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Infectious diseases of different etiologies have been associated with acute and long-term
neurological consequences. The primary cause of these consequences appears to be
an inflammatory process characterized primarily by a pro-inflammatory microglial state.
Microglial cells, the local effectors’ cells of innate immunity, once faced by a stimulus, alter
their morphology, and become a primary source of inflammatory cytokines that increase
the inflammatory process of the brain. This inflammatory scenario exerts a critical role in
the pathogenesis of neurodegenerative diseases. In recent years, several studies have
shown the involvement of the microglial inflammatory response caused by infections
in the development of neurodegenerative diseases. This has been associated with a
transitory microglial state subsequent to an inflammatory response, known as microglial
priming, in which these cells are more responsive to stimuli. Thus, systemic inflammation
and infections induce a transitory state in microglia that may lead to changes in their
state and function, making priming them for subsequent immune challenges. However,
considering that microglia are long-lived cells and are repeatedly exposed to infections
during a lifetime, microglial priming may not be beneficial. In this review, we discuss the
relationship between infections and neurodegenerative diseases and how this may rely
on microglial priming.

Keywords: pro-inflammatory microglia, microglial priming, infectious diseases, neurodegenerative diseases,
aging, central nervous system inflammation, brain inflammation

INTRODUCTION

Infections of different etiologies, neurotropic or not, have been associated with acute and long-term
neurological consequences (Jurgens et al., 2012; Hosseini et al., 2018; Barbosa-Silva et al., 2021).
These consequences involve cognitive decline and behavioral disorders such as depression and
anxiety. The main cause of these sequelae is an inflammatory condition in the central nervous
system (CNS) characterized by an increase in pro-inflammatory mediators secreted by glial cells,
such as microglia and astrocytes (Dantzer et al., 2008; Wendeln et al., 2018).
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Microglia, which has long been described as a resident
immune cell in the CNS, is currently considered an essential and
versatile cell, having well-defined roles in maintaining neuronal
networks, supporting synaptic plasticity, repairing injuries, and
participating in the inflammatory process (Heneka et al., 2015).
Microglial cells express pattern recognition receptors (PRRs) that
recognize molecules known as pathogen-associated molecular
pattern molecules (PAMP) and damage-associated molecular
patterns (DAMPs). During infection, irrespective of whether the
pathogen can invade the CNS, the microglia will respond quickly
by altering its state. Once confronted with stimuli, microglia
induce and modulate a broad spectrum of molecular and cellular
responses in an attempt to eradicate the pathogen (Heneka et al.,
2014; Widmann and Heneka, 2014).

Evidence suggests that changes in microglial morphology,
functionality, and subsequently priming of microglial cells may
be involved in the development of neurodegenerative diseases
(Perry et al., 2007; Püntener et al., 2012; Barbosa-Silva et al., 2018;
Haley et al., 2019; De Sousa et al., 2021). In this review, we will
focus on microglial changes resulting from infectious diseases
inducing microglial priming and how this phenomenon could be
associated with the development of neurogenerative diseases.

MICROGLIA: FROM HOMEOSTATIC TO
PRO-INFLAMMATORY STATE

Microglia are currently defined as yolk sac-derived, long-living
cells that persist into adulthood and self-renew within the
CNS parenchyma without any contribution from bone marrow-
derived cells in the steady-state (Paolicelli et al., 2022). Microglial
cells are heterogeneous and vary according to the brain region,
displaying distinct intrinsic properties and performing distinct
physiological functions. They can vary with age, sex, and
pathology-specific (or stimulus-specific) (Davalos et al., 2005;
Hines et al., 2009; Lenz and McCarthy, 2015; De et al., 2018;
Plescher et al., 2018; Stratoulias et al., 2019; Villa et al.,
2019). Due to their myeloid origin, microglia have long been
described as CNS macrophages. However, other populations
of CNS macrophages can be found, such as perivascular
macrophages, meningeal macrophages, circumventricular organ
macrophages, and choroid plexus macrophages (Kierdorf et al.,
2019). Although microglia and macrophages share common
characteristics, such as a strong and variable capacity to respond
to inflammatory conditions, they differ in ontogeny, number,
function, and mainly in location (Kierdorf et al., 2019).

Microglia are anything but static, as they are extremely
sensitive to changes in their environment (Paolicelli et al.,
2022). A broader spectrum of different microglia states is
associated with different stimuli and roles in homeostasis and
disease (Streit, 2002; Herz et al., 2017; Tay et al., 2017; Muzio
et al., 2021). Under homeostatic conditions, microglia present
a homeostatic state that participates in several active functions
within the CNS, including continuous motility and maintenance
of CNS functions. Their functions evolve in response to their
specific location and reciprocal interactions with nearby cells and
structures and play essential roles, such as neurotrophic factor
production, synaptic pruning, and immunological surveillance

(Nimmerjahn et al., 2005; Stratoulias et al., 2019; Paolicelli et al.,
2022). Their morphology, ultrastructure, and molecular profile
are all dynamic and plastic, resulting in a wide range of cell states
(Paolicelli et al., 2022).

