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Ischemic stroke is an acute cerebrovascular disease characterized by sudden
interruption of blood flow in a certain part of the brain, leading to serious disability and
death. At present, treatment methods for ischemic stroke are limited to thrombolysis
or thrombus removal, but the treatment window is very narrow. However, recovery
of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI).
The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane
protein folding, transportation, and maintenance of intracellular calcium homeostasis.
Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia
pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis;
however, excessive or long-term ERS causes apoptotic pathway activation. Specifically,
the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription
factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly
activated following initiation of the unfolded protein response (UPR). CIRI-induced
apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits
in patients. Therefore, it is necessary and important to comprehensively explore the
mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal
function after ischemia.

Keywords: ER stress, unfolded protein response (UPR), cerebral ischemia-reperfusion injury (CIRI), inflammation,
apoptosis

INTRODUCTION

Ischemic stroke, which accounts for approximately 87% of all stroke cases (Kuriakose and Xiao,
2020), results in severe symptoms and is responsible for the majority of stroke-related deaths and
disabilities. The main cause of ischemic stroke is cerebrovascular blockade, which leads to brain
dysfunction in the corresponding region. As the disability rate and mortality rate of ischemic stroke
are very high, this disease seriously affects the health of individuals and imposes a large burden on
society and the economy (Poustchi et al., 2021). The amount of glucose and glycogen stored in
brain tissue is very low, making the brain very sensitive to reduced blood flow, which can lead to
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irreversible damage after 20 min (Kristian, 2004). Compared with
other organs, the brain is rich in polyunsaturated fatty acids
(FAs) but contains very low levels of protective antioxidants
such as superoxide dismutase and catalase. Thus, it is very
sensitive to oxidative stress injury (Adibhatla and Hatcher,
2010). During ischemic stroke, cerebral blood flow is interrupted
or reduced, resulting in hypoxic and ischemic damage to
brain cells, cell necrosis, or cell apoptosis. During ischemia,
anaerobic metabolism dominates in tissues, and adenosine
triphosphate (ATP) levels decrease rapidly. Lactate accumulates,
leading to a decrease in the intracellular pH value, leading
to an imbalance in ATP-dependent ion transport, overload of
intracellular calcium ions, and swelling and rupture of cells,
ultimately mediating cell death through necrosis, apoptosis, and
autophagy (Kalogeris et al., 2012).

At present, the methods for achieving vascular recanalization
in patients with ischemic stroke mainly include the use of
recombinant tissue plasminogen activator (rtPA) and vascular
interventional thrombectomy. Basic and clinical research has
led to improvements in the treatment of ischemic stroke.
Intravenous rtPA is the recommended treatment for acute
cerebral infarction within 4.5 h of onset (Man et al., 2020;
Powers, 2020). However, due to time constraints, the existing
treatment methods are limited. Importantly, ischemic stroke
may lead to intracranial hemorrhage (ICH), cause additional
brain injury, and even endanger the patient’s life. When blood
flow is restored to the brain after a certain period of time,
brain injury and brain dysfunction are often aggravated. This
phenomenon, called cerebral ischemia/reperfusion injury (CIRI)
(Sun et al., 2018), occurs because although oxygen levels are
restored to normal after reperfusion, reactive oxygen species
(ROS) are produced during this process, and infiltration of
proinflammatory neutrophils into ischemic tissues aggravates
ischemic injury, eventually leading to mitochondrial permeability
transition (MPT) pore opening and further irreversible damage
(Kalogeris et al., 2012). The pathophysiological process of CIRI
is complex and involves a variety of different mechanisms,
including oxidative stress, inflammation, intracellular Ca2+

overload, mitochondrial dysfunction, apoptotic cell death, and
excitatory amino acid toxicity (Kalogeris et al., 2016; Campbell
et al., 2019; Datta et al., 2020). These factors are interrelated
and interact with each other to eventually cause nerve cell death
and neurological dysfunction. Recent studies have shown that
CIRI can also cause endoplasmic reticulum (ER) damage and
dysfunction, activate downstream signaling pathways, contribute
to ischemia/reperfusion injury, and have an important impact on
nerve cell apoptosis and survival (Hetz and Saxena, 2017).

The ER is an organelle that is found in all eukaryotic cells
except mature red blood cells and is mainly responsible for
the secretion and folding of proteins, the storage and release
of calcium, the synthesis and distribution of lipids, and other
functions (Stefan et al., 2011; Oakes and Papa, 2015; Addinsall
et al., 2018). However, the ER is also sensitive to the environment.
In the presence of abnormal energy metabolism, changes of
glycosylation, disorder of calcium balance, drugs, toxins, and
other influencing factors, the function of the ER will be impaired,
leading to the aggregation of misfolded proteins and endoplasmic

reticulum stress (ERS) (Guan et al., 2014). Moreover, the ER
is one of the earliest organelles in cells to respond to external
stress. There are three responses associated with ERS, namely,
the unfolded protein response (UPR), the endoplasmic reticulum
overload response (EOR), and the sterol regulatory element-
binding protein (SREBP) pathway regulation response (Pahl,
1999). ERS most commonly involves the UPR, which helps
cells adapt to changes in the intracellular microenvironment by
altering the functional state of the ER (Markouli et al., 2020).
When ERS is caused by changes in the internal and external
environment, the UPR is initiated to alleviate the harmful effects
caused by ERS and maintain intracellular homeostasis. The UPR
involves a reduction in translational activity, an increase in
protein folding ability, and activation of the protein degradation
pathway. Particularly, the ER-associated degradation (ERAD)
or the ubiquitin–proteasome system (UPS) (Sanderson et al.,
2015; Sprenkle et al., 2017). The function of the UPR depends
on the stress level. When the degree of ERS is low or the
duration is short, the purpose of the UPR is to restore ER
homeostasis, but when the degree of ERS is high or the duration
is long, the main purpose of the terminal stage of the UPR is
promotion of apoptosis (Walter and Ron, 2011; Hetz and Papa,
2018). The UPR regulates the transcription and translation of
proteins in cells to alleviate harm and reduce the probability
of protein misfolding. If this mechanism cannot achieve its
purpose, inflammatory and apoptotic pathways may be activated,
leading to the exacerbation of the inflammatory response in
the nervous system, affecting cell survival (Bellezza et al., 2014;
Logsdon et al., 2016).

Endoplasmic reticulum stress plays a key role in the
progression of CIRI (Xin et al., 2014; Yang and Paschen, 2016).
Severe CIRI disrupts ER homeostasis and leads to cell death
(Luchetti et al., 2017). The function of early ERS is to restore
the stability of the internal environment of the ER and protect
cells. Transient and mild ERS helps cells reestablish homeostasis.
However, long-term severe ERS disrupts cell homeostasis, leading
to apoptosis and aggravating brain injury (Szegezdi et al.,
2006; Chi et al., 2019). ERS signals are transmitted through
three UPR receptors, i.e., inositol-requiring enzyme 1 (IRE1),
protein kinase R-like endoplasmic reticulum kinase (PERK), and
activating transcription factor 6 (ATF6), to enter the ER. These
receptors bind glucose-regulated protein 78 (GRP78)/Bip (also
known as HSP5A) on the ER membrane, which maintains them
in an inactive state. Under unstressed conditions, GRP78/Bip
binds ATF6, IRE1, and PERK to prevent them from activating
downstream signaling events. When the amount of unfolded
or misfolded proteins increases, Bip dissociates from these
receptors and helps fold unfolded or misfolded proteins, resulting
in activation of these receptors and downstream signaling
events (Zhang and Kaufman, 2006). Cerebral ischemia causes
a series of pathophysiological processes in which ERS-mediated
apoptosis eventually leads to brain cell death (Zhao et al.,
2018). Therefore, strategies that can effectively regulate ERS may
be useful for the treatment of cerebral ischemia. Elucidating
the interaction between the ER, cerebral ischemia, and the
underlying mechanism is important for the development of
effective treatments for cerebral ischemia.
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FACTORS RELATED TO CEREBRAL
ISCHEMIA/REPERFUSION
INJURY-INDUCED ENDOPLASMIC
RETICULUM STRESS

Ca2+ Overload
Ca2+ plays an important role in a variety of pathophysiological
processes in cells, such as gene expression, protein synthesis and
transport, and cell proliferation and differentiation (Clapham,
2007). The ER and mitochondria interact and influence each
other and can form physical contact points called mitochondria-
associated endoplasmic reticulum membranes (MAMs) (Hayashi
et al., 2009). The ER also contacts the plasma membrane (PM),
and the interaction between the ER and PM is controlled by Ca2+

levels (Toulmay and Prinz, 2011). In the ER, calcium is needed
to activate calcium-dependent molecular chaperones that can
stabilize protein folding intermediates (Kim et al., 2008). Thus,
it can affect ERS.

Ca2+ homeostasis disruption in the ER plays a decisive role
in many neurological diseases, including stroke (Paschen and
Mengesdorf, 2005). During cerebral ischemia, many mechanisms
can cause an increase in the intracellular Ca2+ content. During
cerebral ischemia occurs, the brain mainly relies on glucose-
independent degradation to generate ATP due to the lack of
oxygen and energy in nerve cells, leading to the aggregation of
lactate, hydrogen ions, and nicotinamide adenine dinucleotide
and a decrease in the intracellular pH. To restore a normal pH,
H+ is excreted via Na+/H+ exchange, which in turn leads to
Na+ inflow. However, the increase in Na+ content is prevented
by the Na+/Ca2+ exchanger, which increases intracellular Ca2+

levels. During hypoxia, the sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA) is impaired, reducing the uptake of calcium
by the ER and increasing the release of calcium. This further
aggravates intracellular calcium overload and seriously affects the
calcium storage function of the ER, leading to disruption of ER
homeostasis (Sanada et al., 2011). Furthermore, due to the large
increase in ROS levels, intracellular Ca2+ content is markedly
increased during reperfusion (Baines, 2009). In addition, nitric
oxide (NO), which promotes the release of calcium ions from the
ER into the cytoplasm that eventually leads to calcium overload, is
produced during ischemia and hypoxia (Rajakumar et al., 2016).

