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Modeling the kinetics of
heteromeric potassium channels

Kees McGahan* and James Keener

Math Department, University of Utah, Salt Lake City, UT, United States

Mechanistic mathematical modeling has long been used as a tool for

answering questions in cellular physiology. Tomathematically describe cellular

processes such as cell excitability, volume regulation, neurotransmitter release,

and hormone secretion requires accurate descriptions of ion channel kinetics.

One class of ion channels currently lacking a physiological model framework

is the class of channels built with multiple di�erent potassium protein subunits

called heteromeric voltage gated potassium channels. Here we present a

novel mathematical model for heteromeric potassium channels that captures

both the number and type of protein subunits present in each channel. Key

model assumptions are validated by showing our model is the reduction of a

Markov model and through observations about voltage clamp data. We then

show our model’s success in replicating kinetic properties of concatemeric

channels with di�erent numbers of Kv1.1 and Kv1.2 subunits. Finally, through

comparisons with multiple expression experiments across multiple voltage

gated potassium families, we use the model to make predictions about the

importance and e�ect of genetic mutations in heteromeric channel formation.

KEYWORDS

heteromeric potassium ion channels, Kv1 channels, Kv7 channels, mathematical

modeling, ion channel kinetics

1. Introduction

Potassium channels are membrane spanning proteins that are responsible for the

transport of potassium ions into and out of cells. Found in virtually all species,

these channels regulate a whole host of cellular processes (MacKinnon, 2003). In

addition to their importance in regulating neuron, cardiac cell, and pancreatic β-

cell excitability, potassium channels have been found to aid in other physiological

functions such as volume regulation, neurotransmitter release, and hormone secretion

(Barfield et al., 2005; Ghatta et al., 2006). Working to account for all these function are

upwards of 80 genes coding for different potassium channel protein α-subunits (Harding

et al., 2022). These are categorized into three broad groups based on their number of

transmembrane domains (TMDs): inward rectifier channels (two TMDs), leak or K2p

channels (four TMDs), and voltage gated or KV channels (six TMDs) (Coetzee et al.,

1999).

The most well-studied of these groups, accounting for about half of the total genes, is

the collection of voltage gated potassium channel subunits. Broken up into 12 subfamilies

according to physiological characteristics, four KV α-subunits are required to form a

functional, pore forming channel. Each of the four α-subunits can be encoded for by one
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gene forming a homotetramer (homomer), or by multiple genes

from either the same, or in rare cases, different subfamilies

thereby forming heterotetramers (heteromers). As a result of all

the different possible numbers and arrangements of each subunit

type, formation of these heteromeric potassium channels

drastically increases KV channel diversity. With such a large

collection of possible channels, researchers have begun asking

which subunit combinations are physiologically relevant and

how do their kinetics compare to their homomeric counterparts?

Attempts at answering these questions have taken a

variety of forms including using pharmacological and

electrophysiological techniques, and studying properties of

concatenated subunit genes and expression systems. Work

by Cordeiro et al. (2019) concatenated different ratios of KV1

subunits together and examined the concatemers’ different levels

of binding affinity to κM-conotoxin RIIIJ. It was found that

κM-conotoxin RIIIJ not only had preference for channels with

KV1.1, KV1.2, and KV1.6 subunits, but had the highest binding

affinity for heteromers in the particular configuration of three

KV1.2 subunits and 1 KV1.1 or KV1.6 subunit. Al-Sabi et al.

(2013) combined electrophysiology tools with KV1.1/KV1.2

concatemers and determined distinct activation kinetics and

TEA sensitivity distinguishing each of the heteromeric and

homomeric concatemers. While looking at epilepsy associated

mutations in KV7.2 genes, Miceli et al. (2013, 2015) showed that

wildtype and mutant KV7.2 subunits likely form heteromeric

channels whose kinetic properties are intermediate between

those of the associated homomeric channels. Similar conclusions

were reached about the heteromers formed from KV1.1, KV1.2,

and KV1.1 mutant subunits thought to be responsible for ataxia

and epilepsy (Hasan et al., 2017; Miceli et al., 2022).

One of the current problems faced in this field of work is

connecting the results of these concatenation experiments with

experiments involving natural expression systems. Determining

which heteromeric ratio of subunits is present in a natural

expressed system has remained elusive for experimentalists.

The straightforward technique of gene knockouts renders all

functioning, present heteromers useless thereby preventing

further analysis. One possible avenue of approach to this issue

is mathematical modeling. Since the groundbreaking work of

Hodgkin and Huxley on modeling action potentials in the squid

giant axon, mechanistic math modeling has become a staple in

furthering understanding of homomeric ion channels and their

role in cellular processes (Hodgkin and Huxley, 1952; Miura,

2002; Moreno et al., 2016; McGahan and Keener, 2020). Two

types of general model frameworks are typically considered to

describe homomeric ion channel function: those in the spirit

of Hodgkin and Huxley, and Markov models that explicitly

detail each conformational protein change between channel

states (Nekouzadeh et al., 2008; Keener, 2009, 2010). Increases in

data availability and advancements in experimental techniques

have led to more detailed models capable of answering and

asking questions about drug-channel interactions, complex

experimental protocols, different activating stimuli, and even

channel structure (Cheng et al., 2007; Perissinotti et al., 2015;

Moreno et al., 2016).

Successful modeling results, across multiple ion channel

types, hints at modeling as a natural next step for connecting the

different types of existing heteromeric KV channel experimental

results. Models of heteromeric channels, especially biophysical

ones reflecting protein composition and structure, are currently

scarce relative to the available data and experimental interest.

Work by Cheng et al. (2007) coupled spectroscopy-based

fluorescence resonance energy transfer and computational

modeling to indicate that heat-sensitive transient receptor

potential channels prefer heteromeric configurations. Looking

at heteromeric cyclic nucleotide–gated channels, Benndorf et al.

(2022) analyzed the ability to determine model parameters

using concatemeric experimental data. Modeling work with

heteromeric KV channels has primarily consisted of fitting

Boltzmann-like equations, or in rare cases Markov Models, for

channel gating to voltage clamp data of either concatemeric

heteromers or cells with two or more coexpressed cDNA

types (Sale et al., 2008; Miceli et al., 2013, 2015). Although

these fitted heteromeric KV models can be used to simulate

generic heteromeric behavior, they do not encode knowledge

about the α-subunit ratios. This limitation implies they cannot

be generalized to heteromers of different ratios let alone

heteromeric channels with completely different subunits.

