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Bacterial meningitis is a life-threatening infectious disease with high morbidity and
mortality worldwide, among which meningitic Escherichia coli is a common Gram-
negative pathogenic bacterium causing meningitis. It can penetrate the blood–brain
barrier (BBB), invoke local inflammatory responses and consequently disrupt the
integrity of the BBB. Interleukin-17A (IL-17A) is recognized as a pro-inflammatory
cytokine that is released during meningitic E. coli infection. It has been reported that
IL-17A is involved in several pathological tissue injuries. However, the function of IL-17A
in BBB breakdown remains rarely discussed. Here, our study found that E. coli-
induced IL-17A led to the degradation of tight junction proteins (TJs) and adherens
junction proteins (AJs) in human brain microvascular endothelial cells (hBMECs) through
inhibiting protease proteinase 3 (PRTN3)/protease-activated receptor 2 (PAR-2) axis,
thus increasing the permeability of BBB. In summary, this study uncovered the
involvement of IL-17A in regulating BBB integrity and proposed a novel regulatory
mechanism, which could be potential therapeutic targets of E. coli meningitis.

Keywords: IL-17A, Escherichia coli meningitis, blood−brain barrier, permeability, PRTN3, PAR-2

INTRODUCTION

Bacterial meningitis is a severe life-threatening infectious disease of the central nervous system
(CNS) and a major cause of death or disability worldwide, especially in newborns (Leib and Tauber,
1999). There are a variety of pathogens that are classically associated with bacterial meningitis
including Group B Streptococcus, Streptococcus pneumoniae, Escherichia coli, Neisseria meningitidis,
and Haemophilus influenzae type B (Snyder and Brunjes, 1965; Booy and Kroll, 1998; Orihuela
et al., 2009; Mook-Kanamori et al., 2011). Among these, meningitic E. coli is the most common
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Gram-negative bacillary organism (Janowski and Newland,
2017). To cause meningitis, E. coli must persist in the blood long
enough, interact with and cross the blood–brain barrier (BBB),
and invoke inflammatory responses (Kim, 2003).

Blood–brain barrier is a microvasculature that coordinates
the movement of molecules and cells between the CNS and
bloodstream (Zlokovic, 2008). It comprises brain microvascular
endothelial cells (BMECs), pericytes, and astrocyte endfeet
and maintains CNS homeostasis (Hawkins and Davis, 2005).
Among these component cells, BMECs are the most direct and
functional structural component of BBB and are characterized
by the presence of tight junction proteins (TJs) and adherens
junction proteins (AJs) (Dejana et al., 2009; Edwards et al.,
2013). TJs are mainly composed of zonula occludens (ZOs),
occludin, claudins, and AJs are primarily composed of vascular
endothelial cadherin (VE-cadherin) (Bayir and Sendemir, 2021).
The distribution or decrease of these TJs and AJs leads to
an increased BBB permeability. Increased BBB permeability
has been reported in numerous diseases, such as neoplasia,
hypertension, experimental allergic encephalomyelitis, trauma,
and neurotropic viral infections (Scholz et al., 2007; Candelario-
Jalil et al., 2009). Inflammatory factors such as tumor necrosis
factor alpha (TNF-α), interleukin-6 (IL-6), C-C motif ligand
2 (CCL2, also known as MCP-1) are reported to mediate
BBB breakdown, which ultimately leads to the infiltration of
peripheral leukocytes and brain injury (Sarami Foroshani et al.,
2018; Siqueira et al., 2021; Xu D. et al., 2021). However, the
underlying mechanisms by which these factors regulate BBB
permeability in response to infection remain largely unclear.

Interleukin-17A (IL-17A) is the first identified member of the
IL-17 family. Both αβT-cells and γδT-cells are associated with its
production in infectious diseases (Papotto et al., 2017; Stockinger
and Omenetti, 2017). Increased understanding of the biology of
IL-17A has revealed that this inflammatory cytokine is involved
in the modulation of acute or chronic bacterial infections,
as well as other inflammation-associated diseases (Veldhoen,
2017). It has been shown that overproduced IL-17A promotes
hyperinflammation and tissue damage in various diseases. For
example, IL-17A mediates the production of vascular endothelial
growth factor (VEGF), a major manager for vasculopathy, and
aggravates neovascular retinopathy (Talia et al., 2016). Moreover,
IL-17A also increases the permeability of alveolar epithelia (Bai
et al., 2021). Notably, increasing studies support that IL-17A
is involved in the breakdown of BBB integrity and subsequent
neuroinflammation, for example, in multiple sclerosis (MS) or
Group A Streptococcus infection (Tzartos et al., 2008; Dileepan
et al., 2016). Despite these, whether IL-17A mediates BBB
disruption in meningitic E. coli and the detailed mechanism by
which IL-17A disrupts the BBB remain poorly understood.