When the concentration of Ca2+ reaches a lethal level in
cells, a series of changes are triggered, and damage is aggravated
(Kalogeris et al., 2012). First, some Ca2+ is transported into
the mitochondria through unidirectional transport, but once the
concentration of Ca2+ in mitochondria exceeds the tolerated
level, MPT pore opening occurs. Second, a pathologically high
concentration of Ca2+ in the cytoplasm leads to activation of
Ca2+/calmodulin-dependent protein kinases (CaMKs), which
aggravates cell death and organelle dysfunction. Third, a high
concentration of Ca2+ can increase the activity of calpain,
promote protein translation, and lead to cell death. Fourth, a
high concentration of calcium in cells can lead to the production
of calcium pyrophosphate complexes and uric acid, which can
combine with protein complexes in cells to form inflammasomes
to promote the production of inflammatory factors and

ultimately alter the inflammatory response. A high calcium
concentration in the cytoplasm and a low calcium concentration
in the ER and extracellular environment causes inactivation of a
variety of calcium-dependent proteases, resulting in ERS.

Free Radicals
Free radicals include ROS and reactive nitrogen species (RNS).
Normally, ROS and RNS play regulatory roles in ERS. The
sources of ROS in different human tissues are different. The
main sources of ROS in the brain are NADPH oxidase
(NOX), mitochondria, xanthine oxidase (XO), and monoamine
oxidase (MAO) (Granger and Kvietys, 2015). In the reperfusion
phase of cerebral ischemia, the enzyme NOX uses oxygen
as the final electron receptor through NADPH, leading to
immediate production of O2− which is involved in the
degradation of NO and protein tyrosine nitration (Wu M. Y.
et al., 2018). Mitochondria are also a main source of ROS
in addition to generating energy and regulating cell signals
and apoptosis (Murphy, 2009). MAO is located in the outer
mitochondrial membrane and helps increase H2O2 production
(Granger and Kvietys, 2015).

During ischemia/reperfusion injury, excessive ROS may lead
to cell death through autophagy, necrosis, and apoptosis (Cursio
et al., 2015). ROS can effectively trigger ERS, and severe ERS can
lead to apoptosis during CIRI (Shi et al., 2019; Wei et al., 2019).
Excessive ROS act on the ER, leading to depletion of calcium ions
in the ER and entry of calcium ions into cells, which eventually
causes calcium overload in cells, thereby aggravating ERS and
inducing apoptosis. Some studies have shown that the ER and
ROS interact through some factors and signaling pathways,
including glutathione (GSH)/glutathione disulfide, NOX4, and
Ca2+ (Cao and Kaufman, 2014).

After cerebral ischemia/reperfusion, oxygenated blood
reenters the ischemic tissue and cause the production of a
large amount of ROS. ROS can modify almost all biomolecules
in cells, which leads to cell dysfunction (Raedschelders et al.,
2012). At present, ROS mainly cause damage in the following
three ways. First, they oxidize or nitrify key proteins involved
in regulating cell signaling through the formation of covalent
bonds (Lima et al., 2010). Second, reactive nitrogen/oxide species
(RNOS) directly cause cell damage. Third, oxidants, such as
hydrogen peroxide, cause indirect damage via regulation of
signals in dysfunctional cells and regulation of the sulfhydryl
redox cycle (Go et al., 2010). During ischemia, NO is produced
via oxidation of arginine to citrulline, nitrite, nitrite reduction,
and mitochondrial cytochrome c (Cyt c) oxidase under hypoxic
conditions (Golwala et al., 2009). During the reperfusion stage,
the amount of NO produced by ischemic tissue increases, and
nitrite peroxide is produced in the ER. Nitrite peroxide is highly
toxic and may affect the function of some proteins.

Inflammation
Endoplasmic reticulum stress and non-infectious inflammatory
reactions are involved in many diseases. The inflammatory
response participates in the pathophysiological process of CIRI,
leading to cell death (Su et al., 2017). In contrast, some
researchers have found that inhibiting the inflammatory response
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can reduce the infarct volume, improve neurological function
scores, and protect brain function in rats with middle cerebral
artery occlusion (MCAO) (Liu et al., 2018c). Furthermore, a
recent study on CIRI showed that local inflammation is one
of the main causes of ERS. After cerebral ischemia/reperfusion,
microglia release interleukin (IL)-1β, IL-6, and tumor necrosis
factor-α (TNF-α). These proinflammatory cytokines promote the
aggregation of inflammatory cells and the production of more
inflammatory cytokines, which further aggravate brain function
impairment (Mo et al., 2020).

Changes in cell permeability, cell edema, inflammation, and
ERS are the main processes in early cerebral ischemia. After
reperfusion, blood circulation is restored, and oxygen and
neutrophils reach the ischemic tissue. However, some tissues are
necrotic, leading to aggravation of neutral cell aggregation and
the production of ROS-dependent mediators. These mediators
can promote leukocyte adhesion to the posterior vein of the
capillary wall and enter the tissue to aggravate injury (Kvietys
and Granger, 2012). Activation of TNF, IL-6, and IL-8 further
induces ERS (Lee et al., 2019). Nuclear factor κB (NF-κB)
plays a key role in the immune response and can promote
the expression of inflammatory factors. In addition, ERS can
promote the activation of the NF-κB signaling pathway and
promote inflammation (Adolph et al., 2013). In response to ERS,
eukaryotic initiation factor 2α (eIF2α) phosphorylation reduces
global mRNA translation and stimulates NF-κB transcription.
Inhibition of mRNA translation can reduce the protein levels
of inhibitor of nuclear factor κB (IκB) and NF-κB (Deng
et al., 2004). Studies have shown that eIF2α phosphorylation
can inhibit the expression of IκB and activate the NF-κB
pathway. Some scholars speculate that this may be because the
half-life ratio of IκB to NF-κB is short, causing an increase
in the proportion of NF-κB relative to IκB, leading to NF-
κB nuclear translocation (Sprenkle et al., 2017). NF-κB is an
inflammation-related cytokine that promotes the inflammatory
response, leading to the overexpression of iNOS, IL-1β, and IL-
6, aggravating CIRI (Sun et al., 2014). In turn, ERS can also be
regulated by the NF-κB signaling pathway. Sphingosine kinase
1 (SPHK1) is a novel regulator of ERS. One study showed
that SPHK1 can activate the NF-κB pathway, causing ERS
(Zhang et al., 2020).

Endoplasmic reticulum stress can also affect inflammation.
Recent studies have reported that ERS can regulate TNF-α, IL-
12, and matrix metalloproteinase-12 expression. In addition, a
study showed that the inositol-requiring enzyme 1α (IRE1α)-
X box-binding protein 1 (XBP1) pathway can activate NLRP3
inflammasome-mediated inflammation. Particularly, XBP1 can
activate the NLRP3 inflammasome, convert inactive caspase-
1 into active caspase-1, and promote the conversion of IL-
1β precursor into the active form of IL-1β, causing its
secretion into the extracellular space (Yue et al., 2016).
ROS produced by mitochondria can consistently activate the
NLRP3 inflammasome and affect the function of mitochondria.
Inhibition of NLRP3 activation can reduce neuronal injury and
exert a neuroprotective effect after CIRI (Guo et al., 2018), while
ERS and autophagy promote the death of neurons after cerebral
ischemia through the NLRP3 inflammasome (Xu et al., 2021).

Therefore, ERS and the inflammatory response have a causal
relationship. However, the mechanism underlying the interaction
between ERS and inflammation in specific environments is still
unclear. In addition, the crosstalk between ERS and inflammation
in neurons, astrocytes, and microglia continues to be elucidated
(Sprenkle et al., 2017). It is worth noting that the role of
inflammation in CIRI has received increasing attention.

SIGNAL TRANSDUCTION PATHWAYS
INVOLVED IN ENDOPLASMIC
RETICULUM STRESS

Blockage of cerebral blood flow causes the initiation of the
UPR followed by impairment of ER or cell function. The
UPR involves many enzymes and transcription factors. To
date, three ER transmembrane receptors, i.e., PERK, IRE1,
and ATF6, which mediate three different signaling pathways
that affect transcription and translation, have been identified
(Schonthal, 2012; Gupta et al., 2016; Almanza et al., 2019).
Under physiological conditions, these three proteins bind to
the ER chaperone GRP78. The physical binding of GRP78 to
these ER transmembrane proteins maintains the proteins in
an inactive state. Under physiological conditions, these three
transmembrane receptors bind to the ER molecular chaperone
GRP78/Bip, inhibiting their functions (Bertolotti et al., 2000).
During ERS, GRP78 dissociates from these transmembrane
receptors and binds aggregated unfolded proteins. Then, PERK,
IRE1, and ATF6 are autophosphorylated, and their signaling
pathways are activated, leading to initiation of the UPR
and maintenance of ER function (Figure 1; Volmer et al.,
2013; Ibrahim et al., 2019). The activation of the three
branches of the UPR leads to the formation of a complex
signaling network that contributes to cellular processes such
as protein folding, protein degradation, and cellular redox
reactions. Misfolded proteins are degraded in the cellular
matrix through a process called ERAD (Lopata et al., 2020).
Ubiquitination of a substrate can promote its rapid hydrolysis.
This helps to maintain the dynamic balance of the ER. In
general, activated IRE1 and cleaved ATF6 are involved in
XBP1-induced ERAD (Waldherr et al., 2019). The PERK,
IRE1, and ATF6 signaling pathways are protective pathways
as they relieve early ERS. When harmful stimuli or long-
term stimulation impairs ER function, the ERS-mediated cell
death pathway, autophagy, apoptosis, and related inflammatory
reactions can be induced.