Hippocampus neurogenic niches and the production of new
neurons also depend on roles played by homeostatic microglial
cells (Arnò et al., 2014). Additionally, these cells are necessary
for the elimination of amyloid β (Aβ) peptide and abnormal
tau protein, protecting the CNS from the development of
neurodegenerative diseases (Bellucci et al., 2004; Hickman et al.,
2008; Meyer-Luehmann et al., 2008; Sasaki et al., 2008; Zilka et al.,
2009; Nalivaeva et al., 2012; Ries and Sastre, 2016; Perea et al.,
2018a, 2020; Španíc et al., 2019; Jin et al., 2021; d’Errico et al.,
2022). The morphology of the homeostatic microglia presents
cellular processes with high motility, which help to detect the
brain parenchyma, and interact with other cells, such as neurons
and astrocytes, and blood vessels (Nimmerjahn et al., 2005;
Hickman et al., 2018; Stratoulias et al., 2019). Furthermore, these
states are characterized by constitutive expression of macrophage
antigens such as complement receptor 3 (CD18/CD11b) and
low expression of the major histocompatibility complex (MHC)
II (Ehlers, 2000; Frank et al., 2006; Colton and Wilcock, 2010;
Czirr et al., 2017).

Conversely, during CNS injuries, such as infectious and
neurodegenerative diseases, microglial cells present a complex
response, transitioning from a homeostatic state and assuming a
pro-inflammatory state to solve the infection/injury. Among the
states that can be assumed by microglia is an anti-inflammatory
state, whose function is to promote tissue remodeling and repair
although, in several cases, microglia assume a pro-inflammatory
state. It is not easy to accurately define these states because
the responses are highly heterogeneous and microenvironment
dependent. Even similar stimuli may elicit distinct microglia
responses, constructing a different spectrum of reactivities
(Scheffel et al., 2012; Kamigaki et al., 2016; Friedman et al.,
2018; Furube et al., 2018; Stratoulias et al., 2019). Despite
differences, it is possible to define characteristics and roles
associated with a pro-inflammatory microglial state that
characterizes inflammatory conditions. The acute inflammatory
response leads to functional and morphological changes in
microglial cells, including upregulation of some molecules,
such as CD11b, Intercellular adhesion molecule-1 (ICAM-
1), P-selectin, major histocompatibility complex II (MHC II),
CD80 (T-cell costimulatory molecules B7–1), CD86 (T-cell
costimulatory molecules B7–2), and CD40 [a member of the
tumor necrosis factor (TNF) receptor; Colton and Wilcock,
2010; Yeini et al., 2021]. Pro-inflammatory microglia cells
present a branch architecture with thicker processes and in
some cases a complete amoeboid morphology, characterized by
a round cell body and few and short processes, similar to a
macrophage (Davis et al., 1994; Fernández-Arjona et al., 2017;
Savage et al., 2019; Franco-Bocanegra et al., 2021). Furthermore,
they increase the production and release of mediators, including
reactive oxygen species (ROS), interleukin (IL)-1β, IL-6,
TNFα, nitric oxide (NO2), acute phase proteins such as
pentraxin-3 involved in microglial phagocytic activity and
indoleamine 2,3 dioxygenase (IDO) activity (Dantzer et al., 2008;
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Jeon et al., 2010; Heneka et al., 2015). This microglial state
presents higher rates of phagocytosis, especially near damaged
neurons and neurotoxic aggregates, both in vitro and in vivo
(Neher et al., 2011; Rajbhandari et al., 2014), which is
considered to have a protective role against inflammatory
microglia. However, although lipopolysaccharide (LPS) and
neurotoxic aggregates are able to promote phagocytosis (Herber
et al., 2004), chronic stimulation of these cells decreases their
phagocytic capacity, causing a reduction in aggregate clearance,
which may contribute to improving neurodegenerative processes
(Mawuenyega et al., 2010; Krabbe et al., 2013; Hong et al.,
2016). Furthermore, pro-inflammatory microglia are described
as highly pro-oxidant (García-revilla et al., 2019), and could be
considered as a neurotoxic phenomenon.

