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Oligodendrocytes (OLs) are specialized glial cells that myelinate CNS axons. OLs are
generated throughout life from oligodendrocyte progenitor cells (OPCs) via a series
of tightly controlled differentiation steps. Life-long myelination is essential for learning
and to replace myelin lost in age-related pathologies such as Alzheimer’s disease (AD)
as well as white matter pathologies such as multiple sclerosis (MS). Notably, there is
considerable myelin loss in the aging brain, which is accelerated in AD and underpins the
failure of remyelination in secondary progressive MS. An important factor in age-related
myelin loss is a marked decrease in the regenerative capacity of OPCs. In this review,
we will contextualize recent advances in the key role of Epidermal Growth Factor
(EGF) signaling in regulating multiple biological pathways in oligodendroglia that are
dysregulated in aging.
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INTRODUCTION

Brain aging is characterized by a slowing down of sensory, cognitive and behavioral processes
(Harada et al., 2013). Notably, brain imaging studies in humans have demonstrated shrinkage
of white matter that precedes overt loss of neurons and appears to be accelerated in dementia
(Bartzokis et al., 2012; Maniega et al., 2015; Cox et al., 2016). White matter is comprised of
myelinated axons which are thin protrusions of the neurons that transmit electrical signals between
the different parts of the central nervous system (CNS). Myelin is a lipid-rich insulating layer that
is wrapped around axons in concentrical lamellae by terminally differentiated glial cells called
oligodendrocytes (OLs). Myelin increases the propagation speed of electrical signaling along the
length of an axon by saltatory conduction. Moreover, myelin has numerous emerging roles that
includes, providing metabolic support (Fünfschilling et al., 2007; Philips and Rothstein, 2017),
memory consolidation (Pan et al., 2020; Steadman et al., 2020), task-associated learning experiences
(Kato et al., 2020; Wang et al., 2020), and reviewed by (Pan and Chan, 2021), whilst myelin loss
renders axons more vulnerable to damage (Smith, 2006). Once developmental myelination
is complete, myelin remodeling continues throughout life via a reservoir of oligodendrocyte
progenitors (OPCs) which are the main proliferating pool of cells in the adult CNS and possess
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the stem-cell-like feature of self-renewal (Nishiyama et al., 2021).
The life-long generation of OLs from OPCs is essential to
produce new myelin required to insulate new brain connections
formed in response to new life experiences and to replace
myelin lost through natural ‘‘wear-tear’’ or pathology (Rivera
et al., 2016). However, the regenerative power of OPCs declines
with age leading to impaired oligodendrogenesis and myelin
remodeling, and an overall gradual loss of major CNS functions
such as spatial learning and memory (Pan et al., 2020; Steadman
et al., 2020; Wang et al., 2020). The age-related impairments in
OPC differentiation have been discussed in a number of recent
reviews (for example, Rivera et al., 2021a; Butt et al., 2019).
Moreover, in many age-related neuropathologies such as AD
or secondary progressive MS, due to a number of reasons that
include and are not limited to the inflammatory environment,
excess inhibitory myelin debris, lack of appropriate trophic
support, etc, OPC differentiation drastically fails and contributes
to the loss in cognitive function (Neumann et al., 2019; Wang
et al., 2020; Coelho et al., 2021; Rivera et al., 2021a,b). Currently,
the development of treatments to halt these changes is hampered
by gaps in fundamental scientific knowledge. Developmental
studies propose a positive role of epidermal growth factor (EGF)
acting via its main receptor, EGFR, as a key regulator of cell
survival, proliferation, migration and differentiation which are
disrupted in aging (Figure 1; Herbst, 2004; Gonzalez-Perez et al.,
2009; Galvez-Contreras et al., 2013; Yang et al., 2017). To the
best of our knowledge, functional studies of EGF signaling in
the context of OL differentiation during later stages of adulthood
have yet to be performed. Nevertheless, these are exciting future
avenues in the field as a potential therapeutic target in OL
pathologies and aging.

