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Oligodendrocytes (OL) have been for decades considered a passive,

homogenous population of cells that provide support to neurons, and

show a limited response to pathological stimuli. This view has been

dramatically changed by the introduction of powerful transcriptomic methods

that have uncovered a broad spectrum of OL populations that co-

exist within the healthy central nervous system (CNS) and also across

a variety of diseases. Specifically, single-cell and single-nucleus RNA-

sequencing (scRNA-seq, snRNA-seq) have been used to reveal OL variations

in maturation, myelination and immune status. The newly discovered

immunomodulatory role suggests that OL may serve as targets for future

therapies. In this review, we summarize the current understanding of OL

heterogeneity in mammalian CNS as revealed by scRNA-seq and snRNA-

seq. We provide a list of key studies that identify consensus marker genes

defining the currently known OL populations. This resource can be used to

standardize analysis of OL related datasets and improve their interpretation,

ultimately leading to a better understanding of OL functions in health

and disease.
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Introduction

OLs represent a type of glial cells found in the CNS of invertebrates and vertebrates.
Their primary role is to envelop the axons of the neurons in myelin, which provides
insulation and maintains the electrical impulse conduction. Since their first description
in 1921, they have been considered a heterogeneous population, displaying variable
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morphology and spatial distribution (Del Rio-Hortega, 1921).
However, decades of subsequent research have led to the general
understanding that OLs are instead a homogenous population
of cells, without any major functional heterogeneity. It was not
until recently that advances in single-cell analysis revealed a
new spectrum and sources of OL heterogeneity, including their
variations related to differentiation state, developmental origin,
anatomical site, age and sex (for an extensive review, see Seeker
and Williams, 2022).

A completely new area of OL characterization started with
the advent of single-cell transcriptomic techniques allowing
analysis of thousands of cells, each characterized by the activity
of thousands of genes. The first landmark studies characterizing
OL transcriptional heterogeneity were performed on single cells
in healthy animals (Zeisel et al., 2015, 2018; Marques et al.,
2016). The introduction of protocols for the analysis of single
nuclei isolated from archived samples facilitated the expansion
and application of the technique to investigations from human
tissues. Currently, we are experiencing a boom in transcriptional
studies characterizing OLs in a variety of pathological conditions
and disease states, rapidly extending our understanding of OL
heterogeneity. However, with the increasing number of scRNA-
seq and snRNA-seq studies, and the enormous complexity of
the information embedded within each dataset, there is a new
challenge for OL researchers that is the comparison and the
interpretation of newly acquired data with existing studies.
Although this step is not mandatory and often missed in reports,
it provides an important insight into the general function
of OLs, potentially transferring knowledge derived from one
particular model to a broader spectrum of pathological states.

The process of data interpretation using other studies
as reference is typically done by comparing selected marker
genes to a defined OL population or by integrative analysis.
The relation of OL populations is then assessed by the
overlap of these marker genes or by enrichment type of
analysis. The downside is that the calculation of marker
genes is heavily influenced by the data processing and the
particular downstream analysis, which biases the comparison
of populations. Integrative analysis is therefore a more robust
way to interpret new data (Stuart and Satija, 2019). Integration
allows merging of data for the unified processing of multiple
datasets, even if they are derived using different protocols or
experimental models. Although more robust, this method is
biased by the choice and settings of the integration tool. Finally,
the choice of reference studies is of uttermost importance. This
is far from trivial as features of OL heterogeneity of interest,
may be hidden in studies characterizing completely unrelated
biological questions.

To guide OL researchers in the wealth of current knowledge,
we prepared a compact review summarizing the current
understanding of OL heterogeneity in health and disease based
on single-cell and single-nucleus transcriptomic technologies.
Our motivation is to provide the community a unified overview

of key transcriptomic studies dealing with OL heterogeneity
in the mammalian CNS (Table 1) and consensus marker
genes of selected OL populations (Table 2). We hope that the
interpretation of new datasets with respect to those already
available will lead to a standardization of OL nomenclature and
our better understanding of their transcriptional heterogeneity.