Using a Hodgkin-Huxley type gating model, which we

show has a parallel Markov structure, we present a novel

heteromeric KV channel modeling framework. This framework

is both generalizable to multiple KV families and captures α-

subunit type and stoichiometry. We outline the applicability

of our model and justify specific model assumptions. With

KV1.1/KV1.2 concatemeric results from Al-Sabi et al. (2013)

we analyze the model’s ability to replicate heteromeric channels’

steady state open probability curves for each of the possible

subunit combinations. We then apply our framework to look

at multiple different experiments where two cDNAs for KV

subunits are expressed together but the subunit ratios and

relative percentages of the resulting channels is unknown.

By comparing these known experimental results with model

outputs we make predictions about which subunit ratios are

important and when α-subunits may be assembling randomly.

2. Methods

2.1. Hodgkin Huxley model framework

Our model is based on the work of Hodgkin and Huxley

(1952). Their model tracks the membrane voltage V , which

changes based on the sum of the individual ionic currents.

The model for each current is composed of three parts: a

maximal conductance gi, an open probability consisting of some
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number of activating or inactivating gates, and a driving force

term (V − Ei) describing the direction and magnitude of the

current, for i = Na,K. The gating variables, n,m, and h, are

each probabilities between 0 and 1, that change over time in

response to changes in V . It is assumed that the gates operate

independently and that all gates must be open for current flow.

The numbers of each gate for each channel type were derived by

Hodgkin and Huxley based on best fits to data. The differential

equations for membrane voltage V , the sodium gates m, h, and

the potassium gates k are given here:

dV

dt
=

1

Cm
(−INa − IK − Il) (1)

dj

dt
= [aj(V)(1− j)− bj(V)j], j = m, n, h. (2)

With the Hodgkin-Huxley current equations having the form:

INa = gNam
3h(V − ENa) (3)

IK = gKn
4(V − EK ) (4)

Il = gl(V − El). (5)

Rate constants aj, bj, and parameters, including the maximal

conductances gK/Na/L, reversal potentials EK/Na/L, and

membrane capacitance Cm were all experimentally fit and are

available in the literature (Hodgkin and Huxley, 1952; Keener

and Sneyd, 2009; McGahan and Keener, 2020).

2.2. Heteromeric potassium channels
(activating only)

Here we formalize our model structure proposed for

heteromeric KV channels. This paper focuses on the set of

heteromeric channels whose α-subunits, when in homomeric

configurations, confer minimal, or irrelevant inactivating

kinetics. Each homomeric channel is modeled identically to

the Hodgkin Huxley potassium channel, with the necessary

rate constants. Each heteromeric channel is also mathematically

described with three components as outlined above in Section 2.

While the density and driving force are modeled identically to a

homomeric potassium channel (Equation 4), the channel gating

of a heteromer is modeled to reflect the specific number and type

of α-subunits present.

Since each KV channel, homomeric and heteromeric, is

composed of four protein subunits, we assume that each

heteromer has 4 gates, with number and type equal to that

of the subunits present (Coetzee et al., 1999; Cordeiro et al.,

2019). The gating variables and corresponding differential

equations used in any heteromeric model are taken directly

from their respective homomeric models. This guarantees that

a heteromer’s properties are derived mechanistically and are

completely determined from subunit composition once the

homomeric kinetics are known. As an example, to model a

1.1/1.2 K-channel heteromer, notated by either KV1.1/1.2 or

K1.1/1.2, we first need KV1.1 and KV1.2 homomer models that

are built with four independent and identical gates, n1.1 and

n1.2. These homomeric models are referred to as the 4:0 and

0:4 models, denoting their subunit, and thus gate, number, and

type. To then construct a KV1.1/1.2 heteromer consisting of x

1.1 subunits and y 1.2 subunits, the model is referred to as an

x : ymodel and is built using x 1.1 gates and y 1.2 gates.

The representation for a heteromeric channel current made

up of three 1.1 subunits and one 1.2 subunit is given below:

I1.1 = g1.1n
4
1.1(V − EK ) (6)

I1.2 = g1.2n
4
1.2(V − EK ) (7)

I3 : 11.1/1.2 = g1.1/1.2n
3
1.1n

1
1.2(V − EK ). (8)

As stated above, it is assumed x + y = 4 with x and y taking

integer values between 0 and 4. This is to adhere to the 1 subunit

for 1 gate hypothesis. We emphasize that setting either x or y to

0 returns a homomeric channel. Note that loosening the integer

value restriction does not break the resulting analysis below, it

simply carries a different set of biological assumptions with it.

2.3. Addressing the four gate and integer
power assumptions

The primary model assumptions to address are that the

sum of the number of gates must be 4 and that the gates take

integer power values. These assumptions inherently dictate that

each homomeric K-Channel is modeled with four gates. While

Hodgkin and Huxley’s original model utilized four gates to

fit the data, since then there have been many activating only,

homomeric, potassium channel models in the literature fit with

only one activating gate (Hodgkin and Huxley, 1952; Miceli

et al., 2013, 2015; Ranjan et al., 2019). There are two arguments

outlined here to defend these two critical model assumptions.

The first is that this model framework is actually a reduction of

a well described Markov model for four interacting independent

protein subunits of two (or more) types. The second argument

involves looking at the outputs of voltage clamp recordings of

cells containing Kv1.1 channels and seeing which number of

gates best fits the time dependent data.

2.3.1. Markov model reduction

Work by Keener takes Markov models of ion channels

and finds globally attracting invariant manifolds of reduced

dimensions (Keener, 2009, 2010). The first important result of
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these papers is for a potassium channel with four identical,

independent subunits that can only transition between an open

or closed state. If the conducting state is when all four subunits

are open, then the Markov model’s invariant manifold has

exactly Hodgkin and Huxley’s open probability of Po = n4,

with n governed by Equation (2). This Markov model and the

invariant manifold’s open probability are precisely what we have

postulated for all homomeric potassium channel models under

our outlined framework.