The PERK Pathway
Protein kinase R-like endoplasmic reticulum kinase is a
type I transmembrane protein kinase located on the ER
membrane (Harding et al., 1999). Its C-terminus contains a
serine/threonine protein kinase domain found in upstream
members of the eIF2α kinase family. During ERS, because
unfolded or misfolded proteins in the ER competitively bind
GRP78, GRP78 dissociates from PERK, resulting in disinhibition
of PERK and activation of PERK through dimerization and
autophosphorylation (McQuiston and Diehl, 2017). Activated
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FIGURE 1 | The unfolded protein response (UPR) determines cell fate through the protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring
enzyme 1 (IRE1), and activating transcription factor 6 (ATF 6) pathways. Nuclear factor erythroid 2-related factor 2 (NRF2) is phosphorylated by PERK and
dissociates from Kelch-like ECH-associated protein 1 (Keap1) under oxidative stress conditions and then activates the expression of NRF2-dependent antioxidant
genes. p-eIF2a can inhibit protein synthesis. Activated ATF4 induces the expression of growth arrest and DNA damage-inducible gene 34 (GADD34) and
tribbles-related protein 3 (TRB3). ATF6 is cleaved by serene protease site 1 protease and site 2 protease (S1P and S2P, respectively) to generate ATF6f and activated
sATF6. Then, it combines with endoplasmic reticulum stress response elements (ERSEs) to regulate and activate the expression of BiP and glucose regulating
protein 94 (GRP94). In addition, IRE1 contributes to ERS-mediated apoptosis through the tumor necrosis factor receptor-associated factor 2- activate apoptosis
signal-regulating kinase-1-c-Jun N-terminal kinase (TRAF2-ASK1-JNK) and caspase-12 pathways. In addition, inositol-requiring enzyme 1α (IRE1α) can activate the
nuclear factor κB (NF-κB) signaling pathway to initiate inflammatory reactions.

PERK phosphorylates eIF2α, inhibits protein translation, and
reduces the aggregation of unfolded proteins in the lumen
of the ER (Harding et al., 2000). Phosphorylation of eIF2α

can prevent the translation of mRNA (Starck et al., 2016). In
the ER-related apoptotic pathway, phosphorylated PERK and
eIF2α are significantly activated. It has been confirmed that
during early ischemia/reperfusion, phosphorylation of eIF2α

by PERK, which is the main mechanism through which the
translation of proteins is inhibited during stresses, increases
markedly (Owen et al., 2005; Gu et al., 2020). In addition
to inhibiting protein translation, phosphorylated eIF2α can
also activate the expression of activating transcription factor
4 (ATF4) (Harding et al., 2000). ATF4 is a member of
the leucine zipper family and activates the basic region of
transcription factors. It is a stress response gene and participates
in the UPR. Under normal conditions, the content of ATF4
is very low, and ATF4 mRNA is rarely translated. In addition,

some studies have shown that the transcription of ATF4 is
dependent on phosphorylated eIF2α (Blais et al., 2004). ATF4
can activate two survival and apoptosis pathways during the
UPR. ATF4 binds its activator to form a complex, which
combines with the promoter of the survival-promoting gene
GRP78 (Mamady and Storey, 2008). In addition, activated
ATF4 induces the expression of CAAT/enhancer-binding protein
(C/EBP) homologous protein (CHOP) (Palam et al., 2011;
Han et al., 2013), growth arrest, DNA damage-inducible gene
34 (GADD34) (Ma and Hendershot, 2003), and tribbles-
related protein 3 (TRB3) (Ohoka et al., 2005), which promote
the initiation of apoptosis. The p-eIF2α-induced decrease in
translation reduces the protein load in the lumen of the ER,
while adaptive gene expression induced by ATF4 involves
amino acid metabolism and protein homeostasis. These two
signal regulation mechanisms help cells cope with ERS (Quiros
et al., 2017). The PERK-ATF4-CHOP signaling pathway is
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involved in neuronal apoptosis (Gu et al., 2020). ATF4 can
promote the expression of some genes that are conducive
to cell survival, and this coordinated prosurvival response is
called the integrated stress response (Young and Wek, 2016;
Hetz and Saxena, 2017).

Studies have also shown that phosphorylated PERK/eIF2α

is important for activation of ERS-related autophagy. Once
eIF2α is phosphorylated, it can promote the conversion of
microtubule-associated protein 1A light chain 3 (LC3)-I to LC3-
II (Hoyer-Hansen and Jaattela, 2007). During autophagy, LC3-I
is transformed into LC3-II by cleavage of amino acids at the
hydroxyl end, which activates the autophagy system (Gao et al.,
2013). In addition, a recent study showed that PERK signaling
participates in oxygen-glucose deprivation/reoxygenation
(OGD/R)-induced microglial activation and neuroinflammatory
responses following PTP1B inhibitor treatment. After CIRI,
the PERK pathway is activated, the expression of ERS marker
proteins is increased, and autophagy is activated. In microglia,
a PTP1B inhibitor alleviates the deleterious effects of CIRI and
plays a neuroprotective role by inhibiting autophagy in rats
(Zhu et al., 2021).

Protein kinase R-like endoplasmic reticulum kinase can
not only regulate eIF2α but also phosphorylate nuclear factor
erythroid 2-related factor 2 (NRF2). NRF2 is involved in the
regulation of the cellular stress response and can induce the
expression of antioxidant enzymes (Oh and Jun, 2017). Under
physiological conditions, NRF2 binds to its negative regulator
Kelch-like ECH-associated protein 1 (Keap1) (Hu L. et al., 2018).
It is phosphorylated by PERK and dissociates from Keap1 under
oxidative stress conditions before translocating into the nucleus
where it activates the expression of NRF2-dependent antioxidant
genes (Cullinan et al., 2003; Waza et al., 2018). Ultimately,
it can reduce apoptosis during ERS and maintain the redox
balance in cells (Cullinan and Diehl, 2004). Oxidative stress
leads to NRF2 activation, which in turn inhibits the increase in
ROS levels and ameliorates cellular damage caused by oxidative
stress (Ramezani et al., 2018). Some studies have shown that the
levels of NRF2 and HO-1 decrease significantly, indicating that
NRF2/HO-1 signaling is involved in CIRI (Tian et al., 2020).
Therefore, NRF2 is an important signaling factor related to the
PERK signaling pathway, and its downstream signaling pathway
should be further studied.

The ATF6 Pathway
In mammals, ATF6 is an n-type membrane protein located in the
ER (Haze et al., 1999). Its C-terminal end, which is inserted in the
ER lumen, contains a GRP78-binding site and Golgi localization
signal. The cytoplasmic N-terminal region contains basic leucine
zipper (bZIP) and DNA transcriptional activity domains. ATF-6
has two configurations: ATF-6α and ATF-6β (Zhu et al., 1997).
The former plays a leading role in ERS. When ERS occurs
in cells, ATF6 is transported into the Golgi apparatus via the
Golgi localization signal. Within the Golgi, ATF6 is cleaved by
the serine proteases site 1 protease (S1P) and site 2 protease
(S2P) to release the cytoplasmic fragment ATF6f, resulting in
the activation of the protein (Ye et al., 2000). Activated sATF6
is a transcription factor containing a bZIP domain. After sATF6

leaves the Golgi apparatus and enters the nucleus, it combines
with cis-acting endoplasmic reticulum stress response elements
(ERSEs) in the nucleus to regulate and activate the expression
of BiP, GRP94, and calnexin (Yoshida et al., 2001b; Wu et al.,
2007; Yamamoto et al., 2007). In addition, ATF6 can stimulate
the expression of CHOP and promote initiation of the UPR
(Patwardhan et al., 2016).

Many studies have shown that an increase in ATF6 expression
can regulate ERS and reduce cellular damage. A recent
study showed that ischemic preconditioning can induce ATF6
expression, reduce ERS, and ultimately exert a neuroprotective
effect (Lehotsky et al., 2009). Some studies have shown that
the neurological function score of sATF6 knock-in mice is
significantly increased, suggesting that activation of the ATF6
pathway can improve the outcome of CIRI (Yu et al., 2017). In
addition, because the active form of ATF6 is rapidly degraded,
the precursor of ATF6 can be used as a marker of early
ERS (Thuerauf et al., 2002). Research has shown that ATF6α

knockout mice exhibit more severe functional damage and a
worse prognosis after myocardial ischemia or cerebral ischemia,
indicating that ATF6 deficiency increases organ damage upon
exposure to ischemia (Yoshikawa et al., 2015). Recent studies
have shown that activation of the ATF6 signaling pathway in the
brain after cardiac arrest is conducive to alleviating brain function
impairment (Shen et al., 2021). Furthermore, a study showed that
decreasing the cleavage of ATF6 in the Golgi apparatus can result
in neuroprotection (Gharibani et al., 2013). It was also found
that in a cerebral ischemia animal and reoxygenation cell models,
taurine can inhibit the activation of ATF6, inhibit ERS, reduce
cell apoptosis, and exert a neuroprotective effect after cerebral
ischemia/reperfusion (Gharibani et al., 2013). Further molecular
biology experiments are needed to validate the regulatory
mechanism of ATF6 and its potential for CIRI treatment.

