
fncel-16-860573 February 28, 2022 Time: 19:35 # 1

MINI REVIEW
published: 04 March 2022

doi: 10.3389/fncel.2022.860573

Edited by:
Anwen Shao,

Zhejiang University, China

Reviewed by:
Lingfei Li,

The University of Hong Kong,
Hong Kong SAR, China

Liang Wu,
Wenzhou Medical University, China

*Correspondence:
Juan Hu

jiangxi_hj@163.com

Specialty section:
This article was submitted to

Cellular Neuropathology,
a section of the journal

Frontiers in Cellular Neuroscience

Received: 23 January 2022
Accepted: 08 February 2022

Published: 04 March 2022

Citation:
Zhang H, Xie Q and Hu J (2022)

Neuroprotective Effect of Physical
Activity in Ischemic Stroke: Focus on

the Neurovascular Unit.
Front. Cell. Neurosci. 16:860573.
doi: 10.3389/fncel.2022.860573

Neuroprotective Effect of Physical
Activity in Ischemic Stroke: Focus on
the Neurovascular Unit
Hui Zhang1, Qi Xie2 and Juan Hu3*

1 School of Physical Education, Nanchang University, Nanchang, China, 2 Inpatient Department, Jiangxi Provincial People’s
Hospital, Nanchang, China, 3 Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China

Cerebral ischemia is one of the major diseases associated with death or disability
among patients. To date, there is a lack of effective treatments, with the exception
of thrombolytic therapy that can be administered during the acute phase of ischemic
stroke. Cerebral ischemia can cause a variety of pathological changes, including
microvascular basal membrane matrix, endothelial cell activation, and astrocyte
adhesion, which may affect signal transduction between the microvessels and neurons.
Therefore, researchers put forward the concept of neurovascular unit, including neurons,
axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix,
and pericyte), and oligodendrocytes. Numerous studies have demonstrated that
exercise can produce protective effects in cerebral ischemia, and that exercise may
protect the integrity of the blood-brain barrier, promote neovascularization, reduce
neuronal apoptosis, and eventually lead to an improvement in neurological function after
cerebral ischemia. In this review, we summarized the potential mechanisms on the effect
of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the
aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
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INTRODUCTION

Research on neuroprotective therapy for cerebral ischemia has been a hot topic worldwide.
Ischemic tolerance refers to a short period when patients experience cerebral ischemia before
the onset of a severe ischemic stroke, thus enhancing the tolerance of brain tissue to the
subsequent ischemic injury (Wang et al., 2015; Hao et al., 2020; Daniele et al., 2021). This
suggests that preischemic interventions can induce tolerance to secondary severe injury after
cerebral ischemia. Triggers of various types of mild stressors or stimuli (i.e., surgical, remote
ischemic preconditioning, exercise, acupuncture, and pharmacological methods) induce adaptive
endogenous tolerance to ischemia injury by activating a multitude cascade of molecules (Thushara
Vijayakumar et al., 2016; Vinciguerra et al., 2018; Hao et al., 2020). As a preventive method, exercise
is accepted relatively easily by patients. As a safe preintervention approach, exercise actually has less
adverse effects, which allows it to be more suitable for clinical application. A large number of studies
have demonstrated that exercise before cerebral ischemia, also known as exercise preconditioning,
can induce ischemic tolerance, thereby effectively alleviating brain injury and promoting
functional recovery after an ischemic stroke (Zhang et al., 2011; Dornbos and Ding, 2012;
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Sakakima, 2019). Therefore, elucidating the neuroprotective
mechanisms and benefits of exercise and exercise intervention,
pre- and post-stroke, will encourage patients with high-risk
factors of ischemic stroke to actively exercise for prevention and
treatment of stroke. The close connection between microvascular
endothelial cells and surrounding astrocytes plays an important
role in maintaining an intact neurovascular coupling. Regulation
of the microvascular basal matrix membrane, activation of
endothelial cells, and changes in astrocyte adhesion can
directly affect the transmission of information between the
microvasculature and neurons.

