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Damage to DNA is generally considered to be a harmful process associated with
aging and aging-related disorders such as neurodegenerative diseases that involve the
selective death of specific groups of neurons. However, recent studies have provided
evidence that DNA damage and its subsequent repair are important processes in
the physiology and normal function of neurons. Neurons are unique cells that form
new neural connections throughout life by growth and re-organisation in response to
various stimuli. This “plasticity” is essential for cognitive processes such as learning
and memory as well as brain development, sensorial training, and recovery from brain
lesions. Interestingly, recent evidence has suggested that the formation of double strand
breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that
modifies gene expression during normal brain activity. Together with subsequent DNA
repair, this is thought to underlie neural plasticity and thus control neuronal function.
Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic
lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a
decline in cognitive functions, which are governed by plasticity. This suggests that
DNA damage and DNA repair processes that normally function in neural plasticity may
contribute to neurodegeneration. In this review, we summarize current understanding
about the relationship between DNA damage and neural plasticity in physiological
conditions, as well as in the pathophysiology of neurodegenerative diseases.
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INTRODUCTION

DNA damage is now widely implicated in aging and the pathophysiology of age-related
neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease
(AD), Huntington’s disease (HD), and Parkinson’s disease (PD) (Madabhushi et al., 2014; Machiela
and Southwell, 2020). However, emerging evidence suggests that DNA damage and DNA repair
are not only induced by pathological conditions (Ju et al., 2006; Tiwari et al., 2012; Suberbielle et al.,
2013; Madabhushi et al., 2015). The same processes involved in neurodegeneration as we age are
also involved in fundamental physiological functions of neurons that are related to neural plasticity.
Hence, DNA damage and repair are associated with neural plasticity, implying an important role
for these processes in neuronal function. Furthermore, in neurodegenerative diseases the selective
death of specific groups of neurons is present. This suggests that the unique properties of neurons
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may contribute to selective neurodegeneration in
pathophysiology. There are no previous comprehensive reviews
on the role of DNA damage and repair in neural plasticity in
neurodegenerative disorders. A previous collection entitled
‘‘DNA Damage, Neurodegeneration, and Synaptic Plasticity’’
(consisting of three research articles and one review) covered
only some aspects of this topic (Merlo et al., 2016). In this
review, we summarize current knowledge regarding the link
between neural plasticity and DNA damage in both physiological
conditions and in the pathophysiology of neurodegenerative
diseases.

TYPES OF DNA REPAIR IN NEURONS

DNA is subject to persistent assault from both endogenous and
environmental sources, and specific molecular pathways detect
and respond to specific types of damage (Jackson and Bartek,
2009). These mechanisms, collectively known as the ‘‘DNA
damage response (DDR)’’, are essential for neuronal viability,
although they decline significantly during aging (Agathangelou
et al., 2018). DNA can be damaged in several different ways.
When the phosphodiester bonds break in one or both DNA
strands, this results in single-stranded and double stranded
breaks (SSBs and DSBs respectively). Whilst DSBs arise less
frequently than SSBs, they are much more harmful (Chatterjee
and Walker, 2017). Each type of damage requires a specific
mechanism of DNA repair, although these processes can overlap
(Ma and Dai, 2018).

Neurons are terminally differentiated, post-mitotic, non-
replicating, long-lived cells, with high metabolic activity.
Therefore, their ability to cope with DNA damage differs from
mitotic or cycling cells because they need to withstand damage
throughout their lifespan. Neurons rely mostly on base excision
repair (BER) and nucleotide excision repair (NER) pathways to
deal with SSBs, and non-homologous end joining (NHEJ) to
repair DSBs (Fishel et al., 2007). Here we discuss those DNA
repair mechanisms most relevant to neurons. The reader is
directed to several excellent recent reviews for a comprehensive
discussion of all DNA repair mechanisms1 (see DNA damage
repair (Internet), 2021).

BER repairs minor base lesions that are not helix distorting,
such as the formation of 8-oxo-guanine (8-oxoG) bases resulting
from reactive oxygen species (ROS). Following damage, DNA
glycosylases such as 8-oxoguanine DNA glycosylase (OGG1) or
nei like DNA glycosylase 1 (NEIL1) remove the damaged base,
leaving an abasic site. Then, a nick in the phosphodiesterase
backbone is made by AP endonuclease 1 (APE1) or a
bifunctional glycosylase with lyase activity, creating DNA SSBs.
Poly (ADP-ribose) polymerase 1 (PARP1) then senses the
SSBs, which undergo repair by short-patch or long-patch BER
(Kim and Wilson, 2012).

NER repairs bulky lesions, including cyclobutane-pyrimidine
dimers, 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs),
chemical adducts, intrastrand crosslinks, and ROS-generated
cyclopurines (Horowitz et al., 2011; Gonzalez-Hunt and Sanders,

1https://www.nature.com/collections/hwnqqcstyj/

2021). These lesions are induced mostly by UV radiation
and exposure to chemicals that cannot cross the blood-brain
barrier. Therefore, the number of sources that can produce these
lesions in the brain is limited, although dopamine neurons are
vulnerable to oxidative DNA damage which can be repaired by
NER (Horowitz et al., 2011; Gonzalez-Hunt and Sanders, 2021).
In NER, after the detection of SSBs, an endonuclease complex
cuts the damaged strand, followed by gap-filling synthesis and
ligation (Chatterjee and Walker, 2017).

