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The blood–brain barrier (BBB) is a cellular and physical barrier with a crucial role in

homeostasis of the brain extracellular environment. It controls the imports of nutrients

to the brain and exports toxins and pathogens. Dysregulation of the blood–brain barrier

increases permeability and contributes to pathologies, including Alzheimer’s disease,

epilepsy, and ischemia. It remains unclear how a dysregulated BBB contributes to these

different syndromes. Initial studies on the role of the BBB in neurological disorders and

also techniques to permit the entry of therapeutic molecules were made in animals. This

review examines progress in the use of human models of the BBB, more relevant to

human neurological disorders. In recent years, the functionality and complexity of in

vitro BBB models have increased. Initial efforts consisted of static transwell cultures

of brain endothelial cells. Human cell models based on microfluidics or organoids

derived from human-derived induced pluripotent stem cells have become more realistic

and perform better. We consider the architecture of different model generations as

well as the cell types used in their fabrication. Finally, we discuss optimal models to

study neurodegenerative diseases, brain glioma, epilepsies, transmigration of peripheral

immune cells, and brain entry of neurotrophic viruses and metastatic cancer cells.

Keywords: in vitro model, human, blood-brain barrier, 3D models, transwell

INTRODUCTION

The blood–brain barrier (BBB) controls molecular and ionic fluxes at brain capillaries and
maintains the extracellular neuronal environment to ensure proper central nervous system
function. The BBB is a functional assembly of brain endothelial cells (BECs), pericytes, and
astrocytes (Figure 1) (Segarra et al., 2019). BECs express tight junction (TJ) proteins and
transporters. They are characterized by few caveolae and many mitochondria and generate a high
transendothelial electrical resistance (TEER) and low paracellular fluxes. Pericytes and astrocytes
are involved in endothelial cell proliferation and polarization and in TJ formation andmaintenance
(Gökçinar-Yagci et al., 2015; Guérit et al., 2021). Intercellular communication influences transcript
expression resulting in a BBB which adapts continuously to changes, including aging, development,
and nutrition (Segarra et al., 2021).
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FIGURE 1 | Physiological structure of the BBB and pathological alteration. (A) Schematic illustration of cellular constituents of BBB: the anatomical seat of the BBB is

endothelial cells, associated and supported by pericytes and astrocytic end-feet forming the cellular barrier. Endothelial cells are connected to each other by tight

junction proteins which ensure the impermeability of the barrier and form a physical barrier. (B) In pathological conditions, the BBB will be affected, and there will be a

decrease in blood flow, detachment of pericytes and astrocytes as well as loss of tight junction proteins. All this giving the possibility for toxic molecules to infiltrate the

brain parenchyma.

Dysregulations of the BBB reduce blood flow and permit
entry to the brain of toxic molecules, immune cells, and
microbial agents (Kisler et al., 2017). Vascular damage is
evident as a loss of tight junction proteins on endothelial
cells, an increase of permeability and the detachment of
astrocytes and pericytes (Figure 1) Dysregulation contributes
to cerebrovascular accidents, generates inflammation, and
is linked to neurodegenerative diseases, epilepsies, and
neuroinflammatory disorders, including multiple sclerosis
(Engelhardt and Ransohoff, 2005; Yang and Rosenberg, 2011;
Sweeney et al., 2019). Vascular disruption is associated with

Abbreviations: AQP4, Aquaporin-4; AD, Alzheimer’s disease; PD, Parkinson’s

disease; HD, Huntington’s disease; ALS, Amyotrophic lateral sclerosis; BBB,

Blood–brain barrier; BECs, Brain endothelial cells; EC, Endothelial cells; ECM,

Extracellular matrix; hBEC, Human brain endothelial cells; HBMEC,Human brain

microvascular endothelial cells.; hCMEC/D3, Immortalized human microvessel

endothelial cell line.; NVU, Neurovascular unit (endothelial cells, astrocytes,

pericytes, ECM, and neurons); OGD, Oxygen and glucose deprivation (to mimic

ischemia); P-gp, P-glycoprotein; TEER, Transendothelial electrical resistance

(TEER); TJs, Tight junction proteins.

cognitive decline in degenerative diseases, including Alzheimer’s
disease (AD) (Zlokovic, 2011), Parkinson’s disease (PD)
(Malek et al., 2016), Huntington’s disease (HD) (Lin et al.,
2013), and amyotrophic lateral sclerosis (ALS) (Winkler et al.,
2013). Markers of vascular damage typically appear before
neurodegeneration and cognitive impairment become evident.
In the epilepsies, BBB function is degraded further by seizures
as the disorder progresses: TJs (Rigau et al., 2007) and pericytes
are lost (Milesi et al., 2014), efflux pumps, including the P-
glycoprotein pump (P-gp), are degraded (Gil-Martins et al.,
2020), and extravasation of blood components is facilitated
(van Vliet et al., 2007; Michalak et al., 2012). BBB breakdown
is an initial insult in multiple neurological disorders. Neuronal
damage is aggravated by the entry of blood proteins to the
brain, by the loss of intracerebral homeostasis due to transporter
dysregulation, and by the neuroinflammation induced when
peripheral immune cells enter the brain (Sweeney et al., 2019).

The first model studies on the BBB were made in rodents
in vivo. Their advantages were that BBB architecture was not
perturbed and that blood cell movements in capillaries generated
shear stress, crucial for BBB maintenance. Disadvantages
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included high cost, slow time course, and ethical concerns.
Notably, molecules with useful effects on the BBB in studies in
vivo did not always translate successfully in clinical trials. Even
though structural elements of the BBB are similar, there are
molecular differences between animals and humans (O’Brown
et al., 2018). Transcriptomic analysis of mouse and human
brain vessels has revealed distinct patterns of gene expression,
including those coding for key tight junction proteins and
some transporters (Urich et al., 2012; Hoshi et al., 2013; Song
et al., 2020). Brain imaging and modeling work point to the
differences in activity of the P-glycoprotein (P-gp) transporter
(Syvänen et al., 2009; Verscheijden et al., 2021). Aquaporin-4
(AQP4) is less strongly expressed in human astrocytic end-feet
(Eidsvaag et al., 2017). Astrocytes of human cortex are larger
and more complex than those in mice (Oberheim et al., 2009)
and may respond differently in neurodegenerative conditions
(Colombo et al., 2002). These differences have been an incentive
to develop human models of the BBB.

In vitro models of the BBB based on human cells have
several advantages: (i) cellular environment may be easily
and reproducibly controlled; (ii) improved accessibility permits
mechanistic analysis; (iii) ethical concerns are reduced; and (iv)
personalized medicine for specific patients may be possible.
These models were first used to examine strategies to decrease
BBB-dependent pharmacoresistance in neuropathologies. The
use of cells from patients has permitted attempts to reproduce
BBB structure and function in specific disease states and move
toward personalized therapies. Human models facilitate work
on BBB degradation due to extrinsic factors, such as viral
infection or brain trauma, or to diseases, such as diabetes and
hypertension. Progress is still necessary to define themechanisms
of BBB dysfunction and their role in disease progression. Many
reviews have described how in vitro models have examined
BBB permeability to drugs, but models also permit advances
in elucidating pathological mechanisms. This review traces
how advances in understanding of BBB cell types and their
interactions have improved models that examine these questions
in human neurological diseases.

