimulate the development of T helper type 1 (Th1)
cells via interleukin 12 (IL-12) (Park et al, 2015; Ratajczak
etal, 2019). Xu et al. (2018) revealed that Helicobacter hepaticus
is also involved in inflammatory bowel diseases by inducing
Th17 proinflammatory lymphocytes. According to this study,
the inactivation of the transcription factor c-MAF in the Treg
lymphocytes disrupted their differentiation and function,
reducing IL-10. Numerous studies have proven the important
role of gut microbiome in aging and neurodegenerative diseases
(Table 1). Over the last decade, many studies have been carried
out on the effects of gut microbiome on the CNS, and the
concept of a "brain-gut-microbiota axis" has been introduced
(Kowalski and Mulak, 2019).

Brain-gut-microbiome axis and
neurotransmitters

There is now a great deal of understanding about the
connection between the intestinal microbiome and brain
functions (Askarova et al, 2020). The brain-gut-microbiome
(BGM) axis is a communication network that connects
the gut and brain (Cryan et al, 2019) via three basic
mechanisms mediating gut-brain communication, including
direct neural communication, endocrine signaling mediators,
and the immune system, which is dedicated to the progression
of neurodegeneration and neuroinflammation (Bauer et al,
2016). The gut and the brain are linked by millions of nerve
cells, specifically the vagus nerve, which sends signals in both
directions (Bonaz et al,, 2018). The gut microbiome transmits
information from ingested components passing through the
GIT, such as vitamins, minerals, carbohydrates, and fats, to the
CNS via pathways to induce a systemic response associated with
the reflected dietary and energy conditions (Noble et al., 2017).
When there is gut dysbiosis, messages sent to the brain send
out unhealthy signals that indicate mild inflammation, increased
oxidative damage, an imbalance in energy homeostasis, and
an overall improvement in cellular neurodegeneration (Noble
et al, 2017). The gut microbiome impacts brain functions,
impaired BBB, altered synaptic plasticity, microglial activity,
neurogenesis, neurotransmitter production, and behavioral
effects (Luczynski et al,, 2016; Chu et al,, 2019). According to
recent research, the intestinal microbiome significantly impacts
the pathogenesis of depression symptoms in rats via the BGM
axis (Zhang et al, 2022). Furthermore, changes in the BGM
axis may also influence the progression of neurodegenerative
diseases (Kowalski and Mulak, 2019).
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The gut and the brain are also linked by chemicals known
as neurotransmitters, which help in monitoring and integrating
gut functions with the cognitive and emotional functions of the
brain (Scriven et al,, 2018). Interestingly, the gut microbiome
can produce a variety of mammalian neurotransmitters such
as dopamine (Bacillus, Escherichia, Lactobacillus, Lactococcus,
(Escherichia,
Lactobacillus, and Streptococcus), acetylcholine (Lactobacillus

and Streptococcus), serotonin Enterococcus,
and Bacillus), noradrenaline (Bacillus spp.), norepinephrine
(Bacillus), histamine (Lactobacillus, Lactococcus, Streptococcus,
and Enterococcus), and y-aminobutyric (GABA;
Bifidobacterium and Lactobacillus), all of which affect the
host’s well-being and maintain homeostasis (Alkasir et al,
2016; Strandwitz, 2018). GABA is an amino acid that acts

as an inhibitory neurotransmitter, and it was found that the

acid

aminobutyric acid levels in the gut coincide with those in the
CNS (Strandwitz, 2018). For instance, GABA helps regulate
feelings of fear and anxiety (Mazzoli and Pessione, 2016), and
a study in laboratory mice revealed that certain probiotics
could enhance GABA production, thereby reducing anxiety and
depression-like behavior (Janik et al., 2016).

Brain-derived neurotrophic factor (BDNF) acts as a
neurotransmitter modulator that is involved in synaptic
plasticity, which is extremely important for all forms of
learning and memory. There is evidence that Alzheimer’s disease
patients have lower BDNF levels in their brains and serum
(Michalski et al., 2015). Lactobacillus helveticus NS8 also lowered
hormone levels such as corticosterone and adrenocorticotropic
in plasma, enhanced production of IL-10, restored levels of
norepinephrine and serotonin, and enhanced BDNF expression
in the hippocampus (Liang et al., 2015). Similarly, the N-methyl-
D-aspartate (NMDA) receptor is triggered by a glutamate
excitatory neurotransmitter and is also involved in synaptic
plasticity. Wang et al. (2015) demonstrated that the use of
ampicillin for 1 month in rats resulted in gut dysbiosis,
which reduced NMDA receptor expression, increased aggressive
behaviors, and impaired spatial cognition, whereas introducing
the Lactobacillus fermentum NS strain into the gut microbiome
normalized these conditions. As a result, imbalances in
these neurotransmitters can induce both psychological and
neurological disorders.