NHEJ is the primary DNA repair pathway for DSBs in
neurons. DSBs are recognized by ataxia telangiectasia mutated
kinase (ATM), which phosphorylates histone H2AX (γH2AX)
over the surrounding mega-base region of DNA (Thompson
and Limoli, 2000). The broken DNA ends are bound by the
DNA protein kinase complex (DNA-PK), which is composed of
Ku70/Ku80 heterodimers and the catalytic subunit of DNA-PK
(DNA-PKcs; Ciccia and Elledge, 2010). These ends are then
processed by the nuclease Artemis and DNA polymerases Polµ
or Polλ (Lieber, 2010), and ligated by a DNA ligase complex,
containing DNA ligase 4, X-ray cross-complementation group 4
(XRCC4), and XRCC4 like factor (XLF)/Cernunnos (Ahnesorg
et al., 2006; Buck et al., 2006). However, when classical NHEJ
repair is defective, DSBs can be repaired by alternative end
joining repair, A-NHEJ. A subset of A-NHEJ, which relies on
micro-homologous sequences on either side of the DSB, is
termed microhomology-mediated end joining (MMEJ; Wang
and Xu, 2017). MMEJ is an error-prone DSB repair mechanism
that results in chromosome translocations and rearrangements
(Wang and Xu, 2017). It begins with resection of the broken
DNA ends, which facilitates exposure of the micro-homologous
sequences that will be ligated. These sequences are then annealed
prior to ligation to form an intermediate structure with a 3′-
flap and gaps on both sides of the DSB. Subsequently, this
intermediate is removed to allow DNA polymerase to fill in the
gap and the broken ends are ligated by DNA ligase III/I (Wang
and Xu, 2017).

As neurons are post-mitotic, and thus non-replicating, it is
believed that DNA repair pathways associated with replicating
cells, such as mismatch repair (MMR) and homologous
recombination (HR), are absent in neurons (Fishel et al.,
2007; Welty et al., 2018). MMR corrects spontaneous base-base
mismatches and small insertion-deletion loops (indels) that are
generated during DNA replication (Pecina-Slaus et al., 2020). HR
requires undamaged DNA on the sister chromatid as a template
for repair, therefore it operatesmostly during the S andG2 phases
of the cell cycle (Welty et al., 2018). However, recent studies have
demonstrated that HR may be active in neurons because it can
utilize nascent mRNA during active transcription as a template
to repair DNA (Fishel et al., 2007; Welty et al., 2018), implying
that this mechanism is present in non-dividing, differentiated
neurons (Welty et al., 2018).

NEURAL PLASTICITY

Neurons are structurally and functionally unique, with
their unusual morphology and their ability to communicate
electrically and chemically via intricate synaptic contacts.
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FIGURE 1 | Simplified model of the interplay between neural plasticity and DNA damage and repair. Activation of NMDA/AMPA receptors at synapses induces
SSBs or DSBs and promotes their repair by BER or NHEJ, respectively. In turn, DNA damage and repair alters the expression and activity of these receptors, which
modulates neuronal gene expression, leading to changes in plasticity.

Synaptic plasticity refers specifically to the functional and
structural alterations of synapses that modulate the strength and
efficiency of communication between neurons. Neural plasticity
has a broader meaning and describes the ability of the nervous
system to change its activity in response to intrinsic or extrinsic
stimuli, by reorganizing its structure, function, or connections.
The phenomenon of neural and synaptic plasticity underlies
the molecular mechanisms involved in cognitive processes such
as learning and memory, but it is also important for brain
development and homeostasis, sensorial training, and recovery
from brain lesions (Mateos-Aparicio and Rodriguez-Moreno,
2019). Therefore, it is not surprising that disrupted plasticity
leads to a decline in cognitive functions and is associated with
age-related diseases, including Alzheimer’s disease, amyotrophic
lateral sclerosis, Huntington’s disease and Parkinson’s disease
(Phukan et al., 2007; Paulsen, 2011; Picconi et al., 2012; Zhao
et al., 2014).

Neuronal electrical excitation modulates plasticity (Hogan
et al., 2020) by three fundamental mechanisms: (a) long-term
depression (LTD), an activity-dependent reduction in the
efficacy of neuronal synapses (Ahn et al., 1999); (b) long-term
potentiation (LTP), persistent strengthening of synapses

that leads to a long-lasting increase in signal transmission
between neurons (Kandel, 2001); and (c) activity-associated
development of corticospinal circuitry for movement control
(Martin, 2005). In parallel with activity-associated plasticity,
structural modifications of axonal, dendritic branches, and spine
morphology occurs, constituting structural synaptic plasticity
(Mateos-Aparicio and Rodriguez-Moreno, 2019).

In the brain, glutamate is the major excitatory
neurotransmitter, whereas gamma aminobutyric acid (GABA)
is the principal inhibitory neurotransmitter. Both glutamatergic
excitatory and GABAergic transmission are important
molecular processes involved in synaptic plasticity and neuronal
activation. Glutamate receptors mediate fast excitatory synaptic
transmission in the CNS, and they regulate a broad spectrum
of processes. Ionotropic glutamate receptors are named after
their specific ligands: kainate, α-amino-3-hydroxy-5-methyl-
isoxazole-4-propionate (AMPA), and N-methyl-D-aspartate
(NMDA). The NMDA receptors (NMDARs) are crucial for
activity-dependent synaptic changes and learning and memory
(Baez et al., 2018). It is also increasingly recognized that
NMDARs participate in dendritic synaptic integration and are
critical for generating persistent activity of neural assemblies
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(Hunt and Castillo, 2012). GABAergic synapses, similar to
glutamatergic synapses, adjust their strength depending on the
pattern of neuronal activity. The plasticity of inhibitory synapses
is largely mediated by modulation of the expression, localization,
and function of GABA receptors (Mele et al., 2016).

NEURONAL ACTIVATION INDUCES DNA
DAMAGE

Several studies have shown that neuronal activity generates
DSBs in cultured neurons. Activation of ionotropic NMDA or
AMPA/kainate glutamate receptors induced DNA damage in
rat cortical neuronal cultures (Crowe et al., 2006). This was
detected by the formation of γH2AX foci, implying that DSBs
were generated by neuronal activation. Furthermore, this was
associated with activation of the Mre11-dependent DNA repair
pathway, which functions in DSB repair (Crowe et al., 2006).
The induction of DNA damage was related to increases in
intracellular calcium levels (Crowe et al., 2006), which is known
to contribute to mitochondrial dysfunction and an increase in
ROS (Krieger and Duchen, 2002). However, treatment with
the antioxidant, Vitamin E, and intracellular calcium chelator,
BAPTA-AM, did not protect neurons completely from DNA
damage, suggesting that it is also generated by other sources
not related to mitochondrial dysfunction and ROS (Crowe et al.,
2006).