Oligodendrocyte heterogeneity in
health

Since the advent of scRNA-seq analysis, there have been
efforts to classify the CNS cell types. Early datasets comprised
only of tens of cell types represented by hundreds to thousands
of cells. The low proportion of OLs did not allow for their in-
depth characterization or the OLs were not the primary focus
of the studies. The first milestone deciphering OL heterogeneity
was made in murine CNS, in studies published by researchers
from the Division of Molecular Neurobiology at Karolinska
Institute (Zeisel et al., 2015, 2018; Marques et al., 2016).

The study of Zeisel et al. (2015) focused on somatosensory
cortex and hippocampal CA1 region of juvenile mice, and
analyzed over 3,000 cells, including more than 800 OLs.
Clustering revealed six OL populations representing various
stages of maturation: post-mitotic, immature, pre-myelinating,
myelinating, intermediate, and terminally differentiated post-
myelination OLs. Marques et al. (2016) provided further details
by analyzing over 5,000 cells of OL lineage in 10 regions
of murine juvenile and adult CNS. In total, they observed
12 clusters of OL lineage, representing a continuum from
oligodendrocyte precursor cells (OPC) to mature OLs (OPC,
COP, NFOL1-2, MFOL1-2, and MOL1-6; Table 2). Whereas
the initial stages of OL maturation (to MFOL1-2) were found
sequential and uniform across CNS regions, mature OLs showed
regional specificity, being present in unique proportions in
each brain region. Moreover, cells sampled from adult mice
comprised mostly of OPCs and two populations of mature
OLs (MOL5-6), while juvenile cells were represented by the
full spectrum of the OL populations. Lastly, the study of Zeisel
et al. (2018) expanded the scope of the previous datasets by
analyzing 19 CNS regions, counting over half a million of cells,
with a large fraction comprising of OLs. Their analysis identified
10 clusters of OL lineage (OPC, COP1-2, NFOL1-2, MFOL1-
2, MOL1-3; Table 2), but even with the increased sample size,
it did not reveal any additional OL subtypes beyond those
already described by Marques et al. (2016). Notably, despite
the large similarity of the two datasets, there was not a perfect
cluster match, probably due to different scRNA-seq technology
and data processing protocols used. These differences might be
possible to remove with integrative analysis, standardizing the
nomenclature, and defining a set of consensus marker genes
for future studies. For now, the marker genes and the reference
for interpretation of new datasets might be selected based on
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TABLE 1 Selection of key transcriptomic studies for understanding OL heterogeneity in health and disease*.

Study Species
(mouse/human)

Condition Methods # of OL
cluster (incl.

OPCs)

Significance Accession number
(custom database if

available)

Zeisel et al. (2015) Mouse Ctrl scRNA-seq 6 First large-scale scRNA-seq study of
all cell types in mouse CTX and HC

GSE60361 (link)

Marques et al. (2016) Mouse Ctrl scRNA-seq 12 First large-scale OL focused
scRNA-seq study in mouse CNS

GSE75330 (link)

Zeisel et al. (2018) Mouse Ctrl scRNA-seq 10 First large-scale scRNA-seq of all cell
types in mouse CNS

SRP135960 (link)

Falcao et al. (2018) Mouse Ctrl, EAE scRNA-seq 14 First scRNA-seq defining disease
related OL clusters

GSE113973 (link)

Jakel et al. (2019) Human Ctrl, MS snRNA-seq 9 First OL focused snRNA-seq of MS
patients and healthy controls

GSE118257 (link)

Mathys et al. (2019) Human Ctrl, AD snRNA-seq 5 First large-scale snRNA-seq of AD
patients and healthy controls

syn18485175

Floriddia et al.
(2020)

