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Adaptive plasticity processes are required involving neurons as well as non-neuronal
cells to recover lost brain functions after an ischemic stroke. Recent studies show
that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell
functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic
brain. Here, we provide an overview of how GABAergic neurotransmission changes
during the first weeks after stroke and how GABA affects functions of astroglial and
microglial cells as well as peripheral immune cell populations accumulating in the
ischemic territory and brain regions remote to the lesion. Moreover, we will summarize
recent studies providing data on the immunomodulatory actions of GABA of relevance
for stroke recovery. Interestingly, the activation of GABA receptors on immune cells
exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we
will discuss studies addressing how specific inflammatory cascades affect GABAergic
neurotransmission on the level of GABA receptor composition, GABA synthesis, and
release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been
demonstrated to modulate receptor composition and synthesis. Together, the actual
view on the interactions between GABAergic neurotransmission and inflammatory
cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what
has been shown in experimental models, specific therapeutic modulation of GABAergic
neurotransmission and inflammatory pathways may synergistically promote neuronal
plasticity to enhance stroke recovery.

Keywords: stroke recovery, inflammation, GABA, immune cell, neurotransmission, chemokine, glutamate
decarboxylate

Abbreviations: AD, Alzheimer’s disease; AMD3100, 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-
tetraazacyclotetradecane]; CCR2, C-C chemokine receptor type 2; CCR5, C-C chemokine receptor type 5;
CX3CL1, C-X3-C Motif Chemokine Ligand 1; CX3CR1, C-X3-C Motif Chemokine Receptor 1; CXCL8, C-X-C Motif
Chemokine Ligand 8; CXCR4, C-X-C Motif Chemokine Receptor 4; CNS, central nervous system; EAE, experimental
autoimmune encephalitis; GABA, γ-aminobutyric acid; GABAAR, γ-aminobutyric acid type A receptor; GABABR;
γ-aminobutyric acid type B receptor; GAD65, glutamic acid decarboxylase 65; GAD67, glutamic acid decarboxylase 67;
GAT, γ-aminobutyric acid transporter; GIRK, G protein-gated inward rectifying potassium; NK, natural killer; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; PT, photothrombosis; TCR, T-cell receptor; tMCAO,
transient middle cerebral artery occlusion; TNFα, Tumor necrosis factor alpha; VSCC, voltage-sensitive calcium channel.
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INTRODUCTION

Stroke is among the most common and important causes
of disability and death worldwide. Annually, approximately
12 million people suffer a stroke worldwide; thereof 6 million
patients do not survive the insult. Approximately 5 million
stroke victims acquire life-long disabilities and will need support
for daily living by next of kin or at institutions (Feigin
et al., 2021). The societal cost associated with stroke is huge,
amounting to 60 billion euros in the EU in 2019 (Luengo-
Fernandez et al., 2020), alarming figures we expect to grow
with an increasing aging population and health care costs.
Stroke causes loss of neurons and of neurological function
due to cell loss predominantly in the affected neuronal tracts
and circuits. In addition, neurological deficits are also due to
dysfunction of remaining neurons in the vicinity to or in areas
remote from the infarct connected through brain-wide neural
networks (Carter et al., 2010). The affected neuronal networks,
therefore, are considered as neuronal substrates for recovery-
promoting therapies modulating mechanisms of brain plasticity,
i.e., the innate ability of the brain to remodel neural network
connections.

Brain plasticity comprises the ability of the brain to reorganize
its cellular structures and its function in response to intrinsic
and extrinsic stimuli (Wieloch and Nikolich, 2006; Cramer
et al., 2011). Brain plasticity can be stimulated in stroke patients
by multimodal rehabilitation (Bunketorp-Kall et al., 2017).
For instance, various advanced training paradigms, assisted by
virtual reality, computer gaming, are thought to stimulate brain
plasticity, and have shown promise in supporting rehabilitation
(Hatem et al., 2016). In the experimental setting, this is
accomplished by an enriched environment (EE), comprising
large cages with toys, tubes, ladders, and larger groups of animals
with the opportunity for more complex social interaction that
activates various neural networks of the brain. Furthermore,
transcranial magnetic stimulation (TMS) or direct current
stimulation (tDCS) enhances recovery even when treatment is
instituted months after the stroke. However, pharmacological
interventions are still limited to support rehabilitation after
stroke.

Appropriate neuronal function depends on interconnected
and well-organized circuits of inhibitory interneurons and
excitatory projection of cortical pyramidal neurons. Any changes
in the synaptic stability and organization of inhibitory neurons
may impair the regulation of excitatory circuits. GABAergic
neurotransmission, therefore, is a key element regulating the
excitation/inhibition balance, and brain connectivity.

Background—Elements of GABAergic
Neurotransmission
γ-aminobutyric acid (GABA) is the main inhibitory
neurotransmitter in the adult brain. Together with the excitatory
neurotransmitter glutamate, GABA neurotransmission regulates
the inhibitory-excitatory balance necessary for adequate brain
function. In the adult brain, GABA is responsible for the
hyperpolarization of the cell, preventing the conveyance of

neuronal action potentials. The main functions of GABA in
mediating inhibitory neuronal activity have been extensively
studied. In addition, research is focused on unraveling new
roles of the amino acid in non-neuronal cell functions and
pathologies. There are two main types of GABA receptors
ionotropic GABAA(GABAARs) receptors and metabotropic
GABAB receptors (GABABRs; Wu and Sun, 2015).

Glutamic Acid Decarboxylase Isoforms
Synthesis of GABA in neurons is catalyzed by two isoforms of
the glutamicacid decarboxylase, GAD65, and GAD67 (Pinal
and Tobin, 1998). These key enzymes convert glutamate
to GABA. Different functions of each isoform appeared
mainly due to studies from knock-out mice (Asada et al.,
1997; Condie et al., 1997; Kash et al., 1997; Tian et al.,
1999). GAD67 has been found to be constitutively active
and provide the majority of the cytosolic GABA, while GAD65 is
mainly responsible for synaptic GABA production released
from synaptic vesicles during neurotransmission (Pinal
and Tobin, 1998; Battaglioli et al., 2003). Together, both
isoforms exhibit different cellular distribution and structural
properties (Dupuy and Houser, 1996; Jin et al., 2003). Their
function strongly depends on post-translational modifications
including phosphorylation, palmitoylation, and cleavage
(Lee et al., 2019).