Similarly, another study showed that cerebral cortical
neurons efficiently repair oxidative DNA lesions after transient
activation of glutamate receptors (Yang et al., 2010). This
was facilitated by BER involving DNA glycosylases OGG1 and
NEIL1 and cAMP-response element-binding protein (CREB)-
mediated APE1 expression (Stetler et al., 2010; Yang et al.,
2010). Furthermore, glutamate also activates nuclear factor-
kappa B (NF-kB) in neurons (Jiang et al., 2003), which promotes
DNA repair (Wang et al., 2009). Interestingly, elevated levels
of intracellular oxidative damage stimulate BER, resulting in
an increase in cellular survival (Chen et al., 1998; Ramana
et al., 1998; Cabelof et al., 2002). Higher concentrations of
glutamate (100 µM) can be deleterious for neurons (Mattson
et al., 1988). Interestingly, during learning and memory in
hippocampal neurons or activation of motor system neurons
during exercise, glutamate concentration in the synaptic cleft
transiently increases above 100 µM and reaches millimolar
values (Rao-Mirotznik et al., 1998; Choi et al., 2000). Therefore,
activation of synaptic glutamate receptors may upregulate DNA
repair systems, thereby increasing repair capability in neurons
(Yang et al., 2011). However, with a compromised DNA repair
system or increased oxidative stress, neurons become rapidly
overwhelmed and prone to cell death (Yang et al., 2011).

A recent study concluded that DSBs are generated
physiologically to resolve topological limitations to gene
expression in neurons. Topoisomerase enzymes participate
in the overwinding or underwinding of DNA and thus they
manage DNA topological constraints (McKinnon, 2016).
Neuronal activity produces DSBs at specific loci in vitro by
topoisomerase IIβ (TopIIβ), in the promoters of early response
genes (ERGs, also called immediate early genes, IEGs) that are

crucial for experience-driven changes to synapses, learning,
and memory (Ju et al., 2006; Tiwari et al., 2012; Madabhushi
et al., 2015). Interestingly, the expression patterns of ERGs
in response to neuronal stimulation correlated well with the
formation and repair of activity-induced DSBs (Madabhushi
et al., 2015), implying that generation of DSBs and their
subsequent repair are essential steps for proper gene function.
Furthermore, DSBs produced during neuronal excitation were
repaired within 2 h of the initial stimulus, suggesting that
this process employs rapid DNA repair mechanisms such as
NHEJ (Madabhushi et al., 2015). Similarly, in a more recent
study, physiological neuronal activity by exposure of mice to
learning behaviors through contextual fear conditioning (CFC)
induced the formation of DSBs. This was also associated with
experience-driven transcriptional changes within neurons (Stott
et al., 2021). Similarly, in another recent study, neurons were
found to accumulate DNA SSBs at specific sites within the
genome. These were repaired by PARP1 and XRCC1-dependent
mechanisms and were located within enhancers at, or near,
CpG dinucleotides or at sites of DNA demethylation (Wu et al.,
2021). Hence, together these studies suggest that DNA damage
may facilitate important physiological roles in neurons. This
is highlighted by the specific location of the associated DNA
breaks, the requirement for gene expression, and their generation
as a result of normal physiological processes.

DNA DAMAGE MODULATES
GLUTAMATERGIC NEUROTRANSMISSION
AND PLASTICITY

Whilst neuronal activation is associated with induction of DNA
damage, conversely, DNA damage has been shown to modulate
neuronal activity. Interestingly, DNA damage can alter the
activity of AMPA glutamate receptors (Lu et al., 2001). Induction
of SSBs in neurons with camptothecin, a topoisomerase I
inhibitor, resulted in decreases in AMPA-induced current and
calcium response to AMPA in whole cell patch clamp analyses.
This effect was abolished by pharmacological inhibition of
caspases, implying that caspases are involved in this process
(Lu et al., 2001). A link between DNA damage and altered
glutamatergic neurotransmission induced by stress and anxiety
has also been suggested (Reus et al., 2015). Rats selectively bred
for an anxiety phenotype, by either high or low contextual
fear conditioning, displayed more SSBs and DSBs in the
hippocampus, amygdala, and nucleus accumbens compared to
control animals. This correlated with changes in expression
of NMDA receptor subunits NR1, NR2A, and NR2B, and
excitatory amino acid transporter 1 (EAAT1), which removes
glutamate from the extracellular space. Expression of NMDA
receptor subunits and EAAT1 underwent further alterations
when animals were additionally stressed, further linking the
anxious phenotype, DNA damage, and glutamatergic system
(Reus et al., 2015).