In the present study, we characterized IL-17A as significantly
up-regulated and an essential inflammatory cytokine in mouse
brains in response to E. coli. Our in vivo and in vitro results
demonstrated that IL-17A contributed to the disruption of
BBB integrity by decreasing TJs and AJs. Further investigation
suggested IL-17A down-regulated TJs and AJs of BMECs at the
post-transcriptional level by inhibiting serine protease proteinase
3 (PRTN3)/protease-activated receptor 2 (PAR-2) axis. These

observations indicated a novel strategy regarding the mechanism
of meningitic E. coli-induced IL-17A in disrupting BBB and
aggravating CNS dysfunction, which might be a potential
therapeutic target for E. coli meningitis.

MATERIALS AND METHODS

Bacterial Strains and Cell Culture
Escherichia coli strain PCN033 used herein was initially isolated
from swine in cerebrospinal fluid from a diseased farm in China,
2006 (Liu et al., 2015). Bacterial cells were routinely grown in
Luria-Bertani medium at 37 ◦C.

The human brain microvascular endothelial cells (hBMECs)
were routinely cultured in RPMI1640 supplemented with 10%
fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM sodium
pyruvate, essential amino acids, non-essential amino acids,
vitamins, and penicillin and streptomycin (100 U/mL) in 37◦C
incubator under 5% CO2 until monolayer confluence (Stins et al.,
2001). Confluent cells were washed with Hanks’ balanced salt
solution and starved in serum-free medium (1:1 mixture of Ham’s
F-12 and M-199) for 16–18 h before the experiment.

Animal Infection Assay
The C57BL/6 wild-type mice and IL-17A knockout mice (kindly
provided by Prof. Anding Zhang in Huazhong Agricultural
University) were challenged with E. coli through the tail vein at 1
× 107 CFUs suspended and diluted in phosphate-buffered saline
(PBS; pH 7.4). The mice were anesthetized and the brains were
harvested after cardiac perfusion for further assays.

For survival assay, anesthetized mice were pre-treated with
IL-17A (10 ng/mouse, i.p.) or PBS 12 h before injection E. coli,
followed by the injection (i.v.) of E. coli. The survival of each
group of mice (n = 14) was recorded during the observation
period of 24 h after E. coli infection.

Evan’s Blue Assay
The BBB permeability of C57BL/6 wild-type mice and IL-17A
knockout mice was evaluated using Evan’s blue dye (St. Louis,
MO, United States), 500 µL Evan’s blue (5 mg/mL) was injected
via the tail vein to allow circulation for 10 min before the
mice were sacrificed and perfused. Brains were then taken and
photographed for extravascular staining of the dye.

Reverse Transcription and Real-Time
Polymerase Chain Reaction
TRIzol reagent (Aidlab Biotech, Beijing, China) was utilized
to isolate total RNA of brains or hBMECs. Aliquots (500 ng)
of the total RNA in each sample were subjected to cDNA
synthesis using the HiScript II Q RT SuperMix (Vazyme, Nanjing,
China). Real-time PCR was performed with the real-time
PCR thermal cycler qTOWER3 (Analytikjena, Jena, Germany)
using MonAmpTM SYBR R© Green qPCR Mix (Monad Biotech,
China) according to the manufacturers’ recommendations.
Primers for real-time PCR were listed in Supplementary
Table 1. Transcriptional levels of the target mRNA were
normalized to GAPDH.
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Cytokine mRNA Assay
QuantiGene Plex 2.0 Assay (Panomics, Santa Clara, CA,
United States) was used for cytokine mRNA quantification in the
mouse brains as described elsewhere (Kottilil et al., 2009).

Cytokine Protein Assay
Procartaplex Multiplex Immunoassays (eBioscience, San Diego,
CA, United States) was used for measuring cytokines of
brain lysates according to the manufacturer’s instructions
(Lu et al., 2015).

