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Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a
specific and distinctive profile of clinical features, the disease remains an
enigma because causal explanation of the pathobiological matrix is lacking.
Several potential disease mechanisms have been identified, including immune
abnormalities, inflammatory activation, mitochondrial alterations, endothelial and
muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and
central nervous systems. Yet, it remains unclear whether and how these pathways
may be related and orchestrated. Here we explore the hypothesis that a common
denominator of the pathobiological processes in ME/CFS may be central nervous
system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes,
microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference
to the current literature, the two most salient and widely accepted features of ME/CFS,
and by investigating how these might be linked to dysfunctional neuroglia. From this
review we conclude that the multifaceted pathobiology of ME/CFS may be attributable
in a unifying manner to neuroglial dysfunction. Because the two key features — post
exertional malaise and decreased cerebral blood flow — are also recognized in a subset
of patients with post-acute sequelae COVID, we suggest that our findings may also be
pertinent to this entity.

Keywords: chronic fatigue syndrome, myalgic encephalomyelitis, neuroinflammation, glia, microglia, astrocytes,
oligodendrocytes, blood brain barrier

INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-system
disorder with debilitating and mostly lifelong symptoms and an estimated (pre-pandemic)
prevalence of 0.2 to 0.4 %. Females are approximately three times as likely to be affected than males.
The disorder can develop at any age, with two peaks of incidence, one in the late teen years and
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another between 30 and 40 years of age. Most commonly,
the disorder develops in the aftermath of acute infections,
predominantly from viruses, e.g., Epstein-Barr virus, SARS
coronavirus, influenza virus, Ebola virus, enteroviruses, etc. Due
to a lack of established biomarkers, the diagnosis rests on
clinical criteria and the exclusion of other entities [for reviews
of ME/CFS, see Bested and Marshall (2015); Cortes Rivera et al.
(2019); Bateman et al. (2021)]. An as yet undefined proportion of
persons with post-acute sequelae of COVID (PASC) is predicted
to also meet the criteria of ME/CFS, which may significantly
add to the global disease burden (Komaroff and Lipkin, 2021;
Sukocheva et al., 2021; Wong and Weitzer, 2021; Morrow et al,,
2022; von Campen et al., 2022).

Given the significance of this disorder for public health
and clinical medicine, the lack of knowledge regarding
the pathobiology ME/CFS is an important shortcoming.
This review contributes to clarification and hypothesis-
generation by analyzing and interpreting literature pertaining
to the pathogenesis of ME/CFS, with a focus on the
possible role of glial cell populations. Glial dysfunction
has frequently been postulated as a key feature of ME/CSF
(Barnden et al, 2011; Nakatomi et al, 2014; Glassford,
2017; Morris et al, 2018, 2019; Staines et al, 2018; Shan
et al, 2020; Nelson T. et al., 2021; Rayhan and Baraniuk,
2021), but a concise summary and in-depth discussion
is still missing.

There are several reasons why ME/CFS poses a formidable
research challenge. Clinically, the syndrome presents with
a mélange of mostly non-specific symptoms including
unrelenting fatigue persisting over more than 6 months,
exertional intolerance, sleep disturbance, abnormal function
in the cognitive, emotional, speech and memory domains,
hypersensitivity to light and noise, psychomotor slowness and
orthostatic intolerance (Bateman et al., 2021). Obviously, some
of these symptoms are indicative of central nervous system
(CNS) dysfunction, while others rather point to dysfunctions
in peripheral organ systems. Hence, the question of whether
the pathobiological basis of ME/CFS resides in the brain
or periphery - or is a systemic process involving both -
remains unanswered.

On the pathobiological level, ME/CFS is no less complex.
studies, evidence of cerebral hypoperfusion,
cerebral hypertension, autonomic dysregulation, muscular,
metabolic, and mitochondrial dysfunction, inflammatory
stimulation, redox imbalance, immune abnormalities, small
fiber neuropathy, and endothelial dysfunction have been
reported, among other findings (Komaroff and Lipkin,
2021). Indeed, ME/CFS may be variably described as
encephalopathy, myopathy, dysautonomia, mitochondriopathy,
vasculopathy or immunopathy - posing the question
how all these “pathies” fit together and which ones are
upstream or downstream.

However, ME/CFS is not only complex and non-specific.
The disease presents with two hallmark features - one on the
clinical and one on the pathobiological level - that stand out
for their characteristic and defining attributes. Both are well
studied, unanimously accepted among researchers, and present

In various

in all ME/CFS patients (at least if diagnosed according to
the now internationally accepted Canadian Consensus Criteria)
(Carruthers et al., 2003). Together, these features may represent
leads toward a deeper understanding of ME/CFS:

Post-exertional Malaise

While ME/CFS patients have very different baseline levels of
functionality, they all have one common clinical feature: a
distinctly abnormal reaction to stressful events, termed post-
exertional malaise (PEM) (Stussman et al., 2020). Post-exertional
malaise is described as an exacerbation of ME/CES symptoms,
which, in the same patient, can be triggered both by physical,
cognitive, and mental exertion as well as orthostatic stress
and sensory overload. Each patient has an individual and
disease severity-dependent threshold for the development of
PEM. The exercise-triggered clinical exacerbation begins after
a typical delay of at least several hours post-exercise and
typically persists over several days. Critical questions to be
answered when elaborating pathobiological hypotheses thus
include: Why does exercise-induced exacerbation of ME/CFS
symptoms consistently start with a distinctive delay and persists
with a distinctive duration? Why does this appear to follow
an individually calibrated threshold dynamic? Why can it be
equally triggered by physical, mental or cognitive exertion, as
well as by sensory overload? Such an explanation also needs
to account for how mental or physical exertion can trigger
a wide variety of multilevel symptoms, including cognitive
dysfunction, motor slowing, disturbed sensory processing and
immune stimulation.

Cerebral Hypoperfusion

Many of the pathophysiological findings in ME/CFS are
contentious because they are either not well established, poorly
replicable or found only in a subset of ME/CFS patients.
A few pathophysiological findings, however, stand out because
they seem to be uniformly present. These findings include
autonomous dysfunction, metabolic abnormalities and cerebral
hypoperfusion (Komaroff, 2019). In this article, we focus on
the latter, because this feature is objectively and consistently
identified in ME/CFS patients (for details, see section “Abnormal
CBF”) (van Campen et al, 2020). In addition, cerebral
hypoperfusion has been extensively studied in relation to PEM,
which infers a potential common biological basis. To be answered
in this regard: What causes abnormal brain perfusion, and
how does this relate to the other pathophysiological features
of ME/CFS such as immune dysregulation and autonomous
dysfunction?

A wide range of different pathobiological explanations
has been put forth to explain ME/CFS. While most
hypotheses assume an immunological basis of ME/CEFS,
they differ as to how the immunological dysfunction
may translate into the clinical manifestations. Some of
these hypotheses assume a pivotal role for metabolic or
mitochondrial dysfunctions (Naviaux et al, 2016), while
others follow “vascular” hypotheses implying that endothelial
dysfunction and/or general vascular failure may cause
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inadequate perfusion of both the periphery and the brain
(Wirth and Scheibenbogen, 2020).

The Concept of “Neuroinflammation” or

Central Nervous System Inflammation

Lately, the investigation of inflammatory processes in the
CNS has received increased attention in ME/CES research
(Glassford, 2017; VanElzakker et al, 2019). The concept of
CNS inflammation (classically termed “neuroinflammation”) is
still being conceptualized in detail and commonly refers to
inflammatory processes taking place in the CNS to counteract
infection, eliminate cellular debris or generally protect the
integrity of the CNS. As an essential component of the
innate immune repertoire of the CNS, this inflammation is
typically mediated by the resident immune cells of the CNS,
microglia, in concert with astrocytes, microvascular endothelial
cells and peripheral immune cells that can migrate into the
CNS. Inflammation in the CNS sets off a well-orchestrated
response, which includes the release of inflammatory mediators
and activation of downstream signaling pathways that can
disrupt the blood-brain barrier (BBB), thus increasing perfusion
and facilitating immigration of blood immune cells. The
inflammatory response can also exacerbate or induce cellular
stress, mitochondrial dysfunction, myelination defects and
synaptic loss [for a review, see Yang and Zhou (2019);
Linnerbauer et al. (2020)].

Compared with inflammation in other organs, CNS
inflammation is unique. Instead of a typical neutrophil and
monocyte response, the resident immune system - mainly
comprised of microglia - responds, followed by subsequent
delayed recruitment of blood monocytes (Perry and Andersson,
1992). Further, because the CNS is in a confined space, any
swelling associated with inflammation can easily increase tissue
pressure and thus give rise to reduced perfusion, ischemia,
decreased venous drainage, and, possibly, raised intracranial
pressure (ICP). Thus, CNS inflammation may easily result
in secondary, amplified organ dysfunction (Ransohoff et al,
2003). Finally, all processes in which neuroglia become reactive
can induce a vicious circle of glial priming, i.e., the induction
of hyperresponsiveness to further stimulation, resulting in a
self-perpetuating cycle of CNS inflammation and/or functional
incompetence. By virtue of the immune and glial cells” ability to
influence the activity of other neuroglial cells, effects thereof can
be conveyed to distant parts of the brain (Norden et al., 2015).

On the functional level, CNS inflammation has been
associated with cytokine-mediated sickness behavior (Dantzer,
2009), excitotoxicity (Dong et al, 2009) and dysfunctional
connectivity within the brain (notably due to synaptic loss
and demyelination) (Rao et al., 2012) that leads to CNS
dysfunction affecting sleep, circadian rhythm, emotional
processing, cognition, learning and memory, pain, and
autonomous regulation.

Central nervous system (CNS) inflammation 1is also
noteworthy for enabling or amplifying other immune processes
such as autoimmunity and the induction of peripheral
inflammation through brain-body immune signaling. The

latter implies that CNS inflammation can, through efferent
vagal signaling, elicit both local and generalized inflammatory
responses (Olofsson et al., 2012; Koren et al., 2021).

Possible causative mechanisms of CNS inflammation and
neuroglial reactivity include direct effects through injury or
infection of the brain, reactivation of endogenous microbial
reservoirs in CNS cells, autoimmune reactivity with specific
neural, glial, or immune system targets, repetitive mechanical
strain, cerebrovascular hypertension, cerebral hypoperfusion
and/or ischemia, recognition of danger-associated molecular
patterns (DAMP), vagal dysfunction, norepinephrine or
angiotensin II overload, or, generally, exposure to chronic stress
(VanElzakker, 2013; Verkhratsky and Parpura, 2014; Calcia
et al, 2016; Yang and Zhou, 2019; Zivanlevi¢ et al.,, 2021).
Also, CNS inflammation can be initiated by any disruption
of the BBB - caused, for instance by peripheral microvascular
dysfunction (e.g., from endothelial inflammation or abnormal
coagulation) or by peripheral — acute or chronic -inflammation.
In the case of BBB dysfunction, neuroglial reactivity is induced
by an influx of albumin, fibrinogen, among other circulating
solutes, as well as blood leukocytes and their inflammatory
mediators, but possibly also blood antigens, including microbial
proteins that may contain pathogen-associated molecular
patterns (PAMP) (Frank et al,, 2021; Huang et al., 2021; Takata
et al, 2021). Finally, CNS inflammation can also directly
occur in response to humoral and retrograde neural signals
generated by inflammation elsewhere in the body, i.e., outside
the brain or spinal cord (Poon et al., 2015; Glassford, 2017;
VanElzakker et al., 2019).

