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Objective: To compare the safety and effectiveness of transplanted cells from different

sources for spinal cord injury (SCI).

Design: A systematic review and Bayesian network meta-analysis.

Data Sources: Medline, Embase, and the Cochrane Central Register of

Controlled Trials.

Study Selection: We included randomized controlled trials, case–control studies, and

case series related to cell transplantation for SCI patients, that included at least 1

of the following outcome measures: American Spinal Cord Injury Association (ASIA)

Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional

Independence Measure score (FIM), International Association of Neurorestoratology

Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up

data were analyzed at 6 and 12 months.

Results: Forty-four eligible trials, involving 1,266 patients, investigated 6 treatments:

olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs),

mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of

cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months

(mean 0.42, 95% credible interval: 0–0.91, low certainty) and FIM score at 12 months

(42.83, 36.33–49.18, very low certainty). MSCs improved the AIS grade at 6 months

(0.42, 0.15–0.73, moderate certainty), the motor score at 6 months (4.43, 0.91–7.78,

moderate certainty), light touch at 6 (10.01, 5.81–13.88, moderate certainty) and 12

months (11.48, 6.31–16.64, moderate certainty), pinprick score at 6 (14.54, 9.76–

19.46, moderate certainty) and 12 months (12.48, 7.09–18.12, moderate certainty),

and the IANR-SCIFRS at 6 (3.96, 0.62–6.97, moderate certainty) and 12 months (5.54,

2.45–8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71–

17.00, moderate certainty). No intervention improved the motor score significantly at 12

months. The certainty of other interventions was low or very low. Overall, the number of

adverse events associated with transplanted cells was low.

Conclusions: Patients with SCI who receive transplantation of macrophages, MSCs,

NSCs, or OECs may have improved disease prognosis. MSCs are the primary
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recommendations. Further exploration of the mechanism of cell transplantation in the

treatment of SCI, transplantation time window, transplantation methods, and monitoring

of the number of transplanted cells and cell survival is needed.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#

recordDetails, identifier: CRD 42021282043.

Keywords: Bayesian network meta-analysis, cell transplantation, efficacy, spinal cord injury, functional recovery

INTRODUCTION

Spinal cord injury (SCI) accounts for a relatively large proportion
of the global injury burden (Collaborators GTBIaSCI, 2019).
In 2016, there were 27.04 million (24.98–30.15 million) SCI
cases globally, including 0.93 million (0.78–1.16 million) new
cases. Traumatic SCI in China showed an increasing trend from
2009 to 2018, with an estimated 66.5 cases/million population
(95% confidence interval, 65.2–67.8) (Hao et al., 2021). SCI can
impose an enormous physical, emotional, and financial burden
on patients, families, and society (Badhiwala et al., 2019; Hejrati
and Fehlings, 2021).

Clinical manifestations of SCI include paralysis, numbness,
or loss of bladder or bowel control (Badhiwala et al., 2021).
Surgical treatment mainly restores the spinal canal volume
by removing bone fragments, ligaments, and hematomas that
compress the spinal cord (Wilson et al., 2013). A considerable
number of patients do not show neurological improvement after
decompression. A study involving 1,548 patients with SCI found
that only about 30% of patients with complete paralysis had some
improvement in neurological function at 1-year post-surgery,
regardless of whether decompression was achieved early (≤24 h
post-injury) or late (>24 h post-injury) (Badhiwala et al., 2021).
Therefore, more effective therapeutic measures are needed.

In addition to external forces and other injury factors acting
directly on the spinal cord, leading to SCI, inflammatory
reactions, bleeding, and other secondary cascade injuries lead
to neuronal and glial cell apoptosis at the injury site. Nerve
axonal demyelination can further cause and aggravate SCI (Pukos
et al., 2019; Suzuki and Sakai, 2021). During the inflammatory
response, secretion of tumor necrosis factor (TNF), interleukins
(ILs), and other inflammatory cytokines allows neutrophils,
monocytes, and other cells to penetrate the blood–spinal cord
barrier into the injury site, coupled with destruction of the
blood–spinal cord barrier and glial scar formation. Thus, SCI
is gradually aggravated and neurological function deteriorates
continuously (Ahuja et al., 2017; Shinozaki et al., 2021).

Neuroprotection and nerve regeneration therapy are
important SCI treatments. Currently, nerve regeneration therapy
measures used for SCI treatment include pharmacological

Abbreviations: AIS grade, American Spinal Cord Injury Association (ASIA)

Impairment Scale; CI, credible interval; FIM, Functional independence measure;

IANR-SCIFRS, International Association of Neurorestoratology Spinal Cord

Injury Functional Rating Scale; MSC, mesenchymal stem cell; NMA, network

meta-analysis; NSC, neural stem cell/neural progenitor cell; OEC, olfactory

ensheathing cell; RCT, randomized controlled trial; SAE, severe adverse events;

SCI, spinal cord injury.

therapy, cell transplantation, biological scaffolds, and
neuromodulatory agents (Hejrati and Fehlings, 2021).

Cell transplantation is the most promising SCI treatment
at present, with mechanisms involving immune regulation,
neuroprotection, axon regeneration, and myelin regeneration
(Ahuja et al., 2017; Assinck et al., 2017; Shinozaki et al., 2021).
The most widely studied transplanted cells for SCI treatment
include neural stem/neural precursor cells (NSCs), mesenchymal
stem cells (MSCs), Schwann cells, olfactory ensheathing cells
(OECs), and macrophages, etc. (Bartlett et al., 2020; Hejrati and
Fehlings, 2021; Suzuki and Sakai, 2021). Numerous clinical trials
have applied cell therapy in SCI treatment (Knoller et al., 2005;
Bhanot et al., 2011; Chen et al., 2014; Cheng et al., 2014; Oraee-
Yazdani et al., 2016; Anderson et al., 2017; Curt et al., 2020).
Yang et al. (2021) and Vaquero et al. (2017) both reported that
patients with SCI who received MSC transplantation showed
significant neurological recovery during the follow-up period.
However, Kishk et al. (2010) found no significant neurological
recovery in patients who received MSC transplantation. Knoller
et al. (2005) reported that clinical symptoms were improved in 3
patients (3/8) who underwent macrophage transplantation.

Different types of transplanted cells have therefore been
reported to be effective in restoring neurological function in SCI
patients, but studies have shown that the efficacy of transplanted
cells is not uniform. While various transplanted cell types have
been used in clinical practice, no clinical studies have compared
the results of two or more transplanted cell types, either directly
or indirectly, as most of these clinical applications involved phase
I or phase II studies (Knoller et al., 2005; Lammertse et al., 2012;
Tabakow et al., 2013; Ghobrial et al., 2017; Curtis et al., 2018; Gant
et al., 2021). The lack of such information complicates the choice
of cell for clinical applications.

Paired meta-analysis to date have mainly analyzed MSCs
(Xu and Yang, 2019; Muthu et al., 2021) or OECs (Li et al.,
2015), and none have investigated ≥2 different transplanted
cell types, leaving the difference in the efficacy of different
transplanted cell types in SCI treatment unknown. The single
network meta-analysis (NMA) published to date (Chen et al.,
2021) compared MSCs from different sources or transplantation
routes. Therefore, comparison of different transplanted cell types
would be valuable.