Western Blotting
Mouse brains or hBMECs were lysed using
radioimmunoprecipitation assay buffer (EpiZyme, Shanghai,
China) with protease inhibitor cocktail (MedChemExpress,
Monmouth, NJ, United States), followed by centrifugation at
12,000 rpm for 15 min at 4◦C to remove the insoluble cell
debris. The protein concentrations were measured by using
the bicinchoninic acid protein assay kit (CWBiotech, Beijing,
China). Equal amounts of protein were further separated
by 12% SDS-PAGE and electrophoretically transferred to
polyvinylidene difluoride (PVDF) membranes. The blots
were blocked with Tris-buffered saline-Tween (TBST)
containing 5% bovine serum albumin for 2 h, and subsequently
incubated with primary antibodies against ZO-1 (1:1,000;
220 kDa; Abcam, Cambridge, MA, United States), Occludin
(1:1,000; 59 kDa; Abcam, Cambridge, MA, United States),
Claudin-5 (1:1,000; 23 kDa; Affinity Biosciences, Changzhou,
China), VE-Cadherin (1:1,000; 120 kDa; Affinity Biosciences,
Changzhou, China), IL-17A (1:1,000; 18 kDa; Proteintech,
Chicago, IL, United States), PRTN3 (1:1,000; 28 kDa;
Proteintech, Chicago, IL, United States), β-actin (1:5,000;
42 kDa; Proteintech, Chicago, IL, United States). Membranes
were subsequently washed and incubated with horseradish
peroxidase-conjugated anti-rabbit or anti-mouse secondary
antibodies (1:5,000; Biodragon, Beijing, China). The blots were
visualized with the Super electrochemiluminescence Prime
kit (US Everbright, Suzhou, China) and densitometrically
analyzed using Image Lab software (Bio-Rad, Hercules,
CA, United States).

Histopathological Examination
For hematoxylin and eosin (H&E) assay, mice brain tissues were
immersed in 4% paraformaldehyde for 4h, and transferred to 70%
ethanol. Individual lobes of tissues biopsy material were placed
in processing cassettes, dehydrated through a serial alcohol
gradient, and embedded in paraffin wax blocks. Before staining,
5 µm-thick tissue sections were dewaxed in xylene, rehydrated
through decreasing ethanol concentrations, and washed in PBS,
and then stained with hematoxylin and eosin. After staining,
sections were dehydrated through increasing concentrations of
ethanol and xylene.

Immunofluorescence Analysis
For immunofluorescence (IF) assay, sections were incubated
with the primary antibody against ZO-1, Occludin (Abcam,

Cambridge, MA, United States), Claudin-5, VE-Cadherin
(Affinity Biosciences, Changzhou, China), followed by
incubation with Cy3 conjugated secondary antibody. The same
sections were then incubated with CD31 (Proteintech, Chicago,
IL, United States) primary antibody, followed by incubation with
FITC conjugated secondary antibody prior to the final nucleus
staining with DAPI. Sections were photographed and analyzed
using BX41 Microscopy (Olympus, Tokyo, Japan).

Electrical Cell-Substrate Impedance
Sensing
To evaluate the real-time alteration of the monolayer cell
resistance, electrical cell-substrate impedance sensing (ECIS)
system (Applied BioPhysics, Troy, MI, United States) was applied
to compare the transendothelial electrical resistance (TEER)
values in hBMECs with or without recombinant IL-17A protein
seeded on the collagen-coated, gold-plate electrodes in 96-well
chamber slides (96W1E+) as previously described. Two ECIS
parameters, R (�), representing the electrical cell-cell contacts,
and Rb (�cm2), representing paracellular barrier, were extracted
from the continuously recorded impedance spectra to reflect the
real-time changes of the monolayer barrier function.

Statistics

All results are displayed as mean ± SD, and the significance
of differences between groups was evaluated by one-way
ANOVA. The survival curve analysis, log-rank (Mantel–Cox) was
performed to test the significance of the difference between the
evaluation groups. All statistical analyses were performed using
GraphPad Prism software.