Mouse Ctrl, SCI ISH/ISS,
scRNA-seq

11 Spatial distribution of mature OLs in
WM and GM of murine brain and SC

GSE128525 (link)

Zhou et al. (2020) Both Ctrl, AD snRNA-seq 2–5 Description of
Serpina3n+ C4b+ reactive OLs in AD

mice

GSE140511, syn21125841

Chen et al. (2020) Both Ctrl, AD ISS, ST – Spatial characterization of
plaque-induced transcriptomic

response in AD

GSE152506, syn22153884
(link)

Lee et al. (2021) Mouse Ctrl, AD scRNA-seq 7–8 Description of two disease-associated
OL clusters across three AD models

GSE160512, GSE181786,
GSE153895

Yao et al. (2021) Mouse Ctrl sc + snRNA-seq,
snATAC-seq,
snmC-seq2

9 BICCN—transcriptomic and
epigenomic cell atlas of mouse CTX

nemo:dat-ch1nqb7 (link)

Bakken et al. (2021) Both Ctrl snRNA-seq,
snmC-seq2,
SNARE-seq2

4–9 BICCN—comparison of motor CTX
in human, marmoset and mouse

nemo:dat-ek5dbmu (link)

Russ et al. (2021) Mouse Ctrl sc + snRNA-seq 5 Harmonized atlas of mouse SC cell
types (six integrated datasets)

GSE158380 (link)

Morabito et al.
(2021)

Human Ctrl, AD snRNA-seq,
snATAC-seq

14–15 Chromatin accessibility and
transcriptomic characterization of

AD

syn22079621 (link)

Bartosovic et al.
(2021)

Mouse Ctrl scCUT&Tag 5 scCUT&Tag profiling of histone
modification and TFs in murine OLs

GSE163532 (link)

Hilscher et al. (2022) Mouse Ctrl ISS 12 Spatial distribution of OL populations
from Marques et al. (2016)

Data not available

Sadick et al. (2022) Human Ctrl, AD snRNA-seq 7 OL integration in multiple human
AD datasets

GSE167494 (link)

Kenigsbuch et al.
(2022)

Mouse Ctrl, EAE, aging scRNA-seq 14 Definition of DOLs in murine models
of AD, MS and aging

GSE202297

Kaya et al. (2022) Mouse Aging scRNA-seq 4–7 Identification of
interferon-responsive OLs during

WM aging

Data not yet released

Yadav et al. (2022) Human Ctrl snRNA-seq, ST 8 Cellular taxonomy of adult human SC GSE190442 (link)

Meijer et al. (2022) Both Ctrl, EAE snATAC-seq,
multiome

12 In-depth epigenomic analysis of
immune genes in OLs

GSE166179 (link)

Pandey et al. (2022) Both AD, MS sc + snRNA-seq,
smFISH

4–17 Characterization of three OL
activation states across disease

models

GSE180041, GSE182846
(link)

*For a curated database of all available single-cell transcriptomics studies with key experimental information (see Svensson et al., 2020).
Ctrl, healthy conditions; EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis; AD, Alzheimer’s disease; SCI, spinal cord injury; ISH, in situ hybridization; ISS, in situ
sequencing; snATAC-seq, single-nucleus assay for transposase-accessible chromatin using sequencing; snmC-seq2, single nucleus methylcytosine sequencing; SNARE–seq2, single-nucleus
chromatin accessibility and messenger RNA expression sequencing; snRNA/ATAC multiome, Chromium Single Cell Multiome ATAC + Gene Expression; ST, Spatial transcriptomics
(Visium, 10x Genomics); smFISH, multiplexed single-molecule fluorescence in situ hybridization; CTX, cortex; HC, hippocampus; WM/GM, white/gray matter; SC, spinal cord; TFs,
transcription factors; DOLs, disease-associated oligodendrocytes.
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TABLE 2 Marker genes of selected OL populations as reported by authors.