The IRE1 Pathway
Inositol-requiring enzyme 1α is a type 1 transmembrane protein
that contains an N-terminal domain, cytoplasmic C-terminal
(RNase) domain, and serine/threonine kinase domain (Liu et al.,
2003; Lee et al., 2008). There are two IRE1 isoforms in mammals:
IRE1α, which is ubiquitously expressed, and IRE1β, which is
mainly expressed in the gastrointestinal tract and pulmonary
mucosal epithelium (Martino et al., 2013). Both of these isoforms
are involved in signal transduction in ERS.

During ERS, unfolded proteins that accumulate in the
ER bind GRP78. GRP78 then dissociates from IRE1, causing
homodimerization and autophosphorylation of IRE1, which
subsequently causes the activation of its RNase domain
(Korennykh et al., 2009). Activated IRE1 can cleave XBP1
precursor mRNA, resulting in the generation of active spliced
XBP1 (sXBP1) (Yoshida et al., 2001a), which is a bZIP
transcription factor (Liou et al., 1990). After entering the nucleus,
sXBP1 mRNA is translated to generate a mature protein which
can promote the expression of protein folding-related genes
and ultimately alleviate ERS (Travers et al., 2000; Chen and
Brandizzi, 2013; Hetz and Saxena, 2017). Studies have shown
that XBP1 is related to ER-mediated degradation of many
components, and that its degradation ability is dependent on
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IRE1 (Yoshida et al., 2003). However, it should be noted that
sXBP1 mRNA is quickly cleared from cells and is replaced
by the uncleaved form (Marciniak et al., 2004). Studies have
shown that under pathological conditions in vitro, ERS can cause
complete cleavage of XBP1 mRNA. However, there have only
been a few studies on this phenomenon. Therefore, care should
be taken when performing quantitative analysis (Hosoi et al.,
2010). sXBP1 is a key transcription factor in the regulation of
cell survival (Hetz and Saxena, 2017). Persistent ERS results in
sXBP1-mediated initiation of apoptosis via induction of CHOP
expression (Dai et al., 2014).

Regarding UPR activation, celecoxib reduces ERS by
promoting the IRE1-UPR pathway and ultimately exerts a
neuroprotective effect (Santos-Galdiano et al., 2021). In addition,
IRE1 contributes to ERS-mediated apoptosis through the c-Jun
N-terminal kinase (JNK) and caspase-12 pathways. IRE1 can
combine with TRAF2 to activate apoptosis signal-regulating
kinase-1 (ASK1) and ultimately activate the JNK pathway and
caspase-12, causing apoptosis (Nishitoh et al., 2002; Schonthal,
2013). It has been reported that taurine can significantly
inhibit the IRE1 pathway and reduce apoptosis in animals and
cell models (Gharibani et al., 2013). In addition, IRE1α can
activate the NF-κB signaling pathway to initiate inflammatory
reactions. In particular, the RNase domain of IRE1α mediates
the degradation of a variety of mRNAs and microRNAs through
a process called regulated IRE1-dependent decay (RIDD) and
regulates pathological processes such as inflammation and
apoptosis (Ghosh et al., 2014; Feldman et al., 2016; Wong et al.,
2018).

ENDOPLASMIC RETICULUM STRESS
AND CELL APOPTOSIS

Apoptosis is an important cell death pathway. Apoptosis is
involved in the pathophysiological process of CIRI (Uzdensky,
2019). However, the process of neuronal apoptosis is complex.
Recent studies have shown that three signal transduction
pathways are involved in the regulation of apoptosis: the ERS
pathway, the mitochondrial pathway, and the death receptor
pathway (Ten and Galkin, 2019; Datta et al., 2020). ERS
plays a vital role in stroke-induced neuronal apoptosis (Rao
et al., 2004; Rozpedek et al., 2017; Mohammed et al., 2020).
When cells cannot overcome external stress conditions, the
UPR disrupts intracellular homeostasis and promotes apoptosis
through CHOP/growth arrest, DNA damage-inducible gene 153
(GADD153), caspase-12, and JNK (Figure 2; Xin et al., 2014; Hetz
et al., 2015; Hetz and Papa, 2018).

CHOP Signaling
CAAT/enhancer-binding protein (C/EBP) homologous protein,
also known as GADD153, is a member of the C/EBP transcription
factor family, which some studies have proven to be an important
executor of ERS-induced apoptosis (Huang et al., 2017; Hu H.
et al., 2018).

Studies have shown that CHOP is involved in apoptosis in
the nervous system (Wang et al., 2013; Xin et al., 2014). The

process through which CHOP causes apoptosis is described
as follows. After GRP78 dissociates from PERK, ATF6, and
IRE1, it activates CHOP and the proapoptotic signaling pathway.
All three pathways of the UPR can induce CHOP activation.
After ERS, ATF4, cleaved ATF6α, and XBP1 undergo nuclear
translocation, resulting in the rapid and significant upregulation
of CHOP expression (Yang et al., 2017), phosphorylated eIF2α

can promote the expression of the transcription factor ATF4.
Under stress conditions, the ATF4 signaling pathway can
regulate redox reactions, amino acid metabolism, autophagy,
and apoptosis. During irreversible cell stress, ATF4 can also
activate the expression of the downstream protein CHOP and
initiate cell apoptosis. Studies have shown that canopy FGF
signaling regulator 2 (CNPY2) is involved in the regulation of
ERS (Hong et al., 2017). During ERS, the binding partner of
CNPY2 changes from GRP78 to PERK, resulting in activation
of the PERK-CHOP pathway and promotion of apoptosis (Urra
and Hetz, 2017). Inhibition of the CNPY2 signaling pathway
can block neuronal apoptosis induced by CIRI, leading to
neuroprotection (Zhao et al., 2021). In addition, a study showed
that the transcription of CHOP is regulated by ATF6 (Yoshida
et al., 2000). Although moderate ERS helps promote the proper
folding and modification of problem proteins, excessive or
prolonged ERS may lead to activation of CHOP and caspase-
3 signaling and promote apoptosis (Addinsall et al., 2018).
Studies have shown that CHOP can increase the expression
of the proapoptotic protein Bim and inhibit the expression
of the antiapoptotic protein Bcl-2 to play a proapoptotic role
(McCullough et al., 2001; Puthalakath et al., 2007; Logue et al.,
2013). In a study on CIRI, Tajiri et al. (2004) found that
the number of apoptotic neurons is significantly reduced in
CHOP knockout mice and that CHOP is involved in the
regulation of apoptosis and the expression of antiapoptotic Bcl-
2 protein family members. Furthermore, CHOP can induce
the expression of death receptor 5 (DR5), which makes cells
more sensitive to ER-induced apoptosis, ultimately promoting
apoptosis (Yamaguchi and Wang, 2004). Furthermore, after
cerebral ischemia, Bax, BAD, and Bak can translocate from the
cytoplasm to the outer mitochondrial membrane, resulting in
the release of Cyt-c and activation of Caspase-3, resulting in
apoptosis (Broughton et al., 2009). Another target gene of CHOP
is GADD34. Induction of GADD34 expression can inhibit the
downstream PERK signaling pathway. In addition, GADD34 is
essential for regulation of protein synthesis during ERS (Walter
and Ron, 2011) and can regulate the phosphorylation of eIF2α

(Marciniak et al., 2004).
The expression of CHOP during CIRI may depend on

the state of the cell and the intensity of ischemia (Osada
et al., 2010). CHOP mainly promotes apoptosis during the
early stage of reperfusion (Tajiri et al., 2004). A study showed
that CHOP protein expression is increased 3 h after cerebral
ischemia/reperfusion, peaks at 24 h, and begins to decrease at
48 h, which is consistent with the timeline of neuronal apoptosis.
Furthermore, α-difluoromethylornithine (DFMO) treatment can
inhibit ERS by inhibiting the expression of CHOP and exert a
neuroprotective effect after ischemia/reperfusion (Ding and Ba,
2015). These results prove that drugs that regulate the expression
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FIGURE 2 | Endoplasmic reticulum stress is a harmful process that induces apoptosis mediated by CAAT/enhancer-binding protein (C/EBP) homologous protein
(CHOP), caspase-12, and JNK. Glucose-regulated protein 78 (GRP78) dissociates from protein kinase R-like endoplasmic reticulum kinase (PERK), ATF6, and IRE1
and ultimately initiates proapoptotic signaling pathways by activating CHOP. All three pathways of the UPR can induce CHOP activation. Phosphorylated eukaryotic
initiation factor 2α (IF2α) can promote ATF4 expression and then activate the expression of the downstream protein CHOP and induce cell apoptosis. Furthermore,
the translation of CHOP is regulated by ATF6. CHOP can increase the expression of Bim, death receptor 5 (DR5), Bax, and Bak and inhibit the expression of Bcl-2 to
play a proapoptotic role. The IRE1 pathway and caspase-7 pathway can cause activation of caspase-12. Activated caspase-12 promotes the activation of
caspase-3/9 and eventually leads to apoptosis. TRAF2 recruits and activates ASK1, which subsequently phosphorylates and activates JNK.

of CHOP can affect the prognosis of CIRI and that CHOP is a
potential target for the treatment of CIRI.