A neurovascular unit (NVU), which was initially proposed by
Lo et al. (2003) in the early 2000s, is a structural and functional
unit of the central nervous system. It emphasizes the dynamic
interactions among endothelial cells, astrocytes, pericytes, basal
membrane, microglia, neurons, and the extracellular matrix and
the importance of such interactions in the pathophysiology of
stroke (Steliga et al., 2020; Moon et al., 2021; Naranjo et al., 2021;
Wang et al., 2021). The concept of NVU not only provides a
platform for understanding central nervous system injury, but
also provides a possibility for both clinically successful and timely
intervention of brain injury (Yu et al., 2020; Zhou et al., 2020).
Exercise, as a preconditioning approach, has been discovered to
play a neuroprotective role by interfering with NVU (Dornbos
and Ding, 2012; Murugesan et al., 2012; Wang et al., 2014;
Laitman and John, 2015). This review is a summary of the effect
and potential mechanism of exercise on NVU, to provide a
theoretical basis for elucidating the neuroprotective mechanism
of exercise, and its further application in cerebral ischemia.

CEREBRAL ISCHEMIA AND
NEUROVASCULAR UNIT INJURY

Cerebral Ischemia and Neuronal Injury
The mechanism of neuronal injury caused by cerebral ischemia is
complex. Neuronal apoptosis, after cerebral ischemia, is regulated
by many different events and may develop by initiating the
internal cellular death mechanism. Many studies have discovered
that cerebral ischemia can induce cell apoptosis, and most
apoptotic cells are neurons, with a few glial cells and vascular
endothelial cells (Chan, 2004; Peng et al., 2004; Radak et al.,
2017). Delayed neuronal apoptosis is a process that is different
from necrosis, causing neuronal loss and occurring after cerebral
ischemia (Huang et al., 2021; Kang et al., 2021). Regional
expression of apoptosis-related proteins, such as caspase family,
Bcl-2, and Bax, are involved in the occurrence of neuronal
apoptosis after the onset of cerebral ischemia (Zhou et al.,
2003; Long et al., 2022). It has been reported that brain
ischemia for 10 min not only causes neuronal apoptosis in rats,
but permanent cerebral ischemia for 60 min causes neuronal
apoptosis (O’Sullivan et al., 2007). The number of apoptotic
neurons fluctuates in a curvilinear manner over time, indicating
that, during the process of cerebral ischemia, the main factors
that determine neuronal apoptosis are the severity of ischemia
and susceptibility of neurons. Ischemia causes energy failure,
leading to increased intracellular sodium and calcium, cell lysis,

and neuronal apoptosis. Studies have shown that there are many
apoptotic neurons within the ischemic area at 0.5 h after the
development of cerebral ischemia (Radak et al., 2017). Apoptotic
cells are scattered in the preoptic region, striatum, and cerebral
cortex. The number of apoptotic neurons reached a peak at
12 h after reperfusion, and various morphologies of apoptotic
cells were observed (Nakka et al., 2008; Li et al., 2017a). The
results mentioned above indicate that the sensitivity of neurons
to ischemia-reperfusion injury is different, and that neuronal
apoptosis is a dynamic developmental process (Naito et al., 2020).
The induced expression of many neuronal genes and proteins
is initially an adaptive response to cerebral ischemia stress, but
due to repeated or continuous occurrence of cerebral ischemia,
they gradually alter to promote or inhibit apoptosis, thereby
constituting the complex regulatory factor system of neuronal
apoptosis within the body (Lehotský et al., 2009; García de la
Cadena and Massieu, 2016; Jensen et al., 2019).

Necrosis is another important type of neuronal death. Studies
have reported that the activation of receptor-interacting protein
kinase (RIPK)-mixed lineage kinase domain-like protein (MLKL)
signaling pathway is involved in the onset of neuronal necrosis
after injury by cerebral ischemia (Deng et al., 2019; Zhang et al.,
2019, 2020). The expression of p-RIPK1 and p-MLKL proteins
was found to be increased in the ischemic brain. Furthermore,
use of RIPK1 inhibitors could hinder p-RIPK1 and p-MLKL
protein expression, with reduced necrosis and infarct volume
and promotion of neurological function (Deng et al., 2019;
Liao et al., 2020). These data provide evidence that p-RIPK1 is
involved in the initiation of RIPK3-/MLKL-induced necroptosis
after cerebral ischemia. In addition, Pellino3, which is a ubiquitin
E3 ligase, inhibits the formation of the death-induced signaling
complex in response to tumor necrosis factor-α (TNF-α) by
targeting RIPK1. Furthermore, it has been shown to have an
effect in counteracting necroptosis via RIPK1 ubiquitination,
and neuronal necroptosis could be reduced by upregulation
of Pellino3 (Zhang et al., 2021). Zhang et al. (2020) found
that knockout of Rip3 or Mlkl had a neuroprotective effect
in acute ischemic stroke mice, and that necroptosis loss-of-
function mice have attenuated inflammation in the brain infarct
tissue. As an efficient and specific inhibitor of RIPK3, Gsk-
872 inhibited hypoxia-induced phosphorylation of RIPK1/3 and
MLKL proteins, reduced neuronal death, and alleviated brain
injury (Yang et al., 2017).