Additionally, pairwise meta-analysis can only perform direct
pairwise comparisons and cannot compare ≥2. NMA, by
combining direct and indirect comparisons, allows comparison
of different interventions in the absence of direct two-by-two
comparisons, and allows ranking of different interventions by
efficacy (Mills et al., 2013), thus making fuller use of the limited
data available.
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Our study compared the differences in safety and efficacy of
transplanted cells from different sources in SCI by means of a
systematic review and NMA.

METHODS

Literature Search and Study Selection
This systematic review and NMA were performed according
to Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Network Meta-Analyses (PRISMA-NMA)
checklist for network meta-analysis (Hutton et al., 2015)
(Supplementary Table S1). The study protocol was registered on
PROSPERO (CRD 42021282043).

Three databases, i.e., Medline, Embase, and the Cochrane
Central Register of Controlled Trials, were comprehensively
searched from their inception to September 2021, without
language limitation. We also systematically screened the
reference lists of the relevant articles to identify potentially
eligible studies (Supplementary Table S2).

The inclusion and exclusion criteria were listed
in Table 1. Two trained investigators with extensive
retrieval experience separately performed a comprehensive
literature search. Any discrepancies were settled through
discussion to consensus or were adjudicated by a
third investigator.

Data Extraction and Outcome Measures
We extracted the author information; publication year; study
type; number, age, and sex of subjects; injury time; injury
segment; type of transplanted cells; source of transplanted
cells, follow-up time; and outcome measures of interest from
each eligible article. For case series articles that included
patient follow-up, we collected detailed information specific to

TABLE 1 | The inclusion and exclusion criteria.

Inclusion criteria:

Those in which patients with SCI treated with at least 1 of the following cell types:

OECs, NSCs, MSCs, Schwann cells, or macrophages.

Those with outcomes of interest: American SCI Association (ASIA) Impairment

Scale (AIS grade) (Kirshblum et al., 2011; Committee AaIIS, 2019), ASIA motor

score, ASIA sensory score (light touch or pinprick score), the Functional

Independence Measure score (FIM) (Dickson and Köhler, 1995), International

Association of Neurorestoratology SCI Functional Rating Scale (IANR-SCIFRS)

(Huang et al., 2020a), or adverse events.

Randomized controlled trials (RCTs), case–control studies, and case series.

Those in which the cells used had a clear source or were of a well-defined cell type

(Dominici et al., 2006; Viswanathan et al., 2019; Hejrati and Fehlings, 2021).

Exclusion criteria:

A life-threatening disease: penetrating injury, comma, ventilator supporting breath,

severe cardiopulmonary dysfunction, and so on.

Metabolic bone disease.

Sample size < 3.

Did not involve human patients.

Contained none of the outcome measures from the inclusion criteria.

The follow-up time was <6 months.

each patient. We extracted outcome measures for all follow-
up periods, but focused on functional recovery at 6 and
12 months after transplantation in patients who underwent
cell transplantation.

The AIS grade is an international standard for the
classification of neurological function in patients with SCI
(Kirshblum et al., 2011; Committee AaIIS, 2019). The AIS grade
is used as an important measure in guideline development;
hence, we selected it as the primary outcome measure in
this study.

The primary outcome, the AIS grade, is classified into 5
grades (A–E; A for complete SCI, and B–E for incomplete SCI,
Supplementary Table S3). Secondary outcome measures were
the ASIA motor, light touch, and pinprick scores, the FIM score,
IANR-SCIFRS score, and adverse events. Overall, the higher the
score, the better was the recovery.

Adverse events were mainly discussed as those related to
cell transplantation, such as cerebrospinal fluid leakage, and
central nervous system infection. Based on the National Cancer
Institute Common Terminology Criteria (NCICTC) (NCICTC,
2017) and the descriptions of severe adverse events (SAE) in the
included studies (Bhanot et al., 2011; Lammertse et al., 2012;
Satti et al., 2016; Curt et al., 2020), we classified events requiring
hospitalization or resulting in prolonged hospitalization, events
requiring urgent intervention, and life-threatening events as SAE
(NCICTC grade 3 and 4). Events leading to the occurrence of
death are categorized as very severe adverse events (NCICTC
grade 5). The remaining events were classified as mild-moderate
adverse events (NCICTC grade 1 and 2). And the safety was
compared among transplant cells by counting the number of
adverse events per capita.

Data extraction was performed separately by 2 investigators.
Any discrepancies were resolved by negotiation or by a third
investigator. For outcome measures that were only represented
on graphs, we extracted data using the GetData Graph Digitizer
(version 2.24). For missing values, we would contact the
corresponding author to obtain information.

Risk-of-Bias Assessment
The risk-of-bias was assessed by 2 trained investigators using
the Joanna Briggs Institute (JBI) manual for evidence synthesis
(Moola et al., 2020; Tufanaru et al., 2020). Investigators
resolved any disagreements by discussion, or adjudication by a
third investigator.

Data Synthesis and Statistical Analysis
In data synthesis, the mean difference and 95% credible interval
(CI) were used to express the effect value of continuous variables.
For case series, in which the overall sample means and standard
deviations were not provided, we used SPSS 20.0 to calculate
the collected individual data and presented the results as means
and standard deviations. Data analysis could be performed
approximately as for a continuous variable by converting AIS
grade grades A–D to 1–4.

Network plots were constructed separately for each outcome
measure. In constructing these plots, we included the baseline
status of the recipient cells before transplantation in the same
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group for synthesis and analysis, and compared it with other
transplanted cells to construct the network plots.

We use the Bayesian framework based on Markov chain
Monte-Carlo simulation methods to conduct NMA under
the random-effects model for the chosen outcome measures
(Lumley, 2002; Ades et al., 2006). Fifty thousand iterations were
generated with 20 000 burn-ins and a thinning interval of 1
for continuous variables. The trace plots and density plots were
used to assess aggregation. The league table was used to present
the direct comparison of different interventions. Calculating the
surface under the cumulative ranking (SUCRA), was used to
rank the therapeutic effects of transplanted cells from different
sources for SCI (Salanti et al., 2011). The SUCRA value ranges
between 0 and 100%: the larger the value, the more prominent is
the ranking.

Assessing Evidence Certainty
We used the Grade of Recommendations Assessment,
Development, and Evaluation (GRADE) for NMA to evaluate
evidence quality (Brignardello-Petersen et al., 2018, 2020a,b).
Two experienced investigators separately assessed evidence
certainty using a minimally contextualized framework. The
baseline was chosen as reference intervention and a null effect
was set as the decision threshold. According to whether the 95%
CI between 2 interventions crossed the threshold, we classified
category 0, representing that the intervention’s 95% CI contained
the decision threshold; otherwise, the intervention was included
in category 1. An intervention would be classified as category 2
if it was significantly superior to any of the other interventions.
Based on the risk-of-bias, inconsistency, publication bias, and
transitivity, 2 main groups were identified: the high-certainty
group or low-certainty group. The level of certainty of the
evidence for different interventions was rated as high, moderate,
low, or very low.