Mechanisms of the effects of the
gut microbiome on the
pathogenesis of
neurodegenerative diseases

Numerous molecular research discovered a relationship
between gut microbes and neurological disorders known as
neurodegenerative diseases, in which patients with elevated
intestinal inflammation having lower microbiome diversity than
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TABLE 1 Role of the gut microbiome on aging and neurodegenerative diseases.

10.3389/fncel.2022.1007166

No. References The role of the gut microbiome on aging and Abundance of bacteria
neurodegenerative diseases

1 Badal et al., 2020 Promotes gut homeostasis and healthy aging by lowering adiposity, 1 Verrucomicrobia
inflammation, and the risk of developing metabolic and cognitive 1 Akkermansia
dysfunction. + Christensenellaceae

2 Sorbara and Pamer, 2019 Disrupt the intestinal barrier integrity and causes chronic 1+ Clostridium difficile
inflammation, further aggravating microbial dysbiosis and 1 Helicobacter pylori
increasing susceptibility to gastrointestinal infections.

3 Dominy et al., 2019 It could cause accumulation of amyloid-beta plaques and 1 Porphyromonas gingivalis
neurofibrillary tangles.

4 Junges et al., 2018 Involved in the synthesis of aminobutyric acid (Y-Aminobutyric 1 Bifidobacterium
acid, GABA). 1 Lactobacillus

5 Strandwitz, 2018 It causes brain dysfunction, which is characterized by | Bifidobacterium
synaptogenesis disorders, depression, and cognitive impairment. | Lactobacillus

6 Xu et al, 2018 It involved in inflammatory bowel diseases by inducing Th17 1 Helicobacter hepaticus
proinflammatory lymphocytes.

7 Rizzatti et al., 2017 Increased gut inflammation and dysbiosis. 4 Proteobacteria

8 Louis and Flint, 2017 It is crucial in the production of the SCFA butyrate. 1 Faecalibacterium

9 Chudnovskiy et al., 2016 It defends against enteric bacterial infection by activating epithelial 1 Trichomonas musculis
inflammasome signaling and promoting DC-driven Th1 and Th17
immunity.

10 Seo et al., 2015 It stimulates monocytes to release NLRP3-dependent IL-18, which 1 Proteus mirabilis
causes intestinal inflammation.

11 Divyashri et al., 2015 Reduce TNF-a production, oxidative stress markers, and induced 1 Enterococcus faecium
antioxidant enzymes in the brain. 1 Lactobacillus rhamnosus

12 Zhao et al., 2015 Produces LPS and activates the pro-inflammatory transcription 1 Bacteroides fragilis
factor NFkB.

13 Liang et al., 2015 Increased production of IL-10, restored levels of norepinephrine 1 Lactobacillus helveticus NS8
and serotonin, and enhanced BDNF expression in the hippocampus.

14 Bischoff et al., 2014 Enhance the intestinal barrier by increasing the expression of 1 Lactobacillus plantarum
proteins that forming tight junctions. 1 Escherichia coli Nissle

1 Bifidobacterium infantis
15 Hufnagel et al,, 2013 It is capable of secreting large quantities of the bacterial amyloid 1 Escherichia coli

peptide curli.

1 Baccilus subtilis
1 Salmonella tyrhimurium
1 Salmonella enterica

Changes (1: increase; |.: decrease) in the relative abundance of selected microbial taxa.

healthy cohorts with relatively intact abundance (Rowin et al,,
2017). Each neurodegenerative disease has a distinct clinical
aspect and pathology. Molecular research has revealed that
the brain tissue of the elderly consists of abnormal deposits
of proteins such as amyloid-f (AB), hyperphosphorylated tau
(p-tau), or a-synuclein (a-syn) (Elobeid et al, 2016). Despite
this, it is unclear how the gut microbiome influences these
deposits in the brain, resulting in neurodegenerative diseases.
Here, we describe the mechanism underlying the effects of
gut microbiome on the etiology of neurodegenerative diseases
(Figure 2).