RESULTS

Interleukin-17A Was Significantly
Up-Regulated in Escherichia
coli-Challenged Mice
To evaluate the intensity of inflammatory responses elicited
by meningitic E. coli, the mRNA transcription, as well
as protein expression of cytokines and chemokines, were
assessed in the brain by using QuantiGene Plex 2.0 Multiplex
assay and Procartaplex Multiplex Immunoassays. Among these
data, IL-17A was significantly up-regulated within hours of
infection at the transcriptional level (Figure 1A) and expression
level (Figure 1B). By applying qPCR and Western blotting
assay, we further verified that the expression of IL-17A
in the brain was increased in a time-dependent manner
(Figures 1C,D). These findings suggested that meningitic E. coli
infection in mice can cause a significant increase of IL-
17A in the brain.

Interleukin-17A Promoted the Disruption
of Blood–Brain Barrier Integrity
Since a high level of IL-17A was detected in mouse brains
after E. coli infection, we next investigated the function of
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FIGURE 1 | Interleukin-17A expression in mouse brains triggered by E. coli infection. Quantification of IL-17A expression in the brains of E. coli challenged mice at
both the transcriptional and protein levels by applying QuantiGene Plex 2.0 Assay (A) or Procartaplex Multiplex Immunoassays (B). **p < 0.01 and ***p < 0.001 by
one-way ANOVA analysis. Data were collected and presented as mean ± SD from three replicates at each time point. (C) Real-time PCR verification of the IL-17A
mRNA transcription in the brains of E. coli challenged mice. Data were collected and presented as mean ± SD from three replicates at each time point. *p < 0.05
and ***p < 0.001 by one-way ANOVA analysis. (D) Western blot verification of the IL-17A protein expression in the brains of E. coli challenged mice. β-Actin was
used as the loading control.

IL-17A in regulating BBB permeability. As Figure 2A shown,
intravenous (tail vein) injection of recombinant IL-17A (1, 5,
10, and 20 ng/mouse) for 12 h could dose-dependently increase
the amount of Evans blue dye leaking out of the blood vessels
compared with the control, which meant the increase of BBB
permeability. In addition, IL-17A could also time-dependently
increase the permeability of BBB (Supplementary Figure 2A).
Further observation indicated that E. coli-caused increase of BBB
permeability in WT mice could be restored by knocking out
IL-17A (Figure 2B).

The hBMECs were subsequently used as in vitro model. We
additionally tested the effects of IL-17A on TEER value, an
important indicator of the monolayer permeability (Fu et al.,
2021), by application of ECIS system. The results showed
that IL-17A could dose-dependently down-regulate the TEER
value of hBMECs monolayer (Figure 2C). Taken together,

these observations indicated that E. coli-induced IL-17A could
negatively affect the integrity of BBB.

Interleukin-17A Disrupted Blood–Brain
Barrier Integrity by Downregulating Tight
Junction Proteins and Adherens
Junction Proteins
As mentioned above, TJs and AJs determine the integrity of
BBB, and we investigated whether TJs or AJs were involved
in the IL-17A mediated disruption of BBB. In vivo, IF was
performed to examine the distribution and expression of ZO-
1, Occludin, Claudin-5, and VE-Cadherin in mouse brain
tissues. The results showed that ZO-1, Occludin, Claudin-5, and
VE-Cadherin were well-organized and distributed around the
vascular in the control mice brain. In contrast, when treated
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FIGURE 2 | Interleukin-17A contributes to the increase of BBB permeability. (A) Effects of the recombinant mouse IL-17A (0, 1, 5, 10, and 20 ng/mouse) on the
permeability of the mice brain evaluated by Evan’s blue approach. (B) The permeability of control mice, E. coli challenged WT or IL-17A KO mice evaluated by Evan’s
blue approach. (C) TEER changes of hBMECs in the treatment of multiple dosage of IL-17A monitored by the ECIS system. Data were collected and presented as
mean ± SD from three replicated wells at each time point.

with E. coli, the TJs and AJs around the vascular became
inconsecutively distributed, irregular gapped, or down-regulated
in WT mice. In contrast, these adverse effects of infection on
TJs and AJs were significantly reversed by knocking-out IL-17A
(Figures 3A–D).

In vitro, by treating hBMECs with different dosages of
recombinant IL-17A, the expression of ZO-1, Occludin,
Claudin-5, and VE-Cadherin at the protein level was
significantly decreased. However, there was no significant
difference at the transcriptional level (Figures 3E,F).
These findings suggested that in meningitic E. coli
infection, IL-17A was able to affect the integrity of BBB

by down-regulating TJs and AJs at the post-transcriptional
level.