The second important result by Keener is for a sodium

channel (Keener, 2009, 2010). The given Markov model has

three activating subunits and 1 inactivating subunit, with all

subunits independent. The model is shown to have an invariant

manifold with open probability Po = m3h form and h governed

by Equation (2). As seen with Equation (8), the open probability

for the reduced sodium model Po = m3h, is equivalent to

the open probability for a 3:1 or 1:3 heteromer. In both cases,

there are three subunits of 1 type, 1 subunit of a different type,

and all subunits must open to be conducting. Therefore, this

result by Keener implies our 3:1 and 1:3 heteromeric models

can be thought of as an invariant manifold of a Markov model

for 3 subunits of one K-channel subunit type and 1 subunit of

a second type, all independent. Finally, although not explicitly

detailed, the manuscript posits that a Markov model with two

independent subunits of type Kv1.1 and Kv1.2, would have an

invariant manifold with open probability Po = n21.1n
2
1.2, again

what our framework predicts. One important observation is

that this is the predicted open probability for a 2:2 heteromer

regardless of if subunits of the same type are across from or next

to each other.

2.3.2. Fitting to voltage clamp data

The second justification for our model assumptions is done

by looking at voltage clamp data for Kv1.1 channels. Assuming

that our homomeric potassium currents can be accurately

modeled with a maximal conductance gk, an open probability

determined by some unknown number p of gates of type n, and

a driving force term (V − Ek); we have the current equation:

IK = gKn(t)
p(V − EK ). (9)

Using voltage clamp data for cells with Kv1.1 channels we ask

which power p best describes the channel gating. The first step

in answering this question is to normalize any endogenous or

capacitive currents that may be present in the data. This is done

by subtracting the current value that is present at the very start

of the voltage clamp protocol since before the channels have had

time to activate there should be no noticeable current. This is

all to say that the current traces at the initial engagement of the

protocol should start with a current reading of 0 with some given

noise. Next, since voltage is fixed, we can divide out the driving

force term (V − EK ) if EK is known. Then, assuming the voltage

clamp has been performed at a high enough voltage to open all

gates giving n(t)p = 1, we can divide by the maximum value

attained over the entire experiment. This step corresponds to

dividing out gK . The resulting transformed data is a function

of time whose output is the open probability of the present Kv

channels. This data will be fit with the function for the open

probability Po(t):

Po(t) = n(t)p. (10)

which is what is left from Equation (9) after dividing by the

maximal conductance gK and driving force term (V − EK ).

To fit Equation (10) to the transformed data we also must

know the form n(t) takes at any fixed voltage. Recall that

the differential equation governing a single gate’s dynamics is

described as follows:

dn

dt
= [an(V)(1− j)− bn(V)n] =

n∞ − n(V)

τn
(11)

where n∞(V) =
an

an+bn
and τn(V) =

1
an+bn

. Under this

formulation n∞ describes the steady state open probability

attained by the gate as a function of voltage, and τn is the voltage

dependent time constant. If the channel behavior is analyzed

under a voltage clamp protocol with voltage kept constant, then

the resulting ODE is dependent only on n. Therefore, Equation

(11) can be solved analytically to yield the following expression

in n:

n(t) = n∞(1− Ae
−t
τn ) (12)

Here we have an integration constant A with n∞ and τn both

fixed parameters for the given fixed value of voltage V . If n(0) =

0, a reasonable assumption, given that in the voltage clamp

protocols looked at, the initial holding voltage prior to the step

is near−90 mV implying the channels are essentially closed, this

simplifies to:

n(t) = n∞(1− e
−t
τn ). (13)

Equation (13) gives the time dependent open probability value

for a single gate at a fixed voltage. Combining the results

of Equations (10) and (13) yields the following complete

description for Po(t):

Po(t) = (n∞(1− e
−t
τn ))

p
. (14)

Finally, using MATLAB’s built in nonlinear least squares fitting

method, we fit Equation 14, with different chosen values of p, to

the transformed voltage clamp data (MATLAB, 2018). By setting

bounds on the possible parameter values for n∞ (between 0 and

1) and τn (>0), the MATLAB function performs a parameter

search that solves: min[6(Po(t) − data(t))2]. In Figure 1, we

see an example of how these curves fit a KV1.1 voltage clamp

experiment with V = 20 mV (channels close to fully open) and
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FIGURE 1

Sample fits of five curves of the form seen in Equation (14) to voltage clamp data (shown in blue) from Channelpedia (Ranjan et al., 2011, 2019).

Each curve corresponds to a di�erent value of p, the number of gates being used to fit the data. (A,C) A zoomed in version to make clear the

performance of each model on capturing the sigmoid shape of the beginning portion of the data. (B,D) The whole timescale with each of the five

fits. Curve colors are as follows: p = 1 (orange), p = 2 (green), p = 3 (pink), p = 4 (black), p = 5 (yellow). Curve dash sizing and spacing is given in

figure legend. (A,B) correspond to a voltage step from −90 up to 20 mV while panels (C,D) correspond to a voltage step from −90 up to −30 mV.

V = −30mV (channels beginning to open) for different values

of p from 1 to 5.

At initial glance, Figures 1B,D indicate that all powers of p

generate roughly identical fits to the data with p = 1 performing

marginally better. We compared the fits of the different power p

curves across the entire data set usingmean squared error (MSE)

as our metric. Using voltage clamp recordings for six different

cells, looking at data for six different value of V , we averaged the

MSEs for all powers of p. This revealed that p = 1 generated the

smallest MSE of 0.0006 and p = 5 the largest value of 0.0021

(Table 1).

However, zooming in on the data and the fits across a smaller

range of time values shows an important detail to make note of

Figures 1A,B clearly show clearly shows the shape of the data

cannot be fit best with the simple exponential function that

would result from setting p = 1. For each of the six cells, the

voltage clamp data across all values of V , is seen to take on a

sigmoid shape. This data, and the representative fits, suggests

that modeling activation only KV channels with the Hodgkin

Huxley gating kinetics seen in Equation (11) will require more

than 1 gate to correctly model all aspects of the known data.

To quantify this hypothesis, we looked at two other error

metrics: a MSE over a shorter time interval and a weighted error.