MODELING HUMAN BBB IN VITRO

The first in vitro BBB models, published in the 1980s, consisted
of cultured monolayers of rodent endothelial cells. An in vitro
model based on human brain endothelial cells (hBECs) first
appeared in 1985 (Pardridge et al., 1985). We examine here how
these models have been improved with attention to physiological
dimensions, geometry, and proximity to different cell types
and simulation of blood flow past exposed endothelial cells
(Figure 2).

The improvement in measured values for BBB permeability
was an initial focus in work on transwell systems. Monolayers of
hBECs, cultured on semipermeable polystyrene or polycarbonate
membranes, were used to examine the fluxes of fluorescent
tracers and immune cells between separate compartments
(Dehouck et al., 1992). Whereas initial models only used hBECs,
it became clear that both astrocytes and pericytes are essential

to maintain and develop BBB properties (Gökçinar-Yagci et al.,
2015; Guérit et al., 2021). This problem was resolved by transwell
models comprising co-cultures with other cell types (Hurwitz
et al., 1993). Typically, hBECs were grown in the upper transwell
compartment, and astrocytes and pericytes on the lower side
of the membrane, although further work suggests that this
separation may not be ideal (Kulczar et al., 2017). Neurons are
suggested to affect BBB properties in vivo (Li et al., 2014) and
they influence BBB properties when present in transwell cultures
(Stone et al., 2019). Overall, transwell models are easy to setup,
reproducible, and scalable. They permit molecular studies using
immunohistochemistry or proteomic and genomic techniques on
cells detached frommembranes. However, changes in two factors
improved human BBB model performance. Cell–cell contacts
in 3D among hBECs, astrocytes, pericytes, and neurons were
poorly reproduced in the transwell configuration. Furthermore,
the absence of blood flow and the resulting shear stress altered
the properties of endothelial cells in transwell models (Cucullo
et al., 2011).

The first BBB model to include potential effects of shear
stress and 3D structure was based on an artificial capillary
formed by a polycarbonate fiber pre-coated with fibronectin, rat
collagen, or poly-D-lysine. In this dynamic in vitro BBB (DIV-
BBB) model, published in 1999, endothelial cells were seeded
on the intra-luminal side with astrocytes and pericytes on the
extraluminal side. Cells communicated via 0.4-um pores in the
hollow fiber. The flow was generated by a pump reproducing
pulsatile pressure patterns (Cucullo et al., 2002) to induce shear
stress, crucial for BBB maintenance (Cucullo et al., 2011). BBB
parameters improved to the levels close to those measured
in vivo, including a low permeability, TEER values 10 times
higher than in transwells, and an enhanced expression of
pump molecules. However, the fiber diameter was larger than
physiological values and the model did not explicitly distinguish
between venules and capillaries. These concerns were later
addressed by using separate fibers for capillaries and venules and
replacing astrocytes with human smooth muscle cells (Cucullo
et al., 2011).

Even with these advantages, DIV-BBB models were
superseded by BBB-on-chip models based on nano-fabrication
and microfluidic techniques (Ma et al., 2005). In the earliest
iterations, monolayer endothelial cells alone (BBB-on-chip) or
with astrocytes and pericytes (NVU-on-chip) were cultured
as in transwell systems (Jiang et al., 2019). Most models used
sandwich structures, as previously, to separate neural and
vascular chambers, and microfluidic channels were formed
from biocompatible organic polymers. Three categories of chip
material have been used. (i) natural materials, such as collagen
or gelatin, similar to extracellular matrix; (ii) synthetic materials,
including biodegradable polylactic acid (PLA), polyglycolic
acid (PGA), and its copolymer PLGA or polydimethylsiloxane
(PDMS); and (iii) hybrid natural-synthetic materials with
advantages of both materials. They take into account the
biocompatibility of natural components, cell adherence, cell
response, and immune reaction as well as the physicochemical
proprieties of synthetic components to increase mechanical
strength (Reddy et al., 2021). For example, PDMS is optically
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FIGURE 2 | Chronologic event in human BBB invitro models. Overtime, BBB models have evolved and became more complex to best reproduce physiological

conditions. But each of these models have themselves evolved, in particular through the evolution of cell types.

transparent, so microscopy is possible and is permeable to
gas and water for cell culture. Porous membranes provide a
platform for co-culture and permit exchange between luminal
and abluminal sides (Jiang et al., 2019). Several configurations
have been developed. In the SyM-BBB system, trapezoidal
structures were used to model blood and brain compartments
connected with 3-µm microgaps (Prabhakarpandian et al.,
2013). Attempts were made to reproduce the circular cross-
section of blood vessels using a 3D printing frame coated with
collagen (Kim et al., 2015). However, the diameter of artificial
vessels (100µm) was greater than that of brain capillaries
and venules (10–90µm) (DeStefano et al., 2018). More recent
BBBs on chip models have used a vasculogenesis strategy
attempting to reconstruct vasculature de novo by inserting
cells into Matrigel or self-polymerizing extracellular matrix
protein (ECM). The resulting BBB-on-chips are anatomically
similar to brain capillaries since endothelial cells self-assemble
into a vascular network with pericytes and astrocytes at
their surface (Campisi et al., 2018). However, work is still
needed to improve reproducibility due to heterogeneity in
branching patterns.

This generation of BBB models has exploited 3D printing and
bioprinting (Ho et al., 2015), reducing the time and technical
expertise needed to reproduce complex model architectures.
Interconnectivity, size, and geometry of model components
and cell types can be controlled (Norman et al., 2017).
The use of 3D printing techniques in models is growing
in maturity.

Organoid BBB models emerged together with the growth
of BBB-on-chip models. They consist of spheroid in vitro
cell assemblies which often closely resemble in vivo structures
(Pacitti et al., 2019). The first BBB organoids consisted of
human endothelial cells, astrocytes, and pericytes, which self-
assemble under low-adherence conditions (Urich et al., 2013).
These three cell types contact each other directly, enhancing
the relevance of BBB organoids, even if microglia and neurons,
which also affect the BBB, are absent. Lancaster et al. (2013)
have grown 3D whole-brain organoids from iPSCs obtained by
reprogramming fibroblasts on stem cells and then differentiated
using a chemically defined medium. They can be maintained
over a year, but tend to necrosis in central parts of the
structures. Efforts have been made to induce vascularized human
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brain organoids. Matrigel coating of organoids with iPSC-
derived ECs from the same individual reportedly results in a
vascularized brain organoid (Pham et al., 2018). Recent efforts
to produce a 3D BBB model have used six cortical cell types:
(i) human brain microvascular endothelial cells (HBMEC); (ii)
human pericytes (HBVP); (iii) human astrocytes (HA); (iv)
human microglia (HM); (v) human oligodendrocytes (HOs);
and (vi) human neurons (HN). This model exhibits functional
responses to hypoxia and neurotoxicity (Nzou et al., 2018). More
comprehensive testing and validation of organoid BBB models
need to be done, but these models seem likely to be very useful
for work on neuropathologies.