Hypothesis Test of NMA: Homogeneity,
Transitivity, and Consistency Test
For the homogeneity test and transitivity test, heterogeneity
was first assessed by evaluating the clinical, methodological,
and statistical data of the included studies, followed by meta-
regression to explore the source of heterogeneity and assess the
homogeneity and transferability.

For the consistency test, a node-split test was performed
to explore local inconsistency (van Valkenhoef et al., 2016).
The deviance information criterion (DIC) values, calculated
by comparing the consistency and inconsistency models
under the random-effect model, were compared, with smaller
DIC values or a smaller difference in DIC values between
2 models indicating good consistency (Spiegelhalter et al.,
2002). A p < 0.05 was considered to indicate a statistically
significant difference.

Small-Sample Effect Analysis and
Meta-Regression Analysis
Sensitivity analysis was applied to explore whether there were
small-sample effects for different outcome measures, by using
funnel plots of mean differences between the endpoint and
baseline. Statistical analyses were performed to explore the

treatment effect of transplanted cells by excluding articles that led
to bias, as well as to assess the robustness of the statistical results.

A network meta-regression analysis was performed with
selected covariates, such as publication year, baseline, and
transplanted cell type. The BETA value and its 95% CI were
obtained from the regression analysis. If the 95% CI contained
0, it indicated that the difference was not statistically significant;
that is, the covariate had no significant effect on the results.

Each step of NMA (e.g., retrieval, screening, data extraction,
data analysis, etc.) was separately performed by two investigators
with experience in this step to ensure the highest quality of
results as possible. In addition, the investigators all had clinical
backgrounds and had previously participated in a meta-analysis.

OpenBugs (version 3.2.3; https://openbugs.net/w/
OpenBUGS_3_2_3?action=AttachFile-do=get-target=Open
BUGS-3.2.3.tar.gz) and Rstudio (version 4.1.1 gemtc
package; https://www.rstudio.com/) software were used for
Bayesian NMA.

For pairwise meta-analysis, we used Rstudio (version
4.1.1 meta and metafor package) to obtain results of direct
comparisons, and to compare these with the results of NMA, to
explore the robustness of the NMA results.

RESULTS

We retrieved 12,809 studies through database searches. After first
removing duplicate articles and then conducting initial screening
of titles and abstracts and performing full-text screening based on
inclusion and exclusion criteria, we identified 43 trials reported
in 44 articles and involving 1,266 patients for inclusion in
this study (Figure 1). No article on patients with SCI received
embryonic stem cells and induced pluripotent stem cells to meet
the inclusion and exclusion criteria.

Study Characteristics and Risk-of-Bias
Assessment
Supplementary Table S4 shows the specific information of the
44 included articles. The duration of SCI ranged from <7 days
to 360 months. The mean age of patients ranged from 6 to 66
years. Cells were extracted from autologous tissue in 29 articles
and were allogeneic in 14 articles. Of the included articles, 5
were RCTs, 8 were case–control, and 30 were case series, with
single-arm studies accounting for 70% of the included studies.

Supplementary Table S5 shows the risk-of-bias for all
included studies. For case series studies, since most of the
studies did not include sample size requirements in the text
or on Clinicaltrial.gov, it is unclear whether these were full
case numbers.

Network Meta-Analysis
Figures 2–4 show the network plots for the AIS grade, ASIA
motor score, ASIA light touch, ASIA pinprick, FIM score, and
IANR-SCIFRS at 6 and 12 months, respectively.

Primary Outcome: AIS Grade
For the outcome measure of AIS grade at 6 months (6mo
AIS grade), there were 17 articles (Knoller et al., 2005; Saberi
et al., 2008; Chhabra et al., 2009; Lima et al., 2010; Lammertse
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FIGURE 1 | Flowchart of the study selection.

et al., 2012; Saito et al., 2012; Rao et al., 2013a; Tabakow et al.,
2013; Yazdani et al., 2013; Mendonça et al., 2014; Shin et al.,
2015; Vaquero et al., 2016; Anderson et al., 2017; Larocca et al.,
2017; Levi et al., 2019; Curt et al., 2020; Gant et al., 2021),
which included 172 patients. After sensitivity analysis, NMA
results showed that macrophages (mean 0.41, 95% CI 0.06–
0.8) and MSCs (0.42, 0.15–0.73) significantly improved the 6mo
AIS grade after transplantation, as compared to baseline. The
remaining transplanted cell types tended to produce results
better than baseline, but the differences did not reach statistical

significance. No statistically significant differences were observed
between the 2 cell types (Table 2A). Figure 5A showed the
SUCRA for the different transplanted cell types as compared
to baseline according to the 6mo AIS grade. MSCs (88.04%)
ranked first, followed by macrophages (85.76%), Schwann cells
(48.90%), NSCs (40.66%), and OECs (36.86%), while combined
transplantation (26.27%) ranked last.

For the AIS grade at 12 months (12mo AIS grade), 16
articles (Knoller et al., 2005; Saberi et al., 2008; Chhabra et al.,
2009; Kishk et al., 2010; Lima et al., 2010; Bhanot et al., 2011;
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FIGURE 2 | Network plots for AIS grade and motor. (A) A network plot for 6mo AIS grade; (B) A network plot for 12mo AIS grade; (C) A network plot for 6mo ASIA

motor score; (D) A network plot for 12mo ASIA motor score. The nodes represent different interventions, the size of the nodes represents the sample size of that

intervention, and the thickness of the lines connecting the nodes represents the sample size involving both interventions. The black number represents the sample

size of the intervention, and the red number represents the total sample size of the two connected interventions. AIS grade, American Spinal Cord Injury Association

(ASIA) Impairment Scale; mo, month; MSC, mesenchymal stem cell; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cell.

Lammertse et al., 2012; Rao et al., 2013a; Tabakow et al., 2013;
Yazdani et al., 2013; Shin et al., 2015; Vaquero et al., 2016;
Anderson et al., 2017; Ghobrial et al., 2017; Levi et al., 2019;
Curt et al., 2020), including 194 patients, were analyzed. After
sensitivity analysis, results showed that the transplanted cell types
tended to produce results better than at baseline (p > 0.05),
except for macrophages, which yielded a statistically significantly
different effect as compared to baseline (0.42, 0–0.91). No
statistically significant differences were observed between the
2 cell types (Table 2A). Figure 5B showed SUCRA for the
12mo AIS grade: macrophages (80.92%) ranked first, followed
by OECs (80.58%), MSCs (57.16%), Schwann cells (47.87%),
and NSCs (45.86%), while combined transplantation (21.22%)
ranked last.