Study OL clusters Gene signature Source

Marques et al. (2016) OPC Ptprz1, Pdgfra, Serpine2, Cspg5, Vcan, Cspg4 Supplementary Table 1—Top 6 marker genes of each
branch of the dendrogram in Figure 1C (out of 50). For
subclusters of the same differentiation stage, top 3 genes
defining the stage and top3 genes defining the subcluster
were selected. Of note, the list of genes is strictly related to
the dendrogram in Figure 1C.

COP Cd9, Neu, 43110035E14Rik, Bmp4, Gpr17, Vcan

NFOL1 9630013A20Rik, Arpc1b, Tmem2, Chn2, Mpzl1, Frmd4a

NFOL2 9630013A20Rik, Arpc1b, Tmem2, Mobp, Ddr1, Tspan2

MFOL1 Ctps, Tmem141, Opalin, 9630013A20Rik

MFOL2 Ctps, Tmem141, Opalin, Mal, Ptgds, Evi2a-evi2b

MOL1 Apod, Sepp1, S100b, Fosb, Dusp1, Dnajb1

MOL2 Apod, Sepp1, S100b, Anxa5, Klk6, Mgst3

MOL3 Apod, Sepp1, S100b, Car2, Cntn2, Gad2

MOL4 Apod, Sepp1, S100b, Serpinb1a, Neat1, Sepp1

MOL5 Apod, Sepp1, S100b, Cyp51, Dhcr24, Pdlim2

MOL6 Apod, Sepp1, S100b, Il33, Apoe, Ptgds

Zeisel et al. (2018) OPC Pdgfra, C1ql1, Sapcd2, Emid1, Lhfpl3 Supplementary Table 4—Combination of markers genes
uniquely identifying populations based on “trinarization”
scoring procedure developed by authors.

COP1 Neu4, Brca1, Bmp4, Pak4, Lims2

COP2 Tnr, Rinl, Gpr17, Enpp6, Pdcd4

NFOL1 Cnksr3, H2-Ab1, Rras2, Il23a, Tmem163

NFOL2 Tmem2, Gm26834, Rras2, Itpr2, Sema4d

MFOL1 Ccp110, Snx33, Hhip, Tmem88b, Arap2

MFOL2 2210011C24Rik, Wfdc18, Tmem141, Birc2, Fam214a

MOL1 Opalin, Ninj2, Efhd1, Mal, Ppp1r14a

MOL2 Hapln2, Dock5, Anln, Ugt8a, Gjb1

MOL3 Klk6, Nkx2-9, Cdkn1c, Rab37, 2700046A07Rik

Falcao et al. (2018) EAE_m1 Serpina3m, Klk8, Serpina3c, Serping1, Irf7, Cd74, Ifih1 Supplementary Figure 4B—Representative genes for
EAE-associated modules (sortable list in Supplementary
Table 1)

EAE_m3 Lyz2, C4b, Serpina3n, Klk6, Igtp, Irgm2, Ccdc13

EAE_m13 Plin4, Hif3a, Fam107a, Phyhd1, Cdkn1a, Sult1a1

Jakel et al. (2019) ImOLs ARHGAP24, MEF2C, C10orf11, APOE, CD74, DOCK8,
PLXDC2, ELL2, APBB1IP, HLA.DRA, C3, PTPRC

Supplementary Figure 8C—Selection of key markers
(sortable list in Supplementary Table 4)

Zhou et al. (2020) Reactive OLs C4b, Serpina3n, H2-d1 Figure 2A—Three highlighted marker genes (sortable list
in Supplementary Table 1)

Lee et al. (2021) MOL-DA1 C4b, Serpina3n Figure 2D—Selected marker genes (full list in
Supplementary Table 8)MOL-DA2 C4b, Serpina3n, Cdkn1a, Ddit3, Gadd45a

Yao et al. (2021) OPC Pdgfra Col14a1, Cnr1, Gad2, Spock3, Sema3c, Zfp385b Supplementary Table 6—Top 6 marker genes for each
consensus OL population (full list available)Oligo Enpp6_1 Col14a1, Kcnip1, Cxcl14, Spock3, Sema3c, Chrna7