While GAD67 is a hydrophilic cytoplasmic protein,
GAD65 undergoes post-translational hydrophobic
modifications, which enable it to be anchored on the membrane
compartments of the synaptic vesicles (Kanaani et al., 1999,
2002). Further studies have confirmed that the two isoforms can
interact with each other, creating heterodimers in the membrane
of the synaptic vesicles (Kanaani et al., 2004, 2010). This indicates
that GAD67 is not only involved in maintaining metabolic levels
of cellular GABA but may also contribute to the rapid vesicular
accumulation of GABA in the presynaptic terminal for covering
the incremental needs of synaptic neurotransmission by vesicular
release into the synaptic cleft (Kanaani et al., 2010).

GABAA Receptors
GABAA receptors belong to the family of Cys-loop ligand-
gated ion channels and are responsible for mediating most of
the fast inhibitory neurotransmission in the central nervous
system (CNS). When GABA binds to these receptors at
post-synaptic sites, the ion channel opens, enabling the influx
of chloride (Cl−) ions into the cell along a concentration
gradient resulting in a change in the membrane potential.
Together with other factors such as the maturation status
of cells, either de- or hyperpolarization of the post-synaptic
mature neuron occurs (Fritschy and Panzanelli, 2014). GABAA
receptors are pentameric channels which are composed of
a variety of subunits. Nineteen genes have been identified
encoding GABAA receptor subunits (α1–α6, β1–β3, γ1–γ3, δ,
ε, π, θ, ρ1–ρ3) in mammals, demonstrating that there is high
heterogeneity assembling the receptor (Barnard et al., 1998;
Bonnert et al., 1999). Experimental evidence suggests that the
GABAA receptor assembled of different subunit compositions
provide variable functions and pharmacological properties

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 807911

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Michalettos and Ruscher Post-stroke GABAergic Neurotransmission and Inflammation

(Gingrich et al., 1995; Browne et al., 2001; Dixon et al., 2014).
The second type of GABAA receptor previously described as
the GABAC receptor, is a homopentameric ion channel solely
comprised of ρ1-ρ3 subunits with distinct distribution in the
CNS (Wegelius et al., 1998).

Depending on their cellular localization, GABAA receptors
have been categorized into synaptic and extra-synaptic,
mediating synaptic (phasic), and extra-synaptic (tonic)
inhibition, respectively (Farrant and Nusser, 2005; Glykys
and Mody, 2007; Brickley and Mody, 2012). The most
common stoichiometry, accounting for the majority of the
overall distribution of GABAA receptors in the brain, is the
heteropentameric form consisting of two α-subunits, two β-
and one γ-subunit, with the α1α1β2β2γ2 combination (Sieghart
and Sperk, 2002; Goetz et al., 2007). Initially, segregation
was made between synaptic and extrasynaptic receptors with
synaptic (phasic) GABAA receptors being composed primarily
of α1–3, β1–3, and γ1–3 subunits and extrasynaptic GABAA
receptors consisting of α4, α5, α6, or δ-subunits. However,
electrophysiological studies combined with pharmacological
application of GABAA receptor positive allosteric modulators
have revealed that subunits, previously defined as ‘‘synaptic’’ are
also found in somatic membranes of neurons (Lindquist and
Birnir, 2006; Stojanovic et al., 2016). In specific, zolpidem, a
positive allosteric compound of α1-, α2-, α3-, and γ2- containing
GABAA receptors, activated such receptors in granule neurons
of the dentate gyrus, however, to a lesser extent compared to
compounds that target α4-, α6-, and δ- containing receptors
(Lindquist and Birnir, 2006). These results indicate that a higher
receptor subunit diversity of extrasynaptic receptors.

Depending on the neuronal cell type, GABAA receptors
can be localized in different subcellular regions such as in
somata, dendrites, synapses, and in the non-synaptic membrane
(Somogyi et al., 1989). Furthermore, the δ-subunit is assembled
in the place of the γ2 subunit and is typically associated with
the α4 and α6-subunit isoforms (Clarkson, 2012; Fritschy and
Panzanelli, 2014). Several studies have revealed that the β2,
β3, γ2 variants are the most abundant isoforms participating
in the assembly of the majority of GABAA receptors subtypes,
with α4βδ complexes being mostly located in the cortex,
hippocampus, and thalamus and α6βδ complexes being located
in the cerebellum (Fritschy and Panzanelli, 2014; Nguyen and
Nicoll, 2018).

Similar distribution patterns of GABAA receptor subunits
have been found in rodents and immunohistochemical and
in situ hybridization studies on post-mortem human tissue
(Waldvogel et al., 2010). Most of the αsubunits exhibit laminar
expression in the cerebral cortex similar to that of rodents
(Akbarian et al., 1995; Lewohl et al., 1997; Waldvogel et al.,
2010; Stojanovic et al., 2016). In addition, structures such as the
hippocampus, the basal ganglia, and the thalamus in the human
brain exhibit a high degree of similarity to rodents regarding
the expression profile of GABAA receptor subunit subtypes and
their subcellular localization (Houser et al., 1988; Waldvogel
et al., 1999; Loup et al., 2000; Popken et al., 2002; Stojanovic
et al., 2016). However, it should be noted that differences have
been observed, mostly on the expression level of individual

subunit subtypes (Waldvogel et al., 2010). Furthermore, due to
the difficulty of conducting relevant experiments in humans,
there is limited data on the dynamics of receptor composition
in the human brain, an aspect taken into consideration when
translating preclinical results to the human brain.

Topological Dynamics of GABAA Receptor
Subunits
The localization of GABAA receptors is a dynamic process,
which involves the trafficking of the ion-channel receptors
along the surface of the neurons (Choii and Ko, 2015; Lorenz-
Guertin and Jacob, 2018). When focusing on synaptic inhibition,
GABAA receptors, either through lateral diffusion or exocytosis,
accumulate in the membrane of the post-synaptic neuron.
Synaptic localization of the receptor is determined by its
interaction with a ‘‘local’’ anchoring complex, consisting of
gephyrin molecules (Craig et al., 1996; Studler et al., 2005; Goetz
et al., 2007).