The autophagy signaling pathway in cerebral ischemia is
complex, is connected to necrosis and apoptosis, and affects the
degree of brain injury (Kim K. A. et al., 2018; Wang et al., 2018;
Xu et al., 2021). Su et al. (2014) demonstrated that the autophagy
inhibitor 3-methyladenine (3-MA) reversed the neuroprotective
effects that were induced by remote ischemic preconditioning
against cerebral ischemia-induced injury, whereas the autophagy
inducer rapamycin ameliorated neurological dysfunction post-
stroke. This indicates that the activation of autophagy is involved
in remote ischemic preconditioning-induced neuroprotection
in cerebral ischemia (Su et al., 2014). Autophagy activation is
common after the onset of brain ischemic/reperfusion injury.
However, autophagy plays a beneficial or detrimental role in
neuronal death, depending on injury stage and degree of
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autophagy (Wei et al., 2012; Chen et al., 2014; Shi et al.,
2021). Guo et al. (2021) conducted rat models of transient
middle cerebral artery occlusion (tMCAO) and permanent
MCAO (pMCAO), respectively. Then, the dynamic changes
of autophagy activity, following tMCAO or pMCAO, were
measured. The results demonstrated that both Beclin1 and LC3
expression levels, as indicators of autophagy, were significantly
altered at different time points within seven days after tMCAO
or pMCAO. Interestingly, autophagy induction elicited overt
neuroprotection after tMCAO, and this effect was related to
increased autophagy flux, indicating that autophagy plays a
neuroprotective role, mainly at the subacute phase of tMCAO,
but has few effects after pMCAO.

Cerebral Ischemia and Disruption of
Blood-Brain Barrier
After cerebral ischemia, the blood-brain barrier (BBB) not only
has abnormal function but also suffers from structural damage
(Abdullahi et al., 2018; Li et al., 2019; Sarvari et al., 2020). The
microvascular basement membrane is interrupted or lost, as the
components of the basement membrane (i.e., laminin fibronectin
and type IV collagen) are significantly reduced. In addition,
damage to the BBB is not only a destruction of anatomical
structure, but also a selective compensatory mechanism (Sheikh
et al., 2022). The connection between neurons and microvessels
is not only related to regulation of blood flow but also to
the permeability of BBB. Previous studies have demonstrated
that the necessary anatomical structure for BBB permeability
is the close connection between microvascular endothelial cells
and astrocytes. Furthermore, the direct regulation of astrocytes
on blood vessels is realized by promoting the expansion or
contraction of blood vessels (Ito et al., 2011, 2013). Other
studies have discovered that pericytes can migrate rapidly from
microvessels during cerebral ischemia, suggesting that pericytes
can play a similar role to glial cells in maintenance of BBB
formation and function (Gonul et al., 2002; Duz et al., 2007; Al
Ahmad et al., 2011). In addition, an increase of BBB permeability
under pathological conditions is significantly correlated with
destruction of the extracellular matrix (Yang et al., 2015;
Michalski et al., 2020).

Matrix metalloproteinases (MMPs) are a group of zinc-
dependent enzymes that have the ability to degrade the
extracellular matrix. Under physiological conditions, MMPs are
known to be involved in embryo development, angiogenesis,
nerve development, and regulation of tissue remodeling
(Parks, 1999; Vu and Werb, 2000; Page-McCaw et al.,
2007). After the onset of cerebral ischemia, MMPs can be
rapidly produced by neurons, astrocytes, microglia, and
endothelial cells, leading to degradation and destruction
of the matrix layer mucin, collagen fiber IV, and cellular
fibronectin (Candelario-Jalil et al., 2009; Chaturvedi and
Kaczmarek, 2014). Animals and patient studies have discovered
that cerebral ischemia can induce expression of MMPs,
particularly, the increased activity of MMP-2 and MMP-9,
which is closely related to increased cerebral microvascular
permeability, BBB destruction, inflammatory cell invasion,

and brain edema (Rosell and Lo, 2008; Kurzepa et al., 2014;
Yang and Rosenberg, 2015). In conclusion, MMPs degrade
the major components of the extracellular matrix and
cause damage to BBB, resulting in cerebral edema and
transformational hemorrhage after ischemic stroke (Jin et al.,
2010; Seo et al., 2012).