Oligo Enpp6_2 Col14a1, Gad2, Cxcl14, Cnr1, Rab3c, A830018L16Rik

Oligo Enpp6_3 Col14a1, Grik1, Cxcl14, Spock3, Sema3c, Necab1

Oligo Enpp6_4 Kcnip1, Gad1, Col14a1, Gad2, Grik1, Pax6

Oligo Opalin_1 Adarb2, Grip1, Col14a1, Kcnip1, Gad1, Dab1

Oligo Opalin_2 A830018L16Rik, Kcnip1, Col14a1, Grik1, Slc2a13, Gad1

Oligo Opalin_3 Grip1, Col14a1, Kcnip1, A830018L16Rik, Grik1, Gad1

Oligo Opalin_4 Col14a1, Kcnip1, Gad1, Maf, Shisa9, Neto1

Sadick et al. (2022) Int0 SVEP1, LINC01608, PLXDC2, DYSF Figure 3E—Selection of top markers of four integrated OL
datasets (sortable list in Supplementary Table 5)Int1 CTNNA2, CNDP1, ST3GAL6, QDPR, CRYAB

Int2 FP236383.3, MT-ND4, MT-ND3, MT-CO2, MT-ATP6

Int3 ACTN2, SLC5A11, RASGRF1, LINC00609, ANKRD18A

Int4 SGCZ, MDGA2, CNTN1, KCNIP4, FRY

Int5 RBFOX1, AFF3, ACSBG1, COL18A1
Int6 NRP2, LUCAT1, NAV2, CAMK2D, NEAT1

Kenigsbuch et al. (2022) DOLs Serpina3n, C4b, H2-d1, H2-k1, B2m, Il33, Klk6, CD9, CD63 Figure 2F—Highlighted marker genes
Pandey et al. (2022) MOL-DA1 Serpina3n, C4b, Anxa2, Plvap, Thbs3, Steap3, Emp3, Parvb,

S100a10, Tnfrsf1a, Col6a1, Sema4f
Figure 2B—Selected marker genes (sortable list in
Supplementary Table 2)

MOL-DA2 Cdkn1a, Bax, Ddit3, Fos, Atf4, Egr1, Ccnd1, Tnfrsf12a, Btg1,
Egr2, Klf4, Fgf7, Rrad, Gdf15

MOL-INF H2-d1, Stat1, Bst2, Igtp, Psmb8, Irgm1, Ifit1, Irf7, Psme1,
Oasl2, H2-q4, Tap1, Ifit2

Kaya et al. (2022) AROs C4b, Serpina3n, Socs3, Vim, Gadd45a, Bbc3 Figure 1G—Highlighted marker genes
IROs Ifi27l2a, H2-k1, Usp18, B2m, Stat1

OPC, oligodendrocyte precursor cells; COP, committed OL; NFOL, newly formed OL; MFOL, myelin forming OL; MOL, mature OL; EAE, experimental autoimmune encephalomyelitis;
ImOLs, immune OLs; MOL-DA, mature OL disease-associated; Int, integrated cluster of OLs, DOLs, disease-associated OLs; MOL-INF, mature OL interferon-associated; AROs, aging-
related OLs; IROs, interferon-responsive OLs.
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specific preferences. While the annotation used by Marques et al.
(2016) has been applied in several subsequent studies (Falcao
et al., 2018; Jakel et al., 2019; Floriddia et al., 2020; Bartosovic
et al., 2021; Hilscher et al., 2022; Meijer et al., 2022; Pandey et al.,
2022) and has become a standard in the field, an advantage of the
Zeisel et al. (2018) annotation are the region-specific references
rich in OLs, whose transcriptome was measured with the widely
used 10x Genomics technology.