As the mechanisms above show, dysfunction of CNS glia
may result both from inflammatory and non-inflammatory
processes. By the same token, glial involvement is not
necessarily inflammatory but may also alter CNS function via
non-inflammatory mechanisms, e.g., neurovascular coupling
(NVC) and thus blood flow distribution, modulating synaptic
functions and thus neuronal connectivity and signaling, or
even, especially in the case of oligodendrocyte involvement, by
altering myelination. Therefore, the assumption that any glial
involvement constitutes CNS inflammation is incorrect.

The Role of Neuroglia in Brain Function
and Central Nervous System

Inflammation

Neuroglia in the CNS consist of heterogeneous cell populations:
microglia, astrocytes, oligodendrocytes and ependymal cells.
Astrocytes are neural cells of ectodermal origin that are
the predominant glial cells in the brain, whereas microglia
are long-lived innate immune cells of mesodermal origin.
Oligodendrocytes and their progenitor cells are mainly involved
in providing axonal insulation and myelination, which proceeds
throughout life (Young et al., 2013). Microglia, astrocytes, and
oligodendrocytes interact both with neurons and with each
other via signaling molecules, and form long-range networks
supporting and regulating the neuronal connectome (Fields
et al, 2015; Hughes, 2021). Thus, they are key elements
of CNS homoeostasis and protection, and in some respects
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interact to a degree where they can be considered one dynamic
functional unit.

Anatomically, neuroglial cells are most concentrated along
specific white matter tracts that form functional brain units
due their ability to modulate the activity of other glial cells,
which also includes the possible propagation of inflammatory
signals to distant locations (VanElzakker, 2013). These intrinsic
brain networks reach into distant brain locations, including the
limbic and prefrontal areas of the brain, which may explain why
neuroglia modulate circuits involved in learning and memory
(Han et al, 2012; Navarrete et al, 2012), exercise, motor
function and endurance (Matsui et al., 2017; Sheikhbahaei
et al., 2018). While glia heavily influence neuronal functions
and the propagation of signals along neural tracts, they can
also be considered an independent functional and regulatory
matrix of the CNS, since they can function independently of
neuronal nuclei und clusters, as well as receive input from all
the major neurotransmitter systems. In addition to supporting
neurons, glial cells contribute to securing adequate cerebral
blood flow (CBF) by matching local blood flow to demand
(NVC), and by regulating baroreflex sensitivity (Mastitskaya
et al., 2020). Likewise, glial cells secure and control the BBB
(Cabezas et al., 2014) and the blood-cerebrospinal fluid barrier,
and thereby contribute to maintaining an adequate ICP. The glial
compartment participates in modulating vagal tone and function,
which is a prerequisite for an adequate stress response (Badimon
et al,, 2020) and for the regulation of cardiovascular, respiratory,
glucoregulatory, and gastrointestinal functions (Hermann et al.,
2009; MacDonald and Ellacott, 2020). At the same time,
astrocytes and microglia are also essential players in the innate
immune response, where they intricately interact with mast cells
residing on the brain side of the BBB (Dong and Benveniste, 2001;
Farina et al., 2007; Greenhalgh et al., 2020; Sofroniew, 2020). Of
note, by virtue of their functional flexibility and depending on
their state of reactivity, both microglia and astrocytes may have
neuroprotective or pro-inflammatory properties. This milieu-
dependent activity positions these neuroglial cells as a flexible
link between immunity, stress response, inflammation and CNS
homeostasis (see Figure 1).

Findings Supportive of Glial Dysfunction
and Central Nervous System
Inflammation in Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome

The role of neuroglia at the intersection of immune, vascular
and neuronal functions renders them attractive for focused
research in ME/CFS (Noda et al., 2018). However, direct evidence
is limited for CNS inflammation or neuroglial dysfunction in
ME/CFS. This may be in part because neuroglial reactivity
or inflammation are difficult to assess in humans due to the
inaccessibility of the affected tissues for sampling. Furthermore,
selective trafficking of inflammatory mediators, cellular markers,
and immune cells across the BBB limit the detection of CNS
inflammation based on blood or CSF analyses. Nevertheless,
overexpression of CD70 on blood CD4+ T lymphocytes may

identify lymphocytes with an increased potential to migrate
into the CNS and thus indicate CNS inflammation (Dhaeze
et al, 2019). Established and convenient blood markers for
astroglial integrity like glial fibrillary acidic protein (GFAP)
have not yet been investigated in ME/CFS and may not reflect
neuroglial dysfunction in the absence of cellular disintegration
(as seen in multiple sclerosis or traumatic brain injury).
Furthermore, GFAP may also be detected in extra-neuronal
tissue, which may confound results (Hainfellner et al., 2001).
Other markers of glial reactivity are cytokines, complement
pathway mediators, purinergic receptors, CX3C motif chemokine
receptor 1 (CX3CRI1), colony stimulating factor 1 receptor
(CSFIR), and triggering receptor expressed on myeloid cells 2
(TREM2) (Simoncitova et al., 2021). However, these markers are
largely non-specific for astrocytes and/or microglia, and can also
originate from peripheral cells. In addition, their quantification
in humans is not well standardized, differences between rodents
and humans remain largely undefined, and specific radiotracers
are not yet available. Likewise, technical challenges remain to be
solved for functional CNS imaging, which may be particularly
relevant to the brainstem (VanElzakker et al., 2019).

Direct evidence for a central role of neuroglial dysfunction
in ME/CFS resulted from a positron emission tomography
(PET) study of the translocator protein (TSPO), which
labels microglia and/or astrocytes, but also endothelial and
peripheral immune cells (Nakatomi et al., 2014). In this work,
increased TSPO binding was observed in the cingulate cortex,
hippocampus, amygdala, thalamus, midbrain, and pons of
individuals with ME/CFS, and the findings correlated with
the severity of neuropsychologic symptoms including fatigue
sensation, cognitive impairment, pain, and depression. Indirect
evidence for neuroglial involvement in ME/CFS can be gleaned
from finding increased glutamate concentration in key regulatory
brain areas (Gay et al, 2015; Shan et al, 2018), increased
lactate in the cerebral ventricles (Mathew et al., 2009; Murrough
et al.,, 2010; Shungu et al., 2012; Natelson et al., 2017a,b), and
from magnetic resonance spectroscopy (MRS) studies showing
alteration of several metabolites related to CNS inflammation
and glial dysfunction (Tomoda et al., 2000; Puri et al.,, 2002;
Chaudhuri et al.,, 2003; Mueller et al.,, 2020; Godlewska et al.,
2021). Metabolites altered in ME/CEFS patients include a decrease
of myo-inositol, a putative marker of glial dysfunction (Noda
et al,, 2018), in the anterior cingulate cortex (Godlewska et al.,
2021), and an increase of choline - mainly found in glial
cells and thought to indicate an increased cell membrane
turnover notably due to reparative gliosis - in the left anterior
cingulate (Mueller et al., 2020) and basal ganglia (Chaudhuri
et al., 2003). More indirect indications of glial involvement
in ME/CFS have been gleaned from the consistent findings
of sluggish blood oxygenation level-dependent (BOLD) signal
responses to cognitive tasks (Tanaka et al., 2006; Shan et al,
2018) paradoxical activation of the default mode network
(DMN) after physical exercise (Rayhan and Baraniuk, 2021),
and from reduced regional fluorodeoxyglucose (FDG) uptake in
the right mediofrontal cortex, brain stem (Tirelli et al., 1998)
and orbitofrontal cortex (Siessmeier et al., 2003), indicating
hypometabolism (Shan et al, 2020). Reduced white matter
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volume (Barnden et al,, 2011, 2015, 2016; Finkelmeyer et al.,
2018) and impaired myelination (Barnden et al., 2011, 2016,
2018; Thapaliya et al., 2020, 2021), which may indicate
oligodendrocyte involvement, have been inconsistent (Shan et al.,
2020). Blood and CSF analyses possibly reflective of CNS

inflammation or neuroglial dysfunction in ME/CFS will be
reviewed in other sections.

Thus, in summary, there are multiple paths of evidence
suggestive of CNS inflammation or glial dysfunction in ME/CFS
but the hypothesis remains to be proven.
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THE CASE FOR NEUROGLIAL
DYSFUNCTION IN MYALGIC
ENCEPHALOMYELITIS/CHRONIC
FATIGUE SYNDROME

To advance this quest, we have non-systematically reviewed the
literature (without a specific timeframe) on the clinical and
pathobiological features of ME/CFS (Renz-Polster, 2021). From
the material gathered, we hypothesize that a common mechanism
underlying the pathobiological basis of ME/CFS may indeed be
a regulatory CNS failure due to dysfunctional or pathologically
reactive neuroglia, resulting in the typical multilevel clinical
manifestations of ME/CFS.

Here we test the validity of this hypothesis by an in-depth
analysis of the two core features of ME/CEFS to determine whether
and how they might be explained by neuroglial dysfunction.

Post-exertional Malaise
This feature of ME/CFS is noteworthy for several characteristics
(VanNess et al., 2010; Arroll et al., 2014; Hartle et al., 2021):

e The clinical deterioration of PEM starts within a few hours
to about a day after the triggering event, peaks in severity
2 to 3 days after exercise, and lasts from a few days to
several weeks, dependent on baseline functionality and
degree of exercise.

e Each ME/CFS patient seems to have an individual, severity-
dependent threshold for the onset of PEM, ranging
from very light (such as positional changes or even
communication) to vigorous exercise or stress load.

e The exacerbation has multi-level triggers that are
independent of each other. While PEM can be triggered
by muscular exercise, it can, in the same patient, also
be triggered by other stressors, including cognitive
exercise, mental or emotional strain, orthostatic stress or
sensory overload.

e Clinically, PEM is accompanied by worsening ME/CFS
symptoms and loss of functional capacity (as measured
with repeated cardiopulmonary exercise tests or hand grip
strength). Many patients also experience symptoms of
immune stimulation such as tender cervical lymph nodes
and flu-like symptoms.