EXERCISE AND RESTORATION OF
NEUROVASCULAR UNIT

The pathological process after the onset of cerebral ischemia is
complex, and the substances and factors that are released post-
stroke have different roles. Each component of the NVU becomes
damaged after stroke and maintains the microvascular-neuronal
connection. The integrity of NVU is key to the prevention
and treatment of ischemic stroke. Exercise, as a neuroprotective
method, has been validated to be involved in protecting NVU
during ischemic stroke (Wang et al., 2014).

Exercise and Blood-Brain Barrier
Protection
After cerebral ischemia, a series of cascade reactions cause BBB
dysfunction and an increase in cerebrovascular permeability,
leading to brain edema. MMP-9 degrades the extracellular
matrix, which is directly related to BBB dysfunction. Previous
studies have indicated that MMP-9 reaches its peak at 48 h
after ischemia, causing irreversible damage to BBB (Yang and
Rosenberg, 2011). Inhibition of MMP-9 can alleviate dysfunction
of the BBB, thereby reducing the degree of cerebral edema
after cerebral ischemia (Chaturvedi and Kaczmarek, 2014;
Kurzepa et al., 2014). Exercise can improve BBB function
and integrity of the basement membrane after ischemia
by inhibiting MMP-9 overexpression and upregulating tissue
inhibitors of MMP (TIMP) (Guo et al., 2008a). Davis et al.
(2007) discovered that exercise preconditioning ameliorates
ischemic stroke-induced BBB dysfunction by strengthening
the basal lamina with the involvement of MMP-9. Treadmill
exercise can provide a protective effect on BBB disruption by
degrading occludin, zonula occludens-1 (ZO-1), and an increase
of MMP-9 after the onset of chronic cerebral hypoperfusion
(Lee et al., 2017). Teymuri Kheravi et al. (2021) assessed
the effects of two different exercises (i.e., swimming and
treadmill training) prior to stroke induction. The results
demonstrate that MMP-2 expression was increased after both
exercise types, with reduced brain damage. In addition,
exercise also alleviates BBB dysfunction by upregulating TNF-
α levels. Furthermore, exercise training significantly increases
the expression of TNF-α and alleviates BBB dysfunction,
through extracellular-regulated protein kinase (ERK) 1/2 (Guo
et al., 2008b; Chaudhry et al., 2010; Curry et al., 2010).
Aquaporin (AQP)-4, an important regulator of cerebral edema
formation, functions to alleviate cerebral edema in exercise
preconditioning. In the study conducted by He et al. (2014),
MRI was utilized to evaluate the dynamic impairment of cerebral
edema after cerebral ischemia. The results demonstrate that
treadmill pretraining improved the relative apparent diffusion
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coefficient (rADC) loss after cerebral ischemia, and that
T2W1 values of the ipsilateral cortex and striatum decreased
within 2 days after stroke, while the brain water content and
expression of AQP4 were decreased at 2 days after ischemia
following pretraining.

Exercise and Neuronal Death
After the occurrence of an ischemic stroke, cell death, especially
neuronal death, occurs in the core area of ischemia. Furthermore,
the extent of infarction is related to the degree of interruption
of blood supply. Reducing neuronal apoptosis can help improve
the neurological function after the onset of cerebral ischemia
(Memezawa et al., 1992; Li et al., 1998; Radak et al., 2017;
Uzdensky, 2019).