Looking at the MSE over the shorter time interval, defined to be

the component of the data seen before channel opening, every

power p > 1 performed an order of magnitude (differing by a

factor of 10) better than when p = 1 (Table 1). Although this

analysis cannot distinguish between models with two or more

gates, it does confirm that one gate is not sufficient for the shape

of the data. This observation is recapitulated by the weighted

error we computed. The weighted error is computed over the

entire time interval by weighting the MSE over the short time
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TABLE 1 Di�erent error metrics comparing homomeric Kv channel

models with di�erent gate numbers.

p Full Short Weighted

1 0.0006 0.0028 0.28

2 0.0009 0.0006 0.06

3 0.0015 0.0004 0.04

4 0.0018 0.0004 0.04

5 0.0021 0.0004 0.04

The first column p is the number of gates and thus power used to fit the data. The Full

column gives the MSE between each fit model and the entire dataset. The Short column

gives the MSE between model and the data over the time interval where the channel has

not yet opened. TheWeighted column gives a weightedMSE over the whole time interval

where the time component corresponding to when the channel is closed is weighted 100

times heavier.

interval 100 times more than the remainder of the time. The idea

behind this weighted error is to see how well the model adheres

to the sigmoid shape while still accounting for error over the

remaining time. As with the short time interval error, p = 1 was

an order of magnitude worse than every other power.

3. Results

3.1. Kv1.1 and Kv1.2 heteromers

Here we show the model’s ability to reproduce certain 2013

results by the Al-Sabi group (Al-Sabi et al., 2013). In their

work, they were able to concatenate subunits of Kv1.1 and Kv1.2

channels together into functional homomers and heteromers of

every possible ratio. Then by way of voltage clamp experiments,

they found each heteromer’s and homomer’s steady state open

probability as a function of voltage. Their data points were then

fit with the following open probability equation:

Popen(V) =
1

1+ e(−(V−V.5)/k)
(15)

with different parameter valuesV.5 and k for each heteromer and

homomer. Note that while Equation (15) is a function for the

steady state probability of a given channel, it was fit assuming

only one activating gate. Using the V.5 and k values for the Kv1.1

and Kv1.2 homomers from Al-Sabi et al. (2013), we calibrated

the activating kinetics for the Kv1.1 and Kv1.2 gates to fulfill

our four gate assumption. This was done by taking Equation

(15) with parameters from Al-Sabi et al. (2013), and using the

MATLAB nonlinear least squares fitting function to find the best

fitting function of the form Popen(V)
4. The data points used in

minimizing the least squares error were a discretized range of

voltage values from −100 to 100 of step size 0.01. We arrived at

the following steady state probabilities forKv1.1 andKv1.2 gates:

n1.1(V) =
1

1+ e(−(V+V1.1)/k1.1)
(16)

FIGURE 2

Comparisons between our mathematical framework predictions

for KV1.1/1.2 heteromers and data from Al-Sabi et al. (2013). The

solid curves are the plotted fits from Al-Sabi and the dashed

curves are the results of the mathematical model. The green and

pink curves correspond to the two di�erent homomers with the

dashed curve model outputs having been fit directly to Al-Sabi

parameters as described above. The mean squared error (MSE)

between 4:0 curves is 0.00022 and between 0:4 curves is

0.00033. The orange and blue curves are model prediction

outputs for 3:1 and 1:3 Kv1.1/1.2 heteromers using Equations

(16) and (17) for the gating kinetics. The MSE for the 3:1 curve is

0.00091 and the MSE for 1:3 curves is 0.0018.

n1.2(V) =
1

1+ e(−(V+V1.2)/k1.2)
(17)

where V1.1 = 59.18, k1.1 = 15.61, V1.2 = 44.08, and k1.2 =

24.75. The parameter values for Equations (16) and (17) were

found by using the described fitting method and the steady

state probability curves for the Kv1.1 and Kv1.2 homomers

from Al-Sabi et al. (2013). Note that variations in the values

for the parameters V1.1, k1.1, V1.2, and k1.2 could possibly yield

better fits to the Al-Sabi data as we were only able to fit to the

available functional forms of their steady state curves. For clarity,

this original set of parameters will be referred hereafter as the

optimal, or best fitting, parameter set.

Recall that under the framework outlined above, a 3:1

KV1.1/1.2 heteromer will have steady state open probability

n31.1n1.2 and a 1:3 heteromer will have open probability n1.1n
3
1.2.

While the 2:2 heteromer’s probability curve could be generated

in a similar manner, the data recorded in Al-Sabi et al. (2013)

for the 2:2 heteromer was from a separate experiment and

is therefore left out. Utilizing our fit curves, we compared

the model predictions for the 3:1 and 1:3 heteromer’s open

probability against the fit summary curves from the Al-Sabi

study. This is shown in Figure 2.

Figure 2 shows the model’s attempt at replicating KV1.1/1.2

heteromeric steady state open probabilities. Most notably, the

model does well at capturing the 3:1 heteromer steady state

probability. This is highlighted by themean squared error (MSE)
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FIGURE 3

Model outputs showing the voltage at which a particular

probability of opening is achieved. The x-axis denotes the

proportion of subunits/gates that are KV1.1 vs. KV1.2 with a = 4

corresponding to a KV1.1 homomer with four subunits/gates.

Each curve color corresponds to a di�erent probability of

opening from the model output. The data points are the Al-Sabi

data points of each channel type for any given probability of

opening and are colored accordingly. Although the non-integer

values of a are irrelevant under the model framework, the curves

are left for clarity of the trends moving from a = 4 to a = 0.

for the 3:1 heteromer having the same order of magnitude as

the 4:0 and 0:4 homomers. Additionally, we can see the model

predicts some amount of nonlinearity in the shifts of probability

curves moving from left to right. In Al-Sabi et al. (2013), they

observed a much larger jump between the 4:0 and 3:1 curves

compared with the difference in 1:3 and 0:4 curves. To explore

this observation more concretely, we asked at what voltage do

each of the different channel types (4:0, 3:1, 1:3, 0:4) achieve

certain probabilities of being open. This was done by setting

na1.1n
4−a
1.2 equal to one of 10, 25, 35, 50, 75, or 80% and solving

for V at all values of a between 0 and 4. This can be thought of as

drawing horizontal lines through Figure 2 at a given probability

and then plotting the intersection points with the steady state

probability curves as a continuous function.