Several explanations for PEM have been advanced. According
to one hypothesis, exercise may trigger or aggravate endothelial
dysfunction thereby reducing perfusion, which may lead to
muscular dysfunction as well as general, including cerebral, blood
flow reduction (Wirth and Scheibenbogen, 2020). It has also been
suggested that in patients with ME/CEFS exercise may trigger or
aggravate mitochondrial dysfunction leading to increased lactate
production, reduced ATP availability in the muscles (Lien et al.,
2019), abnormal levels of metabolites (Germain et al., 2022),
abnormal redox balance (Paul et al., 2021) and/or nitrosative
stress (Morris et al., 2017). We propose, in addition, that PEM
may reflect a stress-induced aggravation of CNS inflammation

or neuroglial dysfunction (which may in part be triggered by the
aforementioned processes).

Glia are noteworthy for their multiplicity of phenotype,
which allows a shift between “neuroprotective” and “neurotoxic”
functions, depending on stimuli, physiological and pathological
conditions (e.g., CNS region, stage of life, lifestyle, context of
health or disease, gender) (Diniz et al, 2017, 2019; Matias
et al., 2019). Upon exposure to various stimuli, microglial
and astrocytes may shift to a pro-inflammatory phenotype,
which increases the release of cytokines, chemokines, and
neurotoxic factors thus promoting immune stimulation, CNS
inflammation, and if sustained, CNS dysfunctions (Colombo
and Farina, 2016; Murta et al., 2020). This reactivity can also
foster a self-perpetuating hyper-response: previous encounters
with inflammatory stimuli can “prime” the glial compartment for
a subsequently exaggerated response. This exaggerated response
can emanate from stimuli of similar (i.e., microbial antigens) or
different stimuli (including inflammatory, metabolic, oxidative
or nitrosative stress) (Salter and Beggs, 2014; Fleshner et al.,
2017; Tay et al., 2017b; Morris et al., 2019). From a biological
perspective it is therefore plausible that diverse stress signals
may induce a proinflammatory state in astrocytes and microglia,
which then impairs their physiological functions. Hence, stress
can induce a cascade of broader CNS dysfunctions (Pearson-
Leary et al., 2015; Murphy-Royal et al., 2019).

This plastic response of the glial compartment to stress signals
may explain the latency aspect of PEM. The delay in onset
of symptoms after exercise in ME/CFS may correspond to the
time frame needed for pro-inflammatory signals to (a) reach
the brain and trigger a stress response, and then (b) induce
glial reactivity (to which DAMP, inflammasomes and signals
from the hypothalamus-pituitary-adrenal axis could contribute)
(Fleshner et al., 2017). The duration of PEM may correspond to
the time for astrocytes and microglia to revert back to a more
physiological state. The individual PEM threshold may reflect
a variable reactivity of the neuroglial cells involved, i.e., their
degree of “priming” and pre-existing impairment of their key
physiological functions. The exacerbation of PEM symptoms may
also reflect CNS alterations caused by the propagation of glial
dysfunction into distant brain areas and regulatory centers along
glial functional networks.

A possible contribution of neuroglial dysfunction to PEM
can be deduced from the examination of body fluids or from
CNS imaging. Our search of the literature for reported effects
of exercise on blood parameters, including differential gene
expressions, cytokines or complement factors, did not yield
conclusive results. Pre- and post-exercise analyses of the CSF -
which may be a more appropriate specimen than blood in regard
to detecting abnormal processes in the CNS - have not been
performed (VanElzakker et al., 2019).

For instance, while several blood analyses report altered gene
expression after exercise (Whistler et al., 2005; Light et al., 2009,
2012), others do not (Keech et al., 2016; Bouquet et al., 2019;
Comella et al., 2021). The same pertains to changes in cytokine
or complement levels. These ambiguous results may reflect
methodological differences in measuring cytokines or cytokine
gene expression [reviewed in (VanElzakker et al., 2019)]. Blood
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cytokines originate from extravascular sites of inflammation,
and their entry into circulation is hence subject to factors
such as lesion perfusion, episodic release and tissue viability.
These limitations may be of a magnitude that precludes robust
comparison between individuals as well as between patient
and control groups.

Two exercise studies based on blood samples are noteworthy
since they tracked intraindividual changes or examined purified
exosomes:

e In the first study, an increase of the pro-inflammatory
cytokines IL-6 and IL-1f at 8 h after exercise was
predictive of higher post exercise fatigue scores (White
et al, 2010) (IL-6 and IL-1f trigger glial reactivity).
This finding is in line with results from other fields of
research which showed that, while exercise does not appear
to unbalance the pro- and anti-inflammatory response
in healthy people, it may lead to an unbalanced and
exaggerated inflammatory response in patients with pre-
existing inflammatory conditions (Cooper et al., 2007).

e The second study assessed circulating mitochondrial DNA
(mtDNA) levels associated with exosomes in response to
physical exercise. The exosomes from patients with and
without ME/CFS were incubated with a human microglial
cells and release of IL-1f was measured (Theoharides
et al., 2021). The analysis showed that after exercise
exosome-associated mtDNA was increased in patients
with ME/CFS but not controls and that in cell culture
there was significantly increased secretion of IL-1p from
microglial cells.

While the study record on exercise effects in ME/CFS using
blood analyses is heterogenous, the brain imaging results are
more consistent. Indeed, all neuroimaging studies that have
compared ME/CFS patients with healthy controls demonstrated
abnormalities in response to cognitive (Barnden et al., 2015,
2016; Shan et al., 2016, 2017; Washington et al., 2020) or
physical exertion (Baraniuk et al., 2021; Rayhan and Baraniuk,
2021). Some of these abnormalities were interpreted to indicate
dysfunction of the glia-controlled neurovascular unit (Staines
et al., 2018; Shan et al.,, 2020; Nelson T. et al., 2021). Most
notably, in a recent BOLD functional MRI study (Rayhan and
Baraniuk, 2021) of 34 ME/CFS and 24 control subjects singular
effects of exercise, as not observed in any other condition, were
reported. Exercise in ME/CFS patients was not only associated
with a reduced global CBF but also induced increased activity in
the anterior node of the DMN, a region which normally shows
decreased activation in response to exercise. This may indicate
glial dysfunction leading to disrupted coordination between
functional network nodes.

How are neuroglia rendered dysfunctional by exercise? There
are several potentially connected mechanisms:

Inflammation
Pro-inflammatory cytokines (especially IL-6) are strongly
induced by exercise in healthy people (Keller et al., 2005;

Light et al., 2009; Suzuki, 2019) with levels increasing up to 100-
fold with maximal exertion [for a review of inflammatory effects
of exercise, see Cerqueira et al. (2020) and Low et al. (2020)]. The
source of the ILs released during physical exercise is thought to be
mostly the muscles. The magnitude of the exercise-induced IL-6
response seems to be dependent on the intensity and especially
the duration of the exercise. In high-intensity physical exercise,
IL-1B is also increased. The IL response to exertion seems to be
independent of the nature of the exercise (Fischer, 2006) since
psychological or mental stress also induced release of cytokines
(Fluge et al., 2017), including IL-6 and IL-1fB, with a > 6-fold
increase over baseline (Marsland et al., 2017; Moneghetti et al.,
2018). Exercise-induced activation of CNS inflammation in
ME/CEFS appears plausible since both IL-6 and IL-1f can induce
glial reactivity (Liddelow and Barres, 2017; Rosciszewski et al.,
2019; Verkhratsky et al., 2019). Also, IL-6 was shown to increase
mast cell proliferation and induce a more reactive mast cell
phenotype (Desai et al., 2016). Similarly, and in part related to
the inflammatory stimulation, exercise physiologically increases
oxidative stress (Hendrix et al., 2020) and changes the metabolic
matrix. In ME/CFS, where oxidative and/or metabolic regulation
may be impaired (Missailidis et al., 2021; Paul et al., 2021), both
processes may have separate or additive effects on glial function
(see discussion).

Sympathetic stimulation, which is abnormal in ME/CES
patients at baseline (Wyller et al., 2009), may also contribute to
a heightened and prolonged inflammatory milieu after exercise.
Indeed, ME/CFS patients have a longer period of sympathetic
stimulation after exercise (Nelson M. J. et al., 2021), which in
turn may cause or aggravate several features possibly relevant
to ME/CFS, including production of reactive oxygen species
(ROS) (Corbi et al, 2013), endothelial dysfunction as well
as immune dysfunction, notably involving B cells (Padro and
Sanders, 2014; Scanzano and Cosentino, 2015). Moreover, the
sympathetic hyperstimulation after exercise may, in ME/CES
patients with auto-antibodies (aAB) to vaso- and neuroregulatory
G protein coupled receptors (GPCR), aggravate dysfunctional
GPCR signaling and thus contribute to vascular and/or CNS
dysfunctions (discussed below).

It has also been suggested (Proal and Marshall, 2018) that
exercise could induce in ME/CFS patients a temporary increase
in gut permeability, which in turn may induce CNS inflammation
and dysfunction through the gut-brain axis (Shukla et al., 2015;
Cryan et al., 2019; Carloni et al., 2021).

Cerebral Hypoperfusion

There is ample evidence that CBF is dysregulated in ME/CFS
patients and inadequately responsive to orthostatic and cognitive
challenges (for details, see section “Abnormal CBF”). This could
in part contribute to PEM. Any stress, be it physical or mental,
orthostatic, emotional, sensory or cognitive, places increased
demands on local brain perfusion, which in ME/CES patients
may not be adequately matched with requirements due to a
dysfunctional NVC. ME/CFS patients were shown to respond to
exercise stimuli with hyperventilation, which in turn may add to
CBF compromise (Melamed et al., 2019; van Campen et al., 2020;
Natelson et al., 2022). Therefore, any allostatic load that generally
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or locally exceeds the regulatory capacity of the neurovascular
unit may cause cerebral hypoxia and cellular energy depletion.
This may directly or indirectly lead to cerebral dysfunction,
e.g., by inducing reperfusion injury, lactate production, BBB
disruption, cerebral edema, ROS-production, activation of the
Nod-like receptor family pyrin domain-containing 3 (NLRP3)-
inflammasome or other processes that induce glial reactivity
and aggravate CNS inflammation (for details, see section
“Abnormal CBF”).

Endothelial Dysfunction

Endothelial dysfunction has consistently been identified in
ME/CFS (Newton et al., 2012; Scherbakov et al, 2020;
Blauensteiner et al., 2021). Endothelial dysfunction may result
from endothelial B2 receptor attenuation due to chronic
sympathetic overstimulation or from abnormal GPCR signaling
affecting vascular autoregulation (Wirth and Scheibenbogen,
2020). Many ME/CES patients have aAB against vasoregulatory
GPCR (Tanaka et al., 2003; Loebel et al., 2016; Freitag et al,
2021). Theoretically, the immune or inflammatory effects of
exercise could either aggravate GPCR dysfunction directly
or stimulate aAB-production and thus indirectly provoke
endothelial dysfunction after exercise. Alternatively, exercise
could provide a hypoxic or inflammatory milieu in which pre-
existing aAB may act more effectively (Wallukat et al., 2021). It
was also suggested that exercise may induce a counterregulatory
release of bradykinin in the dysfunctional vasculature of ME/CES
patients (Wirth et al., 2021), which would affect permeability of
the BBB (Abbott, 2000).