The base-excision DNA repair (BER) pathway has also
been linked to maintenance of synaptic plasticity (Yu et al.,
2015). Epigenetic modifications play important roles in neuronal
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plasticity, learning, and memory, and in neurological disorders.
Cytosine methylation is the major covalent modification of
eukaryotic genomic DNA and demethylation is mediated
by the ten-eleven translocation (Tet) family of proteins.
Interestingly, Tet-initiated DNA demethylation is mediated
through BER in neurons (Yu et al., 2015) and synaptic activity
bi-directionally regulates neuronal expression of Tet3, and hence
DNA demethylation through BER. Expression of Tet3 and
Tet1 or inhibition of BER in hippocampal neurons correlated
inversely with excitatory glutamatergic synaptic transmission.
Furthermore, Tet3 regulated gene expression in response to
global synaptic activity changes and determined glutamate
receptor 1 (GluR1) levels at the neuronal surface (Yu et al.,
2015). Hence, it was suggested that BER modulates synaptic
plasticity and that Tet3 is a sensor to epigenetically regulate
the homeostatic synaptic plasticity of neurons. Similarly, a
role for the BER protein DNA polymerase β (Polβ) in the
early development of postnatal hippocampal pyramidal neurons
and learning and memory in mice was recently described in
another study. Polβ was implicated as an epigenetic regulator
that maintains genome stability in Tet-mediated active DNA
demethylation (Uyeda et al., 2020). In this process, the modified
base is replaced with cytosine by Polβ. Transgenic mice lacking
Polβ expression in forebrain postmitotic excitatory neurons
displayed extensive DSBs in hippocampal pyramidal neurons,
and to a lesser extent in neocortical neurons. This process was
related to the hydroxylation of 5-methylcytosine by Tet1 (Uyeda
et al., 2020). Interestingly, hippocampal neurons displaying DNA
damage exhibited aberrant gene expression profiles and dendrite
formation, but not apoptosis. In adult animals, impaired spatial
reference memory and contextual fear memory were detected
(Uyeda et al., 2020). Thus, this study links physiological DNA
damage to epigenetic regulation and subsequent learning and
memory.

Increasing evidence suggests that the introduction and
repair of DSBs is associated with long-term memory (LTM)
processes. LTM requires the establishment, maintenance, and
rearrangement of specific neural networks, within specific brain
areas involved in learning and memory. This was recently
shown to involve recombination-activating genes (RAGs) that
encode components of the protein complex that mediates the
rearrangement and recombination of genes of the adaptive
immune system (Castro-Perez et al., 2016). V(D)J recombination
is a somatic process that occurs in developing lymphocytes
during the early stages of T and B cell maturation. It results
in the highly diverse collection of immunoglobulins and T cell
receptors (TCRs) found in B cells and T cells respectively. This
is a tightly regulated process involving the generation of DNA
DSBs, and activation of DNA ligases and DNA repair proteins
for re-joining the new gene segments. Expression of RAG1 was
induced in the amygdala of C57BL/6 mice after context
fear conditioning, but not after context-only or shock-only
conditioning (Castro-Perez et al., 2016). Furthermore, knock
down of RAG1 using antisense oligonucleotides significantly
impaired LTM. This study, therefore, implies the existence of a
link between RAG1 and DSBs with associative learning processes
and in the consolidation of LTMs (Castro-Perez et al., 2016).

DNA damage can modulate neural plasticity through the
expression of ERGs, which encode transcription factors such
as c-fos, c-myc or c-jun. These in turn govern the expression
of late response genes such as bdnf and homer1 to regulate
various cellular responses. In neurons, ERGs play important
roles in cellular, circuitry and cognitive functions, including
neurite outgrowth, synapse development and maturation, the
balance between excitatory and inhibitory synapses, and learning
and memory (Madabhushi et al., 2015). Furthermore, ERGs
modulate and maintain neural connectivity in an activity-
associated manner (Hogan et al., 2020). Interestingly, regulation
of ERG expression is associated with the generation of DSBs
(Madabhushi and Kim, 2018) and is triggered by neuronal
activation (Madabhushi et al., 2015). Therefore, activity-induced
DSBs can trigger transcriptional changes that alter a neuron’s
overall generic expression and ultimately induce plasticity
changes (Hogan et al., 2020). ERGs are also regulated by a
member of the growth arrest and DNA damage (Gadd45) protein
family, Gadd45γ, which performs critical roles in the repair of
DSBs (Li et al., 2019). Gadd45γ temporally influences learning-
induced ERG expression in the prelimbic prefrontal cortex of
adult mice through its interaction with DSB-mediated changes
in DNA methylation (Li et al., 2019). Another DNA repair
protein, ataxia telangiectasia and Rad3-related (ATR), is involved
in the regulation of neuronal activity (Kirtay et al., 2021).
ATR deletion in neurons enhances intrinsic neuronal activity,
resulting in aberrant firing and an increased epileptiform activity,
and increased susceptibility to ataxia and epilepsy in mice.
ATR-deleted neurons exhibit hyper-excitability, associated with
changes in action potential conformation and presynaptic vesicle
accumulation, albeit independently of DNA damage response
signaling (Kirtay et al., 2021). Figure 1 illustrates a simplified
model of the interplay between neuroplasticity and DNA damage
and repair. Table 1 summarizes current evidence linking the
DDR to neural plasticity.

PHYSICAL ACTIVITY IS ASSOCIATED
WITH DNA DAMAGE AND PLASTICITY

Physical activity induces neuronal stimulation, resulting in
genetic alterations that regulate synaptic and brain plasticity
(Vilela et al., 2020). Chronic exercise has a positive response
on the brain, which is different compared with other organs
(Liu et al., 2000). Aerobic and strength training improves spatial
memory, reduces DNA damage, and increases expression of
brain-derived neurotrophic factor (BDNF) and CREB in aging
rats (Kim et al., 2010; Vilela et al., 2017) and mice (Yang et al.,
2014). Physical exercise promotes DNA repair by activation of
the enzymes involved in BER repair in human and animal models
(Radak et al., 2009; Koltai et al., 2010; Siu et al., 2011). Regular
exercise attenuates the age-associated increase in 8-hydroxy-2′-
deoxyguanosine levels and increases DNA repair activity and
neuronal resistance against oxidative stress (Radak et al., 2002).
Similarly, an increase in the activity of 8-oxoG in human skeletal
muscle was detected after a single-bout of physical exercise
(Radak et al., 2003). In contrast, strenuous endurance exercise
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TABLE 1 | Summary of the relationship between the DNA damage response and neural plasticity.