Caspase-12 Signaling
Caspase-12 is a member of the IL-1β-converting enzyme (ICE)
caspase subfamily. It is an important regulator of apoptosis and
inflammation (García de la Cadena and Massieu, 2016). Caspase-
12 usually negatively regulates the inflammatory response. It
can inhibit the activation of caspase-1 in the inflammasome
and regulate the expression of IL-1β and IL-18. Caspase-12
mRNA can be found in almost all tissues in mice. Under normal
physiological conditions, TRAF2 forms a stable complex with
procaspase-12. However, under stresses conditions, caspase-12
dissociates from TRAF2 (Yoneda et al., 2001).

It has been found that after alleviation of ischemia in tissues or
cells, the levels of CHOP, Bax, activated caspase-12, and caspase-
3 increase significantly, while the expression of Bcl-2 decreases

(Guo et al., 2021). To date, three main pathways that can activate
caspase-12 have been identified: the IRE1 pathway, the m-calpain
pathway, and the caspase-7 pathway. IRE1α can trigger caspase-
12 activation, while inactive pro-caspase-12 dissociates from the
ER membrane and is then cleaved to trigger apoptosis (Sano
and Reed, 2013; Yao et al., 2018). On the other hand, caspase-
12 can be cleaved by other proteases, such as calpain and
caspase-7 (Martinez et al., 2010; de la Cadena et al., 2014). In
addition, in human neuroblastoma SK-N-SH cells incubated with
thapsigargin (Tg) or Aβ, calpain inhibitors block the cleavage
of caspase-12, indicating that calpain can reduce the expression
level of caspase-12 (Matsuzaki et al., 2010). After ERS, caspase-
7 translocates to the surface of the ER, forms a complex with
caspase-12 and GRP78 on the surface of the ER, and mediates
the cleavage of caspase-12 (Rao et al., 2001). Further studies have
shown that activated caspase-12 is released into the cytoplasm
and induces the activation of caspase-3/9 (Morishima et al., 2002;
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Datta et al., 2018; Rong et al., 2020). Studies have also shown that
cells lacking caspase-12 are resistant to apoptosis elicited by ERS
inducers such as tunicamycin (Tm), Tg, and brefeldin A (BFA)
(Nakagawa et al., 2000). Shibata et al. reported that caspase-
12 is cleaved from 5 to 23 h after reperfusion following 1 h of
ischemia in transient middle cerebral artery occlusion (tMCAO)
model mice (Shibata et al., 2003). It has also been shown that
the expression of PERK and caspase-12 in hippocampal neurons
increases rapidly under glucose deprivation. This suggests that
glucose deprivation alone can lead to caspase-12-dependent
neuronal apoptosis (de la Cadena et al., 2014). Some researchers
have suggested that caspase-12 can promote the apoptosis
of neuronal cells, mainly during continuous aggravation of
reperfusion (Zhu et al., 2012). Selenoprotein K (SELENOK) gene
knockout can significantly induce ERS and lead to neuronal
apoptosis (Jia S. Z. et al., 2021). However, due to the low
proteolytic activity of SELENOK and the lack of related studies,
the role of SELENOK in ischemia-induced apoptosis is still
controversial (García de la Cadena and Massieu, 2016).

c-Jun N-Terminal Kinase Signaling
c-Jun N-terminal kinase plays an important role in the stress
response, is involved in neuronal oxidative stress injury, and
can mediate neuronal apoptosis (Ji et al., 2017). Like the
CHOP and caspase-12 pathways, the JNK signaling pathway,
which is activated during ERS, is considered an apoptosis-
promoting pathway.

Phosphorylation of IRE1 in the cytoplasm stimulates the
activation of TRAF2, which in turn phosphorylates and activates
ASK1 and ultimately activates JNK (Cao and Kaufman, 2012).
In addition, nervous system inflammation, ischemia, oxidative
stress, and other stimuli can activate the expression of JNK.
JNK regulates apoptosis by phosphorylating Stat3, p53, and
Bcl-2 (Chen et al., 2003). JNK promotes Cyt c release and
regulates caspase activation. Activation of the JNK signaling
pathway during CIRI can lead to apoptosis of neuronal cells.
It has been found that signals generated by the cytoplasmic
kinase domain of IRE1 can regulate the JNK signaling pathway
and may affect the regulation of apoptosis (Chakrabarti et al.,
2011). Activated JNK can promote the expression of caspase-
3 and other apoptosis-related genes and further initiate death
receptor or mitochondrial pathways to induce apoptosis (Zhao
et al., 2015). One study found that overexpression of aldehyde
dehydrogenase 2 (ALDH2) can regulate JNK and caspase-3
activation and transcription in a model of cerebral ischemia,
resulting in a significant reduction in mitochondrial-related
apoptosis. These results suggest that ALDH2 may affect JNK-
mediated mitochondrial apoptosis in ischemic stroke (Xia et al.,
2020). It has been found that ischemic brain injury is often
accompanied by increased apoptosis of nerve cells and that this
cell apoptosis is obviously related to continuous activation of
the IRE1α/TRAF2, JNK1/2, and p38 MAPK signaling pathways
(Chen et al., 2015).

Drugs and compounds that regulate the JNK pathway, which
reduce apoptosis and exerts neuroprotective effects, have been
explored in several studies. In the early stage of CIRI, JNK
inhibitors can reduce ERS and apoptosis and alleviate CIRI

(Zhu et al., 2012). SP600125 is an effective JNK inhibitor
that can ameliorate brain injury after CIRI (Khan et al.,
2020). Traditional Chinese medicine plays a unique role in the
treatment of cerebral ischemia injury, but the components of
traditional Chinese medicine compounds are complex. Thus,
some studies have focused on the effects of traditional Chinese
medicine extracts. A recent study showed that senkyunolide I
(SEI), an active constituent of the traditional Chinese medicine
Ligusticum chuanxiong Hort. exerts a neuroprotective effect
against glutamate-induced cell death. In addition, SEI can
significantly inhibit the JNK/caspase-3 signaling pathway (Wang
et al., 2021). JLX001 is a novel compound with a structure
similar to that of cyclovirobuxine D (CVB-D). Some studies
have proven that JLX001 exerts a neuroprotective effect against
focal cerebral ischemic injury. Some researchers have studied the
protective effects of JLX001 against CIRI and its antiapoptotic
effects. The results showed that JLX001 can reduce neuronal
apoptosis by inhibiting the JNK signaling pathway, thus exerting
a protective effect against ischemia/reperfusion injury (Zhou
et al., 2019). Another study showed that butylphthalide exerts
an antiapoptotic effect after cerebral ischemic injury and that its
effect is related to the regulation of the JNK/p38 MAPK signaling
pathway (Bu et al., 2021).

OXIDATIVE STRESS AND CEREBRAL
ISCHEMIA/REPERFUSION INJURY

Oxidative stress is characterized by an imbalance between
oxidation and antioxidation. Under physiological conditions,
ROS and RNS are involved in regulating various redox processes
in cells and maintaining homeostasis of the intracellular
environment. An increase in free radical levels is the main
cause of oxidative stress (Valko et al., 2007). Some exogenous
agents can stimulate the production of intracellular free radicals,
such as ROS. When the level of ROS exceeds the antioxidant
capacity of the cell, oxidative stress impairs intracellular protein
synthesis and ER homeostasis and affects the survival of
cells (Zeeshan et al., 2016). Excess Ca2+ is a source of free
radicals in cells. An increase in the Ca2+ concentration in
neuronal cells leads to activation of neuronal nitric oxide
synthase (nNOS), which causes an oxidative stress response,
cell homeostasis disruption, or cell injury. Another source of
oxygen free radicals is mitochondria (Kalogeris et al., 2014). After
cerebral ischemia/reperfusion, activated microglia can promote
the production of ROS (Zrzavy et al., 2018). Neurons have high
metabolic activity, consume a large amount of oxygen, express
relatively low levels of endogenous antioxidant enzymes (such as
catalase), and are particularly sensitive to oxidative stress. Thus,
oxidative stress can easily cause neuronal cell damage.

Although the pathophysiological mechanism of ischemic
stroke is complex, oxidative stress may play a key role in
injury caused by ischemic stroke (Manzanero et al., 2013).
Moreover, an increasing number of researchers are paying
attention to the mechanism by which oxidative stress leads to
brain damage after CIRI (Lorenzano et al., 2018). As described
earlier, when the levels of ROS and RNS exceed the capacity of

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 864426

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-864426 April 28, 2022 Time: 14:26 # 10

Wang et al. ER Stress in CIRI

the intracellular antioxidant system, oxidative stress and even
cell damage occur. At low levels, ROS can act as signaling
molecules in a variety of cellular processes (Scherz-Shouval
and Elazar, 2007; Weidinger and Kozlov, 2015). ROS play a
key role in the physiological regulation of metabolism and cell
survival (Vicente-Gutierrez et al., 2019). However, when the
level of ROS exceeds the capacity of the antioxidant and repair
systems, ROS can oxidize various intracellular molecules or
components, including lipids, DNA, proteins, and mitochondria,
causing cell damage. Excessive production of ROS is considered
an important mechanism underlying neuronal injury in the
brain and impairment of nervous system function during CIRI
(Ding et al., 2014). Excessive production of ROS affects the
homeostasis of the intracellular environment, damages the
normal structure of cells, and affects cell function, ultimately
leading to cell necrosis and apoptosis (Cobley et al., 2018).
These findings provide a direction for the development of
treatments for ischemic stroke. Particularly, some researchers
consider redox homeostasis maintenance a method for ischemic
stroke treatment.