Microglia orchestrate a ‘‘defense and repair’’ mechanism once
faced with a challenge. This inflammatory response per se is not
an adverse process but is necessary to restore tissue homeostasis.
Inflammatory processes work under tight control to ensure that
microglia will be regulated toward a pro-resolutive state once
their task has been completed. Considered a double-edged sword,
this acute inflammatory response is a necessary mechanism
against pathogens and damaged cells. However, if this response
is prolonged, it may exacerbate neurodegeneration by placing
pro-inflammatory microglial cells as relevant players acting as
a hallmark of neurodegenerative diseases including Alzheimer’s
disease, Parkinson’s disease, and amyotrophic lateral sclerosis
(Shabab et al., 2017; Hickman et al., 2018).

MICROGLIAL PRIMING

The concept of trained immunity, described mainly in peripheral
innate immune cells, may explain microglial priming. It refers
to the ability of these cells to develop and display memory
for inflammatory and infectious challenges (Chapoval et al.,
1998; Schroder et al., 2006; Perry and Holmes, 2014). Microglial
priming is a long-lasting memory change of microglia, which
occurs mainly after exposure of cells to inflammatory stimuli,
such as LPS, inflammatory mediators, misfolded proteins, and
neuronal fragments (Perry and Holmes, 2014; Haley et al.,
2019). Primed microglia are more sensitive to potentially milder
stimuli, where a second stimulus/hit leads to an exacerbated
response compared to the first stimulus/hit. Basically, priming
results in increased immune reactivity to secondary insult
and also makes microglia more resistant to negative/regulatory
feedback (Perry and Teeling, 2013; Perry and Holmes, 2014).
Exaggerated inflammatory responses caused by microglia may
impair homeostatic functions and lead to CNS damage, including
impaired synaptic plasticity and neurodegeneration (Boje and
Arora, 1992; Mizuno, 2015; Haruwaka et al., 2019; Therajaran
et al., 2020; Vainchtein and Molofsky, 2020).

The idea of macrophage priming is well established in vitro.
Treating these cells with interferon (IFN)-γ prior to a challenge
with a Toll-like receptor (TLR) agonist enhances the response to
the TLR agonist, probably due to activation of phosphoinositide
3-kinase (PI3K) and/or nuclear factor-kB (NF-kB; Schroder
et al., 2006). In vivo studies show that preexposure to colony
stimulating factor (CSF)-1 (intravenously and intraperitoneally)

increases serum levels of IL-6 and TNF in response to a
subsequent LPS challenge. In addition, isolated cells, such as
peripheral blood leukocytes, spleen cells, and resident peritoneal
cells from CSF-1-primed mice injected with LPS, release
IL-6 constitutively (Chapoval et al., 1998). This process is
accompanied by the long-term reprogramming of intracellular
signaling and metabolic pathways and is fixed epigenetically
(Lajqi et al., 2019).

The first evidence of microglial priming supported the idea
that patients with chronic neurodegenerative diseases, such
as Alzheimer’s disease, when affected by peripheral infections
and systemic inflammation had greater consequences compared
to healthy elderly individuals, such as greater chances of
hospitalization, exacerbation of symptoms, and progression of
neurodegeneration (Perry et al., 2007). Tahira et al. (2021)
recently showed that Alzheimer’s disease is a risk factor
for the severe form of COVID-19, also increasing the risk
of mortality from coronavirus infection, regardless of age.
Furthermore, MHC II is considered a marker of microglial
priming in conditions such as aging and neurodegenerative
diseases and is upregulated in the postmortem brain of
patients with COVID-19 (Perry and Holmes, 2014; Matschke
et al., 2020). Evidence for microglial priming has been shown
in several models of neurodegenerative disorders, such as
in transgenic mice with Alzheimer’s disease, in which LPS
injection presented an increase in the inflammatory response
(Sly et al., 2001). Furthermore, in a microglial priming model
using a single intraperitoneal dose of methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), and 4 days after the animals
received a subtoxic dose of LPS, the animals showed an
amplified inflammatory response, nigrostriatal dopaminergic
degeneration, and an increase in protein expression levels of
the components of the NLRP3 inflammasome and of NF-κB
activity compared to animals that received only MPTP or LPS
(Leem et al., 2021). Moreover, IL-1β injection intensifies cell
degeneration in the substantia nigra and motor symptoms in
a Parkinson’s disease model (Godoy et al., 2008). Thus, the
additional stimulus in a microglial population due to a peripheral
infection can aggravate inflammation and consequently cause
greater harm to the patient. These findings demonstrate that
microglial priming can occur in a pre-existing inflammation of
the CNS, caused by a neurodegenerative disease, with a posterior
peripheral infection. However, it is possible to suggest that this
process is multimodal and therefore may be associated with the
infectious process bilaterally.

COULD PRIOR INFECTIONS INFLUENCE
THE DEVELOPMENT OF
NEURODEGENERATIVE DISEASES?