Type of DNA damage Role in neural plasticity Implicated DNA repair pathways and/or proteins

SSBs - Modulate the activity of AMPA glutamate receptors (Lu
et al., 2001)

- Correlate with the expression of NMDA receptor subunits
NR1, NR2A, NR2B, and excitatory amino acid transporter
1 (EAAT1; Reus et al., 2015)

- Present within enhancers at or near CpG dinucleotides
and sites of DNA demethylation (Wu et al., 2021)

- BER involving OGG1, NEIL1, (CREB)-mediated APE1 and
NF-Kb (Jiang et al., 2003; Wang et al., 2009; Stetler
et al., 2010; Yang et al., 2010)

- BER-mediated Tet-initiated DNA demethylation and
regulation of excitatory glutamatergic synaptic
transmission (Yu et al., 2015)

- PARP1 and XRCC1 dependent repair of SSBs within
enhancers at or near CpG dinucleotides and sites of DNA
demethylation (Wu et al., 2021)

- ATR regulates neuronal activity (Kirtay et al., 2021)

DSBs - Correlate with expression of NMDA receptor subunits
NR1, NR2A, NR2B, and excitatory amino acid transporter
1 (EAAT1; Reus et al., 2015)

- Generated in response to contextual fear conditioning
(Stott et al., 2021)

- Modulate expression of ERGs such as c-fos, c-myc,
c-jun (Madabhushi et al., 2015)

- Mre11–dependent DNA repair upon activation of
ionotropic NMDA or AMPA/kainite glutamate receptors
(Crowe et al., 2006)

- NHEJ putatively repairs DSBs within ERG promoters
induced by neuronal activity (Madabhushi et al., 2015)

- BER-mediated Polβ and Tet prevent DSBs formation
(Uyeda et al., 2020)

can result inmuscle and lymphocyte DNA damage and the extent
of this increases as running distance increases (Ryu et al., 2016).

The studies described above refer to the role of DNA damage
in the normal physiological function of neurons. Below we
describe the relationship between DNA damage and plasticity in
relation to neurodegenerative diseases.

DNA DAMAGE AND PLASTICITY IN
NEURODEGENERATION

DSBs can alter gene expression, chromatin stability, and
cellular functions, hence they can be an important driver of
neurodegeneration and cognitive decline in neurodegenerative
diseases. Aging is the major risk factor for neurodegenerative
diseases. Interestingly, with aging the expression of genes related
to synaptic plasticity and DNA repair is reduced (Lu et al.,
2004). Moreover, DNA damage is increased in the promoters of
genes that display reduced expression in the aged human cortex.
Furthermore, these genes are selectively damaged by oxidative
stress in cultured human neurons, resulting in reduced BER
repair. These findings imply that DNA damage may reduce the
expression of selectively vulnerable genes involved in learning
and memory (Lu et al., 2004). Here we review the evidence
linking dysfunction of the DDR with neural plasticity in the
diseases described below.

Alzheimer’s Disease (AD)
Alzheimer’s disease (AD) is a neurodegenerative disorder
resulting in brain atrophy and death of neurons located
primarily in the hippocampus and cerebral neocortex. AD is
the most common cause of dementia, which manifests as a
continuous decline in thinking, behavioral and social skills,
impairing person’s ability to function independently. Two
hallmark pathologies are present in AD; both β-amyloid plaques
and neurofibrillary tangles, containing hyperphosphorylated tau
(Weller and Budson, 2018). The accumulation of DSBs is
associated with loss of memory and neurons in AD (Lu et al.,
2004; Shanbhag et al., 2019; Lin et al., 2020) and impairment of

DNA repair processes is present prior to the onset of symptoms
(Su et al., 1997; Sheng et al., 1998; Silva et al., 2014). More
γH2AX foci, a widely used marker of DSBs, were present in
neurons and astrocytes in the hippocampus and frontal cortex
of AD patients compared to age-matched controls (Shanbhag
et al., 2019). In this study some neurons and glia displayed
diffuse pan-nuclear patterns of γH2AX immunoreactivity, which
was not associated with DSBs, suggesting that DSBs accumulate
selectively in vulnerable neuronal and glial cell populations
(Shanbhag et al., 2019). Interestingly, β-amyloid inhibits DNA-
PK-dependent NHEJ and contributes to the accumulation of
DSBs in PC12 cells (Cardinale et al., 2012). Furthermore,
whilst DSBs are generated in the dentate gyrus of wildtype
mice in response to the exploration of a novel environment,
they are repaired within 24 h (Suberbielle et al., 2013). In
contrast, an AD transgenic mouse model expressing human
amyloid precursor protein (hAPP) with aberrant neuronal
activity, displayed more neuronal DSBs before and more severe
and prolonged DSBs after, exploration of a novel environment.
This finding suggests that excessive accumulation of DSBs
in AD impairs spatial learning and memory. Interestingly,
suppression of aberrant neuronal activity by ablating expression
of tau, improved memory and led to the production of fewer
DSBs in this model, suggesting that excessive DNA damage
in AD is associated with synaptic dysfunction (Suberbielle
et al., 2013). Furthermore, evidence for loss of function of
ATM was detected in three different AD transgenic mouse
models; R1.40, which expresses a single (full-length) APP
transgene, PS/APP, expressing transgenes for both APP and
presenilin-1 (PSEN1) and triple-transgenic animals (3xTg),
which bear APP, PSEN1, and MAPT transgenes, together
implying that defective repair of DSBs is present in AD (Shen
et al., 2016). Excessive accumulation of DSBs in AD has
also been linked to impairment of HR repair. In PS/APP
mice, more persistent DSBs were present compared to control
animals. This was accompanied by diminished HR repair in the
subgranular zone of the dentate gyrus, the site of neurogenesis
(Yu et al., 2018). In addition, disturbance in the cell cycle
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and DNA damage was present in neurons reprogrammed from
induced pluripotent stem cells (iPSC) derived from familial
AD patients. Specifically, an increase in a component of HR
repair, a human tumor suppressor, BRACA1, was reported
(Wezyk et al., 2018). BER repair is also linked to aberrant
neural plasticity in AD. A significant decrease in NEIL DNA
glycosylase was detected in AD brains compared to controls
(Canugovi et al., 2014). Interestingly, NEIL1 null mice display
defective memory retention in a water maze test (Canugovi
et al., 2012). Furthermore, 3xTgAD mice with inefficient BER
due to DNA polymerase-β (Polβ) haploinsufficiency displayed
enhanced neurodegeneration, synaptic and cognitive deficits,
and more DNA damage, compared to 3xTgAD mice with
normal levels of Polβ (Sykora et al., 2015). Furthermore,
olfactory deficits are present early in AD and these 3xTgAD/
POLβ+/− mice display greater degeneration of olfactory bulb
neurons, in part via inhibiting the production of new neurons
from neural progenitor cells (Misiak et al., 2017). Similarly,
increased oxidative DNA damage and deficient BER was
detected in post-mortem brain tissue samples derived from
patients with mild cognitive impairment and AD, compared to
age-matched neurologically normal subjects (Weissman et al.,
2007). Consistent with this finding, reduced 8-oxoG activity
was present in the hippocampal and para-hippocampal gyri,
superior and middle temporal gyri, and inferior parietal lobule
in AD patients compared to control individuals. This decrease
was accompanied by altered DNA helicase activity, suggesting
that this function may interfere with BER repair in AD
(Lovell et al., 2000).