The Post-transcriptional Regulation of
Interleukin-17A to Tight Junction
Proteins and Adherens Junction Proteins
Through Inhibiting Proteinase
3/Protease-Activated Receptor 2 Axis
As we have demonstrated that IL-17A could post-
transcriptionally regulate the expression of TJs and AJs,
further investigations were taken to determine a more detailed
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FIGURE 3 | Interleukin-17A treatment downregulates the expression of TJs and AJs. IF analysis of vascular endothelium integrity in infected WT or IL-17A KO mice.
ZO-1 (A), Occludin (B), Claudin-5 (C), and VE-Cadherin (D) were selected as the markers reflecting the integrity of the vascular endothelium. CD31 was applied
explicitly for labeling the microvessels. Scale bar indicates 50 µm. (E) The qPCR analysis of ZO-1, Occludin, Claudin-5, and VE-Cadherin transcription in hBMECs
treated by multiple dosages of IL-17A (0, 1, 5, 10, and 20 ng/mL). GAPDH was used as the internal reference. Data were presented as mean ± SD from three
independent experiments. (F) Western blot analysis of ZO-1, Occludin, Claudin-5, and VE-Cadherin in hBMECs in response to multiple dosages of IL-17A. β-Actin
was used as the loading control.

regulatory mechanism of this phenomenon. It was reported
that the ubiquitin-proteasome system and autophagy were the
primary mechanisms for degrading protein; however, neither
the proteasome inhibitor MG-132 nor the autophagy inhibitor
chloroquine showed reverse decrease of TJs and AJs in hBMECs
induced by IL-17A (Figures 4A,B).

Previous studies have demonstrated that a serine protease
PRTN3 was able to enhance endothelial cell barrier and
thus vascular integrity through cleaving and activating PAR-2
(Kuckleburg and Newman, 2013). Therefore, we next focused

on the expression of PRTN3, and the observation showed that
the mRNA transcription (Figure 4C) and protein expression
(Figure 4D) of PRTN3 were significantly down-regulated
in hBMECs in response to IL-17A treatment in a dose-
dependent manner.

To examine whether the decrease of PRTN3 reduces the
barrier function of hBMECs, PRTN3 overexpression constructs
were used to validate its regulative effects on TJs. As
demonstrated, PRTN3 overexpression did not influence the
mRNA transcription of the ZO-1, Occludin, Claudin-5, and
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FIGURE 4 | Interleukin-17A treatment decreases PRTN3 expression hBMECs. Western blot analysis of ZO-1, Occludin, Claudin-5, and VE-Cadherin extracted from
IL-17A untreated hBMECs and IL-17A treated hBMECs with or without the presence of Proteasome inhibitor MG-132 (A) or autophagy inhibitor chloroquine (B).
β-Actin was used as the loading control. (C) The qPCR analysis of PRTN3 transcription in hBMECs treated by multiple dosages of IL-17A (0, 1, 5, 10, and
20 ng/mL). GAPDH was used as the internal reference. Data were presented as mean ± SD from three independent experiments. **p < 0.01 and ***p < 0.001 by
one-way ANOVA analysis. (D) Western blot analysis of PRTN3 in hBMECs in response to multiple dosages of IL-17A. β-Actin was used as the loading control.

VE-Cadherin (Figure 5A). Meanwhile, at the protein level,
PRTN3 overexpression could significantly restore the decrease
of ZO-1, Occludin, Claudin-5, and VE-Cadherin in hBMECs
caused by IL-17A (Figure 5B). As mentioned above, PRTN3
enhances the endothelial cell barrier through activating PAR-
2; we subsequently determined the function of PAR-2 in TJs
and AJs disruption. We pre-treated hBMECs with AC-55541,
a novel small molecule agonist of PAR-2. The results revealed
that PAR-2 agonist significantly inhibited the decrease of TJs
and AJs protein expression induced by IL-17A (Figure 5D),
and it also had no effect on the transcription of TJs and
AJs (Figure 5C). Correspondingly, the ECIS assay showed that
PAR-2 agonist could ameliorate the loss of TEER value of
hBMECs monolayer induced by IL-17A (Figure 5E). These

results indicated that IL-17A could decrease the expression
of TJs and AJs of hBMECs at the post-transcriptional level
via inhibiting PRTN3/PAR-2 axis, thus augmented the vascular
permeability of BBB.