ASIA Motor Score
In terms of the ASIA motor score at 6 months (6mo motor
score), there were 17 articles (Knoller et al., 2005; Lima et al.,
2006, 2010; Mackay-Sim et al., 2008; Chhabra et al., 2009; Saito
et al., 2012; Yazdani et al., 2013; Cheng et al., 2014; Mendonça

et al., 2014; Shin et al., 2015; Hur et al., 2016; Iwatsuki et al., 2016;
Oraee-Yazdani et al., 2016; Vaquero et al., 2016, 2017; Gant et al.,
2021; Yang et al., 2021) including 198 patients. Eighteen articles
(Knoller et al., 2005; Lima et al., 2006, 2010; Mackay-Sim et al.,
2008; Chhabra et al., 2009; Kishk et al., 2010; Huang et al., 2012;
Wu et al., 2012; Yazdani et al., 2013; Chen et al., 2014; Shin et al.,
2015; Iwatsuki et al., 2016; Oraee-Yazdani et al., 2016; Vaquero
et al., 2016, 2017; Wang et al., 2016; Ghobrial et al., 2017; Yang
et al., 2021), reflecting 299 patients, contained the ASIA motor
score at 12 months (12mo motor score). Combined with motor
scores at 6 and 12 months, MSCs significantly increased motor
scores at 6 months after transplantation (4.43, 0.91–7.78 after
sensitivity analysis). The remaining transplanted cell types had
a trend toward superiority over baseline, but differences were
not statistically significant. No statistically significant differences
were observed between the 2 cell types (Table 2B). According to
the SUCRA results (Figures 5C,D), NSCs ranked first (6 months:
83.19%; 12 months: 75.29%), while combined transplantation
(6 months: 33.03%) and OECs (12 months: 33.46%)
ranked last.
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FIGURE 3 | Network plot for light touch and pinprick. (A) A network plot for 6mo ASIA light touch score; (B) A network plot for 12mo ASIA light touch score; (C) A

network plot for 6mo ASIA pinprick score; (D) A network plot for 12mo ASIA pinprick score. The nodes represent different interventions, the size of the nodes

represents the sample size of that intervention, and the thickness of the lines connecting the nodes represents the sample size involving both interventions. The black

number represents the sample size of the intervention, and the red number represents the total sample size of the two connected interventions. ASIA, American Spinal

Cord Injury Association; mo, month; MSC, mesenchymal stem cell; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cell.

ASIA Light Touch Score
Thirteen articles (Knoller et al., 2005; Lima et al., 2006, 2010;
Mackay-Sim et al., 2008; Chhabra et al., 2009; Mendonça et al.,
2014; Shin et al., 2015; Hur et al., 2016; Vaquero et al., 2016,
2017, 2018; Gant et al., 2021), involving 167 patients, used the
ASIA light touch score at 6 months (6mo light touch score) as
outcome measure. Macrophages (13.07, 1.03–25.25) and MSCs
(10.01, 5.81–13.88) significantly improved light touch scores after
transplantation as compared with baseline (Table 2C). According
to SUCRA (Figure 6A), macrophages ranked first (84.10%),
followed byMSCs (76.11%), NSCs (51.88%), OECs (34.13%), and
Schwann cells (32.39%).

Fifteen articles (Knoller et al., 2005; Lima et al., 2006, 2010;
Mackay-Sim et al., 2008; Chhabra et al., 2009; Kishk et al.,
2010; Huang et al., 2012; Wu et al., 2012; Chen et al., 2014;
Shin et al., 2015; Vaquero et al., 2016, 2017; Wang et al.,
2016; Ghobrial et al., 2017; Yang et al., 2021), involving 277

patients, included the ASIA light touch score at 12 months
(12mo light touch score) as outcomemeasure. Transplantation of
macrophages (14.35, 1.02–27.98) and MSCs (11.48, 6.31–16.64)
significantly improved light touch scores. Compared with OECs,
MSCs (−7.77,−14.27 to−0.86) significantly increased the 12mo
light touch score (Table 2C). According to SUCRA (Figure 6B),
macrophages ranked first (80.71%), followed by MSCs (74.57%),
NSCs (52.19%), and OECs (35.70%).

ASIA Pinprick Score
For analysis of the ASIA pinprick score at 6 months (6mo
pinprick score), 13 articles (Knoller et al., 2005; Lima et al.,
2006, 2010; Mackay-Sim et al., 2008; Chhabra et al., 2009;
Mendonça et al., 2014; Shin et al., 2015; Hur et al., 2016;
Vaquero et al., 2016, 2017, 2018; Gant et al., 2021; Yang
et al., 2021), involving 167 patients, were included. After
sensitivity analysis, macrophages (11.68, 0.68–22.92) and MSCs
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FIGURE 4 | Network plot for FIM score and IANR-SCIFRS. (A) A network plot for 6mo FIM score; (B) A network plot for 12mo FIM score; (C) A network plot for 6mo

IANR-SCIFRS; (D) A network plot for 12mo IANAR-SCIFRS. The nodes represent different interventions, the size of the nodes represents the sample size of that

intervention, and the thickness of the lines connecting the nodes represents the sample size involving both interventions. The black number represents the sample

size of the intervention, and the red number represents the total sample size of the two connected interventions. FIM, Functional independence measure;

IANR-SCIFRS, International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale; mo, month; MSC, mesenchymal stem cell; NSC, neural

stem cell/neural progenitor cell; OEC, olfactory ensheathing cell.

(14.54, 9.76–19.46) were found to increase the 6mo pinprick
score significantly after transplantation. Compared with NSCs
(−11.47, −20.44 to −2.35) and OECs (−11.41, −20.2 to −2.62),
MSCs significantly increased the 6mo pinprick score (Table 2D).
By SUCRA (Figure 6C), MSCs (88.99%) ranked first, followed
by macrophages (76.41%), NSCs (40.15%), OECs (38.89%), and
Schwann cells (36.35%).

For the ASIA pinprick score at 12 months (12mo pinprick
score), 15 articles (Knoller et al., 2005; Lima et al., 2006,
2010; Mackay-Sim et al., 2008; Chhabra et al., 2009; Kishk
et al., 2010; Huang et al., 2012; Wu et al., 2012; Chen et al.,
2014; Shin et al., 2015; Vaquero et al., 2016, 2017; Wang
et al., 2016; Ghobrial et al., 2017; Yang et al., 2021), involving
277 patients, were included. Macrophages (16.1, 2.33–30.17)
and MSCs (12.48, 7.09–18.12) significantly improved 12mo
pinprick score. MSCs (−9.47, −15.98 to −2.75) significantly
improved this score as compared with OECs (Table 2D).
According to SUCRA (Figure 6D), macrophages (83.97%)
ranked first, followed by MSCs (78.51%), NSCs (51.62%),
and OECs (31.38%).

FIM Score
In the FIM score [including 6 months (Rao et al., 2013a;
Tabakow et al., 2013; Vaquero et al., 2016, 2017; Larocca et al.,
2017) and 12 months (Lammertse et al., 2012; Rao et al.,
2013a; Vaquero et al., 2016, 2017; Anderson et al., 2017)],
OECs (6 months: 9.35, 1.71–17.00; 12 months: 21.02, 9.75–32.2),
macrophages (12 months: 42.83, 36.33–49.18), and Schwann
cells (12 months: 34.52, 14.89–54.23) significantly improved
the FIM score after transplantation, as compared with before
transplantation. Macrophages, as compared with OECs (−21.81,
−34.54 to −9.04); OECs, as compared with MSCs (19.76, 7.17–
32.22); macrophages, as compared with MSCs (−41.57, −50.31
to −32.54); and Schwann cells, as compared with MSCs (33.26,
12.95–55.86), significantly improved FIM scores at 12 months
(Table 2E).