Figure 3 shows the voltage at which a specific probability of

being open is reached as a function of a, the number of Kv1.1

subunits. For instance, the red curve corresponds directly to the

V.5 or 50% open probability of each channel type, with a = 4

giving the V.5 of Kv1.1 homomers and a = 0 the V.5 of Kv1.2

homomers. In Figure 3, we can clearly see the Al-Sabi data points

showing the behavior that we hope the model replicates. The

data points for each probability of opening show a much steeper

increase going from four Kv1.1 subunits to 3 in comparison with

the minimal change going from 1 Kv1.1 subunit to none. We see

with this parameter set for n1.1(V) and n1.2(V) the model has

this sharper change moving from a = 4 to a = 3 than moving

from a = 1 to a = 0. However, this behavior is only present

for the 50% and higher probability of opening curves, with the

FIGURE 4

Di�erent fits of a four gate model for Kv1.1 and Kv1.2 homomers

to the Al-Sabi one gate model data. The best fit model generated

from a nonlinear least squares fitting method is shown as a black

curve for both channel types. The light blue curves are the other

seven overlapping fit Kv1.1 models that have the same order of

magnitude as the best fit Kv1.1 curve. The orange curves are the

other overlapping eight fit Kv1.2 models that have the same

order of magnitude as the best fit Kv1.2 curve.

curves becoming more linear as the probability of opening is

lowered.

Having noted above that this parameter set may not actually

fit the data best, we perturbed V1.1, k1.1, V1.2, and k1.2

and examined the resulting model output. To perturb the

parameters, we start with the original fit parameter set from

above, increase or decrease k1.x, and then refit n1.x(V) to get

a new V1.x, for x = 1, 2. Each k1.x was both increased and

decreased until the newly fit homomeric open probability curves

produced a mean squared error with the Al-Sabi curves that was

of a higher order magnitude (differencing by a factor of ten)

than our original best fit model curves. This procedure yielded

8 different Kv1.1 curves and 9 Kv1.2 curves that had the same

MSE as the optimal fit curves. These curves are shown below

in Figure 4.

These different parameter fits yield 72 different model

combinations to test. Here we present the model results using

the two most insightful combinations: when the slope factors

k1.x are the closest and furthest apart.

Figures 5A,B show the model results using homomeric

open probability curves with the closest possible k1.x values.

This combination of parameter values resulted in heteromeric

steady state probability curves that had more similar MSEs

with the Al-Sabi data than those from the optimal parameter

set. Additionally, Figure 5B shows a much better adherence

to the observation that there are larger changes going from

a 4:0 channel to a 3:1 channel than going from a 1:3

channel to a 0:4 channel. Whereas, the optimal parameter set

generated curves that had the proper behavior only at higher
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FIGURE 5

The model’s performance relative to the Al-Sabi data using the Kv1.1 and Kv1.2 fit models with slope factors that are closest (A,B) and furthest

(C,D) apart. Curve color and descriptions for (A,C) are identical to those given in Figure 2. Curve color and descriptions for (B,D) are identical to

those given in Figure 3.

probabilities of being open, the closest possible k1.x parameter

set had the correct curve concavity at all probabilities of

being open.

In contrast, the outputs of the furthest apart possible k1.x

parameter set, shown in Figures 5C,D, do worse than the optimal

parameter set. Not only are the 3:1 and 1:3 steady state open

probability curves farther from the data than those of the

optimal parameter set, the spacing of the steady state probability

curves as seen in Figure 5D also performsworse than the optimal

parameter set. At the highest probability of being open there is

still a larger change from a 4:0 to a 3:1 channel than from a 1:3

to a 4:0 channel. This feature is reversed at lower probabilities

of being open, which conflicts with the known shape of the

data points. The two different parameter sets looked at here,

found via our parameter search methodology, yield the possible

extreme model outcomes in comparison to the data. We do not

rule out the possibility of better or worse performing parameter

sets, but with only the summary data curves available this

analysis must suffice.

3.2. Model predictions: Three examples

With our heteromeric model, we can begin to answer

questions surrounding experiments involving heteromeric

activation-only K-channels. One such question regarding these

channel types involves understanding the differences between

cells expressing heteromeric channels and cells expressing

only the homomeric counterparts. Are these two cell types

noticeably different? More specifically, if a cell expresses DNA

for two different K-Channel proteins, is it possible to discern

in which ratios the subunits form channels? Examples of

this experimental setup includes work with Kv1.1, Kv1.2,

and Kv1.1 mutant subunits, work with Kv7.4 and Kv7.5
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FIGURE 6

Steady state probability curves as a function of voltage for cells containing various channel types in two di�erent experiments. The coexpression

data and homomeric data for model fitting was taken from D’Adamo et al. (1999) (A) and Imbrici et al. (2008) (B). The steady state probability

curves presented here are for homomeric Kv1.1 (4:0) and Kv1.2 (0:4) channels, heteromeric Kv1.1/1.2 channels (3:1, 2:2, 1:3), the model output

of a random assembly of Kv1.1 and Kv1.2 subunits expressed in 50:50 ratio (rand), the data output of a 50:50 expression of Kv1.1 and Kv1.2

cDNAs (coexpression data), and a model output of an equal split between only homomeric channels (50:50). Curve color and type are shown in

the legends. Homomeric channels and their related heteromers being looked at are also detailed in figure titles.

subunits and work in Kv7.2, Kv7.3, and Kv7.2 mutant systems

(D’Adamo et al., 1999; Imbrici et al., 2008; Miceli et al.,

2013, 2015, 2022; Mani et al., 2016; Hasan et al., 2017).

In each system, the different subunit types were expressed

either alone or together in a cell, and the resulting steady

state open probability curves were found. It was shown that

the coexpressed subunit cell’s probability curves always lie

between those of the homomeric probability curves. However,

for each scenario, it was not clear if the coexpressed subunits

are coming together randomly, assembling in a preferred

heteromeric ratio, or assembling together preferring the

homomeric configurations.

For each experiment, we computed the steady state open

probability that satisfies the power 4 model assumption for

each homomeric channel type. This was done using the

experimentally derived V.5 and k values in the manner

as described above in Section 3.1. With the fit equations

for the different gate types, we could plot the steady state

probability curves for the homomeric expression data, the

coexpression data, and what the model predicts would be

generated for subunits assembling only in certain heteromeric

ratios or completely randomly. Probability curves for channels

expressing only a specific heteromeric ratio are calculated

directly according to the mathematical framework outlined

above. To generate the predicted steady state probability curve

stemming from a random assembly of the two subunits, we

make two assumptions. First, we assume that the transcription

and translation of the expressed DNAs occur with the same

effectiveness for all DNA types. Since experimentally the two

distinct DNA types are expressed at 50:50 ratios, this assumption

implies there is an equal amount of each protein subunit type.