The deficiency of Polβ and decreased levels of NAD+, a
cellular metabolite critical for neuronal resistance to stress and
maintenance of DNA integrity, were found in AD patients’
brains (Hou et al., 2018). In an AD mouse model with
deficiencies in DNA repair, NAD+ supplementation improved
the DNA damage response and synaptic transmission, learning
and memory, and motor function (Hou et al., 2018). Together
these findings highlight the importance of efficient DNA repair
processes in neuronal function related to neural plasticity in AD
(Hou et al., 2018).

Amyotrophic Lateral Sclerosis (ALS)
Amyotrophic lateral sclerosis (ALS) is a motor neuron disorder
characterized by progressive loss of motor neurons in the
cortex, brainstem, and spinal cord. This leads to muscle atrophy
and weakness, eventually resulting in death. ALS overlaps
significantly with frontotemporal dementia (FTD), the most
common form of early-onset dementia (under 60 years of
age) that primarily affects the frontal and temporal lobes
of the brain (Shahheydari et al., 2017). DNA damage is
increasingly implicated in the pathophysiology of ALS, and
interestingly, the number of DNA repair proteins linked to ALS
is steadily growing. Similarly, disruption of neurotransmission is
associated with ALS pathogenesis. Cortical hyperexcitability, the
enhanced response of a neuron to a stimulus, is an important
pathophysiological process in ALS, contributing to the loss
of motor neurons (Buskila et al., 2019; Brunet et al., 2020).
Studies on ALS patients have revealed that this precedes clinical

symptoms (Vucic and Kiernan, 2006), contributes to disease
progression, and correlates with greater functional disabilities
(Menon et al., 2020). Whilst the underlying mechanisms are
unknown, hyperexcitability is related to the interplay between
excitatory and inhibitory interneurons (Bae et al., 2013).
Excitotoxicity involving the neurotransmitter glutamate, hypo-
excitability, and loss of repetitive firing are also present in
vulnerable motor neurons in vivo (Foran and Trotti, 2009;
Martinez-Silva et al., 2018). Furthermore, frequent and strenuous
physical activity is implicated as a risk factor for ALS (Julian et al.,
2021). Importantly, this is known to induce DNA damage and
is also related to changes in synaptic plasticity (Ryu et al., 2016;
Vilela et al., 2020).

Interestingly, proteins that are central to ALS pathogenesis
are implicated in both DNA damage and plasticity. Pathological
forms of TAR DNA-binding protein 43 (TDP-43), a
heterogenous nuclear ribonucleoprotein (hnRNP), is present
in affected motor neurons in almost all ALS cases (97%).
TDP-43 modulates RNA splicing and micro-RNA biogenesis
and it also functions in NHEJ DNA repair (Mitra et al., 2019;
Konopka et al., 2020). Its pathological mis-localization to the
cytoplasm of motor neurons and the presence of ALS-associated
mutations in TDP-43 are both known to impair DNA repair
(Mitra et al., 2019; Konopka et al., 2020). TDP-43 also regulates
synaptic functions. Transgenic animals expressing human
A315T mutant TDP-43 exhibit reduced levels of the presynaptic
protein synaptophysin in the brain, and display attenuated
synaptic transmission, cognitive and motor deficits (Medina
et al., 2014). TDP-43 depletion in transgenic rats enhances
the acquisition of fear memory, decreases the short-term
plasticity of intrinsic neuronal excitability, and affects the
kinetics of AMPA receptors by slowing the decay time of
AMPAR-mediated miniature excitatory postsynaptic currents
(Koza et al., 2019). These findings imply that TDP-43 regulates
activity-dependent neuronal plasticity, possibly by controlling
the splicing of genes responsible for fast synaptic transmission
and membrane potential (Koza et al., 2019). Interestingly, DNA
damage modifies splicing proteins by modulating their activity
or interaction with other proteins or RNA (Shkreta and Chabot,
2015), linking the role of TDP-43 in DNA damage with its role
in activity-dependent neuronal plasticity.

Fused in sarcoma (FUS) is another DNA/RNA-binding
protein implicated in both DNA repair and synaptic dysfunction
in ALS, that displays structural and functional similarities to
TDP-43. FUS interacts with histone deacetylase 1 (HDAC1)
to facilitate DNA repair through NHEJ, while FUS-ALS
associated mutants R514S and R521C display impaired DNA
repair functions (Wang et al., 2013). FUS-ALS associated
mutants R521C and P525L disrupt the formation of presynaptic
active zones, subsequently reducing synaptic transmission with
decreased quantal size (Machamer et al., 2014). Hence these
studies imply a relationship between DNA repair and synaptic
activity in ALS.