Extracellular-regulated protein kinase 1/2 functions in the
neuroprotective mechanism of exercise preconditioning. Lee
et al. (2020) indicate that treadmill exercise improved short-
term memory by inhibiting apoptosis in the hippocampus of the
ischemia gerbils, which may be associated with the activation of
the ERK-Akt-cAMP response element-binding protein (CREB)-
brain-derived neurotrophic factor (BDNF) pathway. Similarly,
swimming preconditioning improves the neurological outcome
of cerebral ischemia in long-term ovariectomy rats, which is
related to the activation of the ERK1/2/CREB/BDNF signaling
pathway (Zhang et al., 2018). Zhou et al. (2018) discovered
that the improvement of neurobehavioral performance by Willed
movement training, following tMCAO, has been suggested to be
involved in the ERK/CREB pathway. Notably, there was a region-
specific discrepancy between ERK and CREB phosphorylation
in a swim stress study (Shen et al., 2004). Exercise may also
enhance the proliferation and differentiation of endogenous
neural stem cells in the hippocampus of ischemia rats by
enhancing phosphorylation of ERK. Subsequently, treatment
with U0126 (an inhibitor of ERK) reversed the beneficial effects
of exercise (Liu et al., 2018).

After the occurrence of ischemic stroke, heat shock protein
(HSP)-70 (HSP-72) can protect neuronal apoptosis, caused by
ischemia and hypoxia, and play an important role in cell survival
and recovery. The increased synthesis of HSP-70 (HSP-72) can be
utilized as an indicator of active repair and compensate for nerve
reconstruction; it can also promote the recovery of neurological
dysfunction after ischemia (Shevtsov et al., 2014; Kim J. Y.
et al., 2018; Kim et al., 2020; Demyanenko et al., 2021). Recent
studies have discovered that exercise can exert a neuroprotective
effect on cerebral ischemia by regulating HSP-70 (HSP-72).
Wang Y. L. et al. (2019) demonstrated that the percentage
of HSP-72-containing neurons are tightly associated with a
degree of ischemic stroke-induced brain injury, and exercise
preconditioning can help improve neurological function post-
stroke by preserving both the old and newly formed HSP-72-
containing neurons. Liebelt et al. (2010) found that the expression
of Bax and apoptosis-inducing factor (AIF) were reduced, while
levels of Bcl-x(L) were increased in response to stroke after
exercise. Additionally, inhibiting HSP-70 or pERK 1/2 reversed
this resultant increase or decrease, leading to better neurological
outcomes. However, inhibitors of phosphorylated ERK1/2 reduce
brain injury, but do not reduce the expression of HSP-70,

suggesting that ERK1/2 is not an upstream regulatory protein
of HSP-70 after exercise preconditioning. A study of cerebral
ischemia model induced by heat stroke showed that 3 weeks of
pretreatment with progressive exercise-induced upregulation of
HSP-72 and conferred neuroprotection against cerebral ischemia
with reduced neuronal damage (Chen et al., 2007). Interestingly,
poststroke exercise, if too early, can cause an elevated degree of
cellular stress with increased expression of cell stress indicators,
such as HSP-70 and hypoxia-inducible factor (HIF)-1α (Li et al.,
2017b). The exacerbation of cell stress can be further aggravated
during secondary brain injury post-cerebral ischemia, which
indicates the importance of choosing an initiation time point
of exercise and may have an effect on stroke recovery and
rehabilitation (Li et al., 2017b).

Since the discovery of BDNF (Barde et al., 1982), its role in
promoting neuronal regeneration and improving neurological
functions has been widely studied. BDNF is mainly expressed
in the hippocampus and cortex, and increasing the levels of
BDNF to promote neuroregeneration is an important mechanism
associated with the improvement of neurological function,
after the onset of cerebral ischemia (Zhu et al., 2019, 2021;
Tan et al., 2021). Studies have indicated that exercise can
increase mRNA expression of BDNF in hippocampal regions
of experimental animals, as well as improve hippocampal cell
proliferation and cognitive function (Stagni et al., 2017; Liu
and Nusslock, 2018). Many studies have sought to explore
the mechanism underlying BDNF regulation of exercise-
induced neuroprotection in ischemic stroke. Lee et al. (2020)
demonstrated that treadmill exercise can attenuate memory
impairment in cerebral ischemia gerbils by activating the
ERK-Akt-CREB-BDNF signaling pathway. Another study that
used swimming as the exercise method observed a similar
phenomenon (Zhang et al., 2018). Caveolin-1/VEGF/BDNF and
BDNF/TrkB signaling pathways are also involved in the recovery
of motor and cognitive function after MCAO (Shi et al., 2016;
Chen et al., 2019).