Organotypic cultures of brain tissue have been used to study
neuronal activity and cellular interactions since the 1970s. They
have the advantage that spatial relations between cell types
are maintained. The finding that blood vessels of organotypic
culture respond to angiogenic stimuli led to their use as a BBB
model (Moser et al., 2003; Hutter-Schmid et al., 2015). Capillary
endothelial cells express tight junction proteins and transporter
molecules, including P-gp and GLUT1 (Camenzind et al., 2010;
Morin-Brureau et al., 2013). Co-cultures of organotypic brain
tissue overlaid on endothelial cells have permitted microdialysis
experiments and measurements of TEER (Duport et al., 1998;
Zehendner et al., 2014). Most organotypic culture work has been
done on rodent tissue. However, organotypic cultures of human
tissue obtained after surgery on epileptic patients have been used
to study neuronal and seizure activity, and BBB studies could
clearly be envisaged (Le Duigou et al., 2018).

WHICH CELL TYPES ARE OPTIMAL TO
MODEL BBB?

Cell Lines and Primary Cells
Most human cell lines or primary cell lines used in BBB models
are available commercially. Primary cells of the NVU may also
be isolated in the laboratory (Bernas et al., 2010). However, since
it may be difficult to obtain human tissue for reasons, including
ethics, many models have been based on the immortalized
cell line hCMEC/D3. These cells were derived from brain
microvessels isolated from the human temporal lobe. hBECs were
sequentially immortalized by lentiviral vector transduction via
expression of the catalytic subunit of human telomerase (hTERT)
and SV40 large T-antigen (Weksler et al., 2005). The properties
of this hBEC cell line have been characterized in more than 400
publications. Other cell lines may have advantages. Human brain
microvascular endothelial cells (HBMECs) were isolated from
the human brain and immortalized by simian virus 40 large T-
antigen (SV40-LT) (Stins et al., 2001). The use of HBMEC cells in
BBB models was validated by their permeability to compounds,
such as caffeine (Eigenmann et al., 2016). The immortalized
cell line BB19 was derived from human brain endothelium
transformed with E6E7 genes of the human papilloma virus.
These cells form tubules inMatrigel and express appropriate tight
junction and transporter protein markers (Kusch-Poddar et al.,
2005). Another group of cell lines TY08/TY10was based on BECs
isolated from a patient with meningiomas and immortalized with
a temperature-sensitive SV40 large T-antigen (Sano et al., 2010).

BB19 and TY10 cell lines retain most anatomical and
functional characteristics of BECs. In comparison with the
hCMEC/D3 and hBMEC lines, expression of the tight junction
molecule ZO-1 is reduced. In contrast, claudin-5 and VE-
cadherin are expressed at higher levels in the TY10 than in
the hBMEC cell line. BB19 cells express only low levels of
junctional proteins (Eigenmann et al., 2013). Performance of
the hCMEC/D3 and immortalized human brain endothelial cell
lines (HBMEC/ciβ), measured with TEER and expression of
tight junction proteins, was enhanced by compounds, such as
hydrocortisone or lithium (Furihata et al., 2015; Laksitorini
et al., 2019). Proteomics suggests that hCMEC/D3 lines have
enhanced efflux transport whereas HBMEC/ciβ have more IgG-
transport activity (Masuda et al., 2019). hCMEC/D3 cultures
conserve immune profiles and permit the transmigration of
immune cells (Daniels et al., 2013). Co-culture with astrocyte

and pericyte cell lines does not change TJ expression or TEER

values indicating the importance of the choice of themodel. A tri-

culturemodel has been developed by culturingHBMEC cells with
immortalized human astrocyte (HASTR/ci35) and pericyte cells

(HBPC/ci37) (Ito et al., 2019). Cryo-conservation methods have
been improved to preserve mono- and co-cultures (Marquez-
Curtis et al., 2021).

Blood–brain barrier models based on these immortalized or

primary human cells have suffered from constraints in obtaining
human tissue. Furthermore, the human hBEC phenotype is not

always well maintained in culture and TEER values remain lower

than data from rodents in vivo. In vitro human BBB models have
therefore explored stem cells.

Human Pluripotent Stem Cells (hPSCs),
Human Embryonic Stem Cells (ESCs), and
Induced Pluripotent Stem Cells (iPSCs)
As human iPSC technology has advanced, protocols have been

developed to generate brain endothelial cells, distinct from

peripheral endothelial cells. The most frequently used protocol,
established by Lippmann et al., involves co-differentiation of

endothelial cells with neural cells followed by endothelial cell

purification (Lippmann et al., 2012). This protocol has since

been adapted with direct differentiation of iPSC to brain
endothelial cells using a chemically defined medium (Qian

et al., 2017). Several adaptations have been made to enhance
barrier properties. For example, the presence of retinoic acid
during differentiation increases VE-cadherin expression and
TEER (Lippmann et al., 2014). Endothelial cell differentiation
can be accelerated by optimizing the culture medium or seeding
(Wilson et al., 2015; Hollmann et al., 2017), by co-culture
with astrocyte iPSCs (Neal et al., 2019), and by protecting
against damage during freeze-thaw cycles (Yamashita et al., 2020).
Transcription factor supplements also increase the resistance
and maintenance of BBB models based on iPSCs (Roudnicky
et al., 2020). Even so, transcriptomic analyses have revealed
the presence of epithelial markers, such as claudin-7, raising
questions about the identity of differentiated cells (Delsing et al.,
2018). Several other promising protocols exist. Praça et al. (2019)
used iPSCs generated from human cord blood cells or fibroblasts
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and defined medium with several growth factors to obtain cells
that express TJs, endothelial markers, andmetabolic transporters.
Nishihara et al. (2020) developed a method for human induced
pluripotent stem cells based on erythrocyte reprogramming with
specific transcriptional factors (oct4, shRNA-p53, SOX2, KLF-
4, L-Myc, and Lin28) and then differentiated using chemically
defined medium. Overall, we note that barrier properties of
iPSC-derived culture models based on the Lippman method are
comparable to data from in vivo work, despite the debate on
epithelial cell markers.

Pericytes have been derived with iPSCs protocols from neural
crest stem cells (NCSCs). After adding bFGF and EGF to culture
medium, mural cells expressed aSMA and SMA-22 but not
NG2+ and PDGFRβ (Wang et al., 2012). Transcriptomic analysis
of brain mural cells in vivo shows low expression of SMA
but high expression of NG2+ and PDGFRβ (Vanlandewijck
et al., 2018). Stebbins et al. (2019) using a medium with added
fetal bovine serum showed that NCSCs were induced into
pericytes expressing NG2, PDGFRβ, and αSMAlow (Gastfriend
et al., 2021). Alternatively, pericytes have been induced from
mesodermal intermediates. iPSC-derived pericytes from either
mesodermal or NCSCs exhibit similar pericyte markers and
barrier properties (Faal et al., 2019).

Several protocols have been used to derive astrocytes from
iPSCs. However, long-term co-cultures with neural stem cells
have proven difficult due to the relative immaturity of astrocytes
(Krencik et al., 2011). Development may be accelerated by
remodeling chromatin and overexpressing gliogenic FT NF1A
and SOX9 (Krencik et al., 2011; Majumder et al., 2013). Even so,
differentiation of astrocytes expressing GFAP, CD44, and S100b
or EEAT1/2 occurs slowly over a month.

A co-culture model of iPSC-derived microglia and iPSC-
derived endothelial cells has recently been developed. iPSC-
derived microglia were obtained first from homogeneous and
stable embryonic bodies (EB), and after 30 days, macrophage
precursors were differentiated into microglia in the presence
of IL-34, M-CSF, and TGFβ-1 (Reich et al., 2020). Media with
no serum enabled stable co-cultures of iPSC-derived microglia
and brain endothelial cells which respond appropriately to
inflammatory stimuli, such as lipopolysaccharide (Bull et al.,
2022).