Alzheimer’s disease (AD) is distinguished by a gradual
deterioration in neuronal function (Jiang et al, 2017).
The primary neuropathological features of AD are the
aggregation of the amyloid-p (AP) plaques outside of
neurons and neurofibrillary tangles (NFT) composed of
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hyperphosphorylated tau (p-tau) protein inside neurons
in the brain (Kowalski and Mulak, 2019). These deposits
trigger neuroinflammation, which eventually leads to synaptic
deterioration and neuronal death (Kohler et al, 2016).
Mutations in three genes, including presenilin gene 1 (PS1) on
chromosome 14, presenilin 2 gene (PS2) on chromosome 1,
and amyloid precursor protein gene (APP) on chromosome 21,
are responsible for transmitting AD via autosomal-dominant
inheritance. Early-onset AD (EOAD) is usually diagnosed
before 65 years old, whereas the sporadic type of disease,
known as late-onset AD (LOAD), appears in people over the
age of 65 (Panegyres and Chen, 2013, 2014). A diverse gut
microbiome promotes functional amyloids in the AD brain
via bacterial amyloids such as Escherichia coli, Streptomyces,
Bacillus, Pseudomonas, and Staphylococcus, known as “curli
fibers,” which are made up of the major curli subunit protein
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FIGURE 2

The mechanism underlying the effect of the gut microbiome on the etiology of neurodegenerative diseases. GIT is composed of a diverse
group of microbes, and its composition changes significantly with age. These alterations are termed “gut dysbiosis,” which leads to increased
leaky gut, causing translocation of bacteria (a process known as atopobiosis) into the bloodstream (Konig et al., 2016). Reduced numbers of
beneficial microbes that produce SCFAs such as Firmicutes and Actinobacteria is unable to inhibit HDAC activity and LPS-induced inflammation.
On the other hand, gut microbes such as Bacteroidetes are able to excrete an abundance of LPS, which stimulates the TLR4 receptor by
interacting with CD14 and MD-2 proteins, triggering an inflammatory response (Zhao et al.,, 2015). Furthermore, Proteobacteria produce an
abundance of bacterial amyloids such as curli peptide, and binding of curli peptide to TLR2 activates macrophages, which secrete
pro-inflammatory cytokines such as TNF-a, IL-6, and IL-1B (Rapsinski et al., 2015), and activation of T-lymphocytes induces the production of
pro-inflammatory interleukins such as IL-17A and IL-22 by Th17 cells (Nishimori et al., 2012). These cytokines are able to penetrate the BBB,
increase production of ROS, and promote oxidative stress, leading to neuroinflammation and neurodegeneration (Zhan et al,, 2018). These
cytokines also activate TLR2/1 and NFkB signaling pathways in microglia and astrocytes, which stimulates the transcription of pro-inflammatory
miRNAs, activates neuroinflammatory mediators, and inhibits phagocytosis in microglial cells (Zhao and Lukiw, 2018), leading to the progression
of neurodegenerative diseases. [AD: increased AB plaques and P-tau tangles; PD: increases a-synuclein aggregates in Lewy bodies and Lewy
neurites, and impairment and loss of melanated dopaminergic neurons in the substantia nigra; ALS: increases SOD1, FUS, and TDP-43
aggregates; TDP: increases P-tau tangles, TDP-43 and FUS aggregates]. Additionally, several microbes may signal through their metabolites to
promote the synthesis and release of neurotransmitters, which are involved in the transport of chemical signals from nerve cells to the target
cell, such as muscle or gland. Gut dysbiosis may also decrease synthesis and secretion of neurotrophic factors such as GABA, BDNF, and NMDA
receptors, leading to neurodegeneration (Askarova et al.,, 2020). AB, amyloid-beta; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic
factor; CD14, cluster of differentiation 14; FFARs, free fatty acids receptors; FOXP3, forkhead box P3; FUS, fused in sarcoma; GABA,
gamma-aminobutyric acid; GIT, gastrointestinal tract; HDAC, histone deacetylase; IL, interleukin; LPS, lipopolysaccharide; NF-kB, nuclear
factor-kB; MD-2, myeloid differentiation factor-2; NMDA receptor, N-methyl-D-aspartate receptor; SCFAs, short-chain fatty acids; SOD1,
superoxide dismutase 1 gene; TDP-43, TAR DNA-binding protein 43; TGF-8, transforming growth factor-g; Th, T helper; TLR, tall-like receptor;
TNF-a, tumor necrosis factor alpha; Treg, regulatory T cells. This figure was created with BioRender.com.

CsgA, which aids bacterial cells bind together to form biofilms
and host defense protection from immune factors (Hill and
Lukiw, 2015). According to a clinical study, the gut microbiome

reduced and Bacteroidetes being increased (Brunt et al., 2019).
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healthy people, with Firmicutes and Bifidobacterium being


https://doi.org/10.3389/fncel.2022.1007166
http://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Hashim and Makpol