Several studies have focused on the importance of the γ2-
subunit maintaining the ability to cluster on the inhibitory
synapses (Kittler and Moss, 2003; Kittler et al., 2004). Lack of the
γ2-subunit and replacement by δ-containing GABAA receptors,
along with their respective α4, α5, and α6 variants, prevents
localization at the synaptic cleft and such GABAA receptors
are found almost exclusively extrasynaptically, mediating tonic
inhibition through ambient GABA levels (Nusser and Mody,
2002; Stell et al., 2003; Zheleznova et al., 2009). However,
this model seems not rigid, since GABAA receptors containing
ofα1β2γ2 or α3β3γ2 subunits can also be found in extrasynaptic
membranes, although less frequently, thus determining a
dynamic system regarding the localization of GABAA receptors
(Nusser et al., 1998; Mortensen et al., 2012).

The above-mentioned distribution pattern of extrasynaptic
receptors is found in cerebellar granular cells, the dentate gyrus,
the thalamus, in the granular cortical layers as well as in the
hippocampus (Nusser and Mody, 2002; Sieghart and Sperk, 2002;
Zheleznova et al., 2009). The α1-α3 subunits exhibit unique
distribution patterns and partial overlap, with the α1 subunit
being the most prevalent throughout the adult mouse forebrain
(Sieghart and Sperk, 2002; Fritschy and Panzanelli, 2014).

Spatiotemporal and Age-Related
Alterations in GABAA Receptor Subunits
Expression
The GABAergic neurotransmitter system is highly modular and
dynamic. Variables such as age, sex, environmental factors,
dietary habits, circadian cycle, contribute to the complexity
of successfully translating preclinical findings into precise
personalized clinical care. For example, spectroscopy studies on
humans regarding the response of GABA to motor learning
revealed a decrease of the inhibitory neurotransmitters in
the motor cortex (M1) in intervals of neuronal plasticity
changes (Sampaio-Baptista et al., 2015; Kolasinski et al.,
2019). Furthermore, the progression of the ovarian cycle alters
the number of δ-containing GABAARs in the hippocampus,
ultimately affecting the electrophysiological properties of the
local circuitry (Barth et al., 2014). In parallel, GABAAR subunit
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expression is modulated by estrogens, however, in-depth studies
are warranted if these changes depend on the brain region
(Herbison and Fénelon, 1995). Subunit expression does not differ
between males and females in the temporal cortex, although
differences in other brain regions cannot be excluded (Pandya
et al., 2019). Furthermore, alcohol dependence studies focused
on post-mortem human brains have revealed spatial alterations
in the expression of certain GABAA subunits, indicating possible
changes in receptor composition that could be indicative of
the behavioral pathology in dependence (Jin et al., 2012;
Bhandage et al., 2014).

Interestingly, subunits such as the ε and ρ2 subtypes which
are less frequently studied were not only confirmed on transcript
level in the human brain but were also demonstrated to undergo
regulation (Bhandage et al., 2014). Nevertheless, the extent to
which functional subunits are integrated into receptors and
are modulated by the same post-translational modifications
observed in rodents remains to be elucidated in humans.

In the context of aging, evidence shows that the GABAergic
system might be affected in older age, unable to exert its
fine-tuned inhibitory efficacy on the neural circuits of the brain,
ultimately affecting plasticity and adaptiveness to brain injury.
In specific, electrophysiological studies conducted on transgenic
APPSwe mice, a rodent model of Alzheimer’s disease (AD),
revealed that GABA-induced currents in the dentate gyrus
(DG) of the hippocampus are not altered in this area by age
alone but in combination with the presence of Alzheimer’s
disease pathology (Hammoud et al., 2021). In accordance
with this observation, electrophysiological recordings on human
temporal cortices with AD demonstrated impaired GABAergic
signaling (Limon et al., 2012). This effect was attributed to
possible alterations in the composition of GABAA receptors,
overall affecting the brain’s response to GABA (Limon et al.,
2012). On the other hand, quantitative studies on human
cortical samples revealed that the expression of most of the
elements comprising the GABAergic system remains robust
throughout age with the exception of certain subunits and
GAT-1 (Pandya et al., 2019). Additionally, alterations in subunit
expression differ throughout aging between males and females
(Ethiraj et al., 2021).

GABAB Receptors
GABAB receptors belong to the family of G protein-coupled
receptors (GPCR). They are responsible for the later and slower
component of inhibitory transmission and are found both on the
pre- and post-synaptic membrane (Huang et al., 1995; Sakaba
and Neher, 2003; Ulrich and Bettler, 2007). GABAB receptors are
comprised of two subunits, R1 and R2. Their regulation varies
on the transcriptional and post-translational levels dependent on
the physiological or pathological condition (Benke et al., 1999;
Billinton et al., 2000; Terunuma et al., 2010; Kantamneni et al.,
2014). The majority of GABAB receptors inhibit isoforms of the
adenyl cyclase (AC) through the Gαi/o subunits (Wojcik and
Neff, 1984; Xu and Wojcik, 1986; Terunuma, 2018). In parallel,
different isoforms of AC have been demonstrated to undergo
stimulation as a result of ligand binding due to activation from
Gβγ subunits of GPCR receptors (Tang and Gilman, 1991;

Terunuma, 2018), indicating a multi-functional role of these
receptors in modulating intracellular signaling pathways and
neuronal activity.

Activation of GABAB receptors is also coupled to K+ and/or
Ca2+ channels via G-protein mediated pathways (Gähwiler
and Brown, 1985; Huang et al., 1995; Misgeld et al., 1995;
Sodickson and Bean, 1996; Filippov et al., 2000). Both channels
are either activated or inhibited by β and γ subunits of
the G protein. Upon opening of G protein-gated inward
rectifying potassium (GIRK) channels, membrane potential
changes, reducing the excitability of neurons in their resting
phase. In addition, GABAB receptors inhibit voltage-sensitive
calcium (Ca2+) channels (VSCC) controlling the rate of
neuronal firing as well as neuronal processes dependent on
the dynamics of intracellular calcium (Mintz and Bean, 1993;
Pfrieger et al., 1994; Lambert and Wilson, 1996; Limon et al.,
2012; Bhandage et al., 2014; Hammoud et al., 2021). As such,
both channels have been demonstrated to be determinant
elements in defining synaptic transmission and plasticity in
neuronal networks under physiological conditions as well as
brain pathologies (Chung et al., 2009; Frank, 2014; Marron
Fernandez de Velasco et al., 2015; Sánchez-Rodríguez et al., 2017;
Nanou and Catterall, 2018).