OLIGODENDROCYTE AND MYELIN
DISRUPTION IN THE AGING BRAIN

Age-related loss of brain connectivity underlies cognitive decline,
with a ‘‘last in, first out’’ pattern, whereby white matter tracts
associated with cognition are the ‘‘last’’ to be fully myelinated
and the first to be lost in aging (Davis et al., 2009; Bartzokis
et al., 2012; Gozdas et al., 2020). This process is the result of
brain architectural complexity described as heterochronicity and
spatial heterogeneity intrinsic in white matter tracts. In addition,
it suggests that the latest tracts to develop are the most vulnerable
to the deleterious effects of aging (Cox et al., 2016; Kochunov
et al., 2016). Post-mortem diffusion magnetic resonance imaging
(dMRI) studies indicate ontogenetic differences between early-
myelinating projection and posterior callosal fibers in aging
(Sexton et al., 2014; Cox et al., 2016; Slater et al., 2019). Although
the precise causes of WM shrinkage are currently unresolved,
they include metabolic disruption of oligodendroglia, OPC
senescence and loss of extracellular trophic factors that support
OPCs and OLs which can contribute to the functional decline
of brain function including deficits in spatial memory and
learning (Rivera et al., 2016, 2021b; Neumann et al., 2019;
Kato et al., 2020; Pan et al., 2020; Steadman et al., 2020;
Willis et al., 2020). Several studies in both humans and rodents
have demonstrated marked changes in the transcriptome of

OLs and myelination processes (Soreq et al., 2017; Neumann
et al., 2019; Rivera et al., 2021b). Moreover, alterations in
OPC densities have been reported in brain aging (Soreq et al.,
2017; Rivera et al., 2021b). The age-related disruption of
indispensable signaling pathway components hinders myelin
remodeling and repair, and ultimately adds to the cumulative
loss of myelin, which is aggravated in pathology. Recently,
we have demonstrated that the critical OPC protein GPR17 is
downregulated in the aged murine brain, together with myelin-
related transcripts such asMBP, PLP1, CNP, andUGT8A (Rivera
et al., 2021b). Our transcriptomic analysis identified a central role
for age-related changes in EGFR signaling in oligodendroglia,
consistent with its recognized importance in OLregeneration and
myelin repair (Aguirre et al., 2007; Hayakawa-Yano et al., 2007;
Ivkovic et al., 2008).