Parkinson’s disease (PD) is defined by dysfunctional
motor neurons and neuropsychiatric signs. The pathogenesis
features of PD involve neuronal degeneration in the substantia
nigra (SN) due to proteostasis of o-synuclein, oxidative
damage, mitochondrial dysfunction, impaired axonal transport,
calcium homeostasis, and neuroinflammation (Poewe et al,
2017). Concurrently, these features result in striatal dopamine
deficit and intracellular aggregates consisting of a-synuclein
deposits, manifesting as locomotor signs, such as neuromuscular
dysfunctions affecting movement speed, muscle stiffness and
resting tremor (Hou et al, 2019). The earliest PD-linked
genetic discovery was made in 1997, with the discovery of a
missense mutation in synuclein alpha (a-syn) (Polymeropoulos
et al,, 1997). Up to this point, function loss variants in about
20 genes have now been linked with PD, including PINKI,
PRKN, PARK7, LRRK2, PLOG, and GBA (Blauwendraat et al,,
2022). Chen et al. (2016) proposed that amyloid proteins
in the microbiome of the intestine are responsible for the
onset and progression of neurological conditions. According
to this study, curli secreted by E. coli caused enhanced a-
syn deposits in the brain as well as increased astrogliosis and
microgliosis in rats. Kim S. et al. (2019) support the Braak
hypothesis in the pathogenesis of undiagnosed PD by injecting
a-syn fibrils into the gut, which convert intrinsic a-syn into a
pathologic organism that spreads to the brain. This results in
PD-like symptoms, vagotomy and, a-syn deficit, which inhibits
the neuropathology and neurobehavioral problems caused by
pathological a-syn transmission. Clinical research by Aho et al.
(2019) revealed that the variations in GM of 64 PD patients and
64 control subjects persisted after 2 years, with Prevotella and
Roseburia being reduced and Bifidobacterium being increased.

Amyotrophic lateral sclerosis (ALS) is related to motor
neuron damage in the spinal cord due to muscle frailty,
atrophy, and spasticity (Hardiman et al, 2017). Several
genetic variants in non-neuronal cells have been linked to
the pathogenesis of ALS, including the 43-kDa TAR DNA-
binding protein (TDP-43) and superoxide dismutase 1 (SOD1),
and CYorf72 and the expression of these genes are linked
to immunological neuroinflammation in ALS (Beers and
Appel, 2019). Patients with familial ALS typically develop the
disease younger than those with sporadic ALS (Aktekin and
Uysal, 2020). The current study discovered a new relationship
between the microbiome, hSOD1%%4 accumulation, and
gut mobility in SOD19%34 mice, with longitudinal studies
of microbiome data revealing a shift in gut microbiome
composition related to autoimmunity (Clostridium sp. and
Lachnospiraceae  bacterium), inflammation (Enterohabdus
muris), and metabolism (Desulfovibrio fairfieldensis) (Zhang
et al, 2021). Clinical research by Nicholson et al. (2021)
found that the proportional abundance of butyrate-producing
microbes, including Eubacterium rectale and Roseburia
intestinalis, was significantly decreased in ALS patients,
indicating that these levels of butyrate-producing bacteria are
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significant for intestinal barrier and inflammation control.
Other clinical studies revealed significant changes in the
microbiome composition of ALS patients, with Bacteroidetes
being up-regulated and Firmicutes being down-regulated
at the phylum level when compared to healthy controls
(Zeng et al., 2020).

Frontotemporal dementia (FID) is a type of dementia
with neuropathological features involving chronic atrophy
in the frontal and neocortex as well as the accumulation
of microtubule-associated protein tau and two RNA-binding
proteins, 43-kDa TAR DNA-binding protein (TDP-43) and
fused in sarcoma (FUS) (Hoffman et al, 2019). FTD is
associated with various genetic etiologies, the most prevalent
being accounted for by autosomal dominant mutations
in the chromosome 9 open reading frame 72 (C9orf72),
progranulin (GRN), and microtubule-associated protein tau
(MAPT) genes (Fenoglio et al, 2018). It was previously
reported that lowered C9orf72 activity resulted in inflammatory
responses distinguished by hypercytokinemia, neutrocytosis,
spurious thrombocytopenia, systemic sclerosis, splenomegaly,
and neuroinflammation (Atanasio et al., 2016; Burberry et al,
20165 Jiang et al., 2016; O’Rourke et al., 2016). Following these
findings, it was later discovered that FTD patients with C9orf72
mutations had a substantially increased risk of being diagnosed
with an autoimmune disorder prior to their brain condition
(Miller et al., 2016; Fredi et al., 2019). Burberry et al. (2020)
found that reducing the abundance of immune-stimulating
bacteria such as Helicobacter spp. prevents C9orf72-mutant
mice from early death and positively influences their underlying
systemic inflammation and autoimmunity. There has been no
clinical study on the gut microbiome of FTD patients reported.