The DNA damage response is also induced by hexanucleotide
(GGGGCC) repeat expansions in a non-coding region of
C9orf72, the major genetic cause of ALS (Farg et al.,
2017). In Drosophila, transgenic expression of the C9orf72
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repeat expansion results in a dramatic reduction in synaptic
arborization and the number of active zones at neuromuscular
junctions (NMJs), and reduced neurotransmission. Hence
synaptic dysfunction at NMJs is induced by C9orf72 ALS
related pathology (Perry et al., 2017). Another prominent protein
linked to familial forms of ALS, superoxide dismutase-1 (SOD1),
is also implicated in both synaptic dysfunction and DNA
damage. SOD1 localizes at the pre- and post-synapse, while the
ALS-associated mutant G93A SOD1 shows mis-localization in
pre-synaptic terminals as well as at the post-synapse, impairing
axonal transport and contributing to neuronal cell death (Lee
et al., 2015; Bae and Kim, 2016). Expression of mutant
SOD1 G93A also decreases the formation of synaptophysin-
positive presynaptic boutons (Zang et al., 2005). In ALS,
over-activation of glutamate receptors in motor neurons is a
well-described pathological event (Corona et al., 2007). Motor
neurons from transgenic SOD1 G93A mice are sensitive to
glutamate toxicity and this was associated with ROS production,
resulting in oxidative DNA damage, elevation in intracellular
calcium levels, and mitochondrial dysfunction (Kruman et al.,
1999). Substantial increases in oxidative DNA damage have
also been observed in nuclear DNA from the spinal cord,
frontal cortex, striatum, and cerebellum from the transgenic
G93A SOD1 mouse model (Aguirre et al., 2005). Therefore,
taken together, these findings indicate that dysfunctional
DNA repair and dysfunctional neural plasticity occur together
in ALS.

Huntington’s Disease (HD)
Huntington’s disease (HD) is an inherited autosomal dominant
neurodegenerative disorder characterized by motor dysfunction
and cognitive deficits, due to neurodegeneration of specific brain
regions such as the striatum and cerebral cortex. It is caused by
mutation of the huntingtin protein, resulting in an abnormally
high copy of polyglutamine (polyQ) repeats at its N-terminus.
The expression of mutated huntingtin enhances NMDA activity
and sensitizes type 1 inositol 1,4,5-trisphosphate receptors,
causing a disturbance in calcium homeostasis (Bezprozvanny and
Hayden, 2004; Zhang et al., 2008). In addition, expression of
the presynaptic protein rabphilin 3A is decreased (Deak et al.,
2006), while the levels of synaptic vesicle protein SCAMP5 are
increased, inCaenorhabditis elegans neurons (Parker et al., 2007).
This implies that alteration of expression of presynaptic proteins
results in impairment of synaptic vesicle fusion or endocytosis.
HD is also associated with DNA damage and defective DNA
repair. Post-mortem brain samples of HD patients display higher
levels of the oxidative DNA damage marker 8-Oxo-dG in both
nuclei and mitochondria (Browne et al., 1997; Polidori et al.,
1999). In addition, mutant huntingtin impairs NHEJ DNA repair
by interaction with Ku70 protein, leading to the accumulation of
DSBs in primary neurons (Enokido et al., 2010). Interestingly,
expression of exogenous Ku70 rescues abnormal behavior and
pathological phenotypes in the R6/2 mouse model of HD
(Enokido et al., 2010). These findings imply that the huntingtin
protein has a dual role in synaptic plasticity and DNA repair.
For comprehensive reviews about the role of DNA damage in
HD, we direct readers to the following articles about the role of

mitochondrial DNA damage in HD (Yang et al., 2008), the role
of MMR in HD (Iyer and Pluciennik, 2021), and the role of HR
in HD (Jeon et al., 2012).

Parkinson’s Disease (PD)
Parkinson’s disease (PD) is a neurodegenerative disorder
associated with widespread degradation of dopaminergic
neurons in the substantia nigra pars compacta (SNc), with
subsequent loss of the neurons projecting to the striatum (Lang
and Lozano, 1998). PDmanifests principally by motor symptoms
such as bradykinesia, rigidity, tremor at rest, postural instability,
micrographia, and shuffling gait (Jankovic, 2008). Familial
Parkinsonism is linked to mutations in a number of genes
including α-synuclein, LRRK2, parkin, DJ-1, PINK1, UCHL-1,
synphilin-1, and NR4A2 (Nussbaum and Polymeropoulos, 1997;
Mizuno et al., 2001; Le et al., 2003; Marx et al., 2003; Healy et al.,
2004; Maraganore et al., 2004; Valente et al., 2004; Rui et al.,
2018).

Both DNA damage and dysfunction of synaptic plasticity
have been reported in PD. Altered presynaptic plasticity is
present in PD animal models, including α-synuclein, DJ-
1, and PINK1 knock out mice (Abeliovich et al., 2000;
Goldberg et al., 2005; Kitada et al., 2007). Similarly, altered
vesicular transmission and defects in neurotransmission are
present in experimental Parkinsonism (Abeliovich et al., 2000;
Murphy et al., 2000; Li et al., 2010). Furthermore, altered
composition of glutamatergic NMDA receptors contributes
to clinical features of experimental Parkinsonism (Ulas and
Cotman, 1996; Dunah and Standaert, 2001; see Picconi et al.,
2012 for a comprehensive review about dysfunction to synaptic
plasticity in PD). Similar to dysfunctional plasticity, DNA
damage is present in the SNc of PD patients, including
elevated levels of 8-oxo-guanine, abasic sites, and nuclear
DNA strand breaks (Alam et al., 1997; Zhang et al., 1999;
Hegde et al., 2006; Sanders et al., 2014; see Gonzalez-Hunt
and Sanders, 2021 for a comprehensive review of DNA
damage in PD). α-synuclein, which is known to function in
synaptic plasticity, is also linked to DNA damage in PD.
Overexpression of α-synuclein causes the formation of SSBs
and DSBs, particularly under oxidative conditions (Vasquez
et al., 2017) and it modulates repair of DSBs (Schaser et al.,
2019). Depletion of Parkin results in impairment of dopamine
release and synaptic plasticity in the striatum of Parkin
knockout mice (Kitada et al., 2009). Interestingly, mutations
in Parkin also result in the accumulation of BER factor, APE1
(Scott et al., 2017), suggesting that defective Parkin causes
dysfunction to both DNA repair and synaptic plasticity. Mice
with mutated excision repair cross-complementation group
1 (ERCC1) endonuclease, a competent of the NER repair
pathway, display PD pathology, including impairment of striatal
innervation, α-synuclein pathology, and the formation of γH2AX
foci (Sepe et al., 2016). This implies an important role for DNA
repair pathways in integrity of the nigrostriatal system in PD.
Table 2 illustrates the potential and/or established roles ofmutant
proteins associated with neurodegeneration in DNA damage
response mechanisms.
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TABLE 2 | Summary of the DNA damage and repair proteins associated with neural plasticity in neurodegenerative diseases.