In this review, we will focus on the relevance of the
aforementioned elements of the GABAergic system in the
context of brain injury, specifically ischemia and stroke,
and their possible interactions with the inflammatory and
immune response found in the post-ischemic brain during the
recovery phase of stroke. We will focus on the involvement
of GABAA receptors as mediators of neuronal activity and
synaptic plasticity and the perspective of pharmacological
intervention, contributing to neuroprotection and the
recruitment of cellular repair mechanisms necessary to facilitate
stroke outcome.

GABAergic Neurotransmission After
Stroke
An initial increase in the release of GABA is found in the
ischemic brain following global ischemia (Globus et al., 1991)
and focal ischemia induced by permanent occlusion of the
middle cerebral artery (Ruan et al., 2017). Interestingly, to
counteract the excitotoxic insult various studies demonstrate
that an enhanced GABAergic tonus i.e., by administration of
GABAergic agents prior to ischemia or shortly after the ischemic
episode provides neuro protection in preclinical stroke models
(Corbett et al., 2008). In addition, the identification of molecules
and cascades that enhance GABAergic neurotransmission
during the acute phase after stroke has been a promising field
defining neuroprotective compounds. For example, peptide
hormones, such as oxytocin and insulin, have been characterized
for their in vitro neuroprotective role through mechanisms
of GABAA receptor subunit upregulation and increased
post-ischemic cell-surface receptor stability, respectively
(Mielke and Wang, 2005; Kaneko et al., 2016). In addition,
erythropoietin, a glycoprotein whose application has been
extensively investigated in stroke for its protective effect, has
been demonstrated to enhance GABAergic activity (Ruscher
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et al., 2002; Gonzalez et al., 2007; Juenemann et al., 2020; Roseti
et al., 2020). While levels of GABA increased, the immediate
intrinsic reaction of insulted cells appears to downregulate
and internalize cell-surface GABAA receptors after the insult
(Kittler et al., 2005; Mielke and Wang, 2005; Mele et al., 2014;
Costa et al., 2016). Decreased density of plasma-membrane
receptors has been associated with truncation of anchoring
structures as well as post-translation modifications on regulatory
residues of receptor subunits that promote clathrin-dependent
endocytosis (Kittler et al., 2005; Mielke and Wang, 2005; Mele
et al., 2014; Costa et al., 2016). Despite promising preclinical
results, early administration of benzodiazepines did not
favor outcomes in patients and even increased post-stroke
mortality at 90 days (Lodder et al., 2006; Colin et al., 2019).
The discussion of unsuccessful translation is beyond the
scope of this review and will need to involve all aspects
of translation of preclinical data into clinical development
and practice.

Modulation of processes that contribute to recovery beyond
the time window of neuroprotection represents a paradigm
shift aiming at enhancing brain plasticity mechanisms following
stroke. Results from preclinical studies and clinical observations
provide evidence of an increased inhibition of neuronal function
that impedes the recovery of lost neuronal function, importantly
independent of the lesion size (Hagemann et al., 1998; Bütefisch
et al., 2003; Xie et al., 2014). This elevated inhibitory tonus is
mediated by the GABAergic system and prevents the restoration
of impaired neuronal function in the area of the lesion, hindering
the effectiveness of repair mechanisms such as axonal regrowth,
synapse formation, and cytoskeletal rearrangement (Paik and
Yang, 2014; Joy and Carmichael, 2021).

After the acute phase, layer 2/3 pyramidal neurons are
exposed to a high degree of GABAergic tonic inhibition
mediated by extrasynaptic receptors and attributed to GABA
transporter (GAT-3/4) dysfunction (Clarkson et al., 2010). This
effect lasts for up to 2 weeks after focal permanent ischemia
induced by photothrombosis (Clarkson et al., 2010). Specific
pharmacological inverse antagonism on the α5 subunit of
GABAA receptors improved functional outcomes (Clarkson
et al., 2010; Wang et al., 2018). At the same time, the brain may
intrinsically lower tonic inhibition. This mechanism, however,
is associated with an increased frequency of epileptic discharges
(Jaenisch et al., 2016).

In addition, enhanced phasic GABAergic signaling has been
found in cortical layer 5 of the peri-infarct area during the first
and second week of the recovery phase of stroke (Hiu et al.,
2016; Feng et al., 2020). This effect seems to be mediated by α1-
containing GABAA receptors (Hiu et al., 2016; Neumann et al.,
2019). It is of note that an increase of α1-containing GABAA
receptors in the synapses of lower cortical areas adjacent to
the ischemic core might be highly region-specific. Interestingly,
transcript levels of the α1 subunit are decreased in the
proximal peri-infarct cortical area 7 days after photothrombosis
(Kharlamov et al., 2008). This indicates the regulation on both
the level of gene transcription as well as post-translational
modifications, which may affect recycling/trafficking of receptors
(Han et al., 2021). An overview on changes in the expression of

GABAA receptor subunits in different rodent stroke models over
time is summarized in Table 1.

Furthermore, adaptive plasticity processes in the lesioned
hemisphere function together with remote neuronal networks,
i.e., in the homotopic regions of non-lesioned hemisphere
(Cramer, 2008; Carmichael, 2012; Boddington and Reynolds,
2017; Hakon et al., 2018). Interestingly, synaptic α3 subunits are
upregulated in the contralateral motor cortex of rats subjected to
photothrombosis (Redecker et al., 2002). We recently also found
an interhemispheric asymmetry of the α3 subunit on transcript
level during the recovery phase of stroke (Michalettos et al.,
2021). This might be interpreted as intrinsic action to avert a
preponderance of neuronal activity on the contralateral side. In
addition, α3-containing GABAA receptors may possess distinct
kinetic and functional properties, regarding to their response to
GABA activation (Gingrich et al., 1995; Browne et al., 2001).
However, despite these studies, the exact role and regulation of
synaptic GABAergic neurotransmission in the the modulation of
neuronal function and plasticity remains to be studied in detail.