Any endothelial dysfunction after exercise may indeed not
only affect the vascular system but also brain function through
breaches in the BBB and subsequent induction of neuroglial
reactivity from influx of serum components like fibrinogen,
immune cells and inflammatory mediators. Fibrinogen is a
key regulator of microglial reactivity (Davalos and Akassoglou,
2012), and BBB disruption associated with inflammation is
now understood as a pathogenic factor in many neurological
diseases (Petersen et al., 2018), and also in COVID-19 (Lee
et al., 2021; Ryu et al., 2021). In the latter condition, monocyte
chemoattractant protein-1 (MCP-1 = chemokine ligand 2, CCL2)
was identified among the biomarkers most strongly associated
with post-acute sequelae of COVID-19 (PASC) (Phetsouphanh
etal.,2021) and is involved in the recruitment and transformation
of microglial cells, as well as in leukocyte trafficking across the
BBB (Weiss et al., 1998).

G Protein Coupled Receptor Dysfunction
aAB against G protein coupled receptors (GPCR) in ME/CFS
patients are typically directed against angiotensin type 1 receptors
(AT1R), endothelin-1 B receptors (ET1BR), and adrenergic and
muscarinic acetylcholine receptors (Freitag et al., 2021), which
is reminiscent of the findings in many PASC patients (Wallukat
et al,, 2021). In ME/CEFS, the aAB levels generally correlate with
disease severity (Freitag et al., 2021).

These GPCR are sometimes understood as only affecting
vascular regulation. However, all the above receptors and/or
their binding partners are also part of the signaling matrix

of the brain and the immune system. Muscarinergic and
adrenergic receptors, for instance, span a wide range of effector
and regulatory functions in the brain, including memory,
attention, motor control, sleep-wake-regulation and cognition
(Pupo and Minneman, 2001; Scarr, 2012). Both a- and B-
adrenergic receptors are most highly expressed in regions
involved in autonomic activity, cardiovascular regulation and
arousal (Bateman et al., 2012). a-2-adrenergic receptors (A2AR)
have been shown to be important for neuroprotection (Weber
et al., 2007; Gaidin et al, 2019). B-2-adrenergic receptors
(B2AR) are widely expressed on glial, endothelial and immune
cells, which are therefore responding to norepinephrine release
(Kolmus et al., 2015). B-2-adrenergic signaling is also involved
in maintaining immune tolerance (Wu et al., 2018), controlling
inflammatory inputs through the vagus nerve (Vida et al., 2011)
and controlling overall CNS inflammation (Junker et al., 2002;
Sharma and Flood, 2018; Zhang et al., 2018). Dysfunctional B-
2 signaling may therefore have substantial influence not only
on autonomous regulation but also on immune responses.
Similarly, muscarinic acetylcholine receptors are an intricate
part of the signaling matrix of the brain. For example, the
muscarinic acetylcholine receptor M3 (M3R), which may be
of particular importance because of the M3R aAB found in
ME/CES patients (Loebel et al., 2016; Bynke et al., 2020), is heavily
expressed in the dorsal vagal complex of the brainstem, and its
stimulation on astrocytes has been related to the regulation of
learning and memory (Poulin et al., 2010). The M3R is also
expressed on brain microvascular endothelium (Radu et al,
2017), and M3R signaling is also important in adaptive immunity
and autoimmunity (indeed, M3R is a candidate receptor for
autoantigen recognition by T and B cells) (Sumida et al., 2014).
This may be of particular interest given the findings of single
nucleotide polymorphisms (SNPs) in genes encoding M3R in
ME/CFS patients (Marshall-Gradisnik et al., 2016). Likewise,
both endothelin-1 and angiotensin II and their receptors are
involved in the control of immune cell migration (Cabral-
Marques and Riemekasten, 2017), and ET1BR not only regulates
vascular endothelial cells but also astrocytic reactivity and
proliferation, and may contribute to BBB disruption and CNS
inflammation (Koyama, 2021).

The effects of AT1R and MAS receptor dysfunction may
extend beyond the vascular system, too. After all, activation of
AT1R not only promotes endothelial dysfunction (Skultetyova
et al, 2007) and vasoconstriction (possibly causing CBF
reduction) but also increases peripheral and central sympathetic
nervous system activity, BBB disruption (Mowry et al., 2021),
oxidative stress and inflammatory activity (Wang et al., 2012),
plausibly including CNS inflammation (Benicky et al., 2011).
The angiotensin II/AT1R axis is an important regulatory
circuit within the brain (brain-renin-angiotensin-system, b-RAS)
(Bodiga and Bodiga, 2013; Cosarderelioglu et al., 2020; Nakagawa
etal., 2020), which is directly and indirectly involved in baroreflex
sensitivity, brain perfusion, autonomous and cardiovascular
regulation, as well as vigilance, cognition and immune signaling
(Wright and Harding, 2013; Abiodun and Ola, 2020; Xue et al,,
2020). Indeed, dysfunctional b-RAS is now suggested to be a
pathological hub in several neuropsychiatric disorders, including
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anxiety and depressive disorders (Labandeira-Garcia et al., 2017).
Evidently, the case for a possible role of GPCR aAB within the
CNS hinges on their ability to cross the BBB (see discussion).

In the clinical context, PEM presents a profoundly
“inflammatory” picture, which is not only marked by an
exacerbation of all baseline ME/CFS symptoms, but often
goes along with signs and symptoms of general immune
stimulation. This may reflect that CNS inflammation can readily
induce peripheral immune responses via brain-peripheral body
inflammatory signaling (see above). Here, a peculiar, and so far
unexplained clinical phenomenon of PEM may be of special
interest — the often-described tender cervical lymph nodes. We
suggest that this could relate to parts of the CSF draining into
cervical lymph nodes, an anatomical feature noted in rodents
and ruminants (Cserr and Knopf, 1992) but not discussed with
respect to ME/CEFS so far. It should be considered that CNS
antigens in ME/CFS patients might induce an immune responses
in cervical lymph nodes via that route.

The above-mentioned venues through which exercise may
cause clinical deterioration in ME/CFS may in part be
interconnected or amplify each other. For instance, exercise
could foster a pro-inflammatory milieu (if directly or through
sympathetic overload), in which GPCR dysfunction may be
increased, which in turn may aggravate endothelial dysfunction
(or vice versa). The endothelial dysfunction may then cause
or aggravate BBB dysfunction which in turn may promote
neuroimmune responses, including CNS inflammation, and may
also possibly allow access of GPCR to the CNS. It is also possible
that exercise-induced or -aggravated mitochondrial dysfunction
produces metabolic by-products that can affect glial reactivity
(see discussion).

Abnormal Cerebral Blood Flow

One of the most consistent findings in ME/CFS is abnormal
global and regional CBF in response to regulatory challenges
including head tilt maneuvers as well as cognitive and physical
exercise (Ichise et al., 1992; Costa et al., 1995; Fischler et al.,
1996; Tirelli et al., 1998; MacHale et al., 2000; Siessmeier et al.,
2003; Yoshiuchi et al., 2006; Barnden et al., 2011; Biswal et al,,
2011; Stewart et al., 2012; van Campen et al., 2020; Li et al,
2021; Rayhan and Baraniuk, 2021). The decrease in CBF on tilt
table provocation can be independent of heart rate and blood
pressure (BP) response (van Campen et al., 2020), independent
of normocapnia versus hypocapnia (van Campen et al., 2021),
and has also been found in the subset of ME/CFS patients with
joint hypermobility (Campen et al., 2021). In these studies of CBE
the degree of global hypoperfusion correlated with symptoms and
clinical severity of ME/CFS.

Indirect evidence of dynamically abnormal regional CBF
comes from the consistent finding in ME/CFS patients that wider
regions with greater blood oxygenation are activated in response
to different tasks (Caseras et al., 2006; Mizuno et al., 2015; Shan
et al., 2018). The latter has been interpreted as an indication of
disrupted NVC (Staines et al., 2018; Shan et al., 2020; Nelson T.
etal., 2021).

In a recent MRI study of 31 ME/CSF patients using a pseudo-
continuous arterial spin labeling (PCASL) technique, significant

regional CBF abnormalities in several brain regions of the
limbic system were noted at rest, i.e., without orthostatic or
exercise challenge (Li et al., 2021). The assumption of regional
CBF abnormalities may be further supported by structural MRI
findings of regional white matter loss in the left inferior fronto-
occipital fasciculus (Shan et al., 2016) and in the brain stem
(Barnden et al,, 2011, 2015, 2016, 2018; Finkelmeyer et al., 2018),
sites that are particularly sensitive to hypoxia. So far the most
salient imaging evidence for abnormal CBF in ME/CFS arises
from findings of a “paradoxical” reorganization of local blood
flow in the anterior node of the DMN after physical exercise
(Rayhan and Baraniuk, 2021).

Clearly, impaired CBF appears so central in ME/CFS that
any hypothesis on the pathobiological underpinning of ME/CFS
needs to account thereof. Physiologically, how well oxygen
and nutrients are delivered to brain cells depends on adequate
blood flow to the brain, competent vascular autoregulation,
adequate NVC as well as local microvascular competence. Several
hypotheses, that are not mutually exclusive, have been put forth
on how the blood flow may be altered in ME/CFS.

e Abnormal CBF may be related to abnormal baroreflex
function. Baroreceptors in the large blood vessels control
arterial BP beat-to-beat and thus match BP with the
cardiac output. If the baroreflex is not set appropriately
(or if the brainstem is not interpreting the signals from
the baroreceptors correctly), the cardiovascular system
fails to adequately respond to the fluctuating blood flow
demands upon stress (like positional changes or exercise).
The presence of an abnormal function of the baroreflex
in ME/CEFS is supported by decreased BP variability in
ME/CFS patients, indicating that they may be less able
to adjust BP in response to adrenergic and vagal stimuli
(Frith et al., 2012). Corroborating evidence is that CBF in
ME/CES patients can be increased by the administration
of the alpha 1 agonist phenylephrine, and that cognitive
dysfunction decreases with such infusion (Medow et al.,
2014). Because phenylephrine does not cross the BBB, it
has been speculated that the latter effect may reflect higher
perfusion pressure which may overcome a hypoperfusion
bottleneck in the brain, or that phenylephrine may alter
the baroreceptor setpoint. Dysfunctional signaling via
AT1R may also contribute to baroreceptor dysfunction
in ME/CFS as baroreflex sensitivity is influenced by the
angiotensin II/ATIR pathway (Kasparov and Paton, 1999;
Gao et al., 2005; Becker et al., 2016).

e While the above may explain abnormal global CBE, it may
not account for the local CBF abnormalities also typical
of ME/CFS. Here, an abnormal NVC is the most likely
cause, i.e., the inability of cerebral vessels to dynamically
regulate blood flow in response to neural activity. This
can have multiple detrimental effects including hypoxia
and inadequate energy supply to activated neurons. The
ensuing oxidative stress can impair endothelial cell function
and thus give rise to BBB breakdown and subsequent
CNS inflammation (which then may further contribute to

Frontiers in Cellular Neuroscience | www.frontiersin.org

May 2022 | Volume 16 | Article 888232


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

Renz-Polster et al.