During reperfusion, the recovery of cerebral blood flow
increases the amount of oxygen and nutrients supplied to brain
tissue, which is very important for improving cell survival.
However, this oxygen may also be used by pro-oxidant enzymes
and mitochondria to produce excessive ROS in neuronal tissue,
thus contributing to new and exacerbated tissue damage (Chen
et al., 2011). This further proves that oxidative stress plays
an important role in cerebral ischemic injury. Other studies
have shown that oxidative stress can induce the release of
Cyt c, leading to mitochondrial dysfunction, alterations in cell
energy sources, and, ultimately, apoptosis (Chen et al., 2011).
Regarding the specific mechanism, it has been found that cerebral
ischemia leads to depolarization of the mitochondrial membrane
potential (19m), a reduction in ATP production, extracellular
calcium overload, and the release of Cyt c, eventually leading
to neuronal death (Liu et al., 2018b; Salehpour et al., 2019).
During cerebral ischemia/reperfusion, a large amount of ROS is
produced in mitochondria, and these ROS are transported to the
outer mitochondrial membrane by Bcl-2 and the proapoptotic
protein Bax. These then polymerize to form a membrane channel,
which promotes the release of Cyt c from mitochondria into
the cytoplasm. Cyt c released into the cytoplasm binds Apaf-
1, combines with caspase-9 to form a complex, and finally
activates caspase-3. Activated caspase-3 can cleave many nuclear
DNA repair enzymes, preventing the repair of nuclear DNA
damage during cerebral ischemia and causing apoptosis. CIRI
causes mitochondrial edema and fragmentation, further inhibits
the synthesis of ATP, and increases the production of ROS,
directly leading to necrotic cell death. It has been found
that at physiological concentrations, ROS coordinate with the
antioxidant system in vivo and maintain cell function and the
redox state. However, at high concentrations, ROS can inhibit the
body’s antioxidant defense system (Dasuri et al., 2013). Therefore,
after a large amount of ROS passes through the ER membrane,
which contains a large amount of lipids, ER function may
be further impaired. In addition, oxidative stress can promote
the formation of abnormal sulfur bonds, cause the production

of a large number of abnormal intermediates, and inhibit the
degradation of misfolded proteins.

Oxidative stress and inflammation interact during cerebral
ischemia. Adaptive protection of the body during cerebral
ischemia stimulates aseptic inflammation in the ischemic
area. However, during reperfusion, ROS and blood-derived
anti-inflammatory factors enter the ischemic tissue and the
surrounding area, aggravating the inflammatory reaction.
Furthermore, studies have shown that the UPR can trigger
inflammation through its interaction with NF-κB. In
turn, inflammation aggravates dysfunction of the internal
environment, which can further aggravate ERS (Chaudhari et al.,
2014). If this inflammatory response is not alleviated, various
factors can trigger the apoptosis pathway mediated by the ER and
mitochondria; that is, they can activate caspase-1 and caspase-9,
further activate caspase-3 and deoxyribonucleases, induce
DNA breaks, activate caspase-12 on the ER, and ultimately
mediate apoptosis (Raturi and Simmen, 2013; Ye et al., 2013).
Excess ROS may also damage endothelial cells (ECs) and
degrade tight junction (TJ) proteins, greatly increasing the
permeability of the blood–brain barrier (BBB). As a result,
exogenous macromolecules can easily cross the BBB and enter
brain tissue, further aggravating brain tissue injury and affecting
neuronal function (Zhang et al., 2017). Ischemia/reperfusion
facilitates the inflammatory response mediated by oxidative
stress in ECs and promotes the recruitment and infiltration
of peripheral immune cells into the ischemic area. The
accumulation of immune cells and proinflammatory cytokines
further promotes BBB disruption and aggravates brain injury
(Jin et al., 2019).

Increasing evidence indicates that strategies that eliminate
excess free radicals are beneficial in some diseases. Because
oxidative stress is the key factor in BBB disruption and
neuroinflammation, reducing the production of ROS in
cells is a potential strategy for treating cerebral ischemia.
Studies have found that some drugs, such as hesperidin,
apigenin, and diosmin, can reduce the production of ROS,
alleviate brain edema, decrease leukocyte aggregation in the
ischemic area, and exert a protective effect against reperfusion
injury (Mastantuono et al., 2015). Peroxiredoxin 4 (Prx4),
a member of the antioxidant enzyme family (Prx1–6),
is an efficient H2O2 scavenger. Within the ER, Prx4 can
effectively eliminate peroxides (Zhu et al., 2014). Antioxidants
can inhibit the production of intracellular ROS, attenuate
damage to the BBB, and ameliorate brain injury (Zhang
et al., 2017). Therefore, Prx4 may protect neuron function
and alleviate CIRI by protecting EC function, reducing
BBB damage, and regulating the inflammatory response
(Yang et al., 2021). Mitochondria are the main organelles
involved in regulation of cellular ROS production (Kausar
et al., 2018). In line with this, studies have shown that
natural and synthetic polyphenols increase the expression
of antioxidant enzymes and cell protective proteins, reduce
oxidative stress, inhibit the cellular inflammatory response, and
protect cell function (Duong et al., 2014). In addition, these
compounds can enhance mitochondrial function and biogenesis
(Chen et al., 2019).
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Endoplasmic reticulum stress and oxidative stress interact
closely. An increase in the amount of unfolded proteins in the
lumen of the ER can lead to the release of a large amount of
calcium from the ER, and entry of calcium into mitochondria
can impair the function of mitochondria, lead to the production
of excessive ROS, and promote oxidative stress (Zhang et al.,
2016). Furthermore, oxidative stress is an important cause of ERS
(Nakka et al., 2016). When cells undergo oxidative stress, the
redox balance of the ER is disruption, leading to impairment of
ER function and ERS. Therefore, ERS and oxidative stress are
closely related and should not be studied in isolation. We look
forward to new research on their interaction.

CROSS-TALK BETWEEN ENDOPLASMIC
RETICULUM STRESS AND
MITOCHONDRIA

The mitochondria generates ATP, contributes to Ca2+

homeostasis, and regulation of ROS production. Mitochondrial
dysfunction can impair cell energy production and cause
oxidative stress, cellular injury, or apoptosis. Furthermore,
mitochondrial dysfunction is an important factor in CIRI. In
ischemic stroke, local cerebral blood flow is blocked, the supply
of nutrients and oxygen is reduced, and the production of ATP
is impaired, resulting in cell death. Mitochondrial dysfunction
impairs energy generation, increases ROS production, and
stimulates Cyt c release into the cytosol (Giorgi et al., 2018).
Cells respond to environmental changes through autophagy.
As a defense mechanism, autophagy can remove damaged
organelles and metabolites in cells. Mitophagy is a selective
form of macroautophagy. Its main function is to eliminate
superfluous or damaged mitochondria and maintain normal cell
function. In recent years, studies have shown that mitophagy can
alleviate CIRI and play a neuroprotective role through a variety
of mechanisms. However, the role of mitophagy in CIRI remains
controversial. Some experts believe that excessive mitophagy can
lead to cell death.

The ER is structurally and functionally coupled to
mitochondria. In the axons of rodents, approximately 5%
of the mitochondrial surface contacts the ER, forming an
interconnected network which is conducive to the direct
transport of Ca2+ from the ER to mitochondria (Wu et al.,
2017b). The endoplasmic reticulum-mitochondria encounter
structure (ERMES) forms a junction between the mitochondria
and the ER, which is involved in maintaining the morphological
structure and function of the ER and mitochondria. Four ERMS
proteins have been found in yeast, including the ER-anchored
protein Mmm1 and three mitochondrial-related proteins, i.e.,
Mdm10, Mdm12, and Mdm34. Their functions are related to
mitochondrial morphology and protein production (Stroud
et al., 2011). In addition, the ER and mitochondria are both
tubular organelles with dynamic characteristics. Thus, there
are many contact points between them, and they interact
to form regional membranes, namely, MAMs (Giacomello
et al., 2020). MAMs are rich in glycosphingolipid-enriched
microdomains (GEMs), which are structures that control Ca2+

flow between the ER and mitochondria. In addition, MAMs
can regulate lipid metabolism and the inflammatory response
(Raturi and Simmen, 2013; Marchi et al., 2014). Inositol 1,4,5-
trisphosphate receptors (IP3Rs) are the principal Ca2+ channels
that regulate Ca2+ flux in these regions (Ahumada-Castro
et al., 2021). Regarding the transfer of Ca2+, it has been found
that the voltage-dependent anion channels (VDACs) help
Ca2+ released from the ER enter mitochondria (Csordas et al.,
2018). IP3R is involved in mediating the release of Ca2+ into
mitochondria, where Ca2+ regulates the activity of several
enzymes and transporters.

There is also functional coupling between the ER and
mitochondria, and they interact and depend on each other
(Giorgi et al., 2009). ATP produced by mitochondrial oxidative
phosphorylation is the energy source for correct folding of
ER proteins. In addition, lipids produced during the folding
of ER proteins are the material basis for the stability of the
mitochondrial membrane. As the storage site for neutral lipids,
lipid droplets (LDs) play a central role in FA homeostasis.
LDs mainly contact the ER, but also contact mitochondria,
peroxisomes, and lysosomes (Valm et al., 2017; Shai et al., 2018).
Contacts between LDs and these organelles contribute to the
maintenance of energy balance and cell survival. In addition, LD
and organelles interact to form a metabolic center and regulate
the biogenesis, growth, and distribution of LDs (Hariri et al.,
2018; Ugrankar et al., 2019; Henne et al., 2020). Therefore,
abnormal protein translation at LD contacts leads to various
metabolic disorders (Herker et al., 2021).