Induced Pluripotent Stem Cells
Induced pluripotent stem cells have been used in multiple
configurations: static transwell mono- or co-cultures (Stebbins
et al., 2019) and monoculture microfluidic models (Faley
et al., 2019), co-culture with cell lines (Park et al., 2019)
or with iPSC-derived neuron or pericyte (Jamieson et al.,
2019; Vatine et al., 2019). Induction of shear stress by
exposure to fluid movement decreased apoptosis, enhanced
proliferation, and the mobility of endothelial cells in these
models but did not alter the expression of TJ proteins or P-
gp (DeStefano et al., 2018). TEER values approached in vivo
levels after ∼12 days, and integrity is maintained over 3 weeks
in culture.

Human iPSC approaches permit studies on cells derived from
patients (Wilson et al., 2015) to identify disease mechanisms (Lim

et al., 2017) and signaling pathways (Vatine et al., 2017). Further
development of iPSC techniques should facilitate this approach.
Cerebrovascular damagemay result from the genetic background
but also from environmental, vascular, or lifestyle-related risk
factors. In Alzheimer’s disease (AD), pericyte degeneration, for
instance, is more likely in patients who carry the ε4 allele of
apolipoprotein E (APOE∗ε4) (Halliday et al., 2016). Using iPSC-
derived EC from Qian’s et al.’s method, several discoveries on
genetic impact have been made in AD. Transwell BBB models
with iPSC-derived endothelial cells from AD patients with a
PSEN-1 mutation have found distinct BBB properties, including
responses to ultrasound, used to permit drug delivery (Oikari
et al., 2020). iPSC-based models have demonstrated a potential
mechanism for the genetic susceptibility of APOE4 for cerebral
amyloid angiopathy (CAA) associated with Alzheimer’s disease
(Blanchard et al., 2020). iPSCs derived from patients with ALS
due to C9orf72 mutation have shown differences in regulation of
the P-gp (Mohamed et al., 2019). In this study, iPSCs have been
differentiated using DMEM/F12 medium supplemented with L-
glutamin, heparin, and B27 for astrocytes or vasculife basal
medium supplemented with FGF, acid ascorbic, hydrocortisone,
glutamine, and growth factor for brain endothelial cells. A
comparison of iPSC-derived BECs from control and patients
with Huntington’s disease (HD), differentiated using Lippman’s
method, revealed HD-related defects in angiogenesis and BBB
maturation related to WNT pathway dysregulation (Lim et al.,
2017).

VALIDATION OF IN VITRO HUMAN BBB
MODELS AND SPECIFIC ADAPTATION
FOR STUDIES ON BBB
NEUROPATHOGENICITY

How should BBB models be validated? Can specific BBB
models be best used to study distinct pathologies? For
validation, we examine resistance measurements and marker
molecule expression. As neurological pathologies, we examine
gliomas, neurodegenerative diseases, and epilepsy which impose
different constraints.

Permeability of the Barrier
Several methods have been used to evaluate BBB permeability.
The transendothelial electrical resistance (TEER) is a quantitative
marker of BBB integrity and is evaluated by Ohm’s law or
impedance spectroscopy (DeStefano et al., 2018). TEER has
been measured in rodent BBB in vivo as 5,000 ohm/cm2 with
physiological values that may be as low as 1,500 ohm/cm2.
Transendothelial electrical resistance values higher than 500
ohm/cm2 measured from in vitro models are considered to
reflect an intact BBB (Mantle et al., 2016). Published TEER
values vary greatly according to cell type, culture model, and the
measurement technique (Srinivasan et al., 2015). TEER values in
models based on hCMEC/D3 cells co-cultured with astrocytes
increased to 140 ohm/cm2 when measured with epithelial
volt/ohmmeter (EVOM) techniques (Daniels et al., 2013). Values
up to 2,940 ohm/cm2 have been measured from iPSC-derived
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BMECs treated with retinoic acid and as high as 4,000 ohm/cm2

for tri-cultures of human pericytes, astrocytes, and neurons
derived from progenitor cells (Lippmann et al., 2014). Larger
pore sizes of the membrane in transwell models permit cell
migration and allow contact between astrocytes and endothelial
cells via end-feet astrocytes (Niego andMedcalf, 2013). However,
pore size is known to affect TEER values in mouse models
(Wuest et al., 2013). In several human cell lines, pore size
increases are correlated with higher TEER values measured with
EVOM (Eigenmann et al., 2013). Several other factors, including
temperature, pore density, and cell insert properties, have been
shown to influence TEER values (Vigh et al., 2021). Culturing
hiPSC-derived brain endothelial cells on laminin-511 increases
and stabilizes TEER over 15 days (Motallebnejad and Azarin,
2020).

Functional BBB permeability has also been evaluated by
measuring the passage of fluorescent molecules of various sizes.
The most frequently used tracers are lucifer yellow (LY: 444
Da), fluorescein sodium (NaF: 376 Da) or sucrose (342 Da), and
fluorescent dextran (70 Kda) for larger molecules. Cell lines and
culture conditions influence permeability. hCMEC/D3 cultures
are permeable to small molecules, such as sucrose or mannitol
(25.10−6 cm/s), whereas models based on human pluripotent
stem cells are impermeable (0,6.10−6 cm/s) (Eigenmann
et al., 2013). Measuring TEER and movements of fluorescent
markers are complementary techniques for the evaluation of
barrier permeability.

Junctional Protein, Adhesion Molecules,
and Transporters
Verifying the expression of relevant cell markers is another key
element of model validation. The most common endothelial
cell markers used are VE-cadherin, PECAM-1 or VWF, ZO-1,
claudin-5, and occludin which are clustered at tight junctions
whereas GLUT1 labels transporters and P-gp drugs efflux sites
(DeStefano et al., 2018). Transcriptomics has been used to
evaluate gene expression and western blot analysis to measure
protein levels, with immunofluorescent staining needed to verify
a correct subcellular protein localization. Transporter function
has been measured using drug molecules or fluorescent proteins,
such as rhodamine123. hCMEC/D3 is the most characterized cell
line used in BBB models. Transcriptomic analysis has revealed
144 SLC transporters and 23 ATP-binding cassette (ABC) efflux
transporters (Carl et al., 2010). Rhodamine-3 accumulation
assay has shown that this cell line expresses a functional P-
gp (Tai et al., 2009). mRNA expression of transporters and
junctional protein localization at membrane sites in iPSC-derived
endothelial cells are further useful indices (Delsing et al., 2018).
While most cell lines express adherens junction (AJ) and TJ,
localization and density are influenced by culture conditions,
including cell confluence. Supplementing culture medium with
hydrocortisone or lithium chloride (LiCl) improves TJ and AJ
expression. Indeed, LiCl activates the Wnt/β-catenin signaling
pathway, which controls the expression of claudins (Liebner et al.,
2008). Growth factors also affect tight junction formation: basic
fibroblast growth factor (bFGF) enhances TJ density, whereas

it is reduced by the vascular endothelial growth factor vascular
endothelial growth factor (VEGF) (Morin-Brureau et al., 2011).
In iPSC-based models, the transcription factors, such as SOX18,
TLAL1, SOX7, and ETS1, act in synergy to enhance BBB function
and integrity (Roudnicky et al., 2020).