After the 1918 influenza pandemic, epidemiological studies
associated the outbreak of Encephalitis lethargica and
Post-encephalitic Parkinsonism with the H1N1 pandemic
(Ravenholt and Foege, 1982). A direct association between
influenza and encephalitis lethargica was first reported in 1974,
when viral antigens were found, using immunofluorescent
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staining, in the brain specimens of patients who had been
diagnosed with encephalitis lethargica and Parkinsonism
(Gamboa et al., 1974). However, these correlations were never
proven and remain controversial (Mattock et al., 1988; Casals
et al., 1998; Oxford, 2000; Henry et al., 2010; Vilensky et al.,
2010; De Chiara et al., 2012; Dourmashkin et al., 2012).

Still, viral infections might provide the first stimulus that
may lead to the subsequent development of neurodegenerative
diseases (Estupinan et al., 2013). H1N1-infected mice given
MPTP to induce Parkinson’s disease, present a decrease in
the number of dopaminergic neurons in the substantia nigra
pars compacta (SNpc) when compared to mice that were not
previously infected with H1N1. Furthermore, animals previously
vaccinated against H1N1 or treated with the antiviral drug
oseltamivir carboxylate before MPTP exposure had similar
numbers of dopaminergic neurons in the SNpc as control
animals. These findings suggested that H1N1 infection alone was
not able to cause Parkinsonism; however, it was responsible for
priming the immune response in the brain, which could lead to
Parkinson’s disease when another stimulus was added (Sadasivan
et al., 2017). Thus, influenza led to the activation of the innate
immune system in the brain, resulting in a later exacerbated
response to the effects of a known Parkinsonian agent, MPTP.

Influenza infection and neurodegenerative disorders were
also reported in studies by Ogata et al. (1997) where rodents
exposed to the Japanese encephalitis virus presented neuronal
loss, gliosis, and a decrease in the number of dopaminergic
TH-positive neurons in the substantia nigra, all hallmarks
of Parkinson’s disease. Infections with the neurotropic strain
H5N1 in mice lead to neurodegeneration in the substantia
nigra, especially in dopaminergic neurons (Jang et al., 2012),
and even non-neurotropic strains, such as H1N1, also lead
to brain inflammation and microgliosis in the hippocampus
(Jurgens et al., 2012; Hosseini et al., 2018), despite the absence
of virus in the brain (Sadasivan et al., 2015), indicating that
both neurotropic and non-neurotropic influenza can lead to
neurodegeneration.

The connection between viral infections and
neurodegenerative disease is not limited to influenza; other viral
infections may also result in neurodegeneration. Human herpes
virus-6 (HHV-6) expression (mRNA and protein), was detected
in a periventricular multiple sclerosis lesion, specifically in
oligodendrocytes (Leibovitch and Jacobson, 2014). Furthermore,
HHV-6 is associated with the development of Alzheimer’s
disease. Readhead et al. (2018) using a multiscale analysis
in postmortem brain tissue from patients with Alzheimer’s
disease, observed a relationship between the viral abundance of
HHV-6 and 7 and genes related to amyloid precursor protein,
an important feature of Alzheimer’s disease. In addition, recent
studies have shown the relationship between Epstein-Barr
infection (EBV) and multiple sclerosis (Bjornevik et al., 2022).

Viral infections are associated with neurodegeneration
hallmarks. Parasite infections have also been associated with
the development of neurodegenerative disorders. Mice infected
with Toxoplasma gondii associated with the administration of
subdoses of Aβ peptide presented significant impairments in
learning and memory functions and increased IL-1β, TNF-