Moreover, studies have shown that Ca2+ underlies the
functional coupling between the ER and mitochondria and
that Ca2+ transport from the ER to mitochondria plays an
important role in regulating cell bioenergy, ROS production,
autophagy, and apoptosis (Kaufman and Malhotra, 2014). In
fact, the regulation of mitochondrial function is closely related
to Ca2+ (Glancy and Balaban, 2012), and mitochondrial energy
balance is regulated by Ca2+(Bustos et al., 2017). Studies
have shown that Ca2+ levels fluctuate during the cell cycle
(Humeau et al., 2018); however, recently, Koval et al. (2019)
found that uptake of Ca2+ in mitochondria through the
mitochondrial Ca2+ uniporter (MCU) is necessary for to the
production of energy by mitochondria and the maintenance of
cell function. After cerebral ischemia, intracellular H+ levels
increase, and the pH decreases due to anaerobic metabolism.
To improve the intracellular environment, the intracellular ion
exchange system is activated, resulting in intracellular calcium
ion overload. Due to a rapid decrease in ATP content, the
function of calcium ion pumps on the ER membrane, such as
SERCA pumps, is impaired, and calcium cannot be absorbed.
However, calcium ions stored in the ER are released into the
cytoplasm, further aggravating intracellular calcium overload,
disrupting calcium homeostasis in the ER and triggering or
aggravating ERS.

We believe that ERS and mitophagy regulate each other,
and that they are involved in the regulation of intracellular
homeostasis. At present, the specific mechanisms underlying the
interaction between ERS and mitochondria in ischemic stroke
are not completely clear. Therefore, further detailed studies are
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TABLE 1 | Several cytokines/compounds exacerbate or mitigate cerebral ischemia/reperfusion injury (CIRI) by regulating endoplasmic reticulum stress (ERS).

Cytokine/compound Animal/cell model(s) Model(s) Intervention Related protein changes ERS
pathway(s)

Effect References

Taurine Adult male
Sprague–Dawley rats
and primary cortical
neurons

tMCAO and OGD/R Taurine Reduction in ERS (cleaved ATF6 and p-IRE1
levels) and decrease in apoptosis (caspase-3,
CHOP, caspase-12, and BCL-2/Bax levels)

The ATF6
and IRE1
pathways

Protective Gharibani et al.,
2013

DETC-MeSO Adult male
Sprague–Dawley rats
and primary neurons

tMCAO and OGD/R DETC-MeSO Reduction in ERS (p-PERK, p-eIF2α, ATF4,
JNK, XBP-1, GADD34, and CHOP levels) and
decrease in apoptosis (Bak, Bax, Bad,
caspase-3, and BCL-2 levels)

The PERK
pathway

Protective Mohammad-
Gharibani et al.,
2014

Apelin-13 Adult male Wistar rats
and primary cortical
neurons

tMCAO and OGD/R Apelin-13 Reduction in ERS (p-eIF2α, ATF4, CHOP and
GRP78 levels) decrease in neuronal apoptosis

The PERK
pathway

Protective Wu F. et al.,
2018

Aniline-derived compound
(Comp-AD)

Male C57BL/6J mice tMCAO Comp-AD Reduction in ERS (p-PERK and p-IRE1α levels) The PERK
and IRE1
pathways

Protective Morihara et al.,
2018

Dexmedetomidine Male Sprague–Dawley
rats and primary
cortical neurons

tMCAO and OGD/R Dexmedetomidine Reduction in ERS (GRP78 and p-PERK levels)
and decrease in apoptosis (CHOP, Caspase-11
and cleaved Caspase-3 levels)

The PERK
pathway

Protective Liu et al.,
2018a

Homer1a Primary cortical
neurons

OGD/R Homer1a overexpression Reduction in ERS (p-PERK/PERK and
p-IRE1/IRE1 levels) and alleviation of
mitochondria dysfunction

The PERK
pathway

Protective Wei et al., 2019

Vascular endothelial growth
factor (VEGF) inhibitor

Adult male BALB/C
mice and BEND3
microvascular ECs

tMCAO and OGD/R Intraperitoneal injection of
anti-VEGF 30 min before
MCAO and transfection
with siRNA-VEGF

Reduction in ERS (XBP-1 and GRP78 levels),
decrease in apoptosis (cleaved Caspase-3,
CHOP and IRE1α levels), and decrease in ROS
levels

The IRE1
pathway

Harmful Feng et al.,
2019

RTN1-C N2a cells and primary
neurons

OGD/R RTN1-C knockdown Reduction in ERS (GRP78, cleaved
caspase-12, CHOP and cleaved caspase-3
levels) and decreases in cell viability and
apoptosis

The PERK
and IRE1
pathways

Harmful Lin et al., 2019

Urolithin A Male C57BL/6 mice,
N2a cells and primary
neurons

tMCAO and OGD/R Intraperitoneal injection of
Uro-A 24 h and 1 h before
surgery

Alleviation of ERS (decreases in ATF6 and
CHOP levels) and increase in cell viability

The PERK
and ATF6
pathways

Protective Ahsan et al.,
2019

(Continued)
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TABLE 1 | (Continued)

Cytokine/compound Animal/cell model(s) Model(s) Intervention Related protein changes ERS
pathway(s)

Effect References

Icariin (ICA) Primary microglia and
primary cortical
neurons

OGD/R ICA Alleviation of ERS (decreases in p-IRE1α,
IRE1α, XBP1u, XBP1 s and Cleaved caspase-3
levels), enhancement of cell viability, and
reduction in apoptosis

The IRE1
pathway

Protective Mo et al., 2020

(–)-Clausenamide Rat primary cortical
neurons

OGD/R (–)-Clausenamide Inhibition of ERS (decreases in GRP78, eIF2α,
ATF4 and CHOP levels) and attenuation of
apoptosis (decrease in cleaved caspase-3
levels)

The PERK
pathway

Protective Wu et al., 2020

Ginsenoside Rg1 Sprague–Dawley rats
and primary cortical
neurons

tMCAO and OGD/R Intraperitoneal injection of
Rg1

Alleviation of ERS (decreases in PERK, eIF2α,
ATF4, CHOP and TRB3 levels), inhibition of
neuronal apoptosis (decreases in Bax,
caspase-3, and BCL-2 levels), and
improvement in neuronal viability

The PERK
pathway

Protective Gu et al., 2020

sc-222227 Male Wistar rats tMCAO Intracerebroventricular
injection of sc-222227

Attenuation of ERS (decreases in p-PERK/total
PERK, p-IRE1/total IRE1, and cleaved
AFT6/full-length ATF6 levels)

The PERK,
IRE1 and
ATF6
pathways

Protective Zhu et al., 2021

Berberine PC12 cells OGD/R Berberine Decrease in ERS (GRP78, CHOP, Bax and
cleaved caspase-3 levels)

The PERK
and IRE1
pathways

Protective Xie et al., 2020

Cilostazol Male Sprague–Dawley
rats and brain
microvascular
endothelial cells
(BMVECs)

tMCAO and OGD/R Cilostazol Attenuation of ERS (decreases in p-PERK,
PERK, p-IRE1-α, IRE1-α, ATF-6, Bip levels)

The PERK,
IRE1 and
ATF6
pathways

Protective Nan et al., 2019

CASP8 and FADD-like
apoptosis regulator
(CFLAR)

Male C57BL6 mice and
primary human brain
microvascular
endothelial cells
(HBMVECs)

tMCAO and OGD/R CFLAR transfection and
knockdown

Alleviation of ERS (decreases in GRP78, PERK,
ATF6 and cleaved Caspase-12 levels) and
increase in cell viability by CFLAR
overexpression and reduction in cell viability by
CFLAR silencing

The PERK
and ATF6
pathways

Protective Wang et al.,
2019
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needed to reveal the complex interaction network between them
to provide a theoretical basis for improving CIRI treatments.

ENDOPLASMIC RETICULUM STRESS
PLAYS AN IMPORTANT ROLE IN
CEREBRAL ISCHEMIA/REPERFUSION
INJURY

Endoplasmic reticulum stress is one of the mechanisms involved
in CIRI. It may also play different roles in different stages of
CIRI. The initial purpose of ERS is to maintain ER homeostasis,
but prolonged or severe ERS may be harmful (Martin-Jimenez
et al., 2017). Studies have shown that the UPR can promote
the degradation of unfolded or incorrectly folded proteins and
protect cells in the early stage of ischemia (Xin et al., 2014).
However, upon prolongation of ischemia, the UPR can promote
apoptosis. ERS and ERS-related apoptosis have been reported
to contribute to ischemia/reperfusion injury (Wu et al., 2017a).
The ER is sensitive to ischemia. Particularly, ER homeostasis
is disrupted by hypoxia-hypoglycemia beginning in the early
ischemic period, and ERS and ERS-related apoptosis are triggered
and exacerbated in the reperfusion period (Wu F. et al., 2018).
Hence, the mitochondrial pathway, the death receptor pathway,
and ERS are generally considered the three primary apoptotic
pathways (Gillies and Kuwana, 2014).

It has been demonstrated that regulation of the ERS-related
signaling pathway is protective during ischemic stroke. Likewise,
the PERK pathway may play a protective role in the early stage of
ischemic stroke. Yoshikawa et al. (2015) showed that the ATF6
pathway participates in the early stage of ischemia, promotes
the survival of neurons and glial cells, and plays a protective
role in ischemic stroke. Gharibani et al. (2013) also proved that
XBP1 might play a protective role by increasing the Bcl-2/Bax
ratio and downregulating Caspase-3 expression in vitro during
ischemia/reperfusion injury. These findings provide a theoretical
basis for the development of related drugs for the treatment of
CIRI via regulation of ERS.