The classification of OLs in human CNS lagged behind
the progress in mouse because of practical constrains in
obtaining fresh samples for isolation of single cells. This has
since changed with the introduction of protocols for the
analysis of single nuclei, making it possible to process archived
samples from the human brain biobanks. Using snRNA-seq,
the first studies comprised of only a small number of OLs,
limiting the annotation to a few clusters vaguely reflecting OL
maturation (Habib et al., 2017; Lake et al., 2018). The first
comprehensive characterization was a study describing altered
OL heterogeneity in the white matter (WM) of five healthy
donors and four individuals with progressive multiple sclerosis
(MS) (Jakel et al., 2019). The authors identified seven clusters
of mature OLs (Oligo1-6 and ImOLs), and clusters of OPC
and committed oligodendrocyte precursors (COP). Integrative
analysis with two previous datasets (Habib et al., 2017; Lake
et al., 2018), re-annotated the Oligo6 cluster to an intermediate
state, connecting the OPC and COP clusters with the mature
OLs. Immune OLs (ImOLs) resembled the OPC and COP,
but also expressed immune response related genes (Table 2).
Comparison of the human clusters with those previously
obtained for the mouse OLs by Falcao et al. (2018), revealed
similarities between the two species. In short, several other
publications characterizing OL heterogeneity in CNS diseases
have appeared (see next chapter). These reported varying
numbers of clusters, most likely affected by the particular
experimental design and data-processing pipeline used. It is
likely that the complexity of human CNS will require dedicated
efforts to determine and annotate the full spectrum of human
OL heterogeneity. The first step in this direction was recently
taken by Sadick et al. (2022), who integrated their data with
three other studies (Grubman et al., 2019; Mathys et al., 2019;
Zhou et al., 2020) identifying seven OL populations (Table 2),
that appeared consistently across the datasets. However, an in-
depth functional characterization was not performed. Of note, a
similar integrative approach was used to create a harmonized
atlas of mouse spinal cord cell types, but with limited details
of OLs (Russ et al., 2021). Lastly, a comprehensive cellular
taxonomy of the adult human spinal cord was recently released
by Yadav et al. (2022), including an integrative analysis of
mouse and human data.

Leaving the strictly OL-oriented research, the BRAIN
Initiative Cell Census Consortium (BICCC) provides a great
source of information that reveals additional layers of OL
heterogeneity. Recently, BICCN released results of its first

implementation phase presenting a multimodal cell census and
an atlas of the mammalian primary motor cortex (BICCN,
2021). This massive resource provides a detailed transcriptomic
and epigenomic cell atlas of the mouse primary motor cortex
(Yao et al., 2021), including its spatial organization (Zhang
et al., 2021) and comparison across human, marmoset (a new
world monkey) and mouse (Bakken et al., 2021). The integrative
analysis of seven scRNA-seq and snRNA-seq datasets led to
the identification of 116 cell types, counting 59 classes of
inhibitory and 31 classes of excitatory neurons, highlighting
their large transcriptional diversity. Non-neuronal cells were
categorized into 26 clusters, of which eight classes defined the
populations of OLs (Table 2). As the BICCN is mostly a neuron-
oriented effort, OL heterogeneity receives less attention and
many of the interesting findings are waiting to be revealed by
the community. The ultimate goal of BICCN is to perform
the complete characterization of mouse and human CNS,
and therefore another wealth of knowledge is expected in
the upcoming years.

The recent developments in spatial transcriptomic
technologies have made it possible to correlate OL
transcriptional variation to their anatomical location. Floriddia
et al. (2020) inspected spatial distribution of three populations
of mature OLs in white and gray matter (GM) of murine brain
and spinal cord. Specifically, they focused on populations of
MOL1, MOL2, and MOL5/6 as defined by Marques et al. (2016),
which showed the most distinctive expression profiles. Using
a limited number of marker genes, the authors demonstrated
different spatial preference and response to spinal cord injury.
Further details were provided by Hilscher et al. (2022), who
utilized probabilistic cell typing by in situ sequencing (pciSeq;
Qian et al., 2020), and measured the expression of 124 marker
genes of all 12 OL populations as described by Marques et al.
(2016). The study focused on murine GM and WM in brain
and spinal cord at postnatal, juvenile and young adult age, and
revealed age and region related alterations in the composition of
OL populations. Together, these two pioneering efforts provided
the first hints for the understanding of the functional roles of
the OL populations with respect to their anatomical locations.