Numerous clinical and animal studies have suggested that
regular aerobic exercise can increase the neuroprotective effect
by enhancing the secretion of neurotrophins, including BDNF
and insulin-like growth factor (IGF)-1, in the brain. Low
concentrations of IGF-1 in the serum are found among
chronic hemiparesis patients after they suffer from stroke (Silva-
Couto Mde et al., 2014). In a randomized controlled trial,
aerobic exercise, combined with cognitive training, improved
the fluid intelligence of stroke patients. Upregulation with the
higher serum IGF-1 expression was related to more robust
improvements in cognition of patients, indicating that IGF-1 may
participate in behaviorally induced plasticity (Ploughman et al.,
2019). Ploughman et al. (2005) demonstrate that modest exercise
can increase the IGF-1 expression, thereby contributing to the
promotion of synaptic plasticity, resulting in an improvement
of motor function after ischemic stroke. Exercise-induced IGF-1
can help protect cultured hippocampal cells against N-methyl-
D-aspartate (NMDA)-mediated excitotoxicity by the negative
feedback of NMDA receptor subunit NR2B (Li et al., 2017c).
Zheng et al. (2014) discovered that an increase in physical exercise
directly increases the number of neural progenitor cells by
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activating the IGF-1/Akt signaling pathway, thereby contributing
to recovery of neurological function post-stroke. Similar results
were observed by Chang et al. (2011).

Exercise and Vascular Protection
Studies have demonstrated that exercise can protect the
cerebrovascular system. Bullitt et al. (2009) discovered that
aerobically active exercise contributes to the reduction of vessel
tortuosity and elevation of small vessels, using the method of
magnetic resonance angiography (MRA). A series of animal
experiments reported that exercise led to an increase in the
density of microvasculature and improvement in the blood
supply of the brain. Monkeys, which are the closest human
primates, show that 5 months of exercise can increase the
number of blood vessels in the cerebral cortex. However, after
3 months of rest, the vascular density decreased to the baseline
level, suggesting that only continuous exercise training maintains
the promoting effect of angiogenesis (Rhyu et al., 2010). Ding
et al. (2004) demonstrated that cerebral vascular integrity in
the striatum region of middle-aged rats significantly improved
after undergoing treadmill exercise training. Another study from
the team discovered that integrins enhancement during exercise
increased the neurovascular integrity post-stroke (Ding et al.,
2006). Different durations of exercise have a similar effect. Four
weeks of exercise increased the capillary distribution density
and angiogenesis within the cerebellar region of rats (Isaacs
et al., 1992). Additionally, 26 weeks of wheel running increased
capillary and arteriole surface area densities and improved
arteriolar reactivity and vasodilation in the motor cortex in
response of exercise animals to hypercapsaic-hypoxic conditions
(Stevenson et al., 2020a). Four weeks of voluntary wheel running
demonstrated that sprouting angiogenesis is the main form of
structural vascular plasticity that is detected in the motor cortex
of rats, which is measured by vascular corrosion casts and resin
replicas of the brain vasculature. In addition, increased capillary
diameter and expanded endothelial cell nuclei diameters are
observed in rats after exercise (Stevenson et al., 2020b).

Nitric oxide (NO) can help relax vascular smooth muscle
cells and inhibit smooth muscle cell proliferation, which
has an important function in inhibiting elevated blood
pressure and vascular remodeling. Exercise can help stimulate
phosphorylation and activation of AMP-activated protein
kinase (AMPK) in vascular endothelial cells. This can promote
phosphorylation of endothelial nitric oxide synthase (eNOS),
increase the release of NO, improve endothelium-dependent
relaxation function, and can be activated by shear force during
exercise. Therefore, eNOS can increase NO production and
enhance endothelium-dependent relaxation function (Lee-
Young et al., 2009; Barr et al., 2017). Nitric oxide can be both
protective and harmful in cerebral ischemia. NO is synthesized
by nitric oxide synthase (NOS). Nitric oxide synthase can be
divided into neuronal nitric oxide synthase (nNOS) and eNOS,
both of which are expressed in the normal state, and inducible
nitric oxide synthase (iNOS), which is expressed after injury.
Studies have shown that eNOS has cerebral ischemia protection
properties (van Faassen et al., 2009; Barr et al., 2017). Gertz
et al. (2006) discovered that continuous exercise increases the