ME/CFS: A Case of Neuroglial Failure?

dysregulated CBF through inappropriate vasodilation in an
inflammatory milieu) (Tohidpour et al., 2017; Sankar et al.,
2019).

e Blood flow in CNS tissues can also be affected by
any disruption of the BBB since this allows entry of
inflammatory or vasoactive mediators and thus influences
microvascular function in the CNS. Indeed, through this
mechanism, any form of peripheral endothelial dysfunction
could translate into cerebral hypoperfusion and thus
CNS dysfunction.

e Perfusion defects can also result from “mechanical” factors,
and this may be relevant to the multi-etiological dimension
of ME/CFS (to be discussed). Here, factors like reduced
brainstem mobility (as seen in tethered cord syndrome),
traumatic brain injury (TBI), repetitive strain injury [as
possibly related to cranio-cervical instability/atlanto-axial
instability (CCI/AAI)] or joint hypermobility syndromes
may play a role. There is some evidence from research
on TBI that decreased CBF may be mediated by CNS
inflammation (Sankar et al., 2019).

There are several connections between CBF and the neuroglial
compartment [reviewed in Attwell et al. (2010)]. Glia have a
central role both in NVC and in microvascular function. Indeed,
the NVC consists of a feedforward mechanism of glutamate-
driven activation of a Ca>* dependent signaling pathway in both
neurons and astrocytes, in response to which vasoactive factors
are released to increase local blood flow (Iadecola, 2017). Also,
astrocytes contribute to maintaining global CBF by virtue of their
central regulatory role in the baroreflex, i.e., their ability to detect
falling cerebral perfusion pressure and activate CNS autonomic
sympathetic control circuits which then increase systemic arterial
BP and heart rate in response (Marina et al., 2020). The baroreflex
is coordinated by the nucleus of the solitary tract (NST) in the
brainstem, and depends on appropriate sensing of vagal and
adrenergic signals via NST astrocytes (Mastitskaya et al., 2020).
CNS inflammatory processes involving the NST, for example,
can inhibit the baroreflex centrally through ATP release from
reactive NST glial cells (Mastitskaya et al., 2020). Accordingly,
reactive astrogliosis in the NST has been reported after CNS
trauma, infection, ischemia, stroke, and in autoimmune diseases
(Sofroniew and Vinters, 2010).

Capillary-associated microglia also contribute to blood flow
regulation since they are involved in regulating capillary vascular
tone (Bisht et al., 2021; Kisler et al., 2021). Furthermore, similar to
astrocytes, microglia contribute to the glia limitans (glial end-feet
layer) forming the BBB around capillaries, and can structurally
remodel the vasculature through the phagocytosis of endothelial
cells (Haruwaka et al., 2019).

Altered CBF may have far reaching pathophysiological
consequences which include many of the abnormalities observed
or discussed in ME/CFS. A deficient energy supply, for instance,
may induce CNS inflammation, brain edema, carotid body
chemoreflex alterations and other autonomous dysfunctions,
adrenergic hyperstimulation or BBB disruption. In this context,
the neuroglial compartment has a potentially pivotal role. Not

only is it central in the process of BBB disruption and the
instigation of the inflammatory response, it also is directly
affected by bioenergetic failure from hypoxia, which, among
other processes, causes glutamate-induced excitotoxicity, where
astrocytes play a pivotal role (Belov Kirdajova et al., 2020).

DISCUSSION

Despite decades of research on ME/CFS, there remains a
fundamental haziness around its pathobiological matrix. The first
essential debate revolves around the inception of the disease,
i.e,, the processes that may initiate ME/CFS (“How do you get
ME/CFS?”). Here several hypotheses are suggested, including
persistent infections, reactivation of endogenous microbial
reservoirs, infection-triggered autoimmunity, or other persisting
post-infectious immune dysfunctions (Komaroff and Bateman,
2021; Proal and VanElzakker, 2021).

The second debate - the focus of this paper — deals with
the pathobiological pathways that may be responsible for the
clinical presentation and course of ME/CFS (“What explains the
symptoms of ME/CFS?”). Here, many potential contributories
have been identified, including cerebral hypoperfusion,
gastrointestinal dysbiosis, autonomic dysregulation, metabolic,
muscular, and mitochondrial dysfunction, inflammatory
stimulation, oxidative and/or nitrosative stress, immune
abnormalities, autoimmunity, and endothelial dysfunction. Yet,
there remains uncertainty about the sequence and direction of
events, i.e., which are upstream or downstream, and which may
be hubs for intersecting spokes. A similar uncertainty is common
among researchers struggling to understand PASC, which in
some patients is clinically indiscernible from ME/CFS (Komaroff
and Bateman, 2021; Komaroff and Lipkin, 2021; Sukocheva et al.,
2021; Yong and Liu, 2021).

Several “unifying” hypotheses on the most fundamental
pathological underpinnings of ME/CFS have been formulated.
Firstly, it has been suggested that the clinical picture of ME/CFES
may reflect general cellular or metabolic dysfunction (e.g., based
on mitochondrial and or peroxisomal dysfunction) (Naviaux,
2020; Missailidis et al., 2021; Che et al., 2022). These dysfunctions
may cause or go along with sustained oxidative/nitrosative
tissue stress (Paul et al., 2021), hypernitrosylation (Morris
et al, 2017), and/or cell membrane (including channel)
dysfunctions (Chaudhuri et al, 2000; Staines et al, 2018;
Balinas et al,, 2019). Secondly, the common pathobiological
denominator underlying the clinical presentation of ME/CES
may be a general dysregulation of the vascular unit (e.g.,
from autoimmune processes affecting vascular receptors) (Wirth
and Scheibenbogen, 2020). Thirdly, at the pathobiological core,
ME/CFS may reflect regulatory CNS failure, possibly due
to inflammatory changes or immune processes that may be
collectively oversimplified as “neuroinflammation” (Nakatomi
et al., 2014; Glassford, 2017; Mueller et al., 2020).

In this review, we probed a hypothesis related to and
building upon the latter category. Based on a previous summary
of the potential role of CNS glia in ME/CFS (Renz-Polster,
2021), we have analyzed the most salient and discriminating
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features of ME/CFS with the aim to determine if they
may plausibly be explained by neuroglial dysfunction, i.e.,
pathological processes involving the glial cell populations, which
we view as intricately linked.

We find that altered neuroglia may indeed explain many
of the core features of ME/CFS, including the multi-trigger,
threshold-driven, delayed and prolonged stress response after
exercise and the universal CBF deficit in response to provocative
maneuvers. We therefore suggest that regulatory CNS failure due
to dysfunctional or pathologically transformed neuroglia may be
the central feature conveying the variable clinical presentation
of ME/CFS. The processes that can ultimately trigger this glial
dysfunction are multifold: a general inflammatory immune
response, mitochondrial or metabolic dysfunction, autoimmune
attack on GPCR, and endothelial dysfunction with subsequent
breach of the BBB (see Figure 2). Our hypothesis therefore does
not negate the validity of other pathobiological explanations of
ME/CEFS. In fact, we posit that our focus on the glial matrix of
the CNS may complement other explanations by providing a
more detailed understanding of the neuro-immune interface of
ME/CEFS. We also suggest that an exact understanding of the role
of the glial cell populations may have practical bearing in regard
to developing therapies for ME/CFS.

We specifically highlight that general endothelial dysfunction
in the periphery - regardless of cause - is bound to affect
the defensive immune system of the brain, including microglia.
Likewise, we contend that immune processes in the CNS and
in the periphery are inseparably linked by virtue of their
vagal and humoral reciprocal communication. We therefore
propose that for a better understanding of ME/CFS, micro-
and macro-circulatory failure, endothelial dysfunction, metabolic
dysfunction, redox imbalance, inflammatory stimulation, and
CNS inflammation need to be jointly considered (see Figure 2).

Neuroglial Dysfunction - The Link to
Autoimmune Phenomena in Myalgic
Encephalomyelitis/Chronic Fatigue

Syndrome

We contend that our hypothesis fits with the “meta-assumption
of ME/CEFS, ie., the assumption of an underlying immune
dysfunction. While the cause of the latter remains unknown,
research has identified two major phenomena: autoimmunity,
and evidence of a generally inflammatory milieu.

As key players in the immune responses of the CNS, both
astrocytes and microglia are central to the inception of CNS
autoimmunity by regulating autoantigen-presentation, BBB or
blood CSF barrier breakdown and aAB leakage, as well as
adaptive T- or B-cell activation for aAB production (Ikeshima-
Kataoka, 2016; Baecher-Allan et al., 2018; Dong and Yong, 2019).
At the same time, astrocytes and microglia closely interact with
mast cells, providing another link between immune stimulation
and inflammatory effects.

A subset of ME/CEFS patients have abnormal levels of GPCR
aAB (Tanaka et al, 2003; Wirth and Scheibenbogen, 2020;
Freitag et al,, 2021). It has been speculated from research
on other disorders that inflammation and ischemia create

an immune environment where GPCR aAB may develop,
possibly establishing a vicious cycle where receptor dysfunction
sustains inflammatory stimulation and/or ischemia which in turn
maintains aAB production (Wallukat et al., 2021). While some
authors assume that GPCR aAB in ME/CFS may primarily have
direct effects on vascular regulation (Wirth and Scheibenbogen,
2020; Wallukat et al., 2021), we pointed out that GPCR aAB
identified in ME/CFS also bind to immune cells and CNS targets
(see section on PEM). Therefore, these aAB could also be involved
in causing CNS regulatory dysfunction. Similar autoimmune
processes in ME/CFS may contribute to secondary dysfunction
such as small fiber neuropathy (SFN), assumed to be present in at
least one third of ME/CES patients (Grayston et al., 2019).

While the CNS is generally considered protected from
peripheral aAB by an intact BBB, it may be vulnerable to
autoimmune attack during states of peripheral inflammation or
endothelial dysfunction that disrupt the BBB and thus allow
for increased antigen presentation and immigration of immune
cells (Lampron et al., 2013; Putterman, 2013). Areas of the CNS
such as the circumventricular organs mediating communication
between the hypothalamus and brainstem are devoid of a BBB,
while dynamic immune interactions between the periphery and
the CNS are increasingly described in the literature, notably
upon stress and other challenges. Indeed, it has been shown that
distressed glial cells can allow extravasation of peripheral immune
cells, complement proteins and aAB from the bloodstream into
the parenchyma of the CNS (Watkins et al., 2007), thereby
allowing aAB access to neuroantigens including B2-adrenergic
and muscarinic acetylcholine receptors. This process, which
was shown to last for several days after initiation, is now
discussed as a central pathomechanism in Complex Regional
Pain Syndrome (CRPS), a disorder that clinically overlaps with
ME/CEFS (Cooper and Clark, 2013). It is unknown whether the
GPCR aAB in the blood of ME/CES patients can enter the
CNS. While an enzyme-linked immunosorbent assay (ELISA)
analysis has failed to identify GPCR aAB in the CSF of
ME/CEFS patients (Bynke et al.,, 2020), the presence of serum
aAB against the muscarinic acetylcholine receptor M1 (MIR)
correlated with impeded receptor binding in a brain PET
study, suggesting leakage of aAB across the BBB (Yamamoto
et al.,, 2012). Similarly, the quantity of aAB against 1 and p2
receptors in the blood correlated with brain network alterations
in ME/CFS patients (Fujii et al, 2020). Suggestions for a
possible role of CNS aAB have also been made for PASC
(Apple et al., 2022).