Oligodendrocyte heterogeneity in
disease

Falcao et al. (2018) represents a landmark study in
understanding OL heterogeneity in disease, describing several
disease specific OL populations in the spinal cord of mice
induced by experimental autoimmune encephalomyelitis
(EAE), which is an experimental model of multiple sclerosis
(MS). In total, the authors identified 14 clusters, including three
populations specific for the controls and five specific for EAE.
Notably, even when separated into controls and EAE clusters,
all the OLs resembled the clusters from Marques et al. (2016).
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The analysis of major data trends revealed modules associated
with EAE (Table 2), composed of genes related to interferon
response, antigen processing and presentation via the major
histocompatibility complex class I and II (MHC-I and -II)
and immune protection, represented by the Serpina3 gene
family. Altogether, the data showed active immunomodulatory
function of OLs in EAE, contesting the long-term dogma of
their passive role with limited responsiveness to pathogenic
stimuli. Extending the study, Jakel et al. (2019) performed an
analysis of OLs in human samples with various levels of MS
pathology. They identified a cluster of immune CD74+ OLs
(ImOLs), resembling the data from the mouse EAE model.
Notably, the recent study by Meijer et al. (2022) showed
epigenomic priming of immune genes, further confirming
OL immunomodulatory role. Moreover, the positioning of
MS susceptibility single-nucleotide polymorphisms (SNPs)
within the accessible regulatory regions of genes involved in
immune regulation, suggested an altered function of OLs in
disease progression.

The initial findings on OL heterogeneity in EAE/MS
were soon accompanied by reports from intensive Alzheimer’s
disease (AD) research. Focusing on the murine AD model,
Zhou et al. (2020) reported Serpina3n+ C4b+ reactive OL
population (Table 2), specifically enriched in plaque-bearing
regions. The gene signature markedly overlapped with EAE-
enriched populations of OLs identified earlier by Falcao et al.
(2018), suggesting a shared response of OLs in two distinct
neurodegenerative models. The identical population of reactive
OLs (annotated MOL-DA1) was subsequently confirmed by
Lee et al. (2021), who assayed OL heterogeneity in AD
models of amyloidosis and tauopathy (Table 2). Moreover,
combined tau-amyloid pathology showed more extensive OL
response, giving rise to population of OLs with strong Tp53
signaling (MOL-DA2), potentially leading to cell-cycle arrest
and apoptosis, however, without any prominent loss of OLs.
In situ hybridization (ISH) across brain regions confirmed
the existence of cell clusters in affected areas and absence in
control old animals except aged WM, suggesting age related
neurodegenerative changes in this compartment. Notably,
both astrocytes and OLs contributed substantially to the
overall C4b and Serpina3n signal. Finally, a recent study of
Kenigsbuch et al. (2022) largely confirmed the findings of the
aforementioned reports by defining a population of disease-
associated oligodendrocytes (DOLs, Table 2), whose gene
signature was found in multiple CNS pathologies, including
models of MS, AD and aging. Majority of the 26 markers
defining DOLs were related to immune response, and regulated
by the transcription factor families Stat/Irf, YY1/NF-κB and
Sox9, in accordance with the findings of Meijer et al. (2022),
who demonstrated a role of Stat1 in the immune OL population.
Using human protein homologs of mouse Serpina3n as a
key DOLs marker, authors detected SERPINA3 in human AD
samples, demonstrating the relevance of the mouse data for

human pathology. This, however, contrasts the report of Zhou
et al. (2020), who did not detect reactive OLs in human AD
samples using snRNA-seq, or Chen et al. (2020), who screened
plaque regions for C4A/C4B and SERPINA3 transcripts by in situ
sequencing (ISS).