By SUCRA (Figures 7A,B), in terms of the 6mo FIM score,
OECs (83.75%) ranked first, followed by MSCs (45.49%); while
for the 12mo FIM score, macrophages ranked first (86.29%),
followed by Schwann cells (72.86%), and OECs (53.90%), while
MSC (22.18%) ranked last.
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TABLE 2 | Pooled estimates of the network meta8-analysis for the outcome “6mo and 12mo AIS grade” (A), “6mo and 12mo ASIA motor score” (B), “6mo and 12mo ASIA light touch score” (C), “6mo and 12mo ASIA

pinprick score” (D), “6mo and 12mo FIM score” (E), and “6mo and 12mo IANR-SCIFRS” (F).

(A) 6mo AIS grade

12mo AIS grade Baseline 0 (−0.39, 0.38) 0.41 (0.06, 0.8) 0.42 (0.15, 0.73) 0.08 (−0.22, 0.38) 0.06 (−0.25, 0.41) 0.13 (−0.29, 0.54)

0 (−0.49, 0.49) Combined 0.41 (−0.09, 0.96) 0.42 (−0.03, 0.91) 0.08 (−0.4, 0.56) 0.06 (−0.41, 0.59) 0.13 (−0.43, 0.67)

0.42 (0, 0.91) 0.42 (−0.2, 1.13) Macrophage 0.01 (−0.46, 0.47) −0.34 (−0.82, 0.12) −0.36 (−0.84, 0.14) −0.28 (−0.87, 0.25)

0.18 (−0.15, 0.56) 0.18 (−0.4, 0.81) −0.24 (−0.82, 0.32) MSC −0.35 (−0.77, 0.05) −0.37 (−0.79, 0.07) −0.29 (−0.81, 0.2)

0.15 (−0.17, 0.49) 0.15 (−0.43, 0.75) −0.27 (−0.85, 0.27) −0.03 (−0.52, 0.43) NSC −0.02 (−0.45, 0.44) 0.06 (−0.46, 0.56)

0.44 (−0.04, 1.01) 0.44 (−0.21, 1.22) 0.02 (−0.64, 0.72) 0.26 (−0.33, 0.91) 0.29 (−0.29, 0.95) OEC 0.08 (−0.48, 0.58)

0.18 (−0.35, 0.72) 0.18 (−0.55, 0.9) −0.25 (−0.98, 0.43) −0.01 (−0.66, 0.62) 0.02 (−0.61, 0.66) −0.27 (−1.05, 0.44) Schwann

(B) 6mo motor

12mo motor Baseline 0.09 (−8.1, 8.92) 3.16 (−7.29, 13.53) 4.43 (0.91, 7.78) 9.12 (−2.61, 20.91) 0.58 (−1.53, 3.3) 1.13 (−13.87, 16.17)

0.16 (−8.11, 8.05) Combined 3.07 (−11.26, 16.6) 4.34 (−5.27, 13.25) 9.04 (−5.9, 23.53) 0.49 (−8.63, 9.12) 1.05 (−16.36, 18.34)

6.02 (−5.09, 16.57) 5.86 (−7.9, 19.89) Macrophage 1.27 (−9.77, 12.21) 5.97 (−9.78, 21.42) −2.58 (−13.11, 8.24) −2.03 (−20.05, 16.53)

2.37 (−0.7, 5.25) 2.21 (−6.19, 11.07) −3.65 (−14.49, 7.97) MSC 4.69 (−7.58, 16.81) −3.85 (−7.7, 0.74) −3.3 (−18.74, 12.16)

4.17 (−0.68, 9.46) 4.01 (−5.54, 14.22) −1.85 (−13.3, 10.81) 1.8 (−3.78, 7.82) NSC −8.54 (−20.57, 3.55) −7.99 (−26.48, 10.77)

0.62 (−0.48, 2.74) 0.46 (−7.48, 9.24) −5.4 (−15.92, 6.08) −1.75 (−4.83, 1.95) −3.55 (−8.8, 1.73) OEC 0.55 (−14.61, 15.76)

NA NA NA NA NA NA Schwann

(C) 6mo light touch

12mo light touch Baseline 13.07 (1.03, 25.25) 10.01 (5.81, 13.88) 5.51 (−7.53, 18.8) 2.03 (−4.83, 8.96) 0.11 (−24.88, 24.09)

14.35 (1.02, 27.98) Macrophage −3.06 (−15.88, 9.54) −7.56 (−25.26, 10.47) −11.04 (−25.1, 2.86) −12.97 (−40.6, 14.32)

11.48 (6.31, 16.64) −2.87 (−17.4, 11.45) MSC −4.51 (−17.98, 9.45) −7.98 (−15.79, 0.12) −9.91 (−34.93, 14.35)

7.77 (−6.31, 21.79) −6.58 (−26.24, 12.63) −3.71 (−18.84, 11.29) NSC −3.47 (−18.69, 10.94) −5.4 (−33.84, 22.47)

3.71 (−0.4, 8.24) −10.64 (−24.76, 3.62) −7.77 (−14.27, −0.86) −4.06 (−18.72, 10.79) OEC −1.93 (−27.12, 22.49)

NA NA NA NA NA Schwann

(D) 6mo pinprick

12mo pinprick Baseline 11.68 (0.68, 22.92) 14.54 (9.76, 19.46) 3.07 (−4.58, 10.72) 3.13 (−4.16, 10.54) 1.66 (−23.73, 25.95)

16.1 (2.33, 30.17) Macrophage 2.87 (−9.36, 15.01) −8.6 (−22.06, 4.74) −8.55 (−21.81, 4.98) −10.02 (−37.96, 16.24)

12.48 (7.09, 18.12) −3.62 (−18.94, 11.38) MSC −11.47 (−20.44, −2.35) −11.41 (−20.2, −2.62) −12.89 (−38.66, 11.93)

7.2 (−1.22, 15.89) −8.9 (−25.16, 7.33) −5.28 (−15.59, 5.06) NSC 0.06 (−10.5, 10.58) −1.42 (−27.36, 24.11)

3.01 (−0.45, 7.03) −13.09 (−27.54, 1.21) −9.47 (−15.98, −2.75) −4.19 (−13.38, 5.33) OEC −1.47 (−27.23, 23.96)

NA NA NA NA NA Schwann

(Continued)
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IANR-SCIFRS
For the IANR-SCIFRS at 6 months (6mo IANR-SCIFRS) (Rao
et al., 2013b; Vaquero et al., 2016, 2017, 2018; Yang et al.,
2021) and at 12 months (12mo IANR-SCIFRS) (Huang et al.,
2012; Rao et al., 2013b; Chen et al., 2014; Vaquero et al., 2016,
2017, 2018; Wang et al., 2016; Yang et al., 2021), MSCs (6
months: 3.96, 0.62–6.97; 12 months: 5.54, 2.45–8.42) significantly
increased the IANR-SCIFRS score after transplantation. There
was no statistically significant difference between OECs and
MSCs (Table 2F). SUCRA (Figures 7C,D) showed that OECs
and MSCs ranked first at 6 months (74.65%) and at 12 months
(96.84%), respectively.