Disease Known disease proteins with
potential/established role in DNA repair

DNA repair proteins not specifically
linked to the disease

Impact on neuroplastic processes

AD Reduced expression of NEIL DNA
glycosylase, implying impairment of BER
(Canugovi et al., 2014)

- Impairment of memory retention
(Canugovi et al., 2012, 2014)

Reduced expression of Polβ, implying
impairment of BER (Sykora et al., 2015)

- Impairment of memory and synaptic
plasticity (Sykora et al., 2015)

- Olfactory deficits (Misiak et al., 2017)
- Attenuation of generation of new neurons

by neural progenitor cells (Misiak et al.,
2017)

Loss of function of ATM (Shen et al., 2016) - Loss of memory (Shen et al., 2016;
Yu et al., 2018)

- Aberrant neuronal activity (Shen et al.,
2016; Yu et al., 2018)

- Synaptic dysfunction (Shen et al., 2016;
Yu et al., 2018)

Reduced expression of RAD51
(Yu et al., 2018)

ALS TDP-43 functions in NHEJ, and is mutated
and forms pathological aggregates in ALS
(Mitra et al., 2019; Konopka et al., 2020)

- Reduced synaptophysin
(Medina et al., 2014)

- Attenuated synaptic transmission
(Medina et al., 2014)

- Cognitive and motor deficits (Medina
et al., 2014)

- Decreased short-term plasticity (Koza
et al., 2019)

- Altered kinetics of AMPA receptors (Koza
et al., 2019)

FUS functions in NHEJ and BER, and is
mutated and forms pathological aggregates
in ALS (Wang et al., 2013)

- Disrupted formation of presynaptic active
zones (Machamer et al., 2014)

- Reduced synaptic transcription
(Machamer et al., 2014)

C9orf72 is mutated in ALS, and expression
of the repeat expansion induces DNA
damage (Farg et al., 2017)

- Reduction in synaptic arborization (Perry
et al., 2017)

- Dysfunctional neuromuscular junctions
(Perry et al., 2017)

- Reduced neurotransmission (Perry et al.,
2017)

SOD1 is mutated in ALS, which induce
DNA damage (Lee et al., 2015; Bae and
Kim, 2016)

- Pre and post synaptic localization (Zang
et al., 2005; Lee et al., 2015; Bae and
Kim, 2016)

- Over-activation of glutamate receptors
(Zang et al., 2005; Lee et al., 2015; Bae
and Kim, 2016)

HD Huntingtin functions in DSB repair and is
mutated in HD (Bezprozvanny and Hayden,
2004; Zhang et al., 2008; Enokido et al.,
2010)

- Enhanced NMDA activity
(Parker et al., 2007)

- Impairment of synaptic vesicle fusion or
endocytosis (Parker et al., 2007)

PD α-synuclein modulates repair of DSBs and
is mutated in PD (Abeliovich et al., 2000;
Schaser et al., 2019)

- Altered presynaptic plasticity
(Abeliovich et al., 2000)

ERCC1 endonuclease—a component of
NER repair (Sepe et al., 2016)

- Alternation in striatal innervation
(Sepe et al., 2016)

CONCLUSIONS

Neurons, in contrast to other cell types, possess unique features,
including their ability to undergo electrical excitation and

their post-mitotic character. Recent findings imply that DNA
damage is not limited to pathological conditions as previously
thought, but it is also important for unique neuronal functions
related to neural and synaptic plasticity under physiological
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conditions. However, dysfunction in these processes is also
related to a decline in cognitive function and neuronal death
in neurodegenerative diseases. However, human post-mortem
tissues represent the end-point stage of the disease. Hence studies
examining these tissues cannot be used to determine whether
DNA damage has a primary or secondary role in pathogenesis.
However, future studies on the relationship between plasticity
and DNA damage may provide a better understanding of
the cellular processes that contribute to higher order brain
functions. Distinct groups of neurons are affected in different
neurodegenerative diseases, such as motor neurons in ALS
or neurons of the entorhinal cortex in AD, and these cells
are specialized to perform specific functions. Given that DNA
damage and repair are important for the unique functions of
neurons, which in turn depend on their activation, it is possible
that the interplay between DNA damage and neural plasticity
is unique for specific groups of neurons. This could operate
through the activation of specific genes by DNA damage, which
would differ depending on the type of neurons involved and
their associated functions. Therefore, a better understanding
of the interplay between DNA damage and neural plasticity is
required, as well as dysfunction in these processes in disease. In

particular, the inclusion of specific neuronal types may reveal the
causes of selective neuronal death in distinct neurodegenerative
diseases. To date, no previous studies have examined therapeutic
strategies directed at DNA damage and repair in relation to
aberrant neural plasticity. However, this approach has the
potential to identify novel treatments for impaired cognitive
functions in neurodegenerative diseases associated with excessive
DNA damage.
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