Role of nutrition, sedentary
lifestyle, sleep deprivation and
circadian rhythms on the gut
microbiome

Gut microbiome is hypersensitive to external factors
associated with an unhealthy lifestyle, such as nutrition, exercise,
sleep deprivation, sedentary behavior, and circadian rhythm
disorders, all of which are essential elements in controlling
healthy aging and prolonging life expectancy (Askarova et al.,
2020; Du et al,, 2021). Western dietary habits are high in fat and
carbohydrate, which can impact behavior and cause shifts in the
microbiome composition of high-energy diet mice, with higher
Clostridiales and lower Bacteroidales, which are associated
with poor cognitive adaptability (Magnusson etal., 2015).
Preclinical research demonstrated that a high-fat diet (HFD)
in mice alters the intestinal microbiome composition, with
Firmicutes being increased and Bacteroidetes being reduced,
implying that it has an impact on the progression of obesity in
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response to a HFD (Jo et al,, 2021). Another study found that
HEFD alters gut microbiome composition in 3xtg mice, with
elevated levels of Firmicutes-to-Bacteroidetes and a decrease in
Bifidobacteriaceae, as well as the presence of several bacterial
species such as Anaeroplasmataceae, Christensenellaceae,
Ruminococcaceae, and Turicibacteraceae. This study also found
that HFD contributed to cognitive deficits by causing cell
damage and declining neuron cell death via the deactivation of
the Nrf2 signaling pathway (Sanguinetti et al,, 2018).

A sedentary lifestyle has been associated with severe
diseases, including cancer, coronary artery disease and diabetes
(Bressa etal., 2017). Sedentary behavior has been associated with
poor glycemic regulation in brain function and an increased
risk of death. The author propose that treating sedentary
behavior with intermittent moderate-intensity exercise could
help to prevent cognitive impairment by lowering glycemic
variations (Wheeler et al, 2017). Sedentary lifestyle also
has an effect on the gut microbiome, with a decrease in
butyrate-producing bacteria such as Butyrivibrio proteoclasticus
and Marvinbryantia formatexigens, and an increase in pro-
inflammatory microbes, including Clostridium, Eubacterium,
and Roseburia, which is positively correlated with an increase
of AB plaques in the hippocampus and causes the etiology
of AD in APP/PSI transgenic mice (Abraham et al, 2019).
Furthermore, clinical research discovered that sedentary women
have lower proportions of health-promoting microbes, such
as Akkermansia muciniphila, Faecalibacterium prausnitzii, and
Roseburia hominis, than active women (Bressa et al., 2017).

Concurrently, global data show that sleep deprivation
enhances the risk of age-related diseases, and recent studies
suggest the GM may contribute to this phenomenon (Anderson
et al, 2017). Preclinical research has shown that sleep
deprivation increases body fat and causes specific alterations
in the intestinal microbiome, with Lachnospiraceae and
Ruminococcaceae increasing and Lactobacillaceae decreasing,
which promote intestinal permeability, inflammation in adipose
tissue and insulin sensitivity in mice (Poroyko et al, 2016).
There is a finding that poor sleep quality is linked to
a reduced abundance of Verrucomicrobia and Lentisphaerae
and suggests that there may be a connection between sleep
deprivation, gut microbiome, and cognitive accessibility in the
healthy elderly (Anderson et al., 2017). Benedict et al. (2016)
discovered that short-term sleep deprivation has mild effects on
the gut microbiome, with Firmicutes: Bacteroidetes ratio and
Coriobacteriaceae and Erysipelotrichaceae being upregulated,
while Tenericutes are downregulated after two days of partial
sleep deprivation.

Circadian rhythm regulation is critical in healthy people
who are influenced by cosmic events such as light-dark
cycles and sleep-wake cycles as well as lifestyles (Farhud
and Aryan, 2018). These changes result in circadian rhythm
disorders (CRD), which increase the prevalence of mental
illnesses such as depression and physiological issues (Farhud
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and Aryan, 2018). Disruptions of normal circadian rhythms
and sleep cycles are consequences of aging and have long
been thought to be symptoms of many neurodegenerative
conditions (Musiek and Holtzman, 2016). There is evidence that
circadian rhythms influence the intestinal microbiome through
microbial byproducts including amines, butyrate, polyphenolic
compounds, and vitamins (Parkar et al., 2019). In a preclinical
study, researchers discovered that disrupting the CRD alters
the gut microbiome composition in mice, with Ruminococcus
torques being increased, a microbe that plays a role in lowering
gut barrier integrity, and Lactobacillus johnsonii being reduced,
a bacterium that aids in maintenance of the intestinal epithelial
cell layer (Deaver et al,, 2018). Therefore, adequate sleep and
a nutritious diet appear to be critical for maintaining gut
microbiome balance.