α, IFN-γ, and inducible nitric oxide synthase (iNOS) mRNA
levels, similar to the Alzheimer’s disease group, which received
high doses of Aβ but were not infected (Mahmoudvand et al.,
2016). In recent decades, many studies have investigated the
mechanisms related to long-term cognitive and behavioral
sequelae resulting from malaria infection. Microglial changes are
observed in experimental models of malaria and in postmortem
brains of patients with malaria (Janota and Doshi, 1979;
Schluesener et al., 1998; Talavera-López et al., 2018). Microglial
human cells phagocytize extracellular vesicles derived from red
blood cells infected with Plasmodium falciparum, the main
parasite that causes cerebral malaria in humans, resulting
in morphological changes including cytoplasmic granulations,
formation of numerous pseudopods, process retraction and
cell body swelling (Mbagwu et al., 2020). In an experimental
model of cerebral malaria, magnetic resonance imaging revealed
the time course of rupture of the BBB, an event essential
for the development of this cerebral malaria, beginning in
the olfactory bulb and spreading along the rostral migratory
flow accompanied by a specific route of microglial changes
related to the pro-inflammatory state (Hoffmann et al., 2016).
In experimental malaria models, cognitive dysfunction has
been correlated with the pro-inflammatory microglial state
(Desruisseaux et al., 2008; Guha et al., 2014; Lacerda-Queiroz
et al., 2015; Souza et al., 2018; Andoh and Gyan, 2021). Microglial
transcriptomic analysis revealed that in the acute phase of
experimental malaria infection, where the brain is already
severely affected, there is increased expression of genes related
to immune responses (Capuccini et al., 2016; Talavera-López
et al., 2018). BV-2 cells, a microglial cell line, stimulated with
hemozoin, a molecule resulting from plasmodium metabolism,
induced an increase in the production of TNFα, IL-6, IL-1β,
and NO (Velagapudi et al., 2019). Furthermore, minocycline
treatment, a drug that has been described to regulate microglial
functions, including inhibition of the pro-inflammatory state and
restoring phagocytic functions, prevented the development of
cerebral malaria and conferred neuroprotection in infected mice
(Markovic et al., 2011; Kobayashi et al., 2013; Hu et al., 2014;
Apoorv and Babu, 2017; Bassett et al., 2021; Paolicelli et al., 2022).
Taking into account the concept of microglial priming, more
studies are needed to evaluate the involvement of microglia in
the pathogenesis and development of neurodegenerative diseases
in malaria survivor patients, as this disease leaves long-term
neurological sequelae.

Bacterial infections can also promote neural damage and
changes in the microglial response. Mice previously challenged
with Salmonella typhimurium presented a robust inflammatory
response to low doses of injection of LPS into the brain,
but in previously uninfected mice these low doses did not
evoke or evoke a small inflammatory response (Püntener et al.,
2012). Furthermore, LPS injection promoted axonal injury in an
experimental model of multiple sclerosis, a key contributor to
the progression of disability in multiple sclerosis (Moreno et al.,
2011). The LPS challenge was performed in the reemission phase
of the disease, causing systemic inflammation that correlates
with pro-inflammatory microglia and axonal damage, suggesting
that systemic infections can contribute to the aggravation of
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neurodegenerative diseases. Porphyromonas gingivalis infection
in the transgenic mouse model of Alzheimer’s disease (APP-Tg)
increased the deposition of Aβ and the levels of inflammatory
cytokines in the brain. They also observed that microglial cell
cultures that were previously exposed to Aβ oligomers and then
exposed to Porphyromonas gingivalis endotoxin presented an
increase in TNF-α and IL-1β production (Ishida et al., 2017).
Septic mice have been reported to be more susceptible to Aβ

oligomers, and this could be due to a long-lasting trained innate
immunological memory (De Sousa et al., 2021). Microglial cells
from surviving septic mice appear to be more responsive and
are more prone to shift to a pro-inflammatory profile, when
exposed to smaller amounts of Aβ when compared to control
mice, leading to an increase in synapses phagocytosis in the
hippocampus. Pharmacological blockade of brain phagocytic
cells or microglial depletion, using minocycline and CSF-1
receptor inhibitor (PLX3397), respectively, prevented AβO-
induced cognitive dysfunction in surviving septic mice (De Sousa
et al., 2021). Furthermore, using a transgenic animal model
for Alzheimer’s disease (APP/PS1–21 transgenic mouse) that
underwent a septic event through cecal ligation and puncture
(CLP) surgery, the animals presented increased fibrillar amyloid
plaque formation in the hippocampus, in addition to the slight
changes found in the microglia (Basak et al., 2021). Together,
these results suggest that sepsis could be a potential factor in
increasing dementia and may contribute to the mechanisms
involved in exacerbated amyloid plaque deposition.

Furthermore, some evidence suggests that inflammation
resulting from an uncontrolled microglial response may precede
the development of diseases known as tauopathies. The Tau
protein is a soluble protein associated with microtubules that
is expressed primarily by neurons located in the cytoplasm
and axons (Gorath et al., 2001; Wang et al., 2013). These
proteins have been shown to be involved in the pathology
of several neurodegenerative diseases, including Alzheimer’s
disease. Aggregated and hyperphosphorylated tau proteins form
the core of neurofibrillary tangles, which are one of the
pathological hallmarks of Alzheimer’s disease. The mechanisms
involved in these pathologies are still not completely understood,
but exosomes may be an important link between tau propagation
and the pro-inflammatory microglial state (Gao et al., 2018;
Španíc et al., 2019). Reducing the number of microglial cells and
inhibiting exosome synthesis reduces the spread of tau proteins
(Asai et al., 2015); thus, serum levels of tau protein are useful
to support findings of acute neuronal damage, including acute
ischemic stroke, traumatic brain injury, intracranial hemorrhage,
epilepsy, and cardiac arrest (Bitsch et al., 2002; Palmio et al.,
2009; Hu et al., 2012; Randall et al., 2013; Mattsson et al.,
2017; Tang et al., 2019; Nakada et al., 2020). In patients with
sepsis, serum tau protein levels were significantly higher in the
group that did not survive compared to the surviving individuals;
therefore, it may be useful as a mortality predictor in patients
with severe sepsis (Zhao et al., 2019). Furthermore, rats that
received a single dose of LPS showed hippocampal deposition of
intracellular phosphorylated tau protein (Kirk et al., 2019). More
studies are needed to understand the association of tau protein
with neurodegenerative diseases; however, these findings may