Data from these studies are obtained from young male
rodents. Further studies will be required to understand how
age and sex contribute to GABAergic neurotransmission
following stroke. From a GABAergic perspective, adaptive
plasticity mechanisms may be impaired in the aged brain
due to a prevalenceof GABAA receptors showing different
pharmacological kinetics and response to GABA compared
to young animals. In addition, evaluating inhibitory tonus as
a measure of repressed plasticity in the post-injured brain,
concomitant changes in the excitatory input may occur, making
it difficult to estimate changes in the overall excitatory/inhibitory
balance of the neural circuits undergoing rearrangement.
In specific, both GABAA and GABAB receptors have been
demonstrated to interact with α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) and N-methyl-D-aspartate
(NMDA) receptors in a positive feedback manner, both on the
level of neurotransmitter release and excitatory and inhibitory
post-synaptic currents (Ben-Ari et al., 1997; Chen et al., 2000;
Fiszman et al., 2005; Kantamneni, 2015; Schulz et al., 2018).

Despite GABAA receptors being the receptor involved in the
majority of cascades, activation of GABAB receptors has also
been proposed to participate in cellular responses mediating
neuronal survival (Costa et al., 2004), further contributing to the
role of GABA as an all-around protecting-mediator of neuronal
injury.

Immune/Inflammatory Response in Stroke
Inflammation is one of the core processes involved in the
pathophysiology of stroke (Iadecola and Anrather, 2011).
Following neuronal cell death and the initiation of the ischemic
cascade, several immunological cascades take place in order to
isolate and restore function to the lesioned area (Lakhan et al.,
2009). However, depending on the severity of the damage and the
magnitude of the immune response, secondary inflammation can
further contribute to the collateral damage of the injured area,
prevailing for weeks after the end of the acute ischemic phase
(Rayasam et al., 2018). Processes such as microglial activation
and migration, upregulation of pro-inflammatory cytokines,
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TABLE 1 | Changes of GABAA receptor subunita expression in rodent models of stroke.

Brain region Subunits after stroke
(most common form of naive brain
α1α1β2β2γ)

Time point
after stroke

Stroke model
species

References

Infarct core α1↓ (WB)
β3↓(WB)
γ2↓ (WB)

Day 2 tMCAO
mouse

Mele et al. (2014)

Peri-infarct cortex and
lateral contralateral brain

α1↓ (Immunohisto)
α2↓ (Immunohisto)
α3↓(Immunohisto)
α5↓(Immunohisto)
γ2 ↓(Immunohisto)

Day 7
Day 30

PT
rat

Redecker et al. (2002)

Peri-infarct cortex α1↓(Immunohisto)
α2↓ (Immunohisto)
α3↓(Immunohisto)

Day 7 PT
rat (young and aged)

Schmidt et al. (2012)

Peri-infarct cortex α5↑(Immunohisto) Day 7 PT
rat (aged)

Schmidt et al. (2012)

Homotopic contralateral
cortex to infarct

α3↑ (Immunohisto, qPCR) Day 7
Day 14

PT
rat and mouse

Redecker et al. (2002) and
Michalettos et al. (2021)

Motor cortex (M1)
Penumbra -Layer 2/3

α4↓ (WB, qPCR)
δ↓ (WB, qPCR)
β3↓ (WB, qPCR)

Day 7 tMCAO
rat and mouse

Jaenisch et al. (2016)

Peri-infarct cortex—Layer 5 α1-containing receptors↑(Array tomography) Day 7 PT
mouse

Hiu et al. (2016)

Peri-infarct and
Contralateral cortex

α1 (RT-PCR)↓ Day 7 PT
rat

Kharlamov et al. (2008)

Ipsilateral cortex vs.
Contralateral cortex

α1 (WB)↑ Day 30 PT
rat

Kharlamov et al. (2008)

Abbreviations: IHC, immunohistochemistry; PT, photothrombosis; tMCAO, transient occlusion of the middle cerebral artery; WB, Western blot; qPCR, quantitative PCR. Up arrow
indicates upregulation, down arrow indicates downregulation.

sealing of the injured area through glial scar formation, leucocyte
chemotaxis, and infiltration, increase in blood-brain barrier
(BBB) permeability, and recruitment of adaptive immunity
mechanisms characterize the early environment of the brain in
the acute and sub-acute phase of stroke (Morioka et al., 1993; Vila
et al., 2000; Gelderblom et al., 2009; Lakhan et al., 2013; Pawluk
et al., 2020). However, it is still unclear which components of the
inflammatory response, either innate or adaptive, are responsible
for providing a neuro-protective role and which contribute to
further induced collateral damage to the lesioned ischemic tissue.

Modulation of Glial Function by
GABA—Relevance for Post-stroke
Inflammation
Upon stroke, microglia, pericytes, and astrocytes, begin to seal
the injured area through a process termed reactive gliosis (Burda
and Sofroniew, 2014; Sims and Yew, 2017). The glial scar
separates the necrotic area of the infarct core from the adjacent
tissue and potentially viable neurons capable of retaining their
cellular physiology. The glial scar not only provides a physical
barrier but also represents a rather dynamic microenvironment
regulating biochemical, intracellular, and extracellular functions
in the vicinity of the injured area (Sofroniew, 2005; Becerra-
Calixto and Cardona-Gómez, 2017; Sims and Yew, 2017). The
physiological role of astrocytes in processes of homeostasis of
neurotransmitters, transport of water, ion buffering, metabolic
surveillance, and immunomodulation, has been well-established
(Sofroniew, 2005; Becerra-Calixto and Cardona-Gómez, 2017;

Sims and Yew, 2017). In addition, microglia, the resident
immune cell of the brain, play a pivotal role in mediating
inflammation and neuronal plasticity after CNS injury (Lull and
Block, 2010; Anttila et al., 2017).

Interestingly, astrocytes possess components of the
molecular machinery to synthesize, metabolize and store
GABA, 4-aminobutyrate transaminase (GABA-T), GABA
transporters as well as ionotropic and metabotropic receptors
(Lee et al., 2011; Höft et al., 2014). The repertoire of GABAAR
subunits also varies between astrocytes dependent on their
localization (Riquelme et al., 2002; Höft et al., 2014). For
instance, electrophysiological studies on spinal cord astrocytes
showed opposite effects of inverse benzodiazepine agonism in
fibrous and protoplasmic types suggesting alterations of receptor
composition while undergoing morphological transitions
(Rosewater and Sontheimer, 1994). In addition, astrocytes
mediate neurotransmitter homeostasis through non-synaptic
interactions such as uptake via GAT2 and GAT3 and metabolic
conversion (Schousboe et al., 2013). Furthermore, with the
exception of GAD, microglia also express ionotropic and
metabotropic receptors as well as GABA-T (Kuhn et al., 2004;
Lee et al., 2011; Nieman et al., 2020). However, the function of
these receptors and transporters is poorly understood.