Unraveling Novel Roles of EGFR Signaling
in Aged Oligodendroglia
In our network analyses (Figure 1B), we identified EGFR
association with myelination via its interaction with
ERBB3 which is required for OL maturation (Schmucker
et al., 2003; Makinodan et al., 2012). ERBB3 is coupled to the
Ras family member NRAS which has intrinsic GTPase activity
and is involved in the control of cell proliferation, regulating
microtubule stability and actin polymerization (Fotiadou et al.,
2007), and is implicated in cancer pathways (Bronte et al.,
2015). Interestingly, NRAS has recently been reported to be
elevated in expression in the aging OPC proteome (de la
Fuente et al., 2020). NRAS interacts with VCL (vinculin) and
CLDN11 (claudin-11) to regulate OL morphogenesis/myelin
growth (Nawaz et al., 2015), or the formation of tight junctions
(TJs) with ECM-integrin interactions, respectively (Gow et al.,
1999; Bronstein et al., 2000; Tiwari-Woodruff et al., 2001).
Notably, EGFRs are mechanosensitive (Tschumperlin, 2004;
Müller-Deubert et al., 2017), transduced by vinculin (including
Talin and similar linker proteins) to regulate the anchoring of
the actin cytoskeleton to the ECM through integrin, leading
to cytoskeleton regulation and cellular spreading (Rübsam
et al., 2017). Our analysis predicted the interaction of vinculin
on with the actin cytoskeleton via gelsolin (GSN), which is
enriched in OLs (Tanaka and Sobue, 1994; Zhang et al., 2014)
and is required for myelination (Liu et al., 2003; Zuchero
et al., 2015). Intriguingly, vinculin and gelsolin are focal
adhesion proteins important for the association of cell-cell
and cell-matrix junctions and are critical for controlling cell
spreading, cytoskeletal mechanics, and lamellipodia formation
(Ciobanasu et al., 2014; Elosegui-Artola et al., 2016; Argentati
et al., 2019; Merkel et al., 2019; Muñoz-Lasso et al., 2020).
Moreover, the interaction of EGFR and vinculin with CLDN11 is
consistent with the evidence that they mediate cell/integrin/ECM
interactions (Hagen, 2017). Recent in vivo experiments in which
CLDN11 was deleted in OLs have shown dysregulation of
myelin with subsequent aberrant behavioral changes due
to increased latency of signals (Maheras et al., 2018). The
ECM plays a pivotal role in OL differentiation (Lourenço and
Grãos, 2016) and increased stiffness of the ECM is related to
age-related deterioration of OPC function (Segel et al., 2019).
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FIGURE 1 | EGF receptor signaling and resolving its dysregulation in aged oligodendroglial via protein-protein network analysis. (A) EGFR is a member of ERBB
receptors that belong to the superfamily of Receptor Tyrosine Kinases (RTKs). The binding of ligands to EGFR induces conformational changes resulting in the
receptor homo- or heterodimerization at the cell surface. Dimerization of the extracellular regions of EGFR cascades results in further conformational change at the
cytoplasmic region of the receptor, leading to the activation of the catalytic domain. EGFR dimers trans-autophosphorylate on tyrosine residues in the cytoplasmic tail
becoming binding sites for the recruitment of intracellular modulator for downstream signaling cascades. Recruitment of complexes containing GRB2 and
SOS1 directly through GRB2 or indirectly through SHC1 promotes the activation of RAS/RAF/MAP kinase signaling. The binding of GRB2 and GAB1 to
phosphorylated EGFR leads to the activation of PI3K/AKT signaling cascade. Finally, PLCγcan be recruited to the phosphorylated EGFR which, in turn, activates
IP3/PKC signaling. Image generated from REACTOME “Signaling by EGFR” (https://reactome.org/PathwayBrowser/#/R-HSA-177929). (B) RNA-seq transcriptome
analysis of the aging murine brain was compared to a database of genes expressed by myelinating OLs (MOL) and 251 genes were identified as significantly altered
in aging (Rivera et al., 2021b). (B) Functional protein-protein network analysis identified EGFR as centrally connected with ERBB3, NRAS, VCL, GSN, CLDN11, and
the myelination node (yellow circles). Red nodes represent genes associated with Metabolism (p < 0.000034) and blue nodes represent genes associated with
Myelination (p < 5.55e-07). PPI enrichment p-value < : 2.44e-15. Adapted from Rivera et al. (2021b).
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Our data implicate for the first time the EGFR-VINCULIN-
GELSOLIN-CLDN11 network as key to age-related changes in
oligodendroglial ECM interactions.

EGFR AND THEIR ROLES IN
OLIGODENDROGLIA

Overview of EGFR Ligands and Receptors
in the CNS
The EGFR, also known as ERBB1 or HER-1, and its family of
ligands are widely expressed across the CNS. EGFR, together
with ERBB2, ERBB3, ERBB4 belong to the receptor tyrosine
kinases (RTKs) superfamily (reviewed extensively elsewhere, for
example, Novak et al., 2001; Fu et al., 2003; Galvez-Contreras
et al., 2013). Canonical ligands include: epidermal growth factor
(EGF), transforming growth factor-α (TGFα), Heparin-binding
EGF (HB-EGF) B-cellulin (BTC) and low-affinity binding
ligands such as neuregulins (NRG 1–4) amphiregulin (AR) and
epiregulin (EPR; Figure 1A; Knudsen et al., 2014; Singh et al.,
2016). In young adult mice, bulk transcriptomic analysis could
resolve their detection across multiple cell types where most of
these are expressed by the vasculature, choroid plexus (TGFα),
or astrocytes (HB-EGF; Azim et al., 2018). It remains to be
determined which of these are altered during aging and are
aspects which will be addressed in follow-up studies using the
same procedures done in older mice.