The SUCRA value of each outcome and the ranking
order is detailed in Table 3 and Supplementary Tables S6.
GRADE analysis showed that the certainty of the evidence
for all outcomes was relatively low for most outcomes
(Supplementary Tables S7–S12).

Adverse Events
In this study, 44 articles, involving 1,266 patients, described
adverse events. Most were single-arm studies, lacking a control
group. Therefore, adverse events in this study are presented as
descriptive statistics only. Adverse events occurred 1,144 times in
total. Table 4 shows that of the total adverse events, the number
of AE per capita was <1 for both the OEC and MSC. Only
two SAE occurred in patients with MSC and no deaths were
reported. The most common SAE was cerebrospinal fluid leakage
(44 cases), which was 46.81% of the SAE accumulated for all
transplanted cells (Supplementary Table S13). SAE associated
with cell transplantation may include pseudomeningocele (3
times), autonomic dysreflexia (5 times), and meningitis (3 times)
in addition to cerebrospinal fluid leakage. Three deaths occurred
in the perioperative period: 2 patients who received OECs
(Huang et al., 2009) and 1 patient who received macrophages
(Lammertse et al., 2012). Temporary anosmia commonly
occurred within 7 days after autologous OEC transplantation, but
gradually recovered at 7–14 days without special treatment. No
article reported permanent anosmia.

Pairwise Meta-Analysis
The results of the pairwise meta-analysis of various outcomes are
shown in Supplementary Table S14; all comparisons were made
relative to their baseline.

MSCs significantly improved the AIS grade at 6 and 12
months, and macrophages significantly improved the grade at
6 months. Only OECs and NSCs significantly improved the
motor score at 12 months after transplantation. Macrophages
significantly improved the light touch scores at 6 and 12 months,
MSCs improved these scores at 6 months, and OECs improved
these scores at 12 months. Macrophages significantly improved
the pinprick scores at 6 and 12 months, MSCs improved the
score at 6 months, and NSCs improved the score at 12 months.
Macrophages, OECs, and Schwann cells significantly improved
the FIM score at 12 months. For IANR-SCIFRS, only OEC
significantly improved post-transplantation scores.
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FIGURE 5 | SUCRA for AIS grade and ASIA motor score. (A) SUCRA for 6mo AIS grade; (B) SUCRA for 12mo AIS grade; (C) SUCRA for 6mo ASIA motor score; (D)

A network plot for 12mo ASIA motor score. The x-axis represents the ranking and the y-axis represents the cumulative probability. The cumulative ranking and

cumulative probability are constructed as a curve. The larger the area under the curve, the greater the benefit of the intervention. AIS grade, American Spinal Cord

Injury Association (ASIA) Impairment Scale; mo, month; SUCRA, the surface under the cumulative ranking; MSC, mesenchymal stem cell; NSC, neural stem

cell/neural progenitor cell; OEC, olfactory ensheathing cell.

Small-Sample Effect Test and Hypothesis
Test of NMA
In the analyses of the 6mo AIS grade, 12mo AIS grade, motor
score, and pinprick score, we found some evidence of small-
sample effects (Supplementary Figures S1–S4) (Chhabra et al.,
2009; Saito et al., 2012; Tabakow et al., 2013; Vaquero et al.,
2016, 2018), and therefore performed a sensitivity analysis for
these outcomes. There was no change in the ranking order of
the different transplanted cells. Therefore, the study was therefore
robust overall.

To demonstrate the hypothesis of homogeneity and
transferability of NMA, in addition to confirming that there
were no significant differences in interventions and statistical
methods, we also compared the mean age of SCI patients
in all articles (Supplementary Figure S5) and performed a
meta-regression analysis (Supplementary Table S15) of baseline
data, publication year, and cell types. All results showed that
the hypothesis of homogeneity and transitivity of NMA was
established. In the consistency test of NMA, the difference in

DIC values calculated under the 2 different models was <1
(Supplementary Table S16), suggesting that the consistency
hypothesis was established. The NMA fit was analyzed,
and all outcome measures converged well and stabilized
(Supplementary Figures S6–S17).

DISCUSSION

Principal Findings
In this paper, the efficacy and safety of 6 different sources of
transplanted cells, including MSCs, macrophages, NSC, OEC,
Schwann cells, and combined (MSC combined with Schwann
cell transplantation), for the treatment of SCI patients were
comprehensively summarized by systematic review and NMA.

The combined quality of evidence evaluation and NMA
showed that SCI patients who received macrophage, MSC, NSC,
or OEC transplantation showed significant improvement in
neurological function within 6–12 months. In the comparison
of transplanted cells from different sources, SCI patients who
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FIGURE 6 | SUCRA for ASIA light touch and pinprick. (A) SUCRA for 6mo ASIA light touch score; (B) SUCRA for 12mo ASIA light touch score; (C) SUCRA for 6mo

ASIA pinprick score; (D) SUCRA for 12mo ASIA pinprick score. The x-axis represents the ranking and the y-axis represents the cumulative probability. The cumulative

ranking and cumulative probability are constructed as a curve. The larger the area under the curve, the greater the benefit of the intervention. mo, month; SUCRA, the

surface under the cumulative ranking; MSC, mesenchymal stem cell; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cell.

received macrophages faired significantly better in FIM score
improvement at 12 months than those who received MSCs
or OECs. SCI patients who received OEC or Schwann cell
transplantation faired significantly better in improving the
FIM score at 12 months than SCI patients who received
MSCs. However, MSCs were significantly superior to OECs in
improving light touch and pinprick sensation at 12 months.
SUCRA showed that MSCs and macrophages ranked in the top
2 for most outcome measures.

Macrophages are key effector cells of the inflammatory
response after SCI. After SCI, due to ischemia and hypoxia
of neural tissue, macrophages promote the formation of new
blood vessels by up-regulating the release of vascular endothelial
growth factor (VEGF-A) (Cattin et al., 2015), thereby providing
oxygen to the damaged area. The newly formed blood vessels may
provide migration channels for other cells to migrate to the SCI
site (Huang et al., 2020b). In the trials included in this study,
macrophages for transplantation were obtained by incubating

autologous venous blood (200ml) collected with a full thickness
of skin harvested from the medial aspect of the patient’s arm
(Knoller et al., 2005; Lammertse et al., 2012). These macrophages
co-incubated with skin can secrete brain-derived neurotrophic
factor (BDNF), IL-1beta, and IL-6 (Knoller et al., 2005). BDNF
is a polypeptide growth factor (Song et al., 2017) that has
neuroprotective, cell survival, and synaptic plasticity effects in the
injured spinal cord after binding to the tropomyosin-associated
kinase (TrkB). FL receptor (Philippe et al., 1987; Alcántara et al.,
1997; Mantilla et al., 2013, 2014). Macrophages can be polarized
to M1 (classical activation) or M2 (alternative activation)
(Mantovani et al., 2004; Beck et al., 2010; Gordon and Martinez,
2010) in different inflammatory environments. M1 macrophages
promote the secondary inflammatory response after SCI, while
M2 macrophages can promote axonal regeneration (David and
Kroner, 2011).Macrophages co-incubated with skin tissue reduce
the secretion of proinflammatory cytokines, such as TNF-α
(Bomstein et al., 2003), and thus have the potential to differentiate
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FIGURE 7 | SUCRA for FIM score and IANR-SCIFRS. (A) SUCRA for 6mo FIM score; (B) SUCRA for 12mo FIM score; (C) SUCRA for 6mo IANR-SCIFRS; (D)