In contrast to astrocytes, microglia express the γ2-subunit
(Höft et al., 2014; Nieman et al., 2020). It has been demonstrated
that microglia actively survey and interact with synapses,
extending their processes over the bulbous area of the
synaptic buttons (Wake et al., 2009). The dynamics of these
interactions are altered following transient middle cerebral
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artery occlusion (tMCAO) in mice (Wake et al., 2009). As
such, microglial GABAA receptors may directly associate with
gephyrin complexes in the synaptic clusters, possibly affecting
the trafficking of receptors (Schousboe et al., 2013). This type
of direct interaction has not been verified for GABAA receptors
in spinal cord microglia, but rather exclusively for glycinergic
receptors (Cantaut-Belarif et al., 2017). Further studies are
required to evaluate similar mechanisms in brain resident
microglia.

The effect of GABA on astrocytes and microglia reducing
the activation of inflammatory mediators NF-κB and
p38 and the release of TNFα and Il-6 after stimulation with
lipopolysaccharide (LPS) and interferon-γ in vitro has been
previously reported (Kuhn et al., 2004; Lee et al., 2011).
NF-κB has been proposed as a detrimental inflammatory
mediator in stroke, contributing to collateral neuronal damage
(Schneider et al., 1999; Crack et al., 2006; Inta et al., 2006;
Saggu et al., 2016). The Delta subunit-selective compound DS2,
a positive allosteric modulator of extrasynaptic δ-containing
GABAA receptors (Jensen et al., 2013), has demonstrated
neuroprotective properties after photothrombosis and, to
some extent, the treatment exerted functional recovery
following stroke by attenuation of the NF-κB response
(Neumann et al., 2019). However, due to low BBB penetration,
it has been speculated that the mechanism of action of
DS2 is not associated with modulatory effects on brain
resident glial cells but rather through functional changes in
peripheral immune cells (Jin et al., 2013; Neumann et al.,
2019). These findings indicate that GABA could potentially
act specifically on astrocytes of the glial scar, preventing
an excessive activation of NF-κB. Likewise, the reduced
transcriptional activity of NF-κB in reactive astrocytes may
facilitate axon regeneration and thus neural repair mechanisms
(Saggu et al., 2016; Becerra-Calixto and Cardona-Gómez,
2017).

Effects of GABA on Immune Cell Function
in the Post-ischemic Brain
Different populations of immune cells accumulate in the
ischemic territory (Gelderblom et al., 2009), integrated
in an inflammatory/immune response (Iadecola et al.,
2020). Functional GABAA receptors have been found on
microglia, dendritic cells, T cells, natural killer (NK) cells,
monocytes/macrophages, B cells, and neutrophils, respectively,
all cells have been reported to be involved in post-stroke
inflammation. However, for most of immune cell populations,
an exact link between GABA and functional changes in immune
cells has not been provided following stroke. The following
review of studies, therefore, summarizes potential mechanisms
how GABA may regulate immune cell functions in the post-
ischemic brain (Figure 1).

Microglia/Dendritic Cells
Microglia express both GABAA and GABAB receptors (Kuhn
et al., 2004; Cheung et al., 2009). Activation of mainly the GABAB
type receptors attenuated the release of lipopolysaccharide-
induced IL-6 and IL-12p40, the latter acting as a chemo attractant

for macrophages and promoting the migration of dendritic
cells (Cooper and Khader, 2007). In addition, GABAergic
signaling has been directly linked to an increased migratory
activity of dendritic cells infected with Toxoplasma gondii
(Fuks et al., 2012).

Moreover, stimulation of microglia with either GABA
or muscimol, a selective GABAA receptor agonist, resulted
in different levels of radical species production in cultured
microglia indicating differently composed GABAA receptors and
intracellular cascades involved in mediating GABAergic signals
(Mead et al., 2012). In addition, administration of muscimol
(Lee et al., 2011) to microglia stimulated with lipopolysaccharide
(LPS)/interferon-γ, the latter typically shows elevated levels
following stroke (Kuric and Ruscher, 2014) significantly reduced
the level of pro-inflammatory cytokines interleukin 6 (IL-6)
and tumor necrosis factor alpha (TNFα). Together, results
point towards anti-inflammatory actions of GABA on microglial
cells. Further studies will be required to exactly determine the
composition as well as functionality of different GABAA and
GABAB type receptors in the post-ischemic brain.

Monocytes/Macrophages
Likewise to microglia, GABAA receptors, as well as GABA
synthesizing enzymes, are found in cells of the monocytic
lineages (Wheeler et al., 2011). Interestingly, treatment with
GABA downregulates phagocytosis and motility of macrophages
and monocytic cells (Wheeler et al., 2011). Thus, an increased
GABAergic tonus that develops during the first days after
stroke onset might be beneficial to counteract the excessive
phagocytic activity of phagocytes. In addition, GABAA receptor
signaling restrains ‘‘M1’’ activation but fosters ‘‘M2’’ polarization
in pulmonary macrophages (Januzi et al., 2018). This is of
importance since increased levels of GABA in the ischemic
territory may restrain the release of cytokines that otherwise
would perpetuate detrimental actions pro-inflammatory actions.