The second assumption is that we define random assembly

as a binomial process for choosing four subunits with 50%

probability of choosing either type. Combining the model’s

steady state probability curves for all the heteromeric and

homomeric channel types with this binomial distribution results

in the following prediction for a steady state probability curve

generated from random subunit assembly:

Prand(V) =
1

16
P4 : 0(V)+

1

4
P3 : 1(V)+

3

8
P2 : 2(V)+

1

4
P1 : 3(V)

+
1

16
P0 : 4(V). (18)

Here Px : y denotes the probability curve for a channel with

x subunits of the first type and y subunits of the second

type. Note that a cell expressing only 2:2 heteromers will

typically have an open probability curve that significantly

overlaps with the random assembly curve, simply as a result

of coefficients seen in Equation 18. The next subsections

are the results of this analysis applied to multiple different

experiments on Kv1.1, Kv1.2 heteromers, a Kv7.4 and Kv7.5

heteromeric experiment and multiple Kv7.2 and Kv7.3

heteromeric experiments. These results include looking

at expression systems involving the wildtype subunits

and different mutant types responsible for a multitude of

neurological disorders.
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FIGURE 7

Steady state probability curves as a function of voltage for cells containing various channel types in three di�erent experiments. The

coexpression data and homomeric data for model fitting was taken from Miceli et al. (2022) (A,B) and Hasan et al. (2017) (C). The steady state

probability curves presented here are for homomeric Kv1.1 (4:0) and Kv1.1 mutant (0:4) channels, heteromeric assembly of Kv1.1 and Kv1.1

mutant subunits (3:1, 2:2, 1:3), the model output of a random assembly of Kv1.1 and Kv1.1 mutant subunits expressed in 50:50 ratio (rand), the

data output of a 50:50 expression of Kv1.1 and mutant Kv1.1 subunits (coexpression data), and a model output of an equal split between only

homomeric channels (50:50). Curve color and type are shown in the legends. Homomeric channels and their related heteromers being looked

at are also detailed in figure titles.

3.2.1. Kv1.1, Kv1.2, and Kv1.1 mutant
experiments

The first two experiments we looked at contain data for

coexpression experiments with Kv1.1 and Kv1.2 wildtype DNA

(D’Adamo et al., 1999; Imbrici et al., 2008).

Figure 6 shows where the coexpression probability curves

lie in relation to model predictions for two different Kv1.1 and

Kv1.2 experiments. In both experiments, we see the coexpression

curve overlapping with the 2:2 heteromeric model prediction

and the random assembly model prediction curves for a wide

range of voltages. Although more data would be necessary to

distinguish which curve the coexpression data most resembled,

we show themodel predicts thatKv1.1 andKv1.2 subunits prefer

to assemble in a 2:2 conformation or completely randomly. This

result is in stark contrast to what happens when Kv1.1 subunits

are coexpressed with a variety of different Kv1.1 mutant types.

We looked at the following three neurological disease associated

Kv1.1 mutants: F303V, A261T, and P405S (Hasan et al., 2017;

Miceli et al., 2022).

Unlike the Kv1.1 and Kv1.2 wildtype coexpression

experiments shown in Figure 6, we see in Figure 7 that

each coexpression data curve does not overlap with the

random assembly curves. In fact, for each mutant, the

coexpression probability curves appear to have a preference

for a conformation containing three subunits of one type

and one of the other. It is important to observe that this

preferred ratio is not always with three wildtype subunits

as might be initially assumed. In the case of the Kv1.1 and
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FIGURE 8

Steady state probability curves as a function of voltage for cells

containing various channel types. The coexpression data and

homomeric data for model fitting was taken from Mani et al.

(2016). The steady state probability curves presented here are

for homomeric Kv7.4 (4:0) and Kv7.5 (0:4) channels, heteromeric

Kv7.4/7.5 channels (3:1, 2:2, 1:3), the model output of a random

assembly of Kv7.4 and Kv7.5 subunits expressed in 50:50 ratio

(rand), the data output of a 50:50 expression of Kv7.4 and Kv7.5

subunits (coexpression data), and a model output of an equal

split between only homomeric channels (50:50). Curve color

and type are shown in the legend. Homomeric channels and

their related heteromers being looked at are also detailed in

figure title.

Kv1.1A261T mutant coexpression data, the curve lies between

the 0:4 mutant homomeric curve and the 1:3 heteromeric

curve (Figure 7A). Meanwhile, the other mutant experiments

both had coexpression data curves that were between the

4:0 wildtype homomeric and the 3:1 heteromeric curves

(Figures 7C,D). While it is unclear why certain mutations would

cause preferences for a 3:1 conformation and other mutations

would prefer a 1:3 heteromic configuration; we highlight that in

all cases the coexpression data lies between the heteromer and

homomer curves that activate at the earliest voltages.

3.2.2. Kv7.4 and Kv7.5 experiments

Here we address the application of our model to a

coexpression experiment by Mani et al. (2016) involving Kv7.4

and Kv7.5 DNA. Currently, there is no experiment similar to the

work by Al-Sabi et al. (2013) for us to validate the heteromeric

framework against for Kv7.4 and Kv7.5 heteromeric channels.

However, both Kv7.4 and Kv7.5 form homomeric tetramers

lacking noticeable inactivation thereby satisfying the necessary

assumptions to be modeled identically to the Kv1.1 and Kv1.2

system (Lipinsky et al., 2020; Harding et al., 2022). Under the

assumption that this framework is a reasonable approximation

for Kv7.4 and Kv7.5 heteromers, we look at a coexpression

FIGURE 9

Steady state probability curves as a function of voltage for cells

containing various channel types. The coexpression data and

homomeric data for model fitting was taken from Miceli et al.

(2015). The steady state probability curves presented here are

for homomeric Kv7.2 (4:0) and Kv7.3 (0:4) channels, heteromeric

Kv7.2/7.3 channels (3:1, 2:2,1:3), the model output of a random

assembly of Kv7.2 and Kv7.3 subunits expressed in 50:50 ratio

(rand), the data output of a 50:50 expression of Kv7.2 and Kv7.3

subunits (coexpression data), and a model output of an equal

split between only homomeric channels (50:50). Curve color

and type are shown in the legend. Homomeric channels and

their related heteromers being looked at are also detailed in

figure title.

experiment of Kv7.4 and Kv7.5 DNA done by Mani et al. (2016)

with the results shown in Figure 8.