help explain the higher rate of dementia observed in longitudinal
studies of septic survivors (Chou et al., 2017).

MICROGLIAL PRIMING INDUCED IN
BRAIN INFLAMMATION COULD BE A KEY
FACTOR BETWEEN PRIOR INFECTIONS
AND NEUROGENERATIVE DISEASES

Brain inflammation can occur as a result of direct injury
to the CNS, such as infection, trauma, or neurodegenerative
diseases, but also may be a consequence of systemic inflammation
caused by infections (Young, 2013) of which microglial cells
are key players. There are several routes of communication
between the periphery and the brain, but we can highlight three
major pathways. First, afferent nerves, such as vagal nerves
in adnominal infections and trigeminal nerves in orolingual
infections (Bluthé et al., 1996; Ek et al., 1998). Second,
inflammatory mediators present in the circulation communicate
directly with circumventricular organs, which do not have an
intact BBB; then, this signaling is spread by microglia into the
brain parenchyma (Quan et al., 1998). Third, pro-inflammatory
mediators or microbial products can interact directly with cells
in the brain endothelium, signaling directly through the BBB
and with perivascular macrophages (Vitkovic et al., 2000). All
these routes will allow the brain to recognize the peripheral
inflammatory state and then glial cells, mainly microglia, will
respond by releasing pro-inflammatory molecules.

Once in the brain, cytokines lead to several changes in
the states of glial cells (microglia and astrocytes), neurotoxic
mechanisms, and modulate neurotransmitter metabolism
(Heneka et al., 2015; DiSabato et al., 2016). This inflammatory
scenario plays an important role in the progression of
neurodegenerative diseases. Seminal articles in this area
described highly reactive microglia, evaluated by the expression
of the human leukocyte antigen DR isotype (HLA-DR) and
other immune cells, such as T cells, in the brains of patients
with Alzheimer’s and Parkinson’s disease (McGeer et al., 1987,
1988; Itagaki et al., 1988). These studies laid the foundation for
considering brain inflammation as a potential factor involved in
the onset and/or development of these pathologies.

Neurodegenerative diseases are not easy to diagnose due to
the heterogeneity of pathological biomarkers, most are only
identifiable by postmortem examination. But there are some
hallmarks associated with loss of neurons and synapses, gliosis,
and vascular abnormalities in specific regions of the brain,
and in inflammation (Villoslada et al., 2020). The persistent
inflammatory state found in neurodegenerative diseases is
detrimental to microglia and other glial cells, as this continuous
state increases ROS and NO production. In a vicious cycle,
inflammation eventually can lead to neurodegeneration resulting
in protein aggregation, dysfunctional cells, and neuronal death
(Arcuri et al., 2017; Marttinen et al., 2018). In Parkinson’s disease,
pro-inflammatory microglia phagocytose injured neurons and
induce the release of inflammatory mediators, including ROS,
NO, and IL-6; These mediators will contribute to astrogliosis
that exacerbates inflammation and increases the phagocytosis of
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neuronal debris mediated by microglia cells. Furthermore, the
aggregation of alpha-synuclein itself accelerates this process by
inducing IL-1β releasing via TLR signaling (Hickman et al., 2018;
Marttinen et al., 2018; Subhramanyam et al., 2019). A similar
process related to Aβ aggregation also occurs in Alzheimer’s
disease (Marttinen et al., 2018). This evidence suggests that
microglia cells contribute to the initiation and amplification of
the neurodegeneration process.