Immune cell trafficking across the BBB is a higher-level
function that has been tested by examining the expression of
adhesion molecules, including ICAM1, VCAM1, and PECAM1.
The expression of these molecules has been shown to be
enhanced by the proinflammatory cytokines, such as TNF-α and
IFN-γ (Nishihara et al., 2021). In contrast, exposure to TNF-α,
IL-8, and IL1-β decreased barrier properties (Vatine et al., 2019).

Validation of BBB Models for Glioma
Blood vessels inside a brain tumor differ from those surrounding
the tumor and those at a distance. Inside a tumor, vessel
fenestrations are much increased and permeability varies widely.
These distinct properties have been recognized as a brain–blood
tumor barrier (BBTB) (Arvanitis et al., 2020). The BBTB exhibits
that an enhanced angiogenesis (Jain et al., 2007) increased
inflammation (Sowers et al., 2014) and a lower blood flow due to
tumor growth. The leakiness of blood vessels inside the tumor is
heterogenous (Seano et al., 2019). The properties of BBTB in low-
grade glioma are closer to those of the BBB. Models of BBTB have
used primary glioma cells to reproduce tumor environment (van
Tellingen et al., 2015). Transwell models have been adapted to
study metastatic migration across the BBB when cerebral tumor
is a metastatic brain tumor in consequence of invasion of breast
cancer cells(Vandenhaute et al., 2016).

Validation of BBB Models for
Neurodegenerative Syndromes
The role of the BBB in neurodegenerative diseases is most
usefully examined with models that include neurons. They
should, for instance, reproduce elevated levels of cerebral
proteins in the extracellular matrix (ECM) and also permit
studies on diseases with genetic and/or sporadic elements.
Neurodegenerative disease may be sporadic, or familiar with
a genetic component. One familial risk factor is the allele of
apolipoprotein E (APOE∗ε4) associated with Alzheimer’s disease
(AD) (Saunders et al., 1993). iPSC-derived cells permit the
exploration of genetic factors in BBB models. Monolayers of
hiPSC-derived endothelial cells from Alzheimer’s patients with
PSEN1 and PSEN2 mutations, differentiated with a chemically
defined medium, possessed a low TEER, reduced expression
of claudin-5, occludin, and ZO1 protein, and impaired glucose
transport (Raut et al., 2021). A 3D microfluidic BBB model
is based on iPSCs from patients with AD mimicked vascular
damage as an increased BBB permeability, a reduction in
TJs and AJs, and an increased expression of the matrix-
metalloproteinase-2 (MMP2) (Shin et al., 2019).

Blood–brain barrier disruption in PD has been modeled
with a human BBB-on-chip cultivated under flow conditions
and containing iPSC-derived dopaminergic neurons, astrocytes,
microglia, and pericytes differentiated with cell-specific
chemically defined medium and hBECs using Qian’s method
from patients. BBB function was degraded in this model
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which reproduced the aspects of PD, including alpha-synuclein
accumulation and mitochondrial impairment (Pediaditakis et al.,
2021).

Blood–brain barrier models have also used iPSCs,
differentiated by Qian’s method, derived from ALS patients
with SOD4 or C9orf72 mutations. BBB dysfunction was revealed
as a reduced TEER and an upregulated P-gp transporter (Qosa
et al., 2016; Katt et al., 2019).

Validation of BBB Models for Epilepsies
Vascular damage is a key factor in epileptogenesis since it
permits extravasation of peripheral immune cells from the
circulation which augment inflammatory responses and increase
neuronal excitability (Löscher, 2020). Excessive neuronal firing
during a seizure initiates BBB degradation. A human model has
been developed by co-culture of neurons with HBMEC cells,
astrocytes, and pericytes, but has not yet been used to study
the epilepsies (Stone et al., 2019). Some mechanisms have been
studied in rodent organotypic cultures. In 1998, Duport et al.
(1998) developed a co-culture system of endothelial cells and
organotypic cultures. Work on rodent organotypic cultures has
shown that neuronal activity induces VEGF-A secretion, which
initiates angiogenesis and downregulates ZO-1 (Morin-Brureau
et al., 2011). Human organotypic cultures of tissue from epileptic
patients could be used to examine the effects of seizure-like
activity on BBB properties (Le Duigou et al., 2018).

IMPACT OF INFLAMMATORY PROCESSES
ON BBB INTEGRITY

We review how BBB models have been used to examine the
trafficking of peripheral immune cells across the barrier and the
actions of these cells and molecules they secrete on BBB integrity
(Figure 3).

Immune Cell Trafficking Across the BBB
Transmigration of immune cells into the brain is crucial in
pathologies with an inflammatory component, such as multiple
sclerosis (MS). In vitro BBB models have revealed the role of
BBB adhesion molecules, including ICAM-1, E-selectin, and
PECAM-1, in transmigration of monocytes (Séguin et al., 2003),
dendritic cells (Sagar et al., 2012), neutrophils (Wong et al., 2007),
and lymphocytes (Wong et al., 1999). Subtypes of lymphocytes
have differing migration properties with TH2 cells crossing the
BBB most effectively (Prat et al., 2005). VLA-4 or integrin a4b1
binds VCAM-1 leading to the rolling of T cells and has been
targeted in multiple sclerosis (Engelhardt and Kappos, 2008).
In models based on HBMECs, the integrin a4 is expressed
by endothelial cells. Recognition of integrin a4 by the soluble
VCAM-1(sVCAM-1), which is present in the blood during
inflammatory states, leads to TJ disruption (Haarmann et al.,
2015) Work on BBB models using endothelial cells derived
from CD34+ cord blood stem cells has shown that Th1 cells
have enhanced migratory properties (Nishihara et al., 2021).
Neutrophil transmigration reduced TEER (Wong et al., 2007)
and monocyte migration was linked to the rapid remodeling
of tight junctions expressing claudin-5 (Winger et al., 2014). In
contrast, T lymphocytes did not affect the properties of HBMECs

(Wong et al., 1999). Transmigration of dendritic cells has been
associated with the restructuring of endothelial cell actin in a
transwell model of hCMEC/D3 cultured with astrocytes (Meena
et al., 2021).

Blood–brain barrier transwell models have been extensively
used in studies on transmigration in different neuropathologies.
Work on immune cells isolated from patients with multiple
sclerosis revealed preferential migration of CD8+ and TH17+ T
lymphocytes (Tsukada et al., 1993; Kebir et al., 2009). Interaction
of the programmed cell death 1 molecule (PD-1) expressed by T
cells with its ligands PD-L1 and PD-L2, which are expressed by
isolated hBECs, was shown to be a key factor in migration (Pittet
et al., 2011), whereas PECAM-1 was not crucial (Wimmer et al.,
2019). In neurodegenerative diseases, the chemokines CXCL4
and CXCL10 facilitated the entry of lymphocytes derived from
patients with Alzheimer’s disease in cultures of hCMEC/D3 cells
(Verite et al., 2017).

Transmigration of immune cells has also been studied in
microfluidic BBB models. Endothelial cells and astrocytes have
been cultured with hollow microfluidic fibers equipped with 4-
µm pores to permit monocyte migration (Cucullo et al., 2002).
A human model to study transmigration incorporated cultured
endothelial cells, astrocytes, and shear stress in a 3D flow chamber
device (Takeshita et al., 2014). A microfluidic system with
transparent porous silicon nitride membranes designed to permit
live imaging of T-cell transmigration has been developed with co-
culture of brain endothelial cells derived from the human stem
cells and bovine pericytes (Mossu et al., 2019). New generation
models should enhance the understanding of transmigration.