As was seen with the Kv1.1 and Kv1.2 wildtype experiments,

the coexpression data overlaps with the 2:2 heteromer and the

random assembly curves (Figure 8). This result is especially

striking since it has been shown experimentally that unique

characteristics of M-currents can be replicated with 2:2 Kv7.4

and Kv7.5 heteromers (Brueggemann et al., 2020).

3.2.3. Kv7.2, Kv7.3, and Kv7.2 mutant
experiments

The final system we looked at that had similar coexpression

experiments with wildtype heteromers that are not known to

possess meaningful inactivation kinetics involved Kv7.2, Kv7.3,

and Kv7.2 mutants (Lipinsky et al., 2020; Harding et al.,

2022). The first data looked at were from a coexpression

experiment between wildtype Kv7.2 and Kv7.3 to see how Kv7.2

heteromerizes (Miceli et al., 2015).

As was seen with the other two systems we looked at,

expression of the two different wildtype DNAs results in a

steady state probability curve that overlaps with the 2:2 and

random assembly steady state probability curves for a large

range of voltages (Figure 9). Once again, when we switched to

coexpression experiments involving mutant subunit DNA the
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FIGURE 10

Steady state probability curves as a function of voltage for cells containing various channel types in four di�erent experiments. The coexpression

data and homomeric data for model fitting was taken from (A,B) Miceli et al. (2013) and (C,D) Miceli et al. (2015). The steady state probability

curves presented here are for homomeric Kv7.2 (4:0) and Kv7.2 mutant (0:4) channels, heteromeric assembly of Kv7.2 and Kv7.2 mutant subunits

(3:1, 2:2, 1:3), the model output of a random assembly of Kv7.2 and Kv7.2 mutant subunits expressed in 50:50 ratio (rand), the data output of a

50:50 expression of Kv7.2 and mutant Kv7.2 subunits (coexpression data), and a model output of an equal split between only homomeric

channels (50:50). Curve color and type are shown in the legends. Homomeric channels and their related heteromers being looked at are also

detailed in figure titles.

results were noticeably different. We looked at the coexpression

of Kv7.2 and four different Kv7.2 mutants: R201H, R144Q,

R213Q, and R213W (Miceli et al., 2013, 2015).

Interestingly, as was seen with Kv1.1 and its mutants, each

Kv7.2 and Kv7.2 mutant coexpression experiment generated

a steady state probability curve near or overlapping a curve

corresponding to a 3 to 1 ratio of subunits. As before, this

stoichiometric ratio of subunits is not a result of preference for

wildtype subunits, but a preference toward activating at earlier

or at more negative voltages. This is observable in Figures 10A,B

by seeing that when the mutant subunit has a V.5 to the right

of the V.5 of Kv7.2, the data lies near the 3:1 heteromer. On

the other hand, if the mutant subunit has a more negative V.5

than the Kv7.2 wildtype subunit, the data overlaps with the 1:3

heteromer (Figures 10C,D).

4. Discussion

Heteromeric KV channels have garnered significant

attention in recent years. Some heteromers have been shown

to be the specific target of conotoxins while other heteromers

are hypothesized to be the primary cause of certain currents

(Cordeiro et al., 2019; Brueggemann et al., 2020). This uptick in

discoveries has resulted in an abundance of new questions about

heteromers’ importance, how their kinetic properties relate to

homomeric channels, the subunit ratios in which they form,

and if they are present in natural systems. Despite mechanistic

differential equation modeling being a common technique

for answering tough experimental neuroscience questions,

little modeling of heteromeric KV channels has been done.

Current modeling work for heteromeric experiments either
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looks at different channel families or lacks the necessary known

biological specificity (Cheng et al., 2007; Miceli et al., 2013,

2015; Benndorf et al., 2022).

Here we presented a novel heteromeric KV channel model

framework that captures both α-subunit number and type.

We began by outlining and defending key model assumptions.

We then examined the framework’s effectiveness and ability

to reproduce key observations using a KV1.1/1.2 concatemer

experiment. Finally, using results of various cDNA coexpression

experiments, we used the model to make unique observations

about the assembly of K-Channel α-subunits and their

preferences toward certain stoichiometries.

4.1. Model and assumptions

We have proposed a new model framework for heteromeric

K-channels with little to no inactivation kinetics. The model

stipulates that each α-subunit present in the heteromer

contributes one mathematical gate to the overall open

probability. Equations for each gate type are derived from

voltage clamp experiments performed on homomeric channels.

With this model structure, once two homomers’ steady state

open probabilities are known, we can predict the kinetics for a

heteromer with any ratio of these two homomers’ subunits.

Key model assumptions were investigated and subsequently

justified by comparing the framework to a Markov model and

by analyzing time dependent voltage clamp data. To address

our assumption that each subunit contributes one gate’s worth

of kinetics, we compared the Hodgkin-Huxley model with

known ion channel Markov models. This analysis showed

that for each ratio of subunits, our heteromeric model has a

Markov model analog of four independently activating protein

subunits that can switch between an open and closed state.

Although the work here was done assuming each homomer

is adequately modeled by four independent subunits that

each have only two states, the only necessary condition for

the model framework is subunit independence. For example,

Markov models for homomeric potassium channels where each

independent subunit has multiple closed states are given as

possible models for IKs, the slow delayed rectifier K+ current

(Silva and Rudy, 2005; Keener, 2009). If a model of this type

was required for one, or both, of the homomeric channels,

it is possible to write a Markov model for 3:1, 2:2, and 1:3

heteromeric channels that still adhere to the one subunit to

one “gate” hypothesis. In this case, the term “gate” is slightly

misleading as the full Markov model no longer reduces to the

Hodgkin and Huxley equations but something more complex.

The derivation of the invariant manifold for the homomeric

channel with subunits containing multiple closed states can

be found in Keener (2009, 2010). Channels whose subunits

undergo conformational changes in a cooperative manner break

the independence assumption and therefore are not within the

scope of the hypothesized model.