SUCRA for 12mo IANR-SCIFRS. The x-axis represents the ranking and the y-axis represents the cumulative probability. The cumulative ranking and cumulative

probability are constructed as a curve. The larger the area under the curve, the greater the benefit of the intervention. FIM, Functional independence measure;

IANR-SCIFRS, International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale; mo, month; SUCRA, the surface under the cumulative

ranking; MSC, mesenchymal stem cell; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cell.

into M2 macrophages. Li et al. (2019) proposed that BDNF can
promote polarization of M1 macrophages into M2 macrophages,
possibly via BDNF regulation of TrkB/PI3K/serine–threonine
kinase 1 (AKT1). Additionally, disease duration was <14 days in
patients who received macrophage transplantation as compared
with patients who received other transplanted cells for SCI,
suggesting that early macrophage transplantation in SCI patients
may reduce the severity of the disease in the early stage post-
injury, highlighting the effect of neurological recovery in the
late stage of injury. This may therefore be a reason for the
neurological recovery of patients after receiving macrophage
transplantation. The possible mechanism is that, in the acute
or subacute phase of SCI, cell death and inflammatory response
are the heaviest, and after early transplantation, macrophages
can play a role as early as possible and protect neural tissue
(Shinozaki et al., 2021). However, there have been no relevant
studies to support this idea. In summary, early transplantation of

macrophages after SCI can have a positive impact on the recovery
of neurological function in patients. Notably, however, TGF-beta
secreted by M2 macrophages can activate astrocytes to promote
glial scar formation (Song et al., 2019). Thus, modulating the
balance of M1: M2 may be critical for the efficacy of macrophage
transplantation in SCI patients (Hu et al., 2015).

Since Caplan (1991) first reported the application of MSCs in
1991, MSCs have been studied intensively (Bartlett et al., 2020).
In response to VEGF and hepatocyte growth factor released at
the site of injury (Zachar et al., 2016; Qu and Zhang, 2017)
and/or regulated by the SDF-1α/CXCR4 (stromal cell-derived
factor-1α/ C–X–C chemokine receptor 4) axis (Pelagalli et al.,
2018), MSCs show “homing” properties and could migrate to the
injury site of SCI. Existing studies have shown that (An et al.,
2021; Suzuki and Sakai, 2021) the therapeutic effect of MSC
is mainly exerted through paracrine activity, thereby protecting
surviving neurons and oligodendrocytes (Rehman et al., 2004;

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 April 2022 | Volume 16 | Article 860131

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Xu et al. Cell Transplantation for Spinal Cord Injury

TABLE 3 | The ranking result of SUCRA.

Rank 1 2 3 4 5 6 7

6mo AIS MSC Macrophage Schwann NSC OEC Combined Baseline

12mo AIS Macrophage OEC MSC Schwann NSC Combined Baseline

6mo motor NSC MSC Macrophage Schwann OEC Combined Baseline

12mo motor NSC Macrophage MSC Combined OEC Baseline –

6mo light touch Macrophage MSC NSC OEC Schwann Baseline –

12mo light touch Macrophage MSC NSC OEC Baseline – –

6mo pinprick MSC Macrophage NSC OEC Schwann Baseline –

12mo pinprick Macrophage MSC NSC OEC Baseline – –

6mo FIM score OEC MSC Baseline – – – –

12mo FIM score Macrophage Schwann OEC MSC Baseline – –

6mo IANR-SCIFRS OEC MSC Baseline – – – –

12mo IANR-SCIFRS MSC OEC Baseline – – – –

AIS, American Spinal Cord Injury Association (ASIA) Impairment Scale; FIM, functional independence measure; IANR-SCIFRS, International association of Neurorestoratology Spinal

Cord Injury Functional Rating Scale; mo, month (s); MSC, mesenchymal stem cells; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cells; SUCRA, the surface

under the cumulative ranking.

TABLE 4 | Adverse events of different transplanted cells.

Cell Sample size No. of AE AE_per capita No. of mild-moderate AE No. of SAE SAE_per capita No. of very SAE

Combined 14 17 1.21 17 0 0 0

Macrophage 41 414 10.10 401 12 0.03 1

MSC 355 262 0.74 260 2 0.01 0

NSC 63 271 4.30 232 39 0.14 0

OEC 775 80 0.10 38 40 0.50 2

Schwann 18 100 5.56 99 1 0.01 0

Total 1,266 1,144 22.01 1,047 94 0.08 3

AE, adverse event; MSC, mesenchymal stem cell; No, number; NSC, neural stem cell/neural progenitor cell; OEC, olfactory ensheathing cell; SAE: severe adverse event.

Uccelli et al., 2008; Sorrell et al., 2009; Lim et al., 2019), promoting
neovascularization (Hofer and Tuan, 2016), and inhibiting the
inflammatory response at the injury site (Boido et al., 2014).
In addition, MSCs can also assist in functional recovery by
affecting macrophage polarization and controlling the effect of
secondary injury after SCI (An et al., 2021). MSCs can promote
the conversion of polarized macrophages/microglia from M1
to M2, improve the inflammatory environment, and promote
recovery after SCI (Nakajima et al., 2012; Dooley et al., 2016;
Zhou et al., 2016). Meta-analyses on animal models (Oliveri
et al., 2014) or on clinical trials (Xu and Yang, 2019; Chen et al.,
2021; Muthu et al., 2021) revealed the potential of MSCs to
improve neurological function, which was generally consistent
with this study. MSC can be extracted from autologous bone
marrow, umbilical cord, or adipose tissue (Mahmoudian-Sani
et al., 2017; Jayaram et al., 2019), which is a convenient source and
may reduce potential ethical concerns. Our analysis showed that
MSCs were significant in increasing AIS grade and improving
both ASIA motor and sensory scores. Also, MSCs ranked in
the top 2 for most outcome measures. Hence, MSCs may
be one of the primary recommended transplanted cell types
currently used to improve neurological function in patients
with SCI. However, due to the lack of strong evidence, there is

an urgent need for high-quality research evidence, particularly
randomized controlled studies. Notably, there are still some
controversies about the nomenclature of MSCs (Sipp et al., 2018)
and cell identification (Viswanathan et al., 2019). As such, to
avoid interference from confounding factors, we included articles
that met the identification criteria according to the minimum
identification criteria for MSC (Dominici et al., 2006). Compared
with the results of a previously published meta-analysis of MSCs
(Xu and Yang, 2019; Chen et al., 2021; Muthu et al., 2021),
MSCs were shown to be significant in improving light touch and
pinprick sensation at 6 and 12 months, AIS, and motor scores at
6 months.