Turning attention to human AD samples, OL heterogeneity
has been interrogated in several studies investigating multiple
brain regions (Del-Aguila et al., 2019; Grubman et al.,
2019; Mathys et al., 2019; Lau et al., 2020; Zhou et al.,
2020; Gerrits et al., 2021; Leng et al., 2021; Morabito et al.,
2021; Sadick et al., 2022). Majority of studies concluded
dysregulated OL functions in AD, including changes in
differentiation, myelination and metabolic adaptation to
neuronal degeneration. OLs have been accented as important
players in disease progression, showing sexual dimorphism
(Mathys et al., 2019), dysregulation of AD susceptible
genes (Grubman et al., 2019), and expression of potential
targets for novel AD therapeutics (Morabito et al., 2021).
Interestingly, distinctive immune related response observed
in murine models of MS and AD were not captured in any
of the human studies, except for the very rare CD74+ OLs
(counting for 0.001% of all OLs) identified by Morabito
et al. (2021) and a minor cluster of antigen presenting OLs
identified by Sadick et al. (2022). Moreover, these cells were
not characterized by the expression of neither C4B nor
SERPINA3, which constitute the key markers of reactive
OLs, alias DOLs.

The lack of immune OL signature in AD samples was
recently scrutinized by Pandey et al. (2022). Using multi-dataset
integration, the authors defined three distinct activation states of
OLs across the mouse models of AD and MS (MOL-DA1, MOL-
DA2, and MOL-IFN), which were characterized by expression
of inflammatory-, survival- and interferon-associated genes
(Table 2). Follow-up integrative analysis of human OL datasets
revealed similar gene signatures in MS patients, but not in AD,
indicating a distinct transcriptional response of OLs in human
AD pathology. The latest contribution to the understanding of
OL heterogeneity in neurodegeneration was provided by Kaya
et al. (2022), who studied WM aging in mouse. The authors
identified clusters of aging-related Serpina3n+ C4b+ OLs
(AROs) and interferon-responsive Stat1+ B2m+ OLs (IROs)
characterized by the expression of type I interferon response
genes and MHC-I genes (Table 2). The two populations
resembled the inflammatory- and interferon- clusters described
by Pandey et al. (2022), but the population presumably involved
in the OL survival (MOL-DA2) was missing. Altogether, the data
indicates shared, but also distinct response of OLs in different
pathologies that requests further investigation.

To date, single-cell and single-nucleus transcriptomics have
been applied to most neurodegenerative and neuropsychiatric
disorders, e.g., amyotrophic lateral sclerosis (Pineda et al., 2021),
Parkinson’s disease (Smajic et al., 2022), schizophrenia (Ruzicka
et al., 2020), major depressive disorders (Nagy et al., 2020),
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and autism (Velmeshev et al., 2019). Unfortunately, the analysis
of OLs has often not been of primary interest and therefore
not explored in detail. Other CNS disorders with a recently
discovered role of OLs in its disease etiology, e.g., epilepsy
(Knowles et al., 2022), are still awaiting in-depth single-
cell transcriptomic characterization. Attention is also required
for the OLs in the acute CNS injuries, where their role is
largely unexplored.

Conclusion

We provide a comprehensive overview of key studies
defining the current spectrum of OL heterogeneity in health and
disease. We document a first standardized OL nomenclature
in murine healthy CNS and strong indication of distinct
reactive immune OL gene signature present in multiple
models of CNS pathologies. OL heterogeneity in human
is less defined and there are distinct transcriptional OL
phenotypes present in MS and AD patients. Future studies
are needed to establish a robust nomenclature of human OLs
and characterize the full spectrum of OL activation states in
other CNS disorders.
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