Continued exploration of the hypothesis that four gates are

necessary and sufficient was done by using a publicly available

database of voltage clamp experiments on KV1.1 channels

(Ranjan et al., 2011, 2019). Looking at multiple different cell

voltage clamp recordings, each at multiple voltage steps, we

showed that more than one gate is required to replicate the

sigmoid shape of the time dependent data (Ranjan et al., 2011,

2019). We were unable to show that four gates provided the best

overall fit to the data, but we did show that a single Hodgkin-

Huxley like gating equation results in an exponential shape

that cannot account for the delay of activation seen in the

data (Figure 1). This observation is in agreement with previous

work on KV1.4 and KV11.1 (hERG) channels that detailed the

importance of including more than one gate, and in some cases

more than one activating gate type (Wang et al., 1997; Bett et al.,

2011). This question regarding the cause of the sigmoidicity of

the data remains open and warrants future examination; but for

future researchers using Hodgkin-Huxley like gating equations

to model channel kinetics, we stress that the full time dependent

data from voltage clamp experiments should be used to fit kinetic

properties as this provides critical insight into the number of

activating steps occurring.

4.2. KV1.1/1.2 concatemeric experiment

To test the accuracy of our model, we used results from

a study that looked at the open probability curves and TEA

sensitivity of KV1.1/1.2 concatemers (Al-Sabi et al., 2013).

Using gating equations generated from the study’s homomeric

KV1.1 and KV1.2 steady state probability curves, we generated

probability curves for each heteromic channel type (3:1, 2:2,

and 1:3). The model outputs aligned well with the data,

although the model predicts activation at earlier voltages than

the data suggests. This result hints at either external factors

influencing channel opening or a dependence between subunits.

To verify this hypothesis, future studies should perform similar

concatemeric experiments with other activating only heteromers

to see if this behavior is standard across K-channel families.

The second result from comparisons to this experiment

was how the model captured shifts in steady state probability

curves as more KV1.2 subunits were added. In the study it

was observed there is a noticeably larger shift to activating

later when transitioning from a K4 : 0
1.1/1.2 homomer to a K3 : 1

1.1/1.2

heteromer than when shifting from K1 : 3
1.1/1.2 heteromer to a

K0 : 4
1.1/1.2 homomer (Al-Sabi et al., 2013). Our model shared this

phenomenon, although it was more pronounced for the larger

probabilities of opening.

A primary limitation for this particular analysis was data

availability. Only summary parameters that generated the steady
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state data curves were available and not the actual data itself.

To combat this issue, we generated a few different fits to the

homomeric steady state curve data and explored the newly fit

models’ performances. Here we presented two model extremes:

one where the KV1.1 and KV1.2 homomeric model steady state

curves were as close in slope factor (k1.1, k1.2) as possible, and

the other where the slope factors were as far apart as possible.

Only at the extreme where the homomeric slopes were fit to

be far apart did the model framework begin to lose accuracy

in both the steady state probability curves it generated and the

spacing between said curves. In fact, heading toward the other

extreme, slopes closer together, there was improvement in both

heteromeric curve accuracy and the curve spacing accuracy.

Thus, for a wide range of fitted homomeric model curves, our

framework was able to mimic the steady state probability curves

and the key observations about the relationship between them

from Al-Sabi et al. (2013).

The second issue arising from a lack of data availability

involved investigation of the time component of activation for

these heteromeric concatemeric channels. In the work by Al-

Sabi et al. (2013), time constants at a few select voltage values

for all stoichiometric ratios are given. While this information

could be used to fit a function of τn(V), the voltage dependent

time constant, for the homomeric Kv1.1 and KV1.2 models,

there are issues drawing comparisons between the heteromeric

time constants recorded in their work and model outputs.

Under the proposed model, the heteromeric channels have two

time components associated with their activation, one for each

subunit type. This hypothesizes that the time course is the result

of a double exponential and not the single exponential that was

used to fit the heteromeric data. Therefore, there is no way

to make direct comparisons between the model’s prediction of

the time constants of activation to the published time constant

data. The limitations with the steady state analysis and with

performing time constant analysis can both be resolved if the full

time dependent voltage clamp data of the heteromeric channels

is known. This then allows for direct comparisons between raw

data and model outputs by simulating the heteromeric models

through identical experimental protocols.

4.3. Coexpression experiments

We looked at three different systems of voltage gated

potassium channels where DNA’s for two different subunits,

known to form heteromeric tetramers, were expressed in

the same cell. By taking the steady state probability curves

generated by the experiments and comparing them to our

model’s predictive outputs, we examined if certain subunits

have preferred configurations and if so, what they are. With

each of the different systems we studied, our model consistently

predicted only two preferred configurations. The outcome was

completely dependent on if the coexpression experiment was

between two wildtype DNAs or if one DNA was for a mutant

subunit responsible for certain neurological disorders.

If both cDNA’s being expressed were wildtype, then the

resulting coexpressed steady state probability curve overlapped

the 2:2 heteromer and random assembly curves. As noted earlier,

the inability to distinguish the coexpression curve from either

of these curves is not surprising due to the coefficients in

Equation (18). The model therefore predicts wildtype subunits

assemble either with a preference toward the 2:2 configuration

or, as has been suggested by some, random assembly with

no stoichiometric preference (Miceli et al., 2013, 2015). More

data and refined experimental techniques would be required

to distinguish both mathematically and experimentally how

precisely these wildtype subunits are assembling.

For each of the mutant coexpression experiments, the model

indicates a clear preference away from the random assembly

curve. In all cases the coexpression curve is found to be near

a three to one subunit ratio curve where the three subunits

correspond to whichever homomeric channel activates earlier.

Critically, this predicts in some cases there is a preference

toward channels assembling with more mutant subunits, while

other mutations skew the assembly toward having one or fewer

mutant subunits. This prediction could be the result of multiple

different mechanisms. One possible mechanism is that upon 50–

50 expression, the DNA is translated and transcribed equally,

but not all subunit ratios form functional channels thereby

weighting the steady state probability curve toward one side.

A second option is the two DNA types are again translated

and transcribed equally, but the proteins have a preferred ratio

that they assemble in due to structure or compatibility. A third

hypothesis for this outcome could be that the “translated and

transcribed equally” assumption does not hold. Regardless of the

mechanisms at play here, the model predicts that mutant and

wildtype subunits for Kv channels lacking inactivation kinetics

assemble in a non-Bernoulli manner.

5. Conclusion

We have constructed a new mechanistic model framework

for heteromeric voltage gated potassium channels. Based on

justification of assumptions, model validation against known

experimental results, and exploration of the possible questions

the model can address; we claim this model is an excellent

starting point for heteromeric KV channel models moving

forward.
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