Targeting gut microbiota as an
intervention to delay aging and
neurodegenerative diseases

Comprehensive knowledge about the role of the gut
microbiome in aging and the emergence of neurological
disorders create the potential for new novel interventions for
achieving healthy aging (Mancuso and Santangelo, 2018). Gut
microbiome interventions have led to growing demand, and
the research in this field is constantly evolving. Dietary and
probiotic administration have been researched as potential
therapeutic approaches for age-associated diseases through
changes in gut microbiome composition, with promising
findings. Recently, activity has been shown to reshape GM,
another factor contributing to the potential benefits of this
intervention approach to age-associated diseases (Porras et al,
2018). Here, we summarize the interventions of gut microbiome
modulation in both preclinical studies in an animal model
(Table 2) and clinical studies in humans (Table 3).

Several studies have discovered that probiotics improve
gut epithelium integrity, prevent barrier degradation, reduce
pro-inflammatory responses, and prevent the initiation or
proliferation of neuroinflammation and neurodegeneration
(Frasca and Blomberg, 2015; Plaza-Diaz et al, 2017).
Bifidobacterium and Lactobacillus species are frequently
found in probiotic formulations, extensively designed to
promote human health and classified as Generally Regarded
as Safe (GRAS) (Fijan, 2014). Numerous preclinical studies
have also highlighted the probiotic potency of lactobacilli and
bifidobacteria (Table 2; Bonfili et al., 2017; Kobayashi et al,,
2017; Azm et al, 2018; Tan et al,, 2020; Yang et al., 2020).
Probiotic administration demonstrated to significantly alter gut
microbiome composition, decrease interleukin-6 (IL-6) and
tumor necrosis factor-a (TNF-a), lower LPS, decreased toll-like
receptor 4 (TLR4) and nuclear factor-kB (NF-kB) expression,
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TABLE 2 Modulation of the gut microbiome by different types of interventions in preclinical studies.

Interventions

Models

Methodological
approach

Main findings

References

Probiotic administration

Fecal microbiota
transplantation (FMT)

Dietary intervention

senescence-accelerated
mouse prone 8 (SAMP8
mice)

>78 weeks (older C57BL/6]
male mice)

AP (1-42) injected rats.

3xTg-AD mice

(ADLPAPT) transgenic
mouse model of AD

APPswe/PS1dE9 transgenic
(Tg) mice and wild-type
(WT) mice

Asymptomatic APOE4
transgenic (E4FAD) mice

(APP/PS1) transgenic (Tg)
mice and wild-type (WT)
mice

ProBiotic-4 (Bifidobacterium
and Lactobacillus) (12-weeks)

Human-origin probiotic
cocktail (five Lactobacillus
and five Enterococcus)

(10 weeks)

Probiotics (Bifidobacterium
lactis, Bifidobacterium
longum, Lactobacillus
acidophilus, and Lactobacillus

fermentum) (8 weeks)

SLAB51 (Streptococcus
thermophilus, bifidobacterial
and lactobacilli) (4 months)

ADLPAPT mice
administrated with fresh
feces of WT mice (16 weeks)

Tg + FMT administrated with

stool from WT mouse pellets

Prebiotic diet containing
inulin vs. control diet
containing cellulose

(16 weeks)
Fructooligosaccharides (FOS)
vs. cellulose (CMC-Na)

(6 weeks)

4 Firmicutes/Bacteroidetes

| Proteobacteria, Pseudomonas

1 Cognitive dysfunction, memory deficits, glial activation, and neuronal injury
| Interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a)

| Lipopolysaccharide (LPS), toll-like receptor 4 (TLR4) and nuclear factor-kB (NF-kB)

1 Firmicutes

1 Rumminoccocaceae
1 Clostridiales

| Verrucomicrobiaceae
| Erysipelotrichaceae

| Inflammation, leaky gut, metabolic disorders, gut dysbiosis, and physical deterioration

1 Lactobacillus
1 Bifidobacterium
1 Learning and spatial memory deficits

| Malondialdehyde (MDA) and superoxide dismutase (SOD) (oxidative stress biomarkers)

1 Bifidobacterium spp.

| Campylobacterales

| Brain damage and AP aggregates
1 Cognitive function

1 Bacterial diversity
1 AB plaques and neurofibrillary tangles
| Gut barrier integrity, chronic systemic inflammation

1 Bacteroidetes

| Proteobacteria and Verrucomicrobia

1 Cognitive deficits, synaptic plasticity

| AB40 and AB42 levels, tau protein phosphorylation
|} COX-2 and CD11b levels

1 Prevotella and Lactobacillus
| Escherichia, Turicibacter, and Akkermansia
1 SCFAs levels, tryptophan-derived metabolites

| Inflammatory gene expression

1 Actinobacteria, Lactobacillus

| Proteobacteria, Epsilonproteobacteria, Helicobacteraceae, and Deferribacteraceae
1 Cognitive impairments