Interleukin-17A Aggravated Brain Tissue
Damage and Reduced Survival Rate in
Escherichia coli-Challenged Mice
We further determined the effects of IL-17A in mice throughout
E. coli meningitis pathogenesis. Histologic sections of the brain
showed that E. coli infection in WT mice could induce tissue
damage such as meningeal thickening and hemorrhage. This
pathological phenomenon was severer than that in IL-17A KO
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FIGURE 5 | Interleukin-17A disrupts TJs and AJs by inhibiting PRTN3/PAR-2 axis. (A) The qPCR analysis of ZO-1, Occludin, Claudin-5, and VE-Cadherin extracted
from IL-17A untreated hBMECs and IL-17A treated hBMECs with or without the overexpression of PRTN3. GAPDH was used as the internal reference. Data were
presented as mean ± SD from three independent experiments. ***p < 0.001 by one-way ANOVA analysis. (B) Western blot of ZO-1, Occludin, Claudin-5 and
VE-Cadherin extracted from IL-17A untreated hBMECs and IL-17A treated hBMECs with or without overexpression of PRTN3. β-Actin was used as the loading
control. (C) The qPCR analysis of ZO-1, Occludin, Claudin-5, and VE-Cadherin extracted from IL-17A untreated hBMECs and IL-17A treated hBMECs with or
without PAR-2 agonist AC-55541. GAPDH was used as the internal reference. Data were presented as mean ± SD from three independent experiments.
***p < 0.001 by one-way ANOVA analysis. (D) Western blot of ZO-1, Occludin, Claudin-5, and VE-Cadherin extracted from IL-17A untreated hBMECs and IL-17A
treated hBMECs with or without PAR-2 agonist AC-55541. β-Actin was used as the loading control. (E) TEER changes of the IL-17A untreated hBMECs and IL-17A
treated hBMECs with or without PAR-2 agonist AC-55541 monitored by the ECIS system. Data were collected and presented as mean ± SD from three replicated
wells at each time point.

mice. Notably, we observed that this phenomenon could be well
restored by the addition of recombinant IL-17A (Figure 6A).

Based on these observations, we evaluated the effects of IL-
17A on the lethality of mice. As shown in Figure 6B, when
challenged with E. coli, mice with IL-17A knocked out had a

higher survival rate than WT mice. In contrast, IL-17A KO
mice pre-injected with recombinant IL-17A could not improve
the survival rate of the infection. These data suggested IL-
17A aggravated the damage to the brain and thus led to
increased mortality.
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FIGURE 6 | Interleukin-17A aggravated brain tissue damage and reduced survival rate in E. coli-infected mice. (A) WT mice, IL-17A KO mice with or without adding
recombinant IL-17A, were infected with E. coli, the histopathological changes in the brain were investigated by H&E staining. Scale bar indicates 50 µm. (B) Survival
analysis curves for WT mice, IL-17A KO mice with or without adding recombinant IL-17A infected with E. coli. Data were collected and shown as Kaplan–Meier
survival curves from 14 individual mice. *p < 0.05 and **p < 0.01.

DISCUSSION

The BBB is a highly specialized structure that maintains
CNS homeostasis (Tajes et al., 2014). In bacterial meningitis,
pathogens such as E. coli, Neisseria, and Group B Streptococcus
always penetrate BBB, induce local CNS inflammatory responses,
and lead to the disruption of BBB (Booy and Kroll, 1998;
Kim, 2000; Herbert et al., 2004). BBB disruption is a typical
pathological phenomenon in many diseases related to CNS
disorders, including bacterial meningitis, Japanese encephalitis,
ischemic stroke, etc. (Wang et al., 2018; Liu C. et al., 2020;
Xu B. et al., 2021). Accumulating evidence has suggested that
host factors and cytokines are involved in the regulation of TJs
expression and contribute to BBB dysfunction. For example,
cytokines such as TNF-α and IL-6 (Sarami Foroshani et al.,
2018; Siqueira et al., 2021), chemokines such as CCL2 and IP-
10 (Wang et al., 2018; Xu D. et al., 2021), and growth factors
such as VEGF-A and PDGF-BB (Yang et al., 2016, 2019) are all
reported to induce BBB breakdown. However, there are limited
reports on whether IL-17A directly impacts BBB permeability.
In the current study, we reported that, as an essential pro-
inflammatory cytokine, IL-17A was significantly increased in
mouse brains after meningitic E. coli PCN033 infection. With
further in vivo and in vitro verification in response to infection,
we revealed that meningitic E. coli-induced IL-17A significantly
down-regulated the expression of TJs and AJs of hBMECs at

the post-transcriptional level through inhibiting PRTN3/PAR-2
axis, thus augmenting endothelial permeability and disrupting
BBB integrity. It ultimately facilitates brain damage and promotes
the death of mice.