The assumption of autoimmunity pertaining to regulatory
neuronal structures as a causal link in ME/CFS was strengthened
by experimental work on the related condition fibromyalgia.
Here, the transfer of IgG from affected patients into a rodent
model identified a component of the IgG fraction as symptom-
inducing (Goebel et al., 2021). Apparently, this factor binds to
satellite glial cells in the dorsal root ganglia, a pathomechanism
that is commensurate with the clinical manifestations of the
syndrome consisting of abnormalities in sensory and pain
processing. Although not identified, it is plausible that this factor
may be an autoantibody. This new finding from fibromyalgia
research raises an intriguing question: If fibromyalgia is caused
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by (auto)immunity to glial cells in the spinal cord ganglia - could
ME/CES be explained by autoimmunity against glial cells in the
brain?

The Link to Other Immune Abnormalities
in Myalgic Encephalomyelitis/Chronic

Fatigue Syndrome

Inflammatory phenomena are unequivocally part of ME/CFS
and include flu-like symptoms, tender lymph nodes or sore
throat, particularly evident during disease exacerbations or PEM.
Nevertheless, the immune signature of ME/CFS remains to be
defined. Abnormalities in cellular immunity, including natural
killer (NK) cell function, have been found, albeit inconsistently
(Cliff et al., 2019; Eaton-Fitch et al., 2019). Proposed B cell
abnormalities include changes in phenotype (Mensah et al,
2016), receptor repertoire skewing (Sato et al., 2021) and clonal
expansion, possibly related to chronic stimulation from either
microbial or auto-antigens (Milivojevic et al., 2020). It has also

been suggested that the immune dysfunctions seen in ME/CFS
could be a reflection of the pervasive adrenergic hyperstimulation
(Scanzano and Cosentino, 2015; Nguyen et al., 2017).

Blood cytokine profiles comparing groups of ME/CFS patients
with healthy controls have been contradictory, possibly owing
to methodological limitation (VanElzakker et al., 2019). Relating
inflammatory markers in patients to clinical symptoms has
yielded some insight (Jonsjo et al., 2020). Among the cytokines
correlating with symptom severity were general markers of
inflammation (like IL-7, TNF-a) and cytokines that may indicate
CNS-inflammation such as tumor growth factor p1 (Buckwalter
and Wyss-Coray, 2004; Bureta et al., 2019), nerve growth factor
(Goss et al., 1998; Linnerbauer et al., 2020), C-C motif chemokine
ligand 11 [CCL11, which may influence microglial migration and
reactivity (Villeda et al., 2011; Parajuli et al., 2015; Teixeira et al.,
2018)], and C-X-C motif chemokine 10 (CXCL10, which was
shown to mediate leukocyte influx across the BBB in a variety of
inflammatory CNS diseases) (Michlmayr and McKimmie, 2014).
Interestingly, the latter two cytokines were also identified in an
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immune network analysis of cytokines in the CSF of ME/CFS
patients (Hornig et al., 2017) and as clinical markers in PASC
(Fernandez-Castaneda et al., 2022). The latter study showed
that even mild SARS-CoV-2 infection induced large CCL11
increases, associated with “brain fog” symptoms in the patients
who developed PASC.

Findings from CSF analyses may shed a more focused light
on possible CNS immune processes, and although to date only
six such studies on ME/CFS patients have been reported (Lloyd
et al,, 1991; Baraniuk et al., 2005; Schutzer et al., 2011; Peterson
etal, 2015; Hornigetal., 2017; Natelson et al., 2017a), the findings
may add important information to the neuroglial hypothesis.
While, similar to blood cytokine studies, comparing levels of a
limited number of cytokines with healthy controls has not given
a consistent picture (Lloyd et al., 1991; Natelson et al., 2005;
Peterson et al., 2015), an immune network analysis in a larger
sample (Hornig et al., 2017) found an altered immune signature
indicative of CNS immune activation with a shift toward a T
helper cell 2 (TH2, i.e., possibly autoimmune) pattern as well as
increased levels of CCL11 and CXCL10, which may be indicative
of CNS inflammation (Klein, 2004; Michlmayr and McKimmie,
2014; Teixeira et al, 2018). A similar network analysis of
> 2500 proteins in the CSF of ME/CEFS patients (Schutzer et al.,
2011) identified several possibly relevant pathways, including
“B-adrenergic signaling,” “protein kinase A signaling” (role in
modification of synapses and control of ion channels), “alpha-
adrenergic signaling,” “GPCR signaling,” and, most significantly
enriched, “CDKS5 signaling.” Cyclin-dependent kinase 5 (CDK5)
signaling ensures proper axonal guidance and relates to the Eph-
ephrin pathway that recently emerged prominently by network
analyses in the largest proteomics study in ME/CES (to be
discussed below) (Germain et al., 2021).

Basic research shows how CNS inflammatory processes
can induce peripheral inflammatory processes and vice versa
(VanElzakker, 2013). Key areas of this immune communication
between the brain and the periphery include the neurovascular
unit, the brainstem and circumventricular organs of the brain
as well as the vagus nerve (DiSabato et al,, 2016). A central
regulatory role in this neuroimmune system is ascribed to the
NST and other nuclei of the dorsal brainstem, which are not
only central relay stations involved in the control of vagal
input and thus of cardiovascular, respiratory, glucoregulatory,
and gastrointestinal functions (Barnden et al., 2016; VanElzakker
et al., 2019; MacDonald and Ellacott, 2020) but also regulate
the inflammatory brain-body homeostasis (Kraynak et al., 2018).
For example, when the NST detects, via the vagus nerve, pro-
inflammatory cytokines from the periphery (such as TNF-a or
IL-1B), glial cells in the NST - both microglia and astrocytes -
respond by transforming their morphology and function. Their
reactivity in turn contributes to eliciting an inflammatory
response, involving these and other innate immune cells, in
the CNS. Also, during systemic inflammation, stress-regulating
brain areas are stimulated by signaling to the dorsal vagal
complex within the brainstem. This mechanism is considered
a physiological basis of the behavioral sickness response that
humans and animals display during infections (Poon et al., 2015).
It is now understood that these brain-body “mirror responses”

are tightly modulated by neuroglia, both astrocytes and microglia
(Godbout et al., 2005; MacDonald and Ellacott, 2020).

This central role of neuroglia as the link between central
and peripheral inflammation may also apply to the gut-brain
axis which has received increasing attention since intestinal
microbial dysbiosis, gastrointestinal inflammation and gut
barrier dysfunction are noted in ME/CFS, and may account
for translocation of bacteria and dietary metabolites across
mucosal barriers [for a thoughtful commentary, see Maes et al.
(2007); Sheedy et al. (2009); Frémont et al. (2013); Proal and
Marshall (2018); Komaroff and Lipkin (2021)]. It is now not
only understood that intestinal microbes are able to trigger
or maintain CNS inflammation through vagal signaling, but
also that microbial metabolites may have multiple roles in
host physiology und influence CNS regulatory functions (Proal
and Marshall, 2018). For instance, metabolites derived from
dietary tryptophan crossing the BBB may affect nuclear factor
kB (NF-kB) signaling [a pathway for broad innate and adaptive
immune system activation (Morris and Maes, 2012)] and may
phenotypically transform astrocytes and microglia (Kopitar-
Jerala, 2015; Giovannoni and Quintana, 2020). Inflammatory
peripheral conditions with increased intestinal permeability may
induce closure of the blood-CSF barrier which in turn may
negatively affect brain function by limiting the entry of nutrients
and biomolecules into the CSF (Carloni et al., 2021).

The Link to Mitochondrial and Metabolic

Dysfunction

The (CNS)inflammatory milieu postulated for ME/CFS may
be doubly linked to another central observation in ME/CFS,
namely, metabolic, and especially mitochondrial (and possibly
peroxisomal) (Che et al., 2022) dysfunction. As noted in minimal
hepatic encephalopathy, even small increases in abnormal
metabolites (like ammonia) can have profound effects on
astrocyte and microglial function, especially in concert with
inflammatory signals (Stewart and Smith, 2007; Jaeger et al.,
2019; Claeys et al., 2021). It is therefore plausible that metabolic
alterations and/or oxidative and nitrosative stress in ME/CES
lead to glial dysfunction (Cobb and Cole, 2015; Morris et al.,
2017; Paul et al., 2021). Indeed, there is clinical overlap between
ME/CFES and minimal hepatic encephalopathy. In this respect
it may be notable that the first comprehensive metabolomics
study following ME/CFS patients during and after maximal
exercise shows an exercise-induced increase in a host of
abnormal metabolites, some of which may affect or reflect
pathways important for glial functioning (including glutamate
dependent pathways or pathways affecting ammonia recycling)
(Germain et al., 2022).

Glial reactivity or CNS inflammation could also retroact
on the metabolism in ME/CFS since inflammatory stimulation
or broadly restricted perfusion may cause mitochondrial
dysfunction. Inflammatory activity, for instance, can cause
decreased mitochondrial energy generation and mitochondrial
fragmentation via proinflammatory cytokines and oxidative
stress (Buoncervello et al., 2019; Paul et al., 2021). The latter may
account for the frequent association of chronic inflammatory
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and autoimmune disorders with metabolic dysfunctions.
Mitochondrial dysfunction may also promote oxidative stress
and inflammation, which may be one of the routes through
which restricted perfusion sustains inflammation (van Horssen
et al, 2019), a link that apparently also pertains to CNS
inflammation (Culmsee et al., 2018; van Horssen et al., 2019).
Indeed, inflammatory mediators (including glutamate) produced
by reactive neuroglia can trigger intracellular signaling cascades
that can alter mitochondrial metabolism including respiratory
chain enzyme activity (this may explain increased lactate in the
CSF of ME/CES patients) (Shungu et al., 2012).