The major downstream effectors of EGFR signaling are
described in Figure 1A illustrating the RAS/RAF/ERK1-
2/STAT3-5 and the PI3K/AKT protein complexes are
fundamental regulators of many OL biological processes
aside from the EGFR signaling pathway (Ishii et al., 2014, 2019;
Azim et al., 2017; Sanz-Rodriguez et al., 2018; Rivera et al.,
2021b). The precise interaction of these kinases to the newly
identified EGFR-VINCULIN-GELSOLIN-CLDN11 network
remains to be resolved.

EGFR Signaling in Oligodendroglia and
Myelination
Recent transcriptomic studies have shed further light on
the expression of EGFR and ERRB2–4 in developmental
and adult human OL lineage cells demonstrating elevated
expression in OPC compared to other CNS cell types (Zhang
et al., 2014; Jäkel et al., 2019). In vivo gain- and loss-of-
function studies underlined the critical importance of EGFR
in OLs (Aguirre et al., 2007, 2010). Specifically, overexpression
of EGFR enhanced the densities and maturation state of
myelinating oligodendrocytes (MOL; Aguirre et al., 2007),
which may be owed to sustained AKT phosphorylation in
post-mitotic immature OLs (Flores et al., 2000, 2008) via
the Src homology 2-containing phosphotyrosine phosphatase
(SHP2) which integrates EGFR to AKT signaling (Agazie and
Hayman, 2003; Zhu et al., 2010; Nocita et al., 2019). Similarly,
the Grb2 associated binder 1 (GAB1) is another modulator
of PI3K/AKT signaling capable of directing oligodendrogenesis
via EGFR (Holgado-Madruga et al., 1996; Hayakawa-Yano
et al., 2007). In vitro studies indicated that EGF interacts with
PDGF-AA and FGF to direct early glial progenitors toward the

OL fate, suggesting the combinatorial role for these two pathways
towards oligodendrogenesis (Yang et al., 2017). Intriguingly,
OPCs cultured with EGF in the absence of PDGF-AA are
driven to differentiate into MOLs, suggesting a dual role of
EGF in the control of oligodendrogenesis and myelination,
depending on the activation of other signaling pathways (Yang
et al., 2017). Similarly, intraventricular administration of EGF
promotes subventricular progenitors to differentiate into OPCs
and MOL in vivo (Gonzalez-Perez et al., 2009; Galvez-Contreras
et al., 2013). Furthermore, overexpression of human-EGFR
(hEGFR) in CNP+ OLs leads to an increase in OL densities
and remyelination of the corpus callosum following a lesion
(Aguirre et al., 2007). However, persistent overexpression
of EGFR in OPCs leads to their dramatic enhancement in
densities and white matter hyperplasia, although differentiation
appears to be hindered (Hayakawa-Yano et al., 2007; Ivkovic
et al., 2008; Gonzalez-Perez et al., 2009). Finally, intranasal
administration of exogenous heparin-binding EGF (HB-EGF) in
a neonatal hypoxia murine model reduced apoptosis of MOL
preserving axonal myelination (Scafidi et al., 2014). These results
suggest that the control of oligodendrogenesis and myelination
requires temporal and cell-specific interplay of EGFR with other
unknown signaling pathways. OL lineage cells also express
ERBB2–4 which are required depending on the maturation stage
(Flores et al., 2000; Park et al., 2001; Yarden and Sliwkowski,
2001; Kim et al., 2003; Schmucker et al., 2003; Makinodan
et al., 2012). For example, ERBB2 regulates OL proliferation
and differentiation, while ERBB3 and ERBB4 are necessary for
maturation and myelination (Park et al., 2001; Schmucker et al.,
2003; Roy et al., 2007; Joubert et al., 2010; Makinodan et al.,
2012). However, overexpression or excessive activation of ERBBs
in defined stages of OLs can lead to inflammation, demyelination,
and cell death (Hu et al., 2021). Taken together, EGFR/ERBB
signaling has key roles in the regulation of defined stages of OLs
and white matter formation in the CNS.