Immune Component Impact on BBB
Integrity
In inflammatory states, endothelial cell expression of TJs proteins
decreases and adhesion molecule expression increases (De Laere
et al., 2017). Human models have been critical in the studies
of the effects on the BBB of components of immune signaling,
including chemokines, cytokines, and interleukins, secreted by
peripheral cells during inflammation. BBB permeability has
been shown to be decreased by serum from patients with MS
applied to hCMEC/D3 cells (Curtaz et al., 2020; Sheikh et al.,
2020) or by serum from patients with breast cancer and brain
metastasis tested on CD34+-derived endothelial cells (Curtaz
et al., 2020; Sheikh et al., 2020). These effects are mediated by
downregulation of VE-cadherin, occludin, and claudin-5 and
increased levels of oxidative stress in endothelial cell monolayers
and co-cultured with pericytes. The MS serum contained high
levels of proinflammatory interleukins, such as IL-17 and IL-
26. These interleukins downregulated tight junction proteins in
hCMEC/D3 monolayer or primary BECs (Li et al., 2017, 17;
Setiadi et al., 2019; Broux et al., 2020).

In vitro BBB models have been crucial to establish links
between inflammatory immune components and BBB
degradation. In co-cultures of hCMEC/D3 with astrocytes,
the chemokines, such as CXCL5 and CXCL8, transiently
activated the Akt pathway, leading to ZO-1 redistribution and
the appearance of actin fiber stress (Haarmann et al., 2019).
TNF-α stimulation-induced oxidative stress and downregulated
claudin-5 and occludin expression in HBMEC co-cultured with
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FIGURE 3 | Schematic illustration of the impact of inflammatory processes on BBB integrity.

astrocytes under ischemic conditions (Abdullah et al., 2015).
TNF-α also activated the Ca2+/NFκβ pathway in hCMEC/D3
cells inducing synthesis of the metalloproteinase MMP9,
correlated with BBB degradation in several pathologies (Ding
et al., 2019). Elements of the complement pathway were also
involved in BBB damage. In co-culture models, astrocytic
secretion of C3 activated endothelial cell C3a receptors which
led via Ca2+-dependent signals, to decreased expression of TJs
proteins and increased permeability (Propson et al., 2021).

Immune signaling components also enhance expression of
adhesion molecules which assist immune cell extravasation.
Chemokines linked to transmigration include CCL5 (Ubogu
et al., 2006), CCL2 for dendritic cells (Sagar et al., 2012),
or CXCL12 for T cells and monocytes (Man et al., 2012).
The interleukin IL1β was shown to facilitate extravasation by
delocalizing endothelial cell expression of the adhesion molecule
integrin α5β1 (Labus et al., 2018). Astrocytes have been associated
with secretion of MCP-1 (or CCL2), which assists monocyte
migration by increasing ICAM1 and E-selectin expression in
BECs (Weiss et al., 1998). Monocyte transmigration is facilitated
by CXCL10, CCL2, or CCL3, which is secreted by pericytes and
also hBECs (Chui and Dorovini-Zis, 2010; Niu et al., 2019).

Microvesicles released by immune cells may be another
significant pathway for the liberation of immune signaling

molecules. Microvesicles secreted by polymorphonuclear
neutrophils decreased TEER in hCMEC/D3 models (Ajikumar
et al., 2019).

NEURONAL DYSREGULATION AND BBB
INTEGRITY

Molecules linked to dysregulated neuronal processes contribute
to BBB degradation (Figure 4). In Parkinson’s disease, α-
synuclein accumulation is linked to the loss of dopaminergic
neurons. Neuronal damage in Alzheimer’s disease is associated
with amyloid-β (Aβ) plaques and tau-containing neurofibrillary
tangles. Recombinant α-synuclein and Aβ1-40 activated the
MAPkinase pathway in cells of hCMEC/D3 monolayers, so
reducing expression of TJ proteins (Tai et al., 2010; Kuan
et al., 2016). Fibrillar aggregations of amyloid-β increased
BBB permeability (Parodi-Rullán et al., 2020). Application of
amyloid-β1-42 to HBMECs upregulated CCR5, involved in T-
cell transmigration, via JNK, ERK, and PI3 kinase pathways
(Li et al., 2009). TNF-α, which is secreted by microglia
stimulated by amyloid-β1-42, induced an increase in MHCI
expressed by hCMEC/D3 and facilitated T-cell transmigration
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FIGURE 4 | Schematic illustration of neural dysregulation on in vitro human BBB models.

(Yang et al., 2013). The presence of amyloid-β1-40 or amyloid-
β1-42 enhanced IgG uptake in iPSC-derived endothelial cells,
differentiated using Qian’s method, and stimulated inflammatory
cytokine secretion (Mantle et al., 2016).

Neuronal activity may also release transmitter molecules,
such as purines and glutamate, which might contribute to
BBB degradation even if these effects have not yet been
sufficiently studied. The hCMEC/D3 cell line expresses several
purinergic receptors and also CD73 which converts AMP
to adenosine (Mills et al., 2011). Activation of the P2XR7
receptor of hCMEC/D3 cells by ATP induced IL1β secretion,
activated MMP9, and decreased ZO-1 and occludin expression
(Yang et al., 2016). Glutamate decreased TEER in cultured
monolayers of BEC lines although NMDA increased the same
parameter (Neuhaus et al., 2011). In co-cultures of BECs and
astrocytes derived from iPSCs of patients with familial SOD1
ALS, glutamate increased expression of the transporter P-gp via
NMDA receptors. This effect was absent in cells derived via
iPSCs of patients with the C9orf42 mutation, differentiated in a
chemically-defined medium (Mohamed et al., 2019).

IMPACT OF BRAIN INVASION ON BBB
INTEGRITY

We explore how neurotrophic viruses and metastatic cancer cells
enter the brain via the BBB (Figure 5).

Neurotrophic Virus
The BBB is a major route for neurotropic viruses to enter the
brain where they may induce encephalitis, epileptic seizures,
or stroke (Ludlow et al., 2016). Viruses, including human
immunodeficiency virus (HIV-1), hepatitis C, and severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2), reduce TJ
integrity and induce the expression of adhesion molecules and
cytokines (Liu et al., 2009; Strazza et al., 2011). These actions
have been studied in BBB models. The Zika virus (ZIKV) is a
mosquito-borne flavivirus, which causes microencephaly in the
newborn and is linked to adult disorders, including encephalitis
(Carod-Artal, 2018). Infection of primary human BECs with
ZIKV decreased TJs expression, most severely for the Honduras-
ZIKV strain. The micro-RNA, hsa-miR-101-3p, disrupted AJ
and TJ proteins after ZIKV infection of hBMVEC cells and
hCMEC/D3 (Bhardwaj and Singh, 2021). Interestingly, TJ
degradation did not affect BBB permeability in work on BMECs
(Leda et al., 2019), iPSC-derived endothelial cells differentiated
from Qian’s method (Alimonti et al., 2018), or on HUVEC cells
(Clé et al., 2020).