The common point between infectious diseases and
neurodegenerative disorders appears to be the inflammatory
process, which involves a microglial response. Experimental
evidence is still preliminary; however, it allows us to hypothesize
that brain inflammation caused by peripheral infections—or
repeated exposure to infections throughout life—may be/act
as an initial microglial priming event, first hit, and subsequent
neuroinflammatory stimuli, second hit, may promote an
exacerbated microglial pro-inflammatory response, causing
a series of biological events related to the development of
neurodegenerative diseases (Figure 1). Finally, infections that
occur in early life also highlight the role of microglial priming.
Infections at this period of life are described leaving long-term
sequelae, such as cognitive deficits, in adulthood (Bilbo et al.,
2005; Ratnayake et al., 2013; Li et al., 2014; Han et al., 2017;
Osborne et al., 2017; Granja et al., 2021). Experimental models
show that microglial priming alone does not lead to these deficits,
as studies emphasize the importance of a second stimulus/hit for
the development of cognitive sequelae (Bilbo et al., 2005; Bilbo,
2010; Li et al., 2014; Osborne et al., 2017). In addition, the role
of infections in early life and their role as risk factors for the
development of neurodegenerative diseases have been discussed
(Miller and O’Callaghan, 2008).

The impact of systemic inflammation on the development
of neurodegenerative diseases has been extensively explored.
LPS administration, in different experimental models, has been
described to increase the deposition of Aβ protein, cognitive
deficits, phosphorylated tau protein, and decrease the level of
dopaminergic neurons that are hallmarks of Alzheimer’s and
Parkinson’s disease, respectively (Lee et al., 2008; Kahn et al.,
2012; Kiyofuji et al., 2015; Kirk et al., 2019; Tejera et al.,
2019; Wang et al., 2020). Not only is LPS injection related
to the development of neurodegenerative diseases, systemic
delivery of TNF-α leads to disease behavior, cognitive deficit,
increase in tau expression, and IBA-1 staining in the mouse
hippocampus (Hennessy et al., 2017). Furthermore, systemic
inflammatory challenge in the prenatal phase, at the end of
gestation, with viral mimic, polyriboinosinic-polyribocytidyl acid
(PolyI:C) predisposes healthy mice to develop a pathology
similar to Alzheimer’s disease (Krstic et al., 2012). Animals
showed high levels of IL-1β, IL-1α, and IL-6 in plasma and
the brain in the early stages and during aging (3–15 months
of life). Microglial cells with altered activity were observed
by immunostaining with CD68, a marker of phagocytosis and
antigen presentation, in the CA1 region of the hippocampus
(Krstic et al., 2012). Furthermore, prenatal exposure to PolyI:C
resulted in a significant age-dependent increase in the amount of
amyloid precursor protein (APP) in the hippocampus and altered
Tau phosphorylation and significant impairment of working

memory in old-age mice, evaluated by the Y-maze test (Krstic
et al., 2012). Although a single prenatal immune challenge was
sufficient to generate a chronic inflammatory state of the CNS
in animals and increase the vulnerability of the brain to the
development of neurological diseases, the study even showed that
a second immune challenge in adulthood exacerbated this state,
including increased APP deposition, Tau protein aggregation,
and microglial profile modification (Krstic et al., 2012). These
results show that it is possible that early or repeated exposure to
inflammation is an initiating event for microglia that may lead to
long-term sequelae, including an increased predisposition to the
development of neurodegenerative diseases.

Microglial priming is directly related to the exacerbation
of the inflammatory response and, consequently, to increased
brain inflammation and subsequent damage. Mice challenged
with LPS 12 weeks after inoculation with ME7 prion, a
neurodegenerative experimental model used to study brain
inflammation (Chouhan et al., 2017), demonstrated exacerbated
neuronal death, behavioral deficits, increased IL-1β, TNF-α,
and IFN-β levels in the brain, and increased microglial IL-
1β (Cunningham et al., 2009; Murray et al., 2011). Priming
BV-2 microglial cells with IFN-γ substantially increased the
production of ROS after microglial stimulation with ATP
(Spencer et al., 2016). IFNγ-induced priming by promoting
upregulation of the NADPH oxidase NOX2 subunit and
reducing intracellular glutathione levels (Spencer et al., 2016).
Oxidative stress and subsequently mitochondrial damage are
one of the main causes of neuronal damage in several brain
disorders including Alzheimer’s and Parkinson’s disease and are
mainly caused by pro-inflammatory microglia due to excessive
ROS production mediated by NADPH oxidase (Simpson and
Oliver, 2020). Considering that infectious diseases lead to
the synthesis of several pro-inflammatory cytokines such as
IFN-γ, mitochondrial oxidative damage via ROS-induced by
pro-inflammatory cytokines could be one of the mechanisms by
which infectious diseases lead to neurodegenerative conditions
(Brown et al., 1999; Romero et al., 2010; Sturge and Yarovinsky,
2014; Kyuwa and Sugiura, 2020).