1 Expression synapsin I and postsynaptic density protein 95 (PSD-5) levels

Yang et al., 2020

Ahmadi et al., 2020

Azm et al., 2018

Bonfili et al., 2017

Kim et al., 2020

Sun et al., 2019b

Hoffman et al., 2019

Sun et al., 2019a

(Continued)

jodyep pue wiyseH

99T£007220219°U}/68¢¢°0T


https://doi.org/10.3389/fncel.2022.1007166
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

2DU312S0IN3N J8)N)13D) Ul SIS0

T

640" UISISIUOIY

TABLE 2 (Continued)

Interventions Models Methodological Main findings References
approach
C57BL/6 ApoE knockout Sesamol (0.05%, w/v, in 4 Bacillales, Fusobacterium, and Lactococcus Yuan et al., 2019

Exercise and probiotic

Diet and exercise

mice (ApoE-/-) and wild-type

mice

APP/PS1 double-transgenic
mice (APP/PS1) and
wild-type (WT) mice

Tg2576 mouse model of AD
and wild-type (WT)

APP/PSI transgenic mice
(APP/PS176)

C57BL/6NTac mice

drinking water) vs. high-fat
diet (10 weeks)

Jatrorrhizine (JAT) at high
and low dose vs. saline vs.
donepezil hydrochloride
monohydrate (DONE)
(24 weeks)

Calorie restriction (VR) vs.
ad libitum (AL) (12 months)

Interval treadmill running

(2 weeks) and FRAMELIM
(Bifidobacterium and
Lactobacillus, vitamins A and
D, omega-3 fatty acids, Bl,
B3, B6, B9, B12) (20 weeks)
Normal vs. HED and exercise

vs. sedentary groups (12-
weeks)

1 SCFAs production
1 Cognitive deficits, synapse ultrastructure

| AB aggregation, gut barrier damages and systemic inflammation

1 Firmicutes

1 Bacteroidetes

1 AP plaques in the cortex and hippocampus
1 Learning and memory deficits

1 Clostridium sensu stricto 1

1 Lachnospiraceae NK4B4 group
| Eubacterium xylanophilum

| AB deposition in the brain

1 Lactobacillus johnsonii

1 Bacteroides thetaiotaomicron

| Beta-amyloid plaques in the hippocampus

1 Clostridium spp.

1 Allobaculum spp.

1 Faecalibacterium prausnitzi

| Intestinal inflammatory response

Wang N. et al., 2019

Cox et al.,, 2019

Abraham et al., 2019

Campbell et al., 2016

Changes (1: increase; |: decrease) in the relative abundance of selected microbial taxa and other main findings in the study.

Jodxep pue wiyseH

99T£00T'2202'192U3/68¢£'0T


https://doi.org/10.3389/fncel.2022.1007166
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Hashim and Makpol

10.3389/fncel.2022.1007166

TABLE 3 Modulation of the gut microbiome by different types of interventions in clinical studies.

Interventions Subjects Methodological Main findings References
approach
Probiotic >65 years old (63 healthy Randomized double-blind, | Eubacterium Kim et al., 2021
administration elders) multicenter clinical trial. } Clostridiales
Bifidobacterium bifidum 4 Serum BDNF level
BGN4 and Bifidobacterium 4 Mental flexibility and alleviate stress
longum BORI vs. placebo
(12 weeks)
60-93 years old (20 Multispecies probiotics 4 Faecalibacterium prausnitzii Leblhuber et al., 2018
Alzheimer’s disease patients) (Lactobacillus, Lactococcus, 4 Serum kynurenine concentrations
Bifidobacterium) (4 weeks)
Dietary intervention 65-79 years old (612 older A randomized single-blind, 4 Eubacterium Ghosh et al., 2020
adults) multicenter controlled trial. 4 Bacteroides thetaiotaomicron
Mediterranean diet (MD) vs. J Ruminococcus torques
control group (1-year) J Frailty
4 Cognitive function
4 Short or branch chained fatty acid production
J Secondary bile acids, carbon dioxide, ethanol
and p-cresols production
Physical activity >61 years old (897 Comparative study. 4 Turicibacteraceae Zhu et al,, 2020
overweight elderly) Daily/regular exercise vs. | Pseudomonadaceae

65-92 years old (338
community-living Japanese)

>65 years old (32 sedentary
women)

62-76 years old (33 Japanese
men)

never/rare exercise group

Cross-sectional and
observational design.
Physical activity was
measured using a uniaxial

acceleration sensor (1 month)

Non-randomized
comparative trial. Aerobic
exercise training vs. trunk
muscle training (12 weeks)

Randomized crossover trial.