Human immunodeficiency virus−1 causes neurological
disorders, including cognitive decline and dementia in 40–60%
of patients, even with tri-therapy (Anthony et al., 2005). BBB
disruption during primary infection with HIV-1 (Rahimy et al.,
2017) has been linked to neurological disorders (Chaganti et al.,
2019). HIV-1 disrupted claudin-5 (András and Toborek, 2011).
A better understanding of interactions between HIV-1 and BBB
cells is needed to develop new therapeutic approaches.
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FIGURE 5 | Schematic illustration of brain invasion on in vitro human BBB models.

Severe acute respiratory syndrome coronavirus-2, the novel
coronavirus which emerged in 2019, induces neurological
symptoms (encephalitis, Guillain–Barre syndrome, epileptic
seizures, ischemic stroke, and hemorrhagic stroke) as well
as a severe acute respiratory syndrome. Viral mRNA and
proteins penetrate Central Nervous System (CNS) and olfactory
bulb endothelial cells (Davies et al., 2020; Solomon et al.,
2020). Work with human BBB models to understand how the
virus enters the brain has focused on interactions between
the coronavirus spike protein and the angiotensin-converting
enzyme 2 (ACE2) receptor expressed by BECs. Data from co-
cultures of CD34+ blood-derived endothelial cells and bovine
pericytes suggest that SARS-CoV-2 does not directly infect
endothelial cells (Constant et al., 2021). While the coronavirus
spike protein did not compromise endothelial cell viability,
BBB permeability increased, ZO1 expression was altered, and
inflammatory cytokines, metalloproteases, and integrins were
induced in hBMVECs (Buzhdygan et al., 2020). Hypoxia has
recently been shown to enhance ACE2 expression by hCMEC/D3
cells and probably increases susceptibility to infection (Imperio
et al., 2021).

Diverse mechanisms have been proposed for neurotropic
virus entry into the brain. They include infection of hBECs

of the BBB, transcytosis, and also infection of transmigration-
competent immune cells which may enter the brain as a “Trojan
horse.” A transwell 3D co-culture of HBMECs with astrocytes
and monocytes showed how ZIKV-infected monocytes could
cross the BBB to enter brain tissue (Bramley et al., 2017).
ZIKV induction of adhesion expression molecules by endothelial
cells facilitated the transmigration of infected monocytes in a
transwell system using human CD34+ cells (Clé et al., 2020).
The HIV-1 also enters the brain via infected monocytes (Nottet
et al., 1996; Banks et al., 2001). BBB models have attempted
to distinguish between endocytosis and Trojan mechanisms
of entry. Lymphocytes infected with HIV-1 were shown to
induce adhesion molecules which facilitated transmigration
across HUVEC cells (Romero et al., 2000). The chemokine CCL2
mediates migration that increased BBB permeability, as shown
when HIV-1 infected lymphocytes were added to transwells with
astrocytes and BECs (Eugenin et al., 2006).

Cancer Cells
Malignant glioma cells infiltrate peri-vascular spaces and displace
astrocytic end-feet from BECs (Cuddapah et al., 2014; Watkins
et al., 2014). However, the phenomenon may not be uniform
since MRI scans in patients with glioblastoma have shown that
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the BBB is intact in some brain regions (Sarkaria et al., 2018).
Most studies on BBB modulation in gliomas have focused on
the delivery of compounds to alleviate symptoms. The important
role of BBB in pathogenicity and morbidity is confirmed by the
increases in permeability detected in high-grade, fast-growing,
but not low-grade tumors.

Brain tumors could result from themetastatic spread of breast,
lung, and melanoma cancers via blood vessels or nerves. The key
role of claudin-5 in controlling hCMEC/D3 cell permeability and
metastatic cancer cell migration has been established in protein
silencing or overexpression studies on hCMEC/D3 cell lines
(Ma et al., 2017). Furthermore, glioma cells secrete exosomes,
enriched in the growth factor VEGF-A, which also reduces the
expression of claudin-5 and occludin by endothelial cells in vitro
(Yang et al., 2016).

Metastasis was enhanced in inflammatory conditions
when HBMECs were co-cultured with lung cancer cells. The
proinflammatory cytokine TNF-α enhanced the adhesion of
metastatic cells to BECs, by increasing BEC expression of
adhesion molecules and increasing the expression of their
ligands by cancer cells (Wang et al., 2021). TNF-α increased
the expression of CD15 and E-selectin adhesion molecules by
hCMEC/D3 monolayers. CD15 and CD52E underly metastatic
adhesion to brain endothelial cells (Jassam et al., 2017).
Extravasation of metastatic cells has been studied in a 3D
microfluidic platform in which human iPSC-derived BECs from

Lippman’s method supplemented by VEGF, astrocytes, and
pericytes were exposed to breast tumor cancer cells. This work
underlined the implication of CCL2/CCR2 axis for metastatic
cell extravasation. Furthermore, serum from patients with breast
cancer has been shown to increase BBB permeability in transwell
co-cultures of endothelial cells (Hajal et al., 2021).

Co-cultures have helped to establish the nature of interactions
between glioma cells and BECs. Glioma cells decreased
TEER and increased paracellular fluxes when co-cultured
with hCEMC/D3 cells (Mendes et al., 2015). The spheroidal
3D structure of gliomas may be significant. Coculturing
glioblastoma spheroids with GBM spheroid and hCEMC/D3
cells has revealed a specific role of IL-8 in promoting tumor
growth and tumor migration (McCoy et al., 2019). These
data show how BBB models have an advanced understanding
of mechanisms of tumor cell invasion and their effects on
brain vasculature.

IMPACT OF CEREBROVASCULAR
DISEASE ON BBB INTEGRITY

Cerebrovascular syndromes, including stroke, vascular
malformations, vascular dementia, and edema related to
post-traumatic epilepsy, are closely linked to BBB dysfunction
(Andjelkovic et al., 2020). These conditions are associated

FIGURE 6 | Schematic illustration of cerebrovascular dysregulation on in vitro human BBB models.
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with a hyperpermeability of the barrier, cellular cytotoxicity,
and inflammation (Figure 6).

Cerebral amyloid angiopathy (CAA) is a cerebrovascular
disease, often associated with Alzheimer’s dementia, which
results from amyloid-β accumulation on small blood vessel walls
and often causes cerebral hemorrhage (Puy and Cordonnier,
2019). Blood vessels degenerate and inflammation linked
to the vascular adhesion protein 1 and semicarbazide-
sensitive amine oxidase (VAP1/SSAO) emerges. In BBB
model cultures consisting of endothelial cells, neurons,
and astrocytes, VAP1/SSAO induced hBEC secretion of
IL-6, IL-8, and VEGF-A and decreased expression of the
tight junction proteins ZO1 and claudin-5 (Solé et al.,
2019).