Thus, repeated infectious processes can act as a second hit
and trigger a response in the primed microglia. However, it
is important to emphasize that the aging process itself can
be considered a second hit. It was shown that early postnatal
infection of rats with LPS combined with the aging process
resulted in less successful cognitive aging in these animals
(Bilbo, 2010). Aging is a risk factor for the development of
many neurodegenerative diseases because the natural aging
process includes functional and structural changes within the
brain (Bennett et al., 1996; Reeve et al., 2014; Maniega et al.,
2015; Chen et al., 2020). Among these changes is immune
system dysfunction, which generates a low-grade chronic
pro-inflammatory condition called inflammageing (Franceschi
et al., 2018). Furthermore, aging-related microglia in the
aged brain and the pro-inflammatory microglial state show
decreased motility, metabolic and immune changes, such as
increased constitutive production of pro-inflammatory cytokines
(e.g., TNF-α, IL-1β, and IL-6; Sierra et al., 2007; Hefendehl
et al., 2014; Marschallinger et al., 2020; Schiess et al., 2020;
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FIGURE 1 | Under physiological conditions, homeostatic microglial cells participate in various homeostasis functions, production of neurotrophic factors, and
synaptic pruning. Their morphology presents ramified and dynamic cellular processes with high motility. Homeostatic microglia express low levels of CD11b and
MHCII. Infections that occur throughout life, whether caused by viruses, parasites, or bacteria, can lead to microglial morphological and functional changes towards
a proinflammatory state. The proinflammatory response leads to functional and morphological changes, including the upregulation of specific molecules and
increased production of proinflammatory mediators, including cytokines, chemokines, and reactive oxygen species. Microglial cells present a branch architecture
with thicker processes. This process can result in microglial priming, making these cells more responsive to an upcoming insult, causing an, even more, exacerbated
inflammatory response. The different states of microglia are directly related to the inflammation process, which in turn might be related to the development of
neurodegenerative diseases.

Shaerzadeh et al., 2020). RNAseq analysis of microglia from
elderly mice showed that the pathway of genes related to
phagosome maturation and NO and ROS production was
dysregulated, producing an impairment of essential microglial
functions (Marschallinger et al., 2020). Although aging is
not a disease, it can lead to nonbeneficial changes in the
physiological role of microglia and may be a microglial priming
factor. Therefore, the dysfunctional role of microglia and the
chronic inflammatory microenvironment may be associated
with neurodegeneration. Peripheral LPS injection into aged
mice enhanced cortical microglial response and increased IL-

1β and IDO mRNA levels in microglia isolated from aged mice
compared to adult mice (Wynne et al., 2009). These findings
suggest that an inflammatory condition, caused by aging, before
a second stimulus contributes to exacerbating a subsequent
response.

CX3CL1-CX3CR1 signaling is essential for microglia-neuron
communication and may play an important role in the
progression of neurodegenerative diseases. In the hippocampus
of elderly rats, CX3CL1 expression is reduced and this is
correlated with changes in microglia, including increased
expression of CD40 mRNA and MHC II and IL-1β expression
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(Lyons et al., 2009). In adult mice, microglia can restore
CX3CR1 levels 24 h after LPS challenge, whereas CX3CR1 was
still significantly reduced in the microglia of aged mice (Wynne
et al., 2010). In Alzheimer’s disease, CX3CL1 expression is
reduced in the main areas where the pathological changes
occur and its expression levels reflect the progression of the
disease (Duan et al., 2008). CX3CL1 is also decreased in
the cerebrospinal fluid of patients with Alzheimer’s disease,
and patients with mild to moderate Alzheimer’s disease have
significantly higher plasma CX3CL1 levels compared to patients
with the severe form of the disease (Kim et al., 2008; Perea
et al., 2018b). In APPPS1 mice, an Alzheimer’s disease study
model, CX3CR1 knockout showed a reduction in Aβ deposition
and fewer CD68 positive microglial cells (Lee et al., 2010).
Furthermore, CX3CR1 deficiency reduced the number of
microglia surrounding Aβ deposits in a dose-dependent manner
of with levels of CX3CR1 gene expression (Lee et al., 2010).
The impairment of CX3CL1-CX3CR1 signaling, which mainly
impacts the functional signaling of microglia, seems to be a
central point between inflammageing and the development of
neurodegenerative diseases.

CONCLUSION

The relationship between infection and neurodegenerative
diseases could be subtle and may rely on microglial priming.
Infections, even non-neurotropic ones, may lead to an
inflammatory condition in the brain mainly mediated by the
pro-inflammatory microglial state. The inflammatory response
caused by infections has been associated with microglial

priming events that may induce changes in their state and
function. Despite priming events that prepare microglial cells
for subsequent immune challenges to promote repair and
homeostasis, microglia are long-lived cells that are constantly
exposed to infections during an individual’s lifetime, and this
also may not be beneficial, as it may contribute indirectly to
neurodegenerative disorders.
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