Endurance exercise (5 weeks)

1 a-diversity of gut microbiota
4 Bacillaceae Aoyagi et al., 2019
| Fusobacteriaceae

4 Bowel function

4 Mechanical stimulation of intestinal movements

4 Bacteroides
4 Cardiorespiratory fitness

Morita et al., 2019

| Clostridium difficile
1 Oscillospira
(related to cardiometabolic risk factors)

Taniguchi et al., 2018

Changes (1: increase;.: decrease) in the relative abundance of selected microbial taxa and other main findings in the study.

and improve cognitive function (Savignac et al, 2015; Azm
et al,, 2018; Leblhuber et al., 2018; Yang et al., 2020). These
findings imply that probiotics could be a potential intervention
for neurodegenerative diseases. Another intervention aimed at
the gut microbiome is fecal microbiota transplantation (FMT),
which involves transferring fecal from a healthy donor into the
GIT of a patient to improve gut microbiome diversity and roles
in patients with gut dysbiosis (Gulati et al., 2020), including
Clostridioides difficile infection (CDI) (Nood et al, 2013)
and inflammatory bowel disease (IBD) (Sokol et al,, 2020).
Preclinical studies in animal models revealed that FMT not only
restores the microbial population but also improves synaptic
plasticity and cognitive deficits, particularly spatial learning
and memory, reduces the amyloid-p (AB) deposition and tau
protein phosphorylation and modifies abnormalities activity in
gut macrophages and circulating inflammatory monocytes in
the blood (Sun et al., 2019b; D’Amato et al., 2020; Kim et al.,
2020). Application of FMT to a patient with AD and PD has not
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yet been reported (Evrensel and Ceylan, 2016). FMT is a safe
therapeutic approach with minor complications due to living
microorganisms and related metabolites (Bonfili et al., 2021).
In contrast, FMT has a few limitations, such as donor microbe
variations, the adverse effects of pathobiont transmission,
and unidentified long-term effectiveness. Interestingly, an
alternative strategy has been proposed: to use donors rich
in butyrate-producing microbes to improve gut microbiome
diversity (Wilson et al., 2019).

However, dietary intervention is one of the most
effective interventions for altering the gut microbiome
due to its safety and is more beneficial than drug-based
therapies. Diets high in carbohydrates, saturated fat, and
processed foods may increase health risks by reducing
microbiome diversity, intestinal barrier function, promote
neuroinflammation, and cognitive decline (Bonfili et al,
2021). Calorie restriction (CR) has been discovered as one
of the most effective non-genetic nutritional modifications
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for extending longevity and preventing age-related diseases
in many species (Kapahi et al, 2017; Mattison et al., 2017).
Several other animal studies support diet-based therapeutic
interventions such as calorie restriction, probiotic-enriched
foods, and consumption of digestion-resistant fibers (Cox et al.,
2019; Hoffman et al., 2019; Sun et al., 2019a; Wang S. et al., 2019;
Yuan etal,, 2019). The Mediterranean diet (MD) is a healthy diet
that emphasizes vegetables, legumes, nuts, fruits, unsaturated
fatty acids, and polyphenols (Zhang et al,, 2020). In addition,
MD has been linked to a longer lifespan and a lower risk of
fragility (Ghosh et al., 2020), cardiovascular diseases (Estruch
et al,, 2018), and cognitive deterioration (Valls-pedret et al,
2015) and cancer in the elderly (Toledo et al., 2015).

Physical activity has also been proven to extend life
expectancy and reduce the detrimental of age-associated
disorders (Cabanas-Sanchez et al., 2018; Chudasama et al.,
2019). Despite these significant benefits, physical exercise
declines with age, and most older people are sedentary.
Maintaining physical exercise has been demonstrated to alter gut
microbiome composition and enhance the numbers of butyrate-
producing microbes (Allen et al,, 2018), improve gut barrier
integrity, and attenuate gut inflammation in animal models,
thereby improving their health status (Table 2; Campbell et al,,
2016). Previously, high-fitness adults living in a community
were found to have higher frequencies of Bifidobacteriales
and Clostridiales species than poor-fitness individuals (Castro-
Mejia et al., 2020). Physical exercise has been shown in clinical
studies to significantly affect the microbiome’s function and
composition, resulting in more extended longevity in people
with multimorbidity (Allen et al,, 2018; Cabanas-Sanchez et al,,
2018; Chudasama et al., 2019).

Conclusion and future perspective

New novel approaches to healthy aging are required as the
population ages, life expectancies increase, and the burden
of age-related health issues grows. The gut microbiome is
responsible for a variety of both pathological and physiological
mechanisms, and its role in aging and neurological processes
has been underlined as a potential target for anti-aging
interventions. Numerous reviews have been published on
the correlation between the gut microbiome and aging
and therapeutic interventions. Recent preclinical studies
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