Oxygen and glucose deprivation (OGD) mimics ischemic
stroke-induced hyper-permeability of HBMECs due to
internalization of VE-cadherin and is dependent on activation
of the RhoA/Rock pathway (Chen et al., 2019). Pericytes and
astrocytes are important in the BBB response to ischemia.
A co-culture model with pericytes and astrocytes as well as
endothelial cells showed that OGD increased intracellular levels
of Fe2+ in BECs and pericytes and was correlated with the loss
of TJs, AJs, increased BBB permeability, and pericyte death
(Imai et al., 2019). Deletion of the SUMO-specific protease
SENP-1 in pericytes of HBMEC/pericyte co-cultures revealed a
protective role for this enzyme during ischemia. In the absence
of SENP-1, TEER was reduced and decreased ZO-1 and occludin
expression by BECs was decreased (Sun et al., 2020). Co-cultures
of hCMEC/D3 cells with astrocytes show that both ischemia
(Gerhartl et al., 2020) and traumatic injury (Augustine et al.,
2014) induce an anatomical uncoupling of the two cell types
mediated by the activation of MAPKinase pathways. Recovery
after trauma, including a stabilized BBB permeability, reduced
inflammatory processes and re-establishment of TJs was partly
dependent on the hedgehog pathway in astrocytes (Wu et al.,
2020).

Several proteins have been linked to the hyperpermeability of
hBECs. One is the heat shock protein 27 (HSP27), which inhibits
actin polymerization. Overexpression of HSP27 in endothelial
cells reduced TJ protein expression and BBB permeability due to
OGD treatment (Shi et al., 2017). Another protein, the C-type
lectin domain containing 14A (Clec14A), which interacts with
VEGF and is involved in angiogenesis, has been associated with
the loss of TJs during ischemia (Kim et al., 2020). Sirtuine 1 &
3 (SIRT1 & SIRT3) proteins are involved in resistance to cellular
stress, but have opposing effects in human BBB models. SIRT1
is protective and decreased BBB permeability, whereas SIRT3
increased permeability. SIRT effects have been associated with
reactive oxidative stress generated by mitochondria (Chen et al.,
2018).

Ischemia initiates massive inflammatory processes. CXCL5, a
secreted chemokine that recruits neutrophils, has been linked to
a reduced TEER and ZO-1 expression mediated via activation
of p38 MAPkinase pathways in primary BECs (Yu et al., 2021).
OGD treatment to mimic ischemic stroke downregulated the
micro-RNA let-7 in hBEMCs. Overexpression protected against
inflammatory processes inducing decreased TLR4 and MMP9

expression as well as reducing inducible nitric oxide synthase
responses to OGD stimulation (Xiang et al., 2017).

The most frequent vascular formation syndrome is cerebral
cavernous malformation. This syndrome results from mutations
in CCM genes and is characterized by vascular dilatations.
Deleting CCM3 protein in monolayers of human endothelial
cells induced internalization of TJs proteins and diminished
interactions with the actin cytoskeleton (Stamatovic et al.,
2015).

In vitro human BBB models have been also used to test
potential treatments. Therapy using progenitor endothelial cells
may promote brain repair and angiogenesis after ischemia. The
secretome of endothelial progenitor cells is suggested to promote
angiogenesis and BBB recovery after OGD treatment in a co-
culture model of BECs and pericytes. Recovery was characterized
by upregulation of junctional proteins and expression of ICAM1
and VCAM1 (Loiola et al., 2021).

DISCUSSION/CONCLUSION

The progression of multiple brain pathologies involves BBB
disruption. Therapeutic measures to alleviate this influence
might be developed from work on humans, on animal models or
as we argue here on models of the BBB derived from human cells.
Human studies of BBB are challenging and have mostly focused
on permeability measurements. The best insights into BBB
permeability in human have been obtained from data on albumin
concentrations in CSF and in the blood. While this technique is
too invasive to be used frequently, alternatives involving non-
invasive imaging, such as positron emission tomography (PET)
or dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI), could be useful. In vivo animal models remain close
to the BBB architecture. However, there are significant molecular
differences between mice and humans in tight junction proteins
and some transporters (Urich et al., 2012; Hoshi et al., 2013; Song
et al., 2020). The group of Weiss-Coray has recently published
data on differences in gene expression between patients with AD
and mouse models of AD (Yang et al., 2022). These molecular
differences may partly explain the poor translation of promising
molecules from animal experiments to successful clinical trials.
In vitro human models of the BBB therefore seem to be the
technique of choice for further studies.

This review has described an intense activity resulting in
numerous publications on in vitro human BBB models. Creating
a physiological cerebrovasculature in vitro and understanding
its disruption in different pathologies have been a major
challenge. We feel that the present is an appropriate moment to
standardize protocols. We have listed at least 4 different origins
of human endothelial cells and 5 types of 2D or 3D models.
Differences also exist in cell supports and culture media for the
same cell line. Validation protocols could also be standardized
permitting comparison between models and decisions on the
most appropriate BBB model to study specific neuropathologies.
Our review has shown that novel mechanisms have been
elucidated from both relatively simple transwell monolayers of
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endothelial cells as well as technically more complex, and more
expensive, 3D BBB-on-chip models.

Results derived from different models have sometimes proved
controversial. Using primary BECs, Biernacki et al. (2001)
revealed that TH2 T-cells have a better migration than TH1-
T cells whereas using CD34+-derived BECs revealed similar
migration for TH1 and TH2 cells while TH1 cells migrated
more effectively under inflammatory conditions (Nishihara et al.,
2021). Interestingly, a study comparing the migration of TH1 cell
line across amonolayer of mouse cell line bEnd5 or primary brain
mouse endothelial cells revealed a longer crawling of T cells in
bEnd5 and a decrease of diapedesis in primary cells (Steiner et al.,
2011). Eventually, TEER permeability values as well as price and
technical complexity may be the key factors in deciding which
model is most appropriate to a specific question.

Despite advances, including the use of pericytes and astrocytes
in co-culture and simulation of the effects of shear stress in
microfluidic models, we feel human BBB models could still
be improved. Brain vasculature is not homogenous but is
organized along an arteriovenous axis of arterioles, capillaries,
and venules. Within this zonation, there are differences in cell
types, shear stress, vessel diameter, and basement membrane
which are crucial to the BEC phenotype. Transcriptomic
analysis has revealed zonation-dependent molecular differences
(Vanlandewijck et al., 2018), which may be important for next-
generation in vitro human BBB models engineered to answer
specific questions.

Present models largely ignore interactions of the BBB
with significant elements of its environment. In the future,
BBB models might consider to simulate interactions with the
cerebrospinal fluid compartment and with the microbiota–gut–
brain axis (MGBA). The blood–cerebrospinal barrier (BSCF)
is localized in the choroid plexus and glymphatic system of
lymphatic drainage. Dysfunction in CSF brain drainage has
been associated with neuropathologies, including TBI and AD

(Natale et al., 2021). Vascular dynamics regulate the glymphatic
systems involved in CSF drainage. The BSCF, like the BBB, acts
to protect the brain but is also a site of immune cells trafficking.
Alcendor et al. (2013) have developed an organotypic model,
including both CSF and CNS compartments coupled to the BBB.
The microbiotic axis is clearly linked to the integrity of the
BBB (Braniste et al., 2014) and is affected by neurodegenerative
disease (Zhu et al., 2021). While mouse models have mostly
been used to examine interactions between the MGBA and the
BBB, this work could usefully be extended to in vitro human
BBB models.

In conclusion, we suggest that in vitro human models of
the BBB will be critical to further progress in understanding
multiple brain pathologies. We hope that this review has
clarified how a balance can be achieved among complexity,
realistic physiology, and ease of use of different models.
Validation and standardization will assist the choice of model
for different questions. Facilitating access to realistic, high-
performance systems (Boeri et al., 2021) seems likely to
improve diagnostics, clinical applications, and understanding of
different pathologies.
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