T Cell Populations
Similar to other immune cell populations, GABA exerts
immunomodulatory actions on T cells (Bjurstöm et al., 2008;
Dionisio et al., 2011). Effects of an increased GABAergic
tonus on the number of different T cells subpopulations after
stroke have not been determined. Hence, GABA contributes to
TCR-mediated T cell cycle progression silencing CD4+ T cells in
the G0/G1 phase consisting of a higher portion of CD3+/CD28+
cells without affecting their viability (Tian et al., 2004). In
addition, it has been demonstrated that administration of GABA
or homotaurine, a GABAA receptor-specific agonist, is involved
in increasing the number of regulatory T cells in EAE as well
as type1 Diabetes models (Tian et al., 2018). Specifically, in the
experimental autoimmune encephalitis (EAE) model, treatment
enhanced the number of CD8+CD122+PD-1+ and CD4+Foxp3+
Treg cells. Regulatory CD19+IL-10+ B cells were not affected.
Interestingly, IL-10+B-cell treated mice show an increased
number of IL-10+CD8+CD122+ Treg population. Generation
of these cells has been associated with spleen preservation
and reduced CNS inflammation after tMCAO (Bodhankar
et al., 2015). The role of CD4+Foxp3+ Treg cells in stroke
recovery, however, remains divergent in might be dependent
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FIGURE 1 | Putative involvement of GABAergic signaling in neuro-immunological crosstalk after stroke. Following stroke, neurons, glial, and immune cells
synthesize and release GABA. In addition, GABAA and GABAB receptors and specific GABA transporters are found in a number of immune and glial cells. GABA
exerts anti-inflammatory effects and changes in the function of GABAceptive neurons indicated in the figure. The figure was created with Biorender.com.

on the stroke model, different microenvironments in the post-
ischemic brain as well as the time intervals after the insult
(Liesz and Kleinschnitz, 2016). In addition, homotaurine inhibits
autoreactive Th17 and Th1 responses as well as relevance for
stroke recovery processes. Stimulation of T cells with GABA also
has been shown to inhibit the production of pro-inflammatory
cytokines and therefore it attenuates the T cell response in
inflammatory disease models such as EAE but also in Diabetes
models (Soltani et al., 2011; Prud’homme et al., 2015). In addition
to GABAA receptor activation-mediated effects on T cells, a
reasonable number of publications demonstrate some of the
GABAergic effects are at least partially mediated by activating
the GABA transporter type 1 (GAT-1; Wang et al., 2008). It is
exclusively expressed on activated T cells primed with antigens.
Increased influx of GABA via the transporter downregulates
proliferation of the CD4+ T cells (Wang et al., 2008).

Natural Killer Cells
NK cells represent a population of innate immune cells
accounting for about 5%–20% of human blood (Perera

Molligoda Arachchige, 2021). Recently, this population has
been defined as GABAergic cells due to the release of
the neurotransmitter upon stimulation/exposure to pathogens
and/or inflammatory stimuli (Bhandage et al., 2021). This would
predestine NK cells’ interaction with other immune cells and
brain resident GABAceptive cells. One possible GABA-driven
interaction comes from experiments performed in NK cells
and dendritic cells infected with Toxoplasma gondii (Bhandage
et al., 2021). Here, stimulation with exogenous GABA reduced
degranulation and cytotoxicity of NK cells. Conversely, NK cells
conditioned medium containing GABA enhanced migration
of parasitized dendritic cells. Such interactions might be of
relevance in the post-ischemic brain since both cell types
significantly contribute to post-stroke inflammatory cascades
(Gan et al., 2014).

Impact of Chemokine Pathways on
GABAergic Neurotransmission
Chemokines and respective receptor driven inflammatory
cascades have been identified as an essential component in stroke
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recovery mechanism and may offer a promising field identifying
novel targets to improve functional outcome.

The absence of the C-C chemokine receptor type 5 (CCR5)
receptor, for example, results in worse outcomes in mice
after stroke exhibiting bigger infarct sizes, sustained invasion
of neutrophils during the first 7 days, and reduced brain
plasticity in the chronic recovery phase (Sorce et al., 2010; Ping
et al., 2021). In contrast, conditional knockdown of neuronal
CCR5 prior to stroke or pharmacological antagonism of CCR5
1 day after the stroke incident were shown to be beneficial for
the neurological outcome and enhanced brain plasticity (Joy
et al., 2019). Similarly, the C-X3-C Motif Chemokine Ligand
1/C-X3-C Motif Chemokine Receptor 1 (CX3CL1/CX3CR1)
pathway, which is unique in the CNS, has been implied to possess
divergent functions. While CX3CL1 or CX3CR1 deficiency
points towards a neuroprotective role (Soriano et al., 2002;
Dénes et al., 2008), administration of CXC3L1 to wild-type
mice or cx3cl1−/− mice showed reduced ischemic lesions in
wildtype animals while an increase in lesion sizes was found
in knockout littermates, respectively (Cipriani et al., 2011).
We have previously reported that CX3CR1 deficiency does
not affect infarct size and outcome, but causes alterations in
the morphology of microglia populating the peri-infarct area
(van der Maten et al., 2017).

Pharmacological antagonism of C-X-C Motif Chemokine
Receptor 1/C-X-C Motif Chemokine Receptor 2
(CXCR1/CXCR2) by the C-X-C Motif Chemokine Ligand
8 (CXCL8) receptor blocker reparixin aiming at attenuating
leukocyte infiltration promoted functional outcome and reduced
infarct size (Villa et al., 2007). Likewise, C-C Motif Chemokine
Receptor 2CCR2−/− knockout mice exhibited beneficial
outcome after tMCAO, with reduced monocyte and macrophage
infiltration as well as reduced BBB permeability (Dimitrijevic
et al., 2007). We have previously shown that pharmacological
antagonism of C-X-C Motif Chemokine Receptor 4 (CXCR4)
with AMD3100 attenuates the accumulation of CX3CR1-
positive microglia and contributes to enhanced recovery of lost
neurological function (Walter et al., 2015). Likewise, conditional
knockout of the CXCR4 gene in hematopoietic stem cells
(HSCs) and their derivatives, such as circulating monocytes and
monocyte-derived macrophages, results in a reduced population
of immune cells in the ischemic territory, after both PT and
tMCAO (Werner et al., 2020).