Interleukin-17A is a key inflammatory factor that contributes
to the occurrence and development of several pathogenic injuries
such as severe intestinal injury, pancreatic injury, and acute
kidney injury (Chan et al., 2014; Kim et al., 2015). In Bacteroides
infection, IL-17A is significantly increased and helps disrupt
the intestinal barrier (Liu W. et al., 2020). In acute necrotizing
pancreatitis, the large number of induced IL-17A is correlated
significantly with TJs reduction and pancreatic injury (Guo et al.,
2019). It has also been reported that IL-17A harms proximal
tubule epithelium integrity and mediates renal injury (Dudas
et al., 2011). As for the brain, our in vivo and in vitro data
confirmed that IL-17A increases the permeability of BBB by
down-regulating the expression of TJs at the protein level rather
than the transcription level. To clarify its mechanism, many
genes reported to be involved in BBB breakdown were validated
by us. It was widely agreed that matrix metalloproteinases-2
(MMP-2), MMP-3, and MMP-9 are involved in the degradation
of TJs (Rosenberg and Yang, 2007; Oppenheim et al., 2013;
Weekman and Wilcock, 2016), however, in our study, IL-17A did
not up-regulate the expression of these MMPs (Supplementary
Figure 1). Furthermore, the ubiquitin-proteasome system and
autophagy are considered the important pathways for protein
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degradation (Varshavsky, 2017). However, the results showed
that these pathways were not involved in the IL-17A-induced
degradation of TJs. It reminds us that IL-17A affects BBB
permeability through a novel pathway.

Interestingly, it was reported that a serine protease called
PRTN3 could enhance endothelial barrier function and thus
vascular integrity by cleaving and activating PAR-2, a cathepsin
S cleaves protease-activated receptor (Kuckleburg and Newman,
2013). Our in vitro studies also found that IL-17A caused
a reduction of PRTN3 in both time-dependent and dose-
dependent manners (Supplementary Figures 2B,C), while the
application of PRTN3 overexpression construct or PAR-2 agonist
can well restore the reduction of TJs and AJs caused by IL-17A,
suggesting that IL-17A negatively regulates the BBB function at
the post-transcriptional level through inhibiting PRTN3/PAR2.

Dysfunction of BBB has been reported to cause severe
neurological complications, such as electrolyte disturbance,
intracerebral hemorrhage, and increased intracranial pressure, all
of which ultimately result in death (Duan et al., 2020; Yang et al.,
2021). When challenged with meningitic E. coli, due to the BBB
disruption induced by IL-17A, WT mice or IL-17A pre-treated
KO mice suffered more severe brain injuries, such as hemorrhage
and meningeal thickening compared to IL-17A KO mice. This
pathological change accelerated the death process of mice and
increased the mortality of mice. Nonetheless, it is increasingly
recognized that inflammation is a double-edged sword during
infection, which can be both a destroyer of tissue damage and
a helper of eliminating infection (Chaudhry et al., 2013). For
example, TNF-α was reported to trigger a sustained inflammation
response to destroy the invading of Mycobacterium tuberculosis
(MTB). However, excessive TNF-α can cause tissue damage and
necrosis, thus giving rise to organ dysfunction (Mootoo et al.,
2009). Our other study found that IL-17A might mediate E. coli
clearance via increasing antimicrobial peptides, which require
further investigation to comprehensively interpret the function
of IL-17A throughout E. coli meningitis pathogenesis.

CONCLUSION

In conclusion, the evidence highlights the importance of
IL-17A in meningitic E. coli-induced BBB disruption. We
demonstrate that IL-17A mediates TJs and AJs breakdown,
thereby augmenting BBB permeability via inhibiting
PRTN3/PAR2 axis during meningitic E. coli infection, leading
to severe neuroinflammation and neuronal injury. Elucidating
mechanisms of the IL-17A-induced BBB disruption may
provide an accurate and effective target for preventing BBB
breakdown in meningitis.
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