Schwann cells are glial cells present in peripheral nerves
(Anderson et al., 2017). OECs are sheath cells with both
astrocyte and Schwann cell characteristics (Fairless and Barnett,
2005; Rao et al., 2013b). Although Schwann cells and OECs
have different sources of acquisition, they play similar roles
in SCI, such as the secretion of extracellular matrix molecules
and neurotrophic factors (GDNF) and nerve growth factor
(NGF) (Woodhall et al., 2001; Ekberg et al., 2012; Jessen and
Arthur-Farraj, 2019), thereby exerting neuroprotective effects,
and promoting myelination (Wu et al., 2003; Deng et al.,
2015) and axonal regeneration (Graziadei and Graziadei, 1979;
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Takami et al., 2002; Su and He, 2010). Additionally, these
cell types also have unique functions in SCI (Bartlett et al.,
2020). Therefore, there is good scientific evidence for OECs or
Schwann cells in the neurological recovery of SCI. Their ability
to promote myelination and axonal regeneration may be why
OECs or Schwann cells are superior to MSCs in improving
the FIM score; however, in this index, due to the paucity
of articles using this outcome index, more sufficient clinical
evidence is needed to prove the difference in efficacy among the
3 cell types.

Notably, in cell culture, Schwann cell and OEC expression
share similar phenotypic features, such as p75 (Barnett et al.,
1993; Kocsis et al., 2009). The olfactory mucosa receives
trigeminal innervation in addition to olfactory fibers, so that
the influence of Schwann cells from trigeminal nerve fibers
may not be completely excluded when preparing OEC (Wang
et al., 2016). The potential interference of Schwann cells and the
similarity of OEC and Schwann cells themselves may exist when
OEC transplantation is performed, coupled with the difficulty in
harvesting sufficient olfactory cells (Wang et al., 2016), which
further increases the uncertainty of efficacy. Because OECs and
Schwann cells play an important role in their corresponding
position, acquisition of the two cells can affect the function of this
site, which may influence olfactory abnormalities or lower limb
paresthesia. In addition, compared with other transplanted cells,
obtaining sufficient Schwann cells thatmeet clinical requirements
requires not only complex infrastructure but also much
manpower and time, making it difficult to popularize. In addition
to this, the isolation of primary cells may be compromised
by low yield or poor survival and may be contaminated with
fibroblasts (Monje et al., 2021).

For the description of adverse events, due to the different
definitions of SAE in different articles, we performed statistical
description of the 44 included articles according to the
classification of adverse reactions provided by NCICTC (2017)
and the description of SAE in included studies (Bhanot et al.,
2011; Lammertse et al., 2012; Satti et al., 2016; Curt et al.,
2020). In terms of SAE, common complications related to cell
transplantation are pseudomeningocele, autonomic dysreflexia,
meningitis, and cerebrospinal fluid leakage. Among them,
cerebrospinal fluid leakage occurred in patients who underwent
resection of the vertebral plate, and opening of the dura
mater followed by intramedullary injection as the route of
transplantation. Cerebrospinal fluid leaks, pseudomeningocele,
and meningitis tend to appear 1–2 weeks after receiving
the transplant (Lima et al., 2010; Lammertse et al., 2012;
Levi et al., 2018; Curt et al., 2020). In addition, Kishk
et al. (2010) reported a case of a 27-year-old female patient
with previous post-infection myelitis who developed acute
disseminated encephalomyelitis 6 h after receiving her thirdMSC
transplant and improved with treatment. This suggests that MSC
may be contraindicated in patients with a history of myelitis.
Two patients who underwent OEC transplantation in Huang
et al. (2009) had fatal events due to hypertensive intracerebral
hemorrhage and pulmonary infection. Additionally, the death
in 1 patient who died after receiving macrophages (Lammertse
et al., 2012) was due to quadriplegia caused by cervical SCI.

The authors explained that the cause of death may have
been related to obesity, and suggested that further studies
should be conducted to explore the effect of obesity on
macrophage transplantation.

The route of transplantation may be an important factor
affecting prognosis. The intraspinal injection was the most
commonly used transplantation route in the included studies
(Supplementary Table S4). In terms of MSC, Mendonça et al.
(2014), Park et al. (2012) used intraspinal injection and all
reported well effects on the recovery of neurological function.
Park et al. (2012) suggested that the “homing” properties
of MSC may have disappeared in patients with chronic
SCI, which is different from the acute phase. In addition,
an animal model study comparing different transplantation
routes concluded that intraspinal injection may be a safe
and reliable method, and the number of transplanted
cells is the largest (Shin et al., 2013). Chen et al. (2021),
however, synthesized articles on MSC transplantation by
different transplantation routes for the treatment of SCI
for a meta-analysis and concluded that intrathecal injection
may be the best transplantation route. However, due to
the limitation of the included articles, we failed to analyze
the differences in efficacy among different transplantation
routes. In the future, a comparative study comparing the
effects of different transplantation routes on efficacy is
highly desirable.

Future Research
Although our comprehensive analysis identified differences
in the efficacy and safety of different transplanted cells, we
concluded that cell transplantation has some efficacy for SCI
treatment. However, due to the limitations of the original
studies, the majority of the evidence in this paper is of
low certainty. High quality randomized controlled studies
are lacking and no definitive conclusions have been reached
regarding the route of transplantation, the number of cells
transplanted, time to transplantation after injury, preparation
and preservation of transplanted cells, monitoring of cell
survival after transplantation, and complications associated with
transplantation. There is still a gap in standardized protocols
for cell transplantation for SCI. Although not reported in
the studies included here, according to Jeong et al. (2011),
chromosomal abnormalities appear at the early passage after
MSC transplantation and lead to the occurrence of tumors,
which requires further in-depth analysis. Therefore, for a
clearer comparison of the efficacy and safety of transplanted
cells from different sources, it remains necessary to explore
the above-mentioned still unclear conclusions. Recently, the
study of cell transplantation combined with scaffold in the
treatment of SCI is gradually carried out (Xiao et al., 2018;
Chen et al., 2020; Deng et al., 2020; Kim et al., 2021; Tang
et al., 2021). An observational study (Tang et al., 2021)
with a follow-up of 2–5 years found varying degrees of
recovery of sensory levels and increased defecation reflexes
after cell transplantation combined with scaffold therapy in
patients with acute or chronic SCI. This allows patients
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and physicians afflicted with spinal cord injury to have
more expectations.

Limitations
This study had the following limitations. Most included studies
were phase I or II clinical studies, and some studies had small
sample sizes. We included case–control studies and case series
studies, in addition to randomized controlled trials. Due to the
limitation of inclusion in the study, it is difficult for us to perform
analysis, including disease duration, transplantation methods,
and the total number of transplanted cells. In the safety analysis,
due to the inability to construct a network plot, this study only
performed descriptive statistics on adverse events and lacked
comparative evidence.

CONCLUSION

SCI patients who receive macrophages, MSCs, NSCs, or OECs
showed benefits in terms of recovery of motor function,
sensory function, and life independence. Among all cell types
transplanted for SCI, MSCs are recommended. However, it
remains necessary to explore the exact mechanism by which
cell transplantation improves SCI, the effect of the choice
of transplantation time window on the efficacy, the effect of
the transplantation methods and the number of transplanted
cells on the efficacy, and the monitoring of transplanted
cell survival.
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