levels of eNOS in the vasculature and improves the number of
endothelial progenitor cells (EPCs) within the spleen and bone
marrow. This boosts the circulating EPCs in the blood, thereby
promoting neovascularization. Furthermore, animals that
exercise have more newly generated cells in the vasculature, as
well as a higher density of perfused microvessels, and increased
blood supply of the brain in the ischemic region. However,
after administration of NOS inhibitors or the antiangiogenic
compound endostatin, the neuroprotective effect of exercise
on angiogenesis and revascularization, as mentioned above,
is reversed. This confirms that the improvement of outcomes
and vascular function by exercise after stroke is related to the
enhancement of angiogenesis and cerebral blood flow, partially
through the eNOS-dependent signaling pathway. Exercise
reduced brain injury following cerebral ischemia and restored
impaired eNOS- and nNOS-dependent vascular function in
type 1 diabetic rats (Arrick et al., 2012). Sun et al. (2019)
indicated that exercise and exhaustive exercise animals both had
higher expression of NO, increased NOS activity, and elevated
expression of eNOS, nNOS, and iNOS. Interestingly, levels of
eNOS are much higher within the exercise group, while iNOS
has a significant increase in the exhaustive exercise group, which
suggests that exercise can exert a neuroprotective effect by
promoting levels of eNOS but not iNOS.

Vascular endothelial growth factor (VEGF) plays an important
role during the process of exercise-induced angiogenesis. Exercise
can induce the gene and protein expression of VEGF (Tang
et al., 2010) and decreased brain infarct volume after the onset
of cerebral ischemia (Ke et al., 2019). Measurement of the
peri-infarct area of brain tissue shows an elevated expression
of endothelial or angiogenesis markers (e.g., VEGF, VEGFR-
2, and Ang-2), as well as endothelial progenitor cell marker
(CD34+) after exercise (Pianta et al., 2019). The studies from
Xie et al. (2019) indicated that exercise can alleviate neurological
dysfunction after cerebral ischemia by promoting dendritic
modification and synaptic plasticity, which is related to activation
of caveolin-1/VEGF signaling pathway (Chen et al., 2019; Xie
et al., 2019).

Infusion of endothelin-1 (ET-1), as a potent vasoconstrictor,
into the animal’s hippocampus using stereotaxic surgery is a
method that is frequently used to develop an ischemia model
(Joo et al., 2012; Farokhi-Sisakht et al., 2020). A clinical study
including 27 patients has shown that ET-1 expression increases in
exercise-induced ischemia and has a prognostic value as a marker
of ischemia severity (Lubov et al., 2001). In an endurance exercise
study, athletes that exercised at an intensity of 130% of individual
ventilatory threshold, and the plasma levels of ET-1 and ET-3,
were measured. Interestingly, ET-3 increased faster than ET-
1 after exercise (Maeda et al., 1997). Exercise preconditioning
can increase levels of HIF-1α, trigger expression of ET-1, and
elevated the release of brain natriuretic peptide (BNP) to cause
vasodilation. This vasodilation involved the use of some other
factors, including VEGF, which led to a restoration of brain
blood flow and attenuation of ischemic injury (Wang H. et al.,
2019). Furthermore, Zhang et al. (2014) also discovered that
preconditioning exercise protected ischemic-induced injury by
improving cerebral blood flow and regulating ET-1 expression.
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CONCLUSION

Exercise is an important method of preventing and rehabilitating
cerebral ischemia, as it can not only reduce the incidence
of stroke, but also play a protective role in the development
of stroke, thereby reducing the severity and improving
stroke outcome. Based on the current review, exercise can
alleviate the damage of NVU after cerebral ischemia by
inhibiting neuronal apoptosis, reducing BBB dysfunction, and
promoting angiogenesis and synaptic plasticity. Elucidating
the neuroprotective mechanism of exercise will be helpful in
improving people’s understanding of exercise, and encourage
patients that are at high risk of stroke to actively participate
in exercise. They will also provide new therapeutic strategies
and potential drug targets for the prevention and treatment
of cerebral ischemia in the future. Many challenges and issues
remain to be solved and emphasized in the further study,

including, but not limited to, exploring optimal duration,
initiating time, intensity of exercise, varying responses of
different brain regions and cell types to exercise, and the
discrepancy of gender and age in response to exercise.
Another existing difficulty is the low long-term compliance
of patients. Therefore, it is necessary to strengthen health
education for the target high-risk population and improve
their understanding and attention to the significance of
exercise intervention.
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