Besides their function on inflammatory cells, experimental
evidence emerge revealing a role of chemokine-driven cascades
in neurons and neuronal function in the post-ischemic brain
(de Haas et al., 2007). Following a stroke, an upregulation of
CCR5 transcripts has been detected in neuronal cells, which
was not detectable before the insult and in naïve mice (Joy
et al., 2019). To which extent transcripts are translated into
functional proteins remains to be elucidated. We previously
found that NeuN+ neurons express CXCR4 in the peri-infarct
area, as a target for AMD3100 treatment to specifically
modulate this pathway (Ruscher et al., 2013). Similarly,
CCL2 and CX3CR1 are upregulated in neurons following
hypoxia or ischemia (Andres et al., 2011; Wang et al., 2018).
CCR2 has also been demonstrated to affect GABA-induced

currents in spinal neurons, indicating mechanistic interactions
between chemokine receptors and GABAA receptors (Gosselin
et al., 2005). GABA-induced currents are also affected by
cytokines (Giacco et al., 2019). Susceptibility of neurons to
chemokines and cytokines potentially modulates mechanisms
of synaptic plasticity, neurotransmitter receptor expression
and neurotransmitter-producing enzymes. Therefore, we
will summarize the current evidence on how chemokine
pathways interact with the GABAergic neurotransmission
following stroke.

Cross Talk Between the
CX3CL1/CX3CR1 Pathway and GABAergic
Neurotransmission
It has been previously described that CX3CL1, as a membrane-
bound protein found both in neurons and glial cells, undergoes
cleavage after excitotoxic conditioning. Shedding of the protein
is characteristic of the ischemia onset (Chapman et al., 2000;
Meucci et al., 2000; Wang et al., 2018). As such, the soluble
form of the chemokine acts in a paracrine fashion on microglia
and neurons, as well as a chemotactic agent for infiltrating
immune cells (Imai et al., 1997; Dichmann et al., 2001;
Tarozzo et al., 2002; Wang et al., 2018). Electrophysiological
studies on hippocampal neurons and serotonin neurons of the
dorsal raphe nucleus have demonstrated that the application
of CX3CL1 enhances inhibitory post-synaptic currents through
GABAA receptors but depresses excitatory inputs from AMPA
receptors through post-translational modifications (Ragozzino
et al., 2006; Heinisch and Kirby, 2009). From a GABAergic
perspective, the neuroprotective role of CX3CL1 could be
attributed in part to enhanced inhibitory currents and suppressed
AMPA receptor function during the acute excitotoxic phase of
ischemia (Cipriani et al., 2011).

Studies on both physiological and pathological conditions,
such as epilepsy, demonstrate that the CX3CR1 pathway may
regulate the number of post-synaptic GABAA receptors or
their sensitivity to GABA and thus their subunit composition
(Heinisch and Kirby, 2009; Roseti et al., 2013). We have shown
that CX3CR1 deficiency modulates the expression of GABAA
receptor subunits in the recovery phase of stroke both in the
ischemic and contralateral to the lesion hemisphere (Michalettos
et al., 2021). This indicates that plastic procedures occurring
in the homotopic contralateral motor region may be partially
mediated by a CX3CR1-dependent mechanism. However, it
needs to be further elucidated whether this effect is the result
of neuronal receptor absence or an altered microglia-synapse
interaction (Wake et al., 2009).

Involvement of CXCR4/CXCL12 in
Neuromodulation After Stroke
The upregulation of the CXCR4/CXCL12 pathway in the
ischemic hemisphere has been extensively described (Stumm
et al., 2002; Schönemeier et al., 2008; Wang et al., 2012;
Ruscher et al., 2013). However, there is limited data on the
aspect of how the CXCR4/CXCR7/CXCL12 axis modulates
neuronal function following stroke. It is well established
that post-natal neurons express functional CXCR4 receptors,
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including GABAergic interneurons (Trecki et al., 2010; Wu
et al., 2017). Electrophysiological studies point towards a
pre-synaptic mode of action of the receptor, mediating
Ca2+-dependent release of GABA (Guyon et al., 2006;
Heinisch and Kirby, 2010), and a post-synaptic mode
of action, possibly involving direct interactions of the
receptor with GABAB receptors (Guyon et al., 2006). In
addition, it has been demonstrated that CXCL12 modulates
CX3CL1 homeostasis by regulating CX3CL1 expression as
well as CX3CL1 cleavage rate under physiological conditions
(Cook et al., 2010). We have confirmed this interaction
in vivo, in the recovery phase of mice subjected to PT, in
which pharmacological antagonism with AMD3100 resulted
in reduced CX3CL1 levels, both membrane-bound and
soluble (Walter et al., 2015). Therefore, low levels of
CX3CL1 may shift the inhibitory-excitatory balance towards
an excitatory tissue environment, allowing for beneficial
plastic procedures to take place, a process which might be
age-dependent.

As such, the potential effects of AMD3100 on the inhibitory-
excitatory balance of the post-ischemic brain involve two distinct
levels of interactions, including modulation of inflammatory
response and regulation of neuronal function. Increased levels
of GAD enzymes and GAD67-positive neurons have been
observed in the ipsilateral striatum 1 to 2 days after transient
forebrain ischemia (Li et al., 2010). An increase of inhibitory
neurons in the vicinity of the ischemic tissue was attributed
to resident somatostatin-expressing neurons shifting to a
GABAergic phenotype and not the maturation of migrating
neural precursor cells (Li et al., 2010). In vitro studies, on the
other hand, showed that the CXCR4 pathway is related to the
maturation process of embryonic hippocampal neurons through
the induction of GAD67 expression (Luo et al., 2008). We have
demonstrated that administration of AMD3100 for 2 weeks
resulted in decreased expression of GAD67 and GABAA subunits
in the peri-infarct area (Michalettos et al., 2021). This might be
related to a reduced formation of GAD67-positive interneurons

or direct regulation of GAD67 expression downstream of
neuronal CXCR4 receptors. The downregulation of GABAA
receptors by the treatment was not subunit-specific. Therefore,
it is likely that inflammatory mediators are responsible for
the synthesis/turnover of several types of GABAA receptors.
Further research is required to delineate the exact mechanism of
action of CXCR4 regarding the regulation of GABAA receptors
in healthy and injured neurons undergoing adaptive plastic
procedures.

CONCLUSIONS

Based on solid preclinical studies, post-stroke GABAergic
neurotransmission and detrimental inflammatory cascades have
been targeted in clinical trials. However, studies did not meet
primary endpoints for several reasons. From the preclinical
point of view, we are beginning to understand the complex
interaction between inflammatory cascades and neuronal
functions. Only with full comprehension about pathophysiology
of adaptive neuronal plasticity and definitions in conjunction
with well-designed clinical trials will allow for implementation of
new adjuvant treatments to enhance neurological functions after
ischemic stroke.
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