EGFR AS A POTENTIAL THERAPEUTIC
STRATEGY IN AGE-RELATED WHITE
MATTER LOSS

Studies on preclinical murine animal models and human
post-mortem tissue have demonstrated downregulation of EGFR
in the aging brain (Hiramatsu et al., 1988; Werner et al.,
1988). Moreover, EGFR signaling is disturbed in aging and
gain and loss of function experiments in vivo posit the idea
of the presence of undiscovered factors in the aging CNS that
limit its efficacy in positively regulating biological processes
required for proliferation and differentiation of NSCs (Cochard
et al., 2021). To further investigate this, we have interrogated
the transcriptome of the aging murine brain (Rivera et al.,
2021b) with genes associated with Alzheimer’s Disease (AD)
and Multiple Sclerosis (MS) using the DISGENET database
(Figure 2; Pinero et al., 2015). These analyses identified 60
AD-associated genes that are altered in aged MOLs, with an
apparent EGFR-ANXA5-GSN-APOD axis interconnected with a
myelin gene hub; ANXA5 (annexin 5) is involved in pathogenesis
through autophagy mechanisms (Iannaccone et al., 2015;
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FIGURE 2 | Identification of altered EGFR signaling in aged myelinating oligodendrocytes are further associated as altered genes in Alzheimer’s disease and multiple
sclerosis. The aging myelinating OLtranscriptome was interrogated to identify novel associations within disease-specific databases for Alzheimer’s disease and
multiple sclerosis. Functional protein–protein prediction analysis identified EGFR at the core of the networks for Alzheimer’s disease and multiple sclerosis (PPI
enrichment p < 0.0001).

Xi et al., 2020), and APOD (apolipoprotein D) is a secreted
glycoprotein involved in lipid transport that is linked to AD,
MS and other neuroinflammatory diseases (Reindl et al., 2001;
Li et al., 2015). In the same way, analysis of oligodendroglial
genes altered in aging and associated with MS revealed 34 highly
correlated genes with a conserved EGFR-VCL-GSN-APOD
network associated with myelin genes. In MS, APOD levels are
decreased in sclerotic plaques and elevated during remyelination
(Navarro et al., 2018). Hence, identifying small molecules that
target these networks has promising therapeutic potential for
rejuvenating OPCs in aging contexts. A novel approach is
to use genomics and chemical informatics data, most notably
the connectivity map (CMAP) and the Library of Integrated
Network-based Cellular Signatures (LINCS), which enables the
identification of small molecules that counteract disease-specific
transcriptional profiles (Azim et al., 2017; Rivera et al., 2022a).
In this way, we recently identified the PI3K-Akt inhibitor
LY294002 as a potent driver of OPC rejuvenation and myelin
repair in vivo (Rivera et al., 2022a,b). Notably, transcriptional
profiling and signaling pathway activity assays identified EGFR

signaling as a target of LY294002 in OPCs and GO analysis of
LY294002-responsive oligodendroglial genes indicated a central
role for Rhoa at the core of ERBB3 signaling, which regulates
oligodendrogenesis via RAF-MAPK and PI3K/Akt (Rivera
et al., 2022a). These studies demonstrate that transcript-specific
targeting using pharmacogenomics approaches streamlines the
identification of drugs to target EGFR signaling, and can be
readily adapted to probe genes and transcriptional networks of
interest for driving rejuvenation and myelin repair.

CONCLUSION

In summary, EGFR signaling and its subsequent signaling
cascade depends on the combination of ERBB receptors
activated. EGFR signaling is central for the OPC self-renewal
and their differentiation into MOLs. In the aged brain, there is
a decline in the regenerative capacity of OPCs and this is highly
correlated with changes in EGFR signaling pathways. Moreover,
we have recently shown that targeting PI3K/AKT signaling,
which is a key downstream mechanism of EGFR, promotes OPC
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regeneration and remyelination in an aging context (Rivera et al.,
2022a,b). These data support a key role for EGFR as a potential
therapeutic target for rejuvenating OPCs and promoting repair
in pathologies with age-related contexts, including MS and AD.
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