Not All Forms of Neuroglial Dysfunction
May Be “Neuroinflammation”

Does the involvement of neuroglia necessarily point to
“neuroinflammation”? As we have seen, the answer is yes and
no, and here we touch on the ongoing discussion about the
definition of CNS inflammation and the role of glia in the CNS.
Most basically, microglia can be understood as the central part
of the innate immune system of the CNS. Neuroglial reactivity,
therefore, may indeed be associated with or reflect inflammatory
changes in the CNS or mirror inflammation outside the CNS.
Inflammation constitutes defensive activity of the innate immune
system, whether peripheral or central, to various types of insults
including stress. This response can be beneficial or detrimental
depending on the context (e.g., timing after the challenge)
and magnitude, and typically involves the release of cytokines,
and increased phagocytic activity. Such activity can be directed
toward pathogens, but also toward stressed (yet viable) neurons
and synapses (Butler et al., 2021).

At the same time, the neuroglia may be rendered reactive
or dysfunctional by processes not necessarily understood
as “inflammatory” - for instance through activation from
abnormal vagal input or abnormal GPCR signaling (VanElzakker,
2013; Wirth and Scheibenbogen, 2020). Regardless of cause,
compromised neuroglia can have a multitude of effects on
the BBB, gliogenesis, neurogenesis, NVC, axonal insulation,
synaptic plasticity, etc. (see Figure 1). Some hesitancy by, for
instance, clinical neurologists and neuroscientists, to accept the
concept of “neuroinflammation” may be resolved by a better
conceptual distinction between neuroglial dysfunction and “true”
CNS inflammation.

We contend, however, that there are still obstacles for
clarifying the role of neuroglia in ME/CEFS. First, the presence
of CNS inflammation has not been unequivocally established.
Second, the contributions of the different glial cell populations
and their interaction remains to be defined. Third, while our
hypothesis in part rests on the assumption of BBB dysregulation
or disruption, this remains to be proven. Also, ME/CEFS is a
heterogeneous disease with varying severity and it is unknown
whether the different clinical presentations share common
pathobiological pathways. This is a particular challenge due to the
lack of diagnostic biomarkers.

Inflammation of the CNS is not necessarily detrimental,
as alluded above, since it is required for the defense against
challenges and the restoration of homeostasis. A tight balance

of inflammatory mediators is crucial for normal physiological
processes in the CNS, including synaptic plasticity and behavioral
outcomes. However, prolonged, exacerbated, or mis/dysregulated
inflammation can lead to overt disease. Gaining control over the
mechanisms of inflammation, but also those underlying the many
physiological functions of neuroglia required to maintain health,
may thus be a promising therapeutic avenue. Lastly, it should
be highlighted that the neuroglial responses are highly diverse
and dependent on context. Different neuroglial cell subsets and
states could exert different, and even opposite functions, making
it important to identify those subsets and states specifically
involved in ME/CSF for the future development of therapies
targeting contextually relevant functions. In this context review
and further study of empirical or anecdotally successful ME/CES
therapies that target glia, such as minocycline (Plane et al., 2010;
Miwa, 2021; Numata, 2021), aripiprazole (Segnitz et al., 2009;
Yoneyama et al., 2014; Crosby et al., 2021), low dose naltrexone
(Cabanas et al., 2021), ketogenic diet (Cossington et al., 2019),
ketamine (Chang et al., 2009), vagal stimulation (Clancy et al.,
2014; Meneses et al., 2016; Rodriguez et al., 2020; Namgung et al.,
2022), and noninvasive transcranial neurostimulation (Gomez
et al., 2021; Sabel et al., 2021; Workman et al, 2021) may
be informative. Therapies that indirectly affect the innate CNS
immune response, including staphylococcal vaccine (Zachrisson
etal., 2002, 2004), Bacillus Calmette-Guérin (BCG) vaccine (Blok
et al., 2015; Sdnchez-Ramon et al., 2018), rintatolimod (Strayer
et al., 2020) and stellate ganglion block should also be considered
(Lipov et al., 2020; Liu and Duricka, 2022).

Neuroglial Dysfunction May Explain
Other Features of Myalgic
Encephalomyelitis/Chronic Fatigue

Syndrome

A central pathobiological role of neuroglia in ME/CFS may also
be plausible in light of the basic functions of the cell populations
involved:

e Glia are the only cells in the body that are physiologically
both part of the inflammatory response AND part of
the vascular-endothelial unit AND part of the functional
regulatory matrix of the CNS. Indeed, neuroglia are pivotal
for all functions disrupted in ME/CFS -including motor
functions, autonomous regulation, sleep homeostasis,
sensory gating, memory, mood and cognition.

e The involvement of glia may explain the “coupling” of
clinical symptoms in ME/CFS: Mental and muscular
fatigue are always occurring concurrently. The more a
patient suffers from cognitive or mental disturbance, the
less the muscles work. The more centrally fatigued a patient,
the slower their gait. Central sensory dysfunction such as
hypersensitivity to noise, light or touch goes hand in hand
with decreased exercise capacity. Cognitive dysfunction
parallels poor peripheral perfusion. Also, as disease severity
increases, mental and motor dysfunctions deteriorate
in unison, i.e., the less functional a patient is the more
pronounced their central AND peripheral disturbances.
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Conversely, amelioration, temporal improvement or
recovery from PEM are similarly in tandem processes.
This again may be attributed to a central role of neuroglia
that are simultaneously involved in the regulation of
CNS functions, the innate immune system, the basic
circuits involved in autonomous functioning, and the
stress response.

e Another typical symptom in ME/CFS that may also
be plausibly linked to neuroglial dysfunction is
hypersensitivity to light, sound, and touch as well as
sensory overload (like rapidly changing stimuli). Sensory
gating in the CNS is glutamate dependent and glia play
a central role. For one, astrocytes by large determine
glutamate availability in the brain (Hansson and Rénnbick,
2004; Ronnbiack and Hansson, 2004). Also, reactive
microglia produce quinolinic acid (Espey et al., 1997),
an excitotoxic by-product of the tryptophan-kynurenine
pathway, which has been implicated in the pathogenesis of
central fatigue (Yamashita, 2020) and ME/CFS in particular
(Kashi et al., 2019). Indeed, increased quinolinic acid was
reported in ME/CFS (Kurup and Kurup, 2003; Groven
et al,, 2021) and PASC (Sadlier et al., 2022). The concept of
glutamate-dependent CNS excitotoxicity may explain why
both cognitive impairment and sensory overstimulation
occur in ME/CEFS. After all, pathological activation of
astrocytes can cause overstimulation of NMDA receptors,
which can also affect cognitive function involving the
frontal cortex (Finsterwald et al., 2015).

e Dysfunctional neuroglia may explain the neuropsychiatric
components of ME/CFS. Among the most challenging
aspects of ME/CFS may be anhedonia, the experience
of dysphoria with admixture of anxiety, insomnia, panic,
and depression, especially during exacerbations and PEM.
This occurrence fits with the view that the astroglial
compartment is at the center of mood regulation. Indeed,
astrocytes seem to be heavily involved in the dopaminergic
"reward" system (Corkrum et al., 2020). Also, in models of
depression and anxiety disorders, the excitatory-inhibitory
imbalance caused by astrocyte dysfunction has been
implicated as an important pathogenic factor (Zhou et al.,
2019). In animal models, astrocytic IL-6 mediated anxiety
(Erta et al.,, 2015), and there is ample evidence for a role
of glia, both astrocytes and microglia, in sleep regulation
(Pinto et al., 2022) and neuropsychiatric disorders [for a
review see Mayegowda and Thomas (2019)]. For details on
possible cellular mechanisms see Tay et al. (2017a); Zhou
et al. (2019).

e The central role of glia may also explain the emerging
recognition of mast cells in ME/CFS. Mast cells are
important early effectors of the innate immune response
and deeply engaged in CNS inflammation, where they
may be “partners in crime” with astrocytes and microglia
(Skaper et al.,, 2014). Central nervous system mast cells
reside on the brain side of the BBB (especially in the
hypothalamus, which has regions devoid of a BBB)

(Rozniecki et al., 1999), and interact with astrocytes,
microglia, and blood vessels (Zhang et al., 2016a; Skaper
et al, 2017). Via their stored and newly synthesized
neuroactive mediators (including IL-6 and IL-1f), mast
cells can promote microglial and astrocytic reactivity
(Skaper et al., 2014; Zhang et al., 2016b; Sarno, 2020)
(e.g., in response to acute stress) (Huang et al., 2003),
increase vascular permeability and disrupt the BBB
(Theoharides and Konstantinidou, 2007).

e Finally, and possibly most importantly, astrocytes and
microglia are unique among all cellular compartments in
their flexible response to stress, which includes the formation
of “stress memories”: Following pro-inflammatory
stimulation glia remain in a reactive state and become
hyperresponsive to subsequent stimulation because
primed neuroglia respond at a different threshold than
homeostatic neuroglia. Also, once repetitively stimulated
by challenges, the “activation” threshold may decrease and
with it the ability of the glial cells to revert to homeostatic
physiological functions. In this context-dependent
flexibility, neuroglia may be a prime candidate to explain
the unique phenomenon of PEM (see section “Post-
exertional malaise”). It may also explain why ME/CFS
patients clinically deteriorate over time if they chronically
exceed their “energy envelope” and why “pacing,” i.e., the
strict observation of energy limits, so far remains the only
effective “therapy” for ME/CES.

Can the Neuroglial Hypothesis Explain
the Apparent Etiological Variability of
Myalgic Encephalomyelitis/Chronic

Fatigue Syndrome?

While ME/CFS is typically considered to be triggered by
infectious agents, the disease, in a substantial subset of ME/CFS
patients, is associated with connective tissue/hypermobility
disorders, including the hypermobile form of Ehlers Danlos
syndrome (hEDS) (Rowe et al., 1999; Barron et al., 2002; Castori
et al,, 2011; Bragée et al., 2020; Eccles et al., 2021). Conversely,
the majority of patients with hypermobile forms of EDS meet
the criteria for ME/CFS; indeed, ME/CEFS is reported as ~10
times more common in patients with EDS than in the general
population (Castori et al., 2011). Neuro-orthopedic conditions of
the spine and skull such as CCI/AAI, tethered cord syndrome,
Arnold Chiari malformation or syringomyelia have also been
reported in ME/CFS patients, and successful treatment of these
conditions has sometimes resulted in recovery from ME/CFS
(Brea, 2021; The Mechanical Basis of ME/CFS Craniocervical
Instability, CCI, Tethered Cord, 2021).

What may render patients with hypermobile syndromes
and/or these neuro-orthopedic conditions susceptible to
ME/CEFS? It has been suggested that connective tissue alterations
may set the stage for vascular disease. Yet, in hEDS, vascular
anomalies are not reported (Riley, 2020). It has been suggested
that connective tissues may be damaged during the host defense
against certain pathogens (Sellner et al., 2006; Singh et al., 2012),
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which may predispose genetically vulnerable individuals (e.g.,
those in the hEDS spectrum category) for subsequent over
“mechanical” problems from infections.

Another lead to a possibly shared pathophysiological basis
assumes that both the “hypermobile” and the “neuro-orthopedic”
cases of ME/CFS impart mechanical strain on CNS tissues. In the
hypermobile cases, collagen is altered in a way that allows tissue
to be pulled beyond normal limits. This may interfere with the
protective functions of the connective tissues and set the stage
for impact injury to adjacent tissues. These strain injuries may
not only result in altered joint functions (which may explain
the link between hEDS and CCI/AAI) (Henderson et al., 2017)
but also cause dysfunction or even injury in unprotected CNS
tissue, for instance in the spinal cord, the medulla oblongata or
the brainstem. Here, two of the nuclei most intensely studied
in ME/CFS imaging research, the NTS and the dorsal motor
complex of the vagus nerve, could be easily affected from
tethering or mechanical compression and related consequences
like ischemia, lactate release, hypoperfusion, edema, raised
intracranial pressure, or inflammation. The same “mechanical
strain” explanation may apply to neuro-orthopedic cases, as
both Arnold Chiari malformation, tethered cord syndrome and
syringomyelia are marked by traction on the brainstem, which
may lead to chronic compression or distortion of neural and
glial tissue in the brainstem or spinal cord. Pathophysiological
sequelae, including reduced CBE, venous congestion and raised
ICP, would have untoward effects on the functions of the neural
tissues or regulatory centers. Some of these mechanical factors
may be interrelated. For example, hEDS is frequently associated
with occult (functional) cord tethering (Klinge et al., 2022).

The above explanations fit well with the observation that
intracranial hypertension may be found in up to half of
ME/CES patients, most commonly in combination with joint
hypermobility (Higgins et al., 2013; Henderson et al., 2017;
Bragée et al., 2020). In an MRI study of 272 severely affected
ME/CES patients, signs of possible increased ICP were found in
83%; of these 32% were classified as definitely abnormal (Bragée
et al., 2020). Signs of craniocervical obstruction were noted in
37% of patients. Several years prior, mildly increased ICP was
detected by lumbar puncture in most of 20 ME/CFS patients
examined; CSF drainage temporarily improved symptoms in
17 patients (Higgins et al., 2013). Interestingly, the brain area
most vulnerable to alterations in CSF pressure appears to be the
dorsal brainstem (Proal and VanElzakker, 2021), an area heavily
implicated in studies of ME/CEFS pathobiology.

It is also conceivable that the sequence of events in patients
with initial "mechanical” stress includes CNS inflammation.
Indeed, mouse models demonstrate how easily deformative
stretch can lead to abnormal calcium influx (Wolf et al,
2001), altered gene expression (Henderson et al, 2017),
proinflammatory stimulation, glial network disintegration
(Koumlis et al., 2018) and apoptosis of neurons (Liu et al., 1997;
Arundine et al., 2004). Activated mast cells may degranulate in
response to sheer strain, tissue torsion and stretch (Hu et al,
2014; Skaper et al, 2014). The mechanical-inflammatory link
is also supported by research on TBI, which was shown to be
associated with CNS inflammation (and can lead to a clinical
picture overlapping with ME/CFS) (Nordin et al.,, 2016). The

CNS inflammation after TBI seems to be mediated through
astrocytes and microglial-astrocyte crosstalk (Clark et al., 2019).
It was also shown that spinal injuries (as to be assumed with
tethered cord syndrome or syringomyelia) can induce CNS
inflammation (Gwak and Hulsebosch, 2009).

Broken Connections - May Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome Be a Case of “Connectivity

Hub Failure”?

As a speculative outlook, the role of glia in ME/CFES may even
be more profound. After all, the neuroglial cell populations
are now understood as part of the functional matrix of the
human brain connectome (Hagmann, 2005; Sporns et al,
2005), which operates above and beyond specific brain centers,
receptor units or neurotransmitter systems and integrates innate
immune functions with CNS regulatory functions pertaining to
autonomous regulation, sensory processing, cellular metabolism
and the stress response (Fields et al., 2015; Mederos et al., 2018;
Kiyoshi and Zhou, 2019).

Here, it may be informative to revisit the most remarkable
characteristics of ME/CFS. This complex disease appears as a
unique member of the kingdom of diseases. ME/CEFS affects all
functional levels of the human body, from its metazoan-like
homeostatic functions such as innate immunity, inflammation,
metabolism, arousal and vigilance, sleep, temperature regulation,
stress response, locomotion, and digestion to the higher
mammalian functions such as the reward system, mood
regulation, cognition, memory and word processing. In its
clinical course, the disease also occupies a special niche. ME/CES
does not follow the path of degenerative, neoplastic, chronic
infectious or most autoimmune diseases that worsen over time
and lead to overt tissue destruction. On the contrary, there are
indications that ME/CFS - apart from complications that may
arise secondarily - may be marked by the absence of long-
term pathobiological sequelae. It has indeed been suggested that,
if a cure for ME/CFS was found tomorrow, the vast majority
of ME/CFS patients may rise out of their misery biologically
unharmed (Ron Davis, in a public video) (Sheffield Me and
Fibromyalgia Group, 2021). Yet, ME/CEFS also does not follow the
pattern of functional disorders like migraine, which are usually
episodic with complete well-being in between. ME/CES neither
resolves, nor ineluctably progresses nor arises episodically from
healthy states. It persists, mostly forever, with ups and downs, but
within a clearly abnormal corridor.

These characteristics may indicate that ME/CFS resides at a
deep regulatory level. This regulatory level may possibly be so
profound that the question has been raised if the pathobiological
circuits of ME/CFS may really be disease processes at all
or if they may be physiological pathways that are normally
activated only for short periods of time and under unusual
circumstances (like fighting a disease or other threats) and that
for some reason have become "hijacked" to remain perpetually
activated (Kashi et al., 2019). Given the evidence that these
pathways may include functions of the innate immune system
and the stress response, we speculate that the altered pathways
involve the neuroglia.
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This concept may be more plausible in the light of the
emerging understanding of the functional matrix of the brain
[for a review, see (Stam, 2014) and (Nichols et al., 2017)].
Neuroscientists used to try to understand brain function and
dysfunction starting from topographical units (brain areas or
brain nuclei) to which they assigned specific functions. A similar
approach was later pursued with neurotransmitters and their
receptors — a certain disease, like depression, was then coined
as a disease in which a certain transmitter (or receptor) system
was dysfunctional.

The history of ME/CFS is marked by a similar narrative.
There have been numerous hypotheses about the topographical
units that is affected in ME/CFS, which variably invoked the
locus coeruleus, the amygdala, the paraventricular nucleus, the
suprachiasmatic nucleus or the vagal centers of the brainstem.
Even a “fatigue nucleus” has been suggested as “the” area of
concern in ME/CFS (Komaroff and Bateman, 2021). Likewise,
several transmitter systems have been identified as dysfunctional,
and variably dysfunctions in dopaminergic, serotoninergic,
glutaminergic, or adrenergic transmission have been suggested
as “the” biochemical basis of ME/CFS. Yet, the obvious disparity
and contradictions of these topographical and biochemical
explanations suggest that these may only be pieces of a broader,
and probably more complex, picture.

Neuroscientists are working on a brain model to address this
complexity. The human brain is now understood as a complex
system with functions that depend on an optimal balance between
local specialization and global integration. This framework
is based on a functional matrix of interconnected pathways
forming multiple large-scale functional networks (called resting-
state networks - like, for instance, the DMN) (Haimovici
et al., 2013; Smith et al., 2013). The analysis of the functional
connectivity of these networks has identified sets of regions that
can be seen as essential nodes or “hubs” for efficient neuronal
signaling and communication. While these hubs are embedded
in specific anatomical locations, they have functional roles across
a wide range of tasks. Pathological consequences may arise from
dysfunction or disconnection within or between these networks,
with loss of local connectivity and short path length indicative
of loss of optimal global integration (Stam, 2014). It has been
suggested that such “connectivity hub overload” or “hub failure”
may be a potential final common pathway of several neurological
diseases, and there is now evidence of such altered functional
connectivity in a wide variety of CNS diseases, including anxiety
disorder, posttraumatic stress disorder, anorexia nervosa and
depression (Kaplan et al., 2019). Similar changes may also occur
in ME/CFS, where connectivity disturbance has been identified
in the resting state and in response to tasks (Barnden et al.,
2015, 2019; Gay et al., 2015; Shan et al., 2016, 2017; Rayhan and
Baraniuk, 2021).

Interestingly, and in support of our general hypothesis, there
is evidence that glia - themselves organized as an interdependent
syncytial network (Kalafatakis and Karagogeos, 2021; Rayhan
and Baraniuk, 2021) may be paramount to guarantee effective
connectivity and hub integrity in the neuronal connectome,
which relies on constant axonal and synaptic reorganization
(Spiegler et al., 2016). By virtue of their metabolic and regulatory

support for neurons as well as their role in neurite outgrowth,
neuronal guidance, maintenance of the axon-myelin interface
and synaptic plasticity, dysfunctional neuroglia may initiate hub
failure (Fields et al., 2015; Lu et al., 2019).

A noteworthy observation is that the largest human
proteomics dataset analyses of proteins unique to the ME/CFS
patients robustly highlighted the Eph/ephrin pathway (Germain
et al., 2021). The latter contributes to “guiding” migrating
cells and has attracted attention for its unique bi-directional
signaling between astrocytes and neurons, and its influence
on synaptic plasticity and axon tract formation and pruning
(Yang et al, 2018). Eph/ephrin appears to also regulate
oligodendrocyte precursor cells and oligodendrocytes, since
they contribute to axonal insulation and may be involved
in extracellular glutamate homeostasis and the regulation of
excitotoxicity. Interestingly, Eph receptors are highly expressed
in brain regions with morphological and physiological plasticity,
including the amygdala and hippocampus, areas of particular
interest in ME/CFS research (Shan et al., 2020; Li et al,
2021). Proteomic analysis of CSF (Schutzer et al., 2011)
and circulating EVs (Eguchi et al, 2020) also highlighted
axonal guidance pathways linked to Eph/ephrin as possibly
abnormal in ME/CFS. These observations fit with recent
findings of peroxisomal dysfunction and associated depletion
of plasmalogens in ME/CFS (Che et al,, 2022), as peroxisomes
are not only heavily enriched in neuroglial cells but are
also paramount for the preservation of axonal integrity, the
formation and maintenance of myelin, immune function and
general brain health [for reviews, see Baes and Aubourg
(2009); Kassmann (2014)]. If only on a speculative note, in
the largest ME/CFS genome-wide association study to date,
the most significant risk loci association was found for the
tubulin polymerization promoting protein (TPPP) gene region
(Hajdarevic et al, 2022). Tubulin polymerization promoting
protein is expressed in brain tissues and plays a central role in
myelination (Fu et al., 2019).

In summary, although this review in part builds on hypotheses
still to be substantiated or refuted, evidence is strong that the
neuroglia, as a cellular network regulating autonomous functions,
the immune system and the stress response, and that reaches
across and beyond specific brain nuclei, transmitter and receptor
systems, is central to the pathogenesis of ME/CFS. Considering
their functional importance at the interface of central and
peripheral biological functions, we propose greater focus on the
role of neuroglia in ME/CFS (and PASC) research.
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