Many studies have shown that the UPR can promote apoptosis
in the late stage of ischemic stroke and that CHOP, Caspase-
12, and JNK are involved in this process, with CHOP playing a
leading role (Lopez-Hernandez et al., 2015; Poone et al., 2015).
There is further evidence that the PERK pathway plays a major
role in the expression of CHOP (Mei et al., 2013; Xin et al.,
2014). A study showed that ERS promotes apoptosis through
the PERK/eIF2α/caspase-3 pathway and that atorvastatin can
reduce the protein expression of PERK, the dephosphorylation
of eIF2α, and the activity of caspase-3, thus alleviating CIRI
(Yang and Hu, 2015). In particular, excessive ERS can alter
the permeability of the BBB (Kwak et al., 2015; Qie et al.,
2017; Xu et al., 2019), making it easy for harmful substances to
enter brain tissue. A recent study showed that salvinorin A can
inhibit the ERS response, inhibit the production of ROS, reduce
human brain microvascular endothelial cell (HBMEC) apoptosis,
and increase the permeability of the BBB, ultimately alleviating
brain injury and protecting neuronal function by activating

the AMPK signaling pathway (Xin et al., 2021). Another study
showed that adenosine acts as an endogenous neuroprotector
by regulating Ca2+ homeostasis and glutamate release, reducing
excitotoxic cellular damage after cerebral ischemia/reperfusion
(Martire et al., 2019).

It has been found that inhibiting ERS can ameliorate CIRI
and protect neuronal function (Nakka et al., 2010). Furthermore,
studies have shown that hypoxia/reoxygenation (H/R) can induce
ERS, increase the expression of ATF6 and GRP78, and ultimately
lead to apoptosis. Liquiritin (LQ) treatment can reduce the
expression of ATF6 and GRP78, inhibit the ERS pathway, and
reduce apoptosis (Li et al., 2021). A study showed that the
combination of S-methyl-N,N-diethyldithiocarbamate sulfoxide
(DETC-MeSO) and taurine can reduce ERS in the ipsilateral
ischemic penumbra; inhibit the ATF6, PERK, and IRE1 pathways;
and reduce apoptosis (Gharibani et al., 2015). It has been found
that lncRNAs are closely related to human diseases. Furthermore,
some studies have shown that lncRNAs are involved in CIRI.
It was found that the expression of MALAT1 is significantly
increased during reperfusion in an OGD/R cell model. MALAT1
silencing can inhibit ERS and neuronal apoptosis and reduce
neuronal damage (Jia Y. et al., 2021). Nucleotide-binding
oligomerization domain 1 (NOD1) activates autophagy and ERS,
decreasing cell survival. This suggests that NOD1 ultimately leads
to CIRI via activation of ERS-mediated autophagy. Conversely,
downregulating the expression of NOD1 can inhibit ERS and
increase the viability of cortical neurons (Ma et al., 2020).
Hyperhomocysteinemia (HHcy) is a well-known risk factor for
stroke. The UPR is activated in a diet-induced HHcy model,
and vitamin B supplementation alleviates ERS. HHcy exacerbated
cellular injury during OGD/R. These effects can be prevented by
vitamin B cotreatment (Tripathi et al., 2016).

In recent years, there have been many studies on CIRI, and it
has been found that CIRI can be alleviated via regulation of ERS.
Some of these studies are listed (Table 1) below. In some studies,
cell survival was improved by targeting the apoptosis pathway
related to ERS. Therefore, it is necessary to study the role and
mechanism of ERS.

CONCLUDING REMARKS

After stroke, the degree of functional damage to nerve cells
depends on the degree of tissue hypoperfusion. In the ischemic
core, necrotic cells die within a few minutes. However, around
the core necrotic area, there is often an ischemic marginal
area, namely, the ischemic penumbra. Delayed cell death occurs
through apoptosis. The goal of CIRI treatment is to preserve
neurons in the ischemic penumbra and restore neuronal function
as much as possible. The pathophysiological process of CIRI
can trigger ERS, and ERS contributes to the occurrence and
development of CIRI. In the present article, we describe various
causes of ERS induced by CIRI, including calcium overload,
ROS accumulation, and the inflammatory response. These factors
not only lead to secondary brain injury but also hinder the
recovery of neurological function after treatment. The degree of
ERS determines the fate of cells. In the early stage of cerebral
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ischemia/reperfusion, ERS can relieve damage to the ER and
promote cell survival by initiating the UPR. In this paper, we
also discussed the three signal transduction pathways related to
ERS in detail. Excessive ERS leads to apoptosis, aggravates CIRI,
and promotes apoptosis through the CHOP, caspase-12, and JNK
signaling pathways. We also discussed the regulatory mechanism
of these three signaling pathways in detail.

In the future, more in-depth research is needed to elucidate the
specific mechanism underlying these phenomena. For example,
when does ERS protect against and exacerbate ischemic stroke?
Is the role of ERS different in different kinds of cells? In addition
to considering the mechanisms and treatment effects in neurons,
we should also pay attention to other cell populations, such
as microglia. Animal studies have proven that inhibiting ERS
can reduce the volume of the cerebral infarct, but how far
are ERS inhibitors from clinical application? It is important to
further determine the interaction between ERS and apoptosis and
between ERS and inflammation to identify effective biological
strategies for alleviating ERS and preventing brain injury after
stroke. A large number of studies on the potential of alleviating
CIRI using strategies targeting the apoptosis and inflammation
pathways have been carried out, but more research, drug
development, and clinical trials are needed. In addition, there
are many studies on the molecular mechanism of ERS, but
there have been few studies on the interaction between ERS,
oxidative stress, and mitochondrial dysfunction. We believe that
the interaction between these processes is worthy of in-depth
study. At present, it is believed that interventions targeting ERS,
including those that alter the expression of ligands in the ERS
pathway and their receptors, can ameliorate CIRI and protect
neuronal function. In addition, preventing the occurrence and
development of brain cell apoptosis induced by ERS, which
can protect neuronal function, may alleviate CIRI. We believe

that solving these problems will open a new chapter in the
treatment of ischemic stroke. Targeting ERS to treat CIRI is
an important research direction. There are many mechanisms
and answers that are not clear. Future research should focus on
solving these problems and translating potential treatments from
the laboratory to the clinic as soon as possible. ERS-targeted
therapeutic strategies for cerebral ischemia are exciting areas of
research as there are many unanswered questions. More careful
research is needed in the future to translate such therapies from
the laboratory to the clinic. In addition, previous studies focused
on individual mechanisms underlying cerebral ischemic injury.
We believe that these mechanisms occur simultaneously and
synergize after cerebral ischemia. Therefore, we should study
them as a whole and pay attention to their interaction.
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GLOSSARY

ER, endoplasmic reticulum; ER stress, endoplasmic reticulum stress; CIRI, cerebral ischemia-reperfusion injury; rtPA, recombinant
tissue plasminogen activator; ICH, intracranial hemorrhage; ROS, reactive oxygen species; RNS, reactive nitrogen species; RNOS,
reactive/nitrogen oxide species; UPR, unfolded protein response; EOR, ER over-load response; SREBP, sterol regulatory element
binding protein; GRP78, glucose-related protein 78; ERAD, ER-associated degradation; UPS, ubiquitin proteasome system; MAMs,
mitochondria-associated endoplasmic reticulum membranes; PM, plasma membrane; GRPs, glucose-regulated proteins; SERCA,
sarco/endoplasmic reticulum Ca2 + -ATPase; MPT, mitochondrial permeability transition; NOX, NADPH oxidase; XO, xanthine
oxidase; MAO, monoamine oxidase; Cyt c, cytochrome c; MCAO, middle cerebral artery occlusion; IL-1 β, interleukin-1 β; IL-6,
interleukin-6; TNF-α, tumor necrosis factor-α; NF-κB, nuclear factor κB; eIF2α, eukaryotic initiation factor 2α; IκB, inhibitors of
nuclear factor κB; PGRN, progranulin; NLRP3, NLR family, pyrin domain-containing 3; PERK, protein kinase RNA-like endoplasmic
reticulum kinase; IRE-1, inositol-requiring protein 1; ATF6, activating transcription factor 6; GRP78, glucose regulated protein
78; XBP1, X-box binding protein 1; NRF2, nuclear factor erythroid 2-related factor 2; GADD34, growth arrest and DNA damage
34; CHOP, CAAT/enhancer-binding protein (C/EBP) homologous protein; ATF4, activating transcription factor 4; TRB3, tribbles-
related protein 3; OGD/R, oxygen-glucose deprivation/reoxygenation; PTP1B, protein tyrosine phosphatase 1B; Keap1, Kelch-like
ECH associating protein 1; S1P, site 1 protease; S2P, site 2 protease; b ZIP, basic leucine zipper; JNK, c-Jun N-terminal kinase; ASK1,
apoptosis signal-regulating kinase-1; TRAF2, tumor necrosis factor receptor-associated factor 2; RIDD, Regulated IRE1-Dependent
Decay; DR5, death receptor 5; MPTP, mitochondrial permeability transition pore; OMM, outer mitochondrial membrane; LDs, lipid
Droplets; DETC-MeSO, S-Methyl-N, N-diethyldithiocarbamate sulfoxide; NOD1, nucleotide-binding